1
|
Giuliatti S, Benedetti AFF, Ramos RM, Petroli RJ, Domenice S, Mendonca BB, Batista RL. Hydropathic AF-2 variants in the androgen receptor gene among androgen insensitivity patients. Andrology 2025; 13:447-458. [PMID: 38923406 DOI: 10.1111/andr.13680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/20/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Androgen insensitivity syndrome (AIS) is a common condition among individuals with differences of sexual development (DSD) and results from germline allelic variants in the androgen receptor (AR) gene. Understanding the phenotypic consequences of AR allelic variants that disrupt the activation function 2 (AF2) region is essential to grasping its clinical significance. OBJECTIVES This study aims to provide insights into the phenotypic characteristics and clinical impact of AR mutations affecting the AF2 region in AIS patients. We achieve this by reviewing reported AR variants in the AF2 region among individuals with AIS, including identifying a new phenotype associated with the c.2138T>C variant (p.Leu713Pro) in the AR gene. MATERIALS AND METHODS We comprehensively reviewed AR variants within the AF2 region reported in AIS and applied molecular dynamics simulations to assess the impact of the p.Leu713Pro variant on protein dynamics. RESULTS Our review of reported AR variants in the AF2 region revealed a spectrum of phenotypic outcomes in AIS patients. Molecular dynamics simulations indicated that the p.Leu713Pro variant significantly alters the local dynamics of the AR protein and disrupts the correlation and covariance between variables. DISCUSSION The diverse phenotypic presentations observed among individuals with AR variants in the AF2 region highlight the complexity of AIS. The altered protein dynamics resulting from the p.Leu713Pro variant further emphasize the importance of the AF2 region in AR function. CONCLUSION Our study provides valuable insights into AR mutations' phenotypic characteristics and clinical impact on the AF2 region in AIS. Moreover, the disruption of protein dynamics underscores the significance of the AF2 region in AR function and its role in the pathogenesis of AIS.
Collapse
Affiliation(s)
- Silvana Giuliatti
- Department of Genetics, School of Medicine of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Anna Flavia Figueredo Benedetti
- Developmental Endocrinology Unit, Hormone and Molecular Genetics Laboratory (LIM/42), Endocrinology Division, Internal Medicine Department, University of São Paulo (USP), São Paulo, Brazil
| | - Raquel Martinez Ramos
- Developmental Endocrinology Unit, Hormone and Molecular Genetics Laboratory (LIM/42), Endocrinology Division, Internal Medicine Department, University of São Paulo (USP), São Paulo, Brazil
| | - Reginaldo José Petroli
- Faculdade de Medicina da Universidade Federal de Alagoas (UFAL), Programa de Pós-Graduação em Ciências Médicas - UFAL, Alagoas, Brazil
| | - Sorahia Domenice
- Developmental Endocrinology Unit, Hormone and Molecular Genetics Laboratory (LIM/42), Endocrinology Division, Internal Medicine Department, University of São Paulo (USP), São Paulo, Brazil
| | - Berenice Bilharinho Mendonca
- Developmental Endocrinology Unit, Hormone and Molecular Genetics Laboratory (LIM/42), Endocrinology Division, Internal Medicine Department, University of São Paulo (USP), São Paulo, Brazil
| | - Rafael Loch Batista
- Developmental Endocrinology Unit, Hormone and Molecular Genetics Laboratory (LIM/42), Endocrinology Division, Internal Medicine Department, University of São Paulo (USP), São Paulo, Brazil
- Instituto do Câncer do Estado de São Paulo da Faculdade de Medicina da Universidade de São Paulo (ICESP), São Paulo, Brazil
| |
Collapse
|
2
|
Yu T, Sudhakar N, Okafor CD. Illuminating ligand-induced dynamics in nuclear receptors through MD simulations. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:195025. [PMID: 38614450 DOI: 10.1016/j.bbagrm.2024.195025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/27/2024] [Accepted: 04/06/2024] [Indexed: 04/15/2024]
Abstract
Nuclear receptors (NRs) regulate gene expression in critical physiological processes, with their functionality finely tuned by ligand-induced conformational changes. While NRs may sometimes undergo significant conformational motions in response to ligand-binding, these effects are more commonly subtle and challenging to study by traditional structural or biophysical methods. Molecular dynamics (MD) simulations are a powerful tool to bridge the gap between static protein-ligand structures and dynamical changes that govern NR function. Here, we summarize a handful of recent studies that apply MD simulations to study NRs. We present diverse methodologies for analyzing simulation data with a detailed examination of the information each method can yield. By delving into the strengths, limitations and unique contributions of these tools, this review provides guidance for extracting meaningful data from MD simulations to advance the goal of understanding the intricate mechanisms by which ligands orchestrate a range of functional outcomes in NRs.
Collapse
Affiliation(s)
- Tracy Yu
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Nishanti Sudhakar
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - C Denise Okafor
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA; Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
3
|
Chen H, Zhou Y, Wang X, Chai X, Wang Z, Wang E, Xu L, Hou T, Li D, Duan M. Discovery of Novel Anti-Resistance AR Antagonists Guided by Funnel Metadynamics Simulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309261. [PMID: 38481034 PMCID: PMC11109662 DOI: 10.1002/advs.202309261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/18/2024] [Indexed: 05/23/2024]
Abstract
Androgen receptor (AR) antagonists are widely used for the treatment of prostate cancer (PCa), but their therapeutic efficacy is usually compromised by the rapid emergence of drug resistance. However, the lack of the detailed interaction between AR and its antagonists poses a major obstacle to the design of novel AR antagonists. Here, funnel metadynamics is employed to elucidate the inherent regulation mechanisms of three AR antagonists (hydroxyflutamide, enzalutamide, and darolutamide) on AR. For the first time it is observed that the binding of antagonists significantly disturbed the C-terminus of AR helix-11, thereby disrupting the specific internal hydrophobic contacts of AR-LBD and correspondingly the communication between AR ligand binding pocket (AR-LBP), activation function 2 (AF2), and binding function 3 (BF3). The subsequent bioassays verified the necessity of the hydrophobic contacts for AR function. Furthermore, it is found that darolutamide, a newly approved AR antagonist capable of fighting almost all reported drug resistant AR mutants, can induce antagonistic binding structure. Subsequently, docking-based virtual screening toward the dominant binding conformation of AR for darolutamide is conducted, and three novel AR antagonists with favorable binding affinity and strong capability to combat drug resistance are identified by in vitro bioassays. This work provides a novel rational strategy for the development of anti-resistant AR antagonists.
Collapse
Affiliation(s)
- Haiyi Chen
- College of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiang310058China
- National Centre for Magnetic Resonance in WuhanState Key Laboratory of Magnetic Resonance and Atomic and Molecular PhysicsInnovation Academy for Precision Measurement Science and TechnologyChinese Academy of SciencesWuhanHubei430071China
- Liangzhu LaboratoryZhejiang University Medical CenterHangzhouZhejiang311121China
| | - Yuxin Zhou
- College of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiang310058China
| | - Xinyue Wang
- College of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiang310058China
| | - Xin Chai
- College of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiang310058China
- Liangzhu LaboratoryZhejiang University Medical CenterHangzhouZhejiang311121China
| | - Zhe Wang
- College of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiang310058China
| | | | - Lei Xu
- Institute of Bioinformatics and Medical EngineeringSchool of Electrical and Information EngineeringJiangsu University of TechnologyChangzhou213001China
| | - Tingjun Hou
- College of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiang310058China
| | - Dan Li
- College of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiang310058China
| | - Mojie Duan
- National Centre for Magnetic Resonance in WuhanState Key Laboratory of Magnetic Resonance and Atomic and Molecular PhysicsInnovation Academy for Precision Measurement Science and TechnologyChinese Academy of SciencesWuhanHubei430071China
- NMR and Molecular Sciences, School of Chemistry and Chemical Engineering, The State Key Laboratory of Refractories and MetallurgyWuhan University of Science and TechnologyWuhan430081China
| |
Collapse
|
4
|
Kim Y, Bereketoglu C, Sercinoglu O, Pradhan A. In Vitro, In Vivo, and In Silico Analysis of Pyraclostrobin and Cyprodinil and Their Mixture Reveal New Targets and Signaling Mechanisms. Chem Res Toxicol 2024; 37:497-512. [PMID: 38419406 DOI: 10.1021/acs.chemrestox.3c00371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Pyraclostrobin and cyprodinil are broad-spectrum fungicides that are used in crops to control diseases. However, they are excessively used and, as a result, end up in the environment and threaten human health and ecosystems. Hence, knowledge of their mechanisms of action is critical to revealing their environmental fate and negative effects and regulating their use. In the present study, we conducted a comprehensive study to show the adverse effects of pyraclostrobin, cyprodinil, and their mixture using zebrafish larvae and different cell lines. Several end points were investigated, including mortality, development, gene expression, reporter assays, and molecular docking simulations. We found that both compounds and their mixture caused developmental delays and mortality in zebrafish, with a higher effect displayed by pyraclostrobin. Both compounds altered the expression of genes involved in several signaling pathways, including oxidative stress and mitochondrial function, lipid and drug metabolisms, the cell cycle, DNA damage, apoptosis, and inflammation. A noteworthy result of this study is that cyprodinil and the mixture group acted as NFκB activators, while pyraclostrobin demonstrated antagonist activity. The AHR activity was also upregulated by cyprodinil and the mixture group; however, pyraclostrobin did not show any effect. For the first time, we also demonstrated that pyraclostrobin had androgen receptor antagonist activity.
Collapse
Affiliation(s)
- Yeju Kim
- Biology, the Life Science Center, School of Science and Technology, Örebro University, Örebro SE-70182, Sweden
| | - Ceyhun Bereketoglu
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul 34722, Turkey
| | - Onur Sercinoglu
- Department of Bioengineering, Faculty of Engineering, Gebze Technical University, Kocaeli 41400, Turkey
| | - Ajay Pradhan
- Biology, the Life Science Center, School of Science and Technology, Örebro University, Örebro SE-70182, Sweden
| |
Collapse
|
5
|
Majeed A, Tahir Ul Qamar M, Maryam A, Mirza MU, Alhussain L, Al Otaibi SO, Almatroudi A, Allemailem KS, Alrumaihi F, Aloliqi AA, Alshehri FF. Structural insights into the mechanism of resistance to bicalutamide by the clinical mutations in androgen receptor in chemo-treatment resistant prostate cancer. J Biomol Struct Dyn 2024; 42:1181-1190. [PMID: 37144757 DOI: 10.1080/07391102.2023.2208203] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 03/28/2023] [Indexed: 05/06/2023]
Abstract
Despite advanced diagnosis and detection technologies, prostate cancer (PCa) is the most prevalent neoplasms in males. Dysregulation of the androgen receptor (AR) is centrally involved in the tumorigenesis of PCa cells. Acquisition of drug resistance due to modifications in AR leads to therapeutic failure and relapse in PCa. An overhaul of comprehensive catalogues of cancer-causing mutations and their juxta positioning on 3D protein can help in guiding the exploration of small drug molecules. Among several well-studied PCa-specific mutations, T877A, T877S and H874Y are the most common substitutions in the ligand-binding domain (LBD) of the AR. In this study, we combined structure as well as dynamics-based in silico approaches to infer the mechanistic effect of amino acid substitutions on the structural stability of LBD. Molecular dynamics simulations allowed us to unveil a possible drug resistance mechanism that acts through structural alteration and changes in the molecular motions of LBD. Our findings suggest that the resistance to bicalutamide is partially due to increased flexibility in the H12 helix, which disturbs the compactness, thereby reducing the affinity for bicalutamide. In conclusion, the current study helps in understanding the structural changes caused by mutations and could assist in the drug development process.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Abdul Majeed
- Integrative Omics and Molecular Modeling Laboratory, Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Muhammad Tahir Ul Qamar
- Integrative Omics and Molecular Modeling Laboratory, Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Arooma Maryam
- Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester, MA, USA
| | - Muhammad Usman Mirza
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, Canada
| | - Laila Alhussain
- Department of Biology, College of Science, Qassim University, Buraydah, Saudi Arabia
| | - Seham Obaid Al Otaibi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Khaled S Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Abdulaziz A Aloliqi
- Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Faez Falah Alshehri
- Department of Medical Laboratories, College of Applied Medical Sciences, Shaqra University, Aldawadmi, Saudi Arabia
| |
Collapse
|
6
|
Khan AF, Karami S, Peidl AS, Waiters KD, Babajide MF, Bawa-Khalfe T. Androgen Receptor in Hormone Receptor-Positive Breast Cancer. Int J Mol Sci 2023; 25:476. [PMID: 38203649 PMCID: PMC10779387 DOI: 10.3390/ijms25010476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/28/2023] [Accepted: 12/13/2023] [Indexed: 01/12/2024] Open
Abstract
Breast cancer subtypes expressing hormone receptors (HR+ BCa) have a good prognosis and respond to first-line endocrine therapy (ET). However, the majority of HR+ BCa patients exhibit intrinsic or acquired ET resistance (ET-R) and rapid onset of incurable metastatic BCa. With the failure of conventional ET, limited targeted therapy exists for ET-R HR+ BCa patients. The androgen receptor (AR) in HR-negative BCa subtypes is emerging as an attractive alternative target for therapy. The AR drives Luminal AR (LAR) triple-negative breast cancer progression, and LAR patients consistently exhibit positive clinical benefits with AR antagonists in clinical trials. In contrast, the function of the AR in HR+ BCa is more conflicting. AR in HR+ BCa correlates with a favorable prognosis, and yet, the AR supports the development of ET-R BCa. While AR antagonists were ineffective, ongoing clinical trials with a selective AR modulator have shown promise for HR+ BCa patients. To understand the incongruent actions of ARs in HR+ BCa, the current review discusses how the structure and post-translational modification impact AR function. Additionally, completed and ongoing clinical trials with FDA-approved AR-targeting agents for BCa are presented. Finally, we identify promising investigational small molecules and chimera drugs for future HR+ BCa therapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Tasneem Bawa-Khalfe
- Center for Nuclear Receptors & Cell Signaling, Department of Biology & Biochemistry, University of Houston, 3517 Cullen Blvd, SERC Bldg., Rm 3010, Houston, TX 77204-5056, USA (K.D.W.)
| |
Collapse
|
7
|
Xia QD, Zhang SH, Zeng N, Lu YC, Qin BL, Wang SG. Novel androgen receptor inhibitors for metastatic hormone-sensitive prostate cancer: Current application and future perspectives. Biomed Pharmacother 2023; 168:115806. [PMID: 37925933 DOI: 10.1016/j.biopha.2023.115806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/07/2023] Open
Abstract
Androgen receptor (AR) signaling is essential in prostate cancer treatment. For many years, androgen deprivation therapy (ADT) has been primarily applied to manage advanced prostate cancer. However, most individuals with metastatic hormone-sensitive prostate cancer (mHSPC) administered ADT alone are at risk of developing metastatic castration-resistant prostate cancer (mCRPC) in less than two years. New approaches employing novel AR inhibitors (ARi) as intensified upfront systemic treatment in mHSPC have recently demonstrated substantial benefits in delaying disease progression and prolonging overall survival. Administration of novel ARi has become the new standard of care in mHSPC. The new landscape simultaneously makes treatment choice more challenging. This review provides comprehensive data on molecular structure, pharmaceutical properties, and efficacy and safety profiles reported by pivotal clinical trials. We also discuss future directions with ongoing Phase III trials of novel ARi in mHSPC. Considering these biological and clinical insights, this review aimed to provide a comprehensive understanding of differences in the development and applications of novel ARi for mHSPC, which may be helpful in designing strategies for first-line treatment choices.
Collapse
Affiliation(s)
- Qi-Dong Xia
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Si-Han Zhang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Na Zeng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Yu-Chao Lu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China.
| | - Bao-Long Qin
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China.
| | - Shao-Gang Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China.
| |
Collapse
|
8
|
Proffitt MR, Liu X, Ortlund EA, Smith GT. Evolution of androgen receptors contributes to species variation in androgenic regulation of communication signals in electric fishes. Mol Cell Endocrinol 2023; 578:112068. [PMID: 37714403 PMCID: PMC10695101 DOI: 10.1016/j.mce.2023.112068] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/31/2023] [Accepted: 09/11/2023] [Indexed: 09/17/2023]
Abstract
Hormones and receptors coevolve to generate species diversity in hormone action. We compared the structure and function of androgen receptors (ARs) across fishes, with a focus on ARs in ghost knifefishes (Apteronotidae). Apteronotids, like many other teleosts, have two ARs (ARα and ARβ). ARβ is largely conserved, whereas ARα sequences vary considerably across species. The ARα ligand binding domain (LBD) has evolved under positive selection, and differences in the LBD across apteronotid species are associated with diversity in androgenic regulation of behavior. The Apteronotus leptorhynchus ARα LBD differs substantially from that of the Apteronotus albifrons ARα or the ancestral AR. Structural modeling and transactivation assays demonstrated that A. leptorhynchus ARα cannot bind androgens. We propose a model whereby relative expression of ARα versus ARβ in the brain, coupled with loss of androgen binding by ARα in A. leptorhynchus might explain reversals in androgenic regulation and sex differences in electrocommunication behavior.
Collapse
Affiliation(s)
- Melissa Renee Proffitt
- Department of Biology and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN, USA
| | - Xu Liu
- Department of Biochemistry, Emory University, Atlanta, GA, USA
| | - Eric A Ortlund
- Department of Biochemistry, Emory University, Atlanta, GA, USA
| | - G Troy Smith
- Department of Biology and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN, USA.
| |
Collapse
|
9
|
Hou Y, Bai Y, Lu C, Wang Q, Wang Z, Gao J, Xu H. Applying molecular docking to pesticides. PEST MANAGEMENT SCIENCE 2023; 79:4140-4152. [PMID: 37547967 DOI: 10.1002/ps.7700] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/17/2023] [Accepted: 08/05/2023] [Indexed: 08/08/2023]
Abstract
Pesticide creation is related to the development of sustainable agricultural and ecological safety, and molecular docking technology can effectively help in pesticide innovation. This paper introduces the basic theory behind molecular docking, pesticide databases, and docking software. It also summarizes the application of molecular docking in the pesticide field, including the virtual screening of lead compounds, detection of pesticides and their metabolites in the environment, reverse screening of pesticide targets, and the study of resistance mechanisms. Finally, problems with the use of molecular docking technology in pesticide creation are discussed, and prospects for the future use of molecular docking technology in new pesticide development are discussed. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yang Hou
- Engineering Research Center of Pesticide of Heilongjiang Province, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
| | - Yuqian Bai
- Engineering Research Center of Pesticide of Heilongjiang Province, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
| | - Chang Lu
- Engineering Research Center of Pesticide of Heilongjiang Province, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
| | - Qiuchan Wang
- Engineering Research Center of Pesticide of Heilongjiang Province, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
| | - Zishi Wang
- Engineering Research Center of Pesticide of Heilongjiang Province, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
| | - Jinsheng Gao
- Engineering Research Center of Pesticide of Heilongjiang Province, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
| | - Hongliang Xu
- Engineering Research Center of Pesticide of Heilongjiang Province, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
| |
Collapse
|
10
|
Li N, Zeng Z, Zhang Y, Zhang H, Tang N, Guo Y, Lu L, Li X, Zhu Z, Gao X, Liang J. Higher toxicity induced by co-exposure of polystyrene microplastics and chloramphenicol to Microcystis aeruginosa: Experimental study and molecular dynamics simulation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 866:161375. [PMID: 36621494 DOI: 10.1016/j.scitotenv.2022.161375] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/23/2022] [Accepted: 12/31/2022] [Indexed: 06/17/2023]
Abstract
Antibiotics and microplastics (MPs) inevitably coexist in natural waters, but their combined effect on aquatic organisms is still ambiguous. This study investigated the individual and combined toxicity of chloramphenicol (CAP) and micro-polystyrene (mPS) particles to Microcystis aeruginosa by physiological biomarkers, related gene expression, and molecular dynamics simulation. The results indicated that both individual and joint treatments threatened algal growth, while combined toxicity was higher than the former. Photosynthetic pigments and gene expression were inhibited by single CAP and mPS exposure, but CAP dominated and aggravated photosynthetic toxicity in combined exposure. Additionally, mPS damaged cell membranes and induced oxidative stress, which might further facilitate the entry of CAP into cells during co-exposure. The synergistic effect of CAP and mPS might be explained by the common photosynthetic toxicity target of CAP and mPS as well as oxidative stress. Furthermore, the molecular dynamics simulation revealed that CAP altered conformations of photosynthetic assembly protein YCF48 and SOD enzyme, and competed for functional sites of SOD, thus disturbing photosynthesis and antioxidant systems. These findings provide useful insights into the combined toxicity mechanism of antibiotics and MPs as well as highlight the importance of co-pollutant toxicity in the aquatic environment.
Collapse
Affiliation(s)
- Na Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Zhuotong Zeng
- Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, PR China
| | - Yafei Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Hui Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Ning Tang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Yihui Guo
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Lan Lu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Xin Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Ziqian Zhu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Xiang Gao
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Jie Liang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China.
| |
Collapse
|
11
|
Pranweerapaiboon K, Garon A, Seidel T, Janta S, Plubrukarn A, Chaithirayanon K, Langer T. In vitro and in silico studies of holothurin A on androgen receptor in prostate cancer. J Biomol Struct Dyn 2022; 40:12674-12682. [PMID: 34514975 DOI: 10.1080/07391102.2021.1975562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The androgen receptor (AR) plays a crucial role in the growth of prostate cancer, and has long been considered the cancer's primary strategic therapeutic target. However, despite the early susceptibility, patients receiving hormonal therapy targeting AR are likely to develops resistance to the treatment and progresses to the castration-resistant stage as a consequence of the mutation at the ligand binding pocket of AR. Interestingly, the surface pocket of the AR called binding function 3 (BF3) has been reported as a great benefit for treating a recurrent tumor. Herein, we investigate the potential of using a marine triterpenoid saponin, holothurin A, on targeting AR expression of prostate cancer using in vitro and in silico studies. Holothurin A reduced the PSA expression, leading to the growth inhibition of androgen sensitive prostate cancer cell line through a downregulation of AR activity. The molecular docking study demonstrated that holothurin A could bind strongly in the BF3 pocket by energetically favorable hydrogen acceptor and hydrophobic with a calculated binding affinity of -13.90 kcal/mol. Molecular dynamics simulations provided the additional evidence that holothurin A can form a stable complex with the BF3 pocket through the hydrophobic interactions with VAL676, ILE680, and ALA721. As a consequence, holothurin A modulates the activation function-2 (AF2) site of the AR through repositioning of the residues in the AF2 pocket. Targeting alternatives sites on the surface of AR via holothurin A will provide a potential candidate for future prostate cancer treatment.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Kanta Pranweerapaiboon
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand.,Chulabhorn International College of Medicine, Thammasat University, Pathumthani, Thailand.,Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Arthur Garon
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Thomas Seidel
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Sirorat Janta
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Anuchit Plubrukarn
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla, Thailand
| | | | - Thierry Langer
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| |
Collapse
|
12
|
Ha S, Luo G, Xiang H. A Comprehensive Overview of Small-Molecule Androgen Receptor Degraders: Recent Progress and Future Perspectives. J Med Chem 2022; 65:16128-16154. [PMID: 36459083 DOI: 10.1021/acs.jmedchem.2c01487] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Prostate cancer (PC), the second most prevalent malignancy in men worldwide, has been proven to depend on the aberrant activation of androgen receptor (AR) signaling. Long-term androgen deprivation for the treatment of PC inevitably leads to castration-resistant prostate cancer (CRPC) in which AR remains a crucial oncogenic driver. Thus, there is an urgent need to develop new strategies to address this unmet medical need. Targeting AR for degradation has recently been in a vigorous development stage, and accumulating clinical studies have highlighted the benefits of AR degraders in CRPC patients. Herein, we provide a comprehensive summary of small-molecule AR degraders with diverse mechanisms of action including proteolysis-targeting chimeras (PROTACs), selective AR degraders (SARDs), hydrophobic tags (HyT), and other AR degraders with distinct mechanisms. Accordingly, their structure-activity relationships, biomedical applications, and therapeutic values are also dissected to provide insights into the future development of promising AR degradation-based therapeutics for CRPC.
Collapse
Affiliation(s)
- Si Ha
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Guoshun Luo
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Hua Xiang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, P. R. China
| |
Collapse
|
13
|
Zhang J, Li H, Zhao X, Wu Q, Huang SY. Holo Protein Conformation Generation from Apo Structures by Ligand Binding Site Refinement. J Chem Inf Model 2022; 62:5806-5820. [PMID: 36342197 DOI: 10.1021/acs.jcim.2c00895] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
An important part in structure-based drug design is the selection of an appropriate protein structure. It has been revealed that a holo protein structure that contains a well-defined binding site is a much better choice than an apo structure in structure-based drug discovery. Therefore, it is valuable to obtain a holo-like protein conformation from apo structures in the case where no holo structure is available. Meeting the need, we present a robust approach to generate reliable holo-like structures from apo structures by ligand binding site refinement with restraints derived from holo templates with low homology. Our method was tested on a test set of 32 proteins from the DUD-E data set and compared with other approaches. It was shown that our method successfully refined the apo structures toward the corresponding holo conformations for 23 of 32 proteins, reducing the average all-heavy-atom RMSD of binding site residues by 0.48 Å. In addition, when evaluated against all the holo structures in the protein data bank, our method can improve the binding site RMSD for 14 of 19 cases that experience significant conformational changes. Furthermore, our refined structures also demonstrate their advantages over the apo structures in ligand binding mode predictions by both rigid docking and flexible docking and in virtual screening on the database of active and decoy ligands from the DUD-E. These results indicate that our method is effective in recovering holo-like conformations and will be valuable in structure-based drug discovery.
Collapse
Affiliation(s)
- Jinze Zhang
- School of Physics, Huazhong University of Science and Technology, Wuhan430074, Hubei, P. R. China
| | - Hao Li
- School of Physics, Huazhong University of Science and Technology, Wuhan430074, Hubei, P. R. China
| | - Xuejun Zhao
- School of Physics, Huazhong University of Science and Technology, Wuhan430074, Hubei, P. R. China
| | - Qilong Wu
- School of Physics, Huazhong University of Science and Technology, Wuhan430074, Hubei, P. R. China
| | - Sheng-You Huang
- School of Physics, Huazhong University of Science and Technology, Wuhan430074, Hubei, P. R. China
| |
Collapse
|
14
|
Maddalon A, Masi M, Iulini M, Linciano P, Galbiati V, Marinovich M, Racchi M, Buoso E, Corsini E. Effects of endocrine active contaminating pesticides on RACK1 expression and immunological consequences in THP-1 cells. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 95:103971. [PMID: 36084878 DOI: 10.1016/j.etap.2022.103971] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/15/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
We have previously demonstrated that RACK1, which expression is under steroid hormone control, plays an important role in the activation of immune cells and its expression can be useful to evaluate the immunotoxic profile of endocrine disrupting chemicals (EDCs). Hence, we investigated the effects of three contaminating and persistent pesticides: the fungicide vinclozolin (VIN), the herbicide atrazine (ATR) and the insecticide cypermethrin (CYP) on RACK1 expression and on innate immune response. VIN resulted in modest alteration of RACK1 while ATR and CYP reduced in a dose dependent manner RACK1 expression, ultimately leading to the decrease in lipopolysaccharide-induced IL-8 and TNF-α release and CD86 and CD54 surface marker expression. Moreover, our data indicate that, after exposure to EDCs, alterations of RACK1 expression can also occur with mechanisms not directly mediated by an interaction with a nuclear or membrane steroid receptors. Therefore, RACK1 could represent a useful EDCs screening tool to evaluate their immunotoxic potential and to dissect their mechanisms of action.
Collapse
Affiliation(s)
- Ambra Maddalon
- Laboratory of Toxicology, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università Degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy
| | - Mirco Masi
- Dipartimento di Scienze del Farmaco, Università Degli Studi di Pavia, Viale Taramelli 12/14, 27100 Pavia, Italy; Scuola Universitaria Superiore IUSS, Piazza della Vittoria 15, 27100 Pavia, Italy
| | - Martina Iulini
- Laboratory of Toxicology, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università Degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy
| | - Pasquale Linciano
- Dipartimento di Scienze del Farmaco, Università Degli Studi di Pavia, Viale Taramelli 12/14, 27100 Pavia, Italy
| | - Valentina Galbiati
- Laboratory of Toxicology, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università Degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy
| | - Marina Marinovich
- Laboratory of Toxicology, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università Degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy
| | - Marco Racchi
- Dipartimento di Scienze del Farmaco, Università Degli Studi di Pavia, Viale Taramelli 12/14, 27100 Pavia, Italy
| | - Erica Buoso
- Dipartimento di Scienze del Farmaco, Università Degli Studi di Pavia, Viale Taramelli 12/14, 27100 Pavia, Italy; Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, USA.
| | - Emanuela Corsini
- Laboratory of Toxicology, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università Degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy
| |
Collapse
|
15
|
Wang Q, Wang Z, Tian S, Wang L, Tang R, Yu Y, Ge J, Hou T, Hao H, Sun H. Determination of Molecule Category of Ligands Targeting the Ligand-Binding Pocket of Nuclear Receptors with Structural Elucidation and Machine Learning. J Chem Inf Model 2022; 62:3993-4007. [PMID: 36040137 DOI: 10.1021/acs.jcim.2c00851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The mechanism of transcriptional activation/repression of the nuclear receptors (NRs) involves two main conformations of the NR protein, namely, the active (agonistic) and inactive (antagonistic) conformations. Binding of agonists or antagonists to the ligand-binding pocket (LBP) of NRs can regulate the downstream signaling pathways with different physiological effects. However, it is still hard to determine the molecular type of a LBP-bound ligand because both the agonists and antagonists bind to the same position of the protein. Therefore, it is necessary to develop precise and efficient methods to facilitate the discrimination of agonists and antagonists targeting the LBP of NRs. Here, combining structural and energetic analyses with machine-learning (ML) algorithms, we constructed a series of structure-based ML models to determine the molecular category of the LBP-bound ligands. We show that the proposed models work robustly and with high accuracy (ACC > 0.9) for determining the category of molecules derived from docking-based and crystallized poses. Furthermore, the models are also capable of determining the molecular category of ligands with dual opposite functions on different NRs (i.e., working as an agonist in one NR target, whereas functioning as an antagonist in another) with reasonable accuracy. The proposed method is expected to facilitate the determination of the molecular properties of ligands targeting the LBP of NRs with structural interpretation.
Collapse
Affiliation(s)
- Qinghua Wang
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, Jiangsu, P. R. China
| | - Zhe Wang
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, P. R. China
| | - Sheng Tian
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, P. R. China
| | - Lingling Wang
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, Jiangsu, P. R. China
| | - Rongfan Tang
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, Jiangsu, P. R. China
| | - Yang Yu
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, Jiangsu, P. R. China
| | - Jingxuan Ge
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, Jiangsu, P. R. China.,Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, P. R. China
| | - Tingjun Hou
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, P. R. China
| | - Haiping Hao
- State Key Laboratory of Natural Medicines, Key Lab of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, 210009 Nanjing, China
| | - Huiyong Sun
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, Jiangsu, P. R. China
| |
Collapse
|
16
|
Differences in ligand-induced protein dynamics extracted from an unsupervised deep learning approach correlate with protein-ligand binding affinities. Commun Biol 2022; 5:481. [PMID: 35589949 PMCID: PMC9120437 DOI: 10.1038/s42003-022-03416-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 04/26/2022] [Indexed: 11/29/2022] Open
Abstract
Prediction of protein–ligand binding affinity is a major goal in drug discovery. Generally, free energy gap is calculated between two states (e.g., ligand binding and unbinding). The energy gap implicitly includes the effects of changes in protein dynamics induced by ligand binding. However, the relationship between protein dynamics and binding affinity remains unclear. Here, we propose a method that represents ligand-binding-induced protein behavioral change with a simple feature that can be used to predict protein–ligand affinity. From unbiased molecular simulation data, an unsupervised deep learning method measures the differences in protein dynamics at a ligand-binding site depending on the bound ligands. A dimension reduction method extracts a dynamic feature that strongly correlates to the binding affinities. Moreover, the residues that play important roles in protein–ligand interactions are specified based on their contribution to the differences. These results indicate the potential for binding dynamics-based drug discovery. Differences in ligand-induced protein dynamics extracted as a single feature from a deep learning-based analysis of MD simulations correlate with ligand binding affinity.
Collapse
|
17
|
Zhou H, Wang F, Niu H, Yuan L, Tian J, Cai S, Bi X, Zhou L. Structural studies and molecular dynamic simulations of polyphenol oxidase treated by high pressure processing. Food Chem 2022; 372:131243. [PMID: 34655831 DOI: 10.1016/j.foodchem.2021.131243] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 09/21/2021] [Accepted: 09/24/2021] [Indexed: 12/23/2022]
Abstract
High pressure processing (HPP) exhibited different effect on polyphenol oxidase (PPO), but the conformational changes was not clear yet. In this study, molecular dynamics simulation combined with spectroscopic experiments were used to explore PPO conformational changes under high pressure at the molecular level. The simulation results showed that high pressure decreased volume and hydrogen bonds, induced changes in active center and movement of loop. Especially, the conformational changes under 200 and above 400 MPa were different. Under 200 MPa, the distance between His 61 and Cu decreased by 0.4 Å, active pocket was exposed, substrate channel became larger. However, the distance increased by 6.1 Å under 600 MPa, active pocket moved inward, substrate channel became narrower. Docking results of 200 and 600 MPa had the highest and lowest binding affinity, whose T-score was 4.657 and 4.130, respectively. These results were consistent with spectroscopic experiments of PPO after HHP.
Collapse
Affiliation(s)
- Hengle Zhou
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan Province, China
| | - Fuhai Wang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan Province, China
| | - Huihui Niu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan Province, China
| | - Lei Yuan
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan Province, China
| | - Jun Tian
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan Province, China
| | - Shengbao Cai
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan Province, China
| | - Xiufang Bi
- Sichuan Key Laboratory of Food Biotechnology, School of Food and Bioengineering, Xihua University, Chengdu 610039, Sichuan Province, China
| | - Linyan Zhou
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan Province, China.
| |
Collapse
|
18
|
Chai X, Sun H, Zhou W, Chen C, Shan L, Yang Y, He J, Pang J, Yang L, Wang X, Cui S, Fu Y, Xu X, Xu L, Yao X, Li D, Hou T. Discovery of N-(4-(Benzyloxy)-phenyl)-sulfonamide Derivatives as Novel Antagonists of the Human Androgen Receptor Targeting the Activation Function 2. J Med Chem 2022; 65:2507-2521. [PMID: 35077161 DOI: 10.1021/acs.jmedchem.1c01938] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Androgen receptor (AR) antagonists have been widely used for the treatment of prostate cancer (PCa). As a link between the AR and its transcriptional function, the activation function 2 (AF2) region has recently been revealed as a novel targeting site for developing AR antagonists. Here, we reported a series of N-(4-(benzyloxy)-phenyl)-sulfonamide derivatives as new-scaffold AR antagonists targeting the AR AF2. Therein, compound T1-12 showed excellent AR antagonistic activity (IC50 = 0.47 μM) and peptide displacement activity (IC50 = 18.05 μM). Furthermore, the in vivo LNCaP xenograft study confirmed that T1-12 offered effective inhibition on tumor growth when administered intratumorally. The study represents the first successful attempt to identify a small molecule targeting the AR AF2 with submicromolar AR antagonistic activity by structure-based virtual screening and provides important clues for the development of novel therapeutics for PCa treatment.
Collapse
Affiliation(s)
- Xin Chai
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Huiyong Sun
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| | - Wenfang Zhou
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Changwei Chen
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Luhu Shan
- Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou 310022, Zhejiang, China
| | - Yuhui Yang
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China
| | - Junzhao He
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China
| | - Jinping Pang
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Liu Yang
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Xinyue Wang
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Sunliang Cui
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Yaqin Fu
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China
| | - Xiaohong Xu
- Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou 310022, Zhejiang, China
| | - Lei Xu
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou 213001, Jiangsu, China
| | - Xiaojun Yao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau 999078, China
| | - Dan Li
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Tingjun Hou
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
- State Key Lab of CAD&CG, Zhejiang University, Hangzhou 310058, Zhejiang, China
| |
Collapse
|
19
|
Zhang C, Wu J, Chen Q, Tan H, Huang F, Guo J, Zhang X, Yu H, Shi W. Allosteric binding on nuclear receptors: Insights on screening of non-competitive endocrine-disrupting chemicals. ENVIRONMENT INTERNATIONAL 2022; 159:107009. [PMID: 34883459 DOI: 10.1016/j.envint.2021.107009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 06/13/2023]
Abstract
Endocrine-disrupting chemicals (EDCs) can compete with endogenous hormones and bind to the orthosteric site of nuclear receptors (NRs), affecting normal endocrine system function and causing severe symptoms. Recently, a series of pharmaceuticals and personal care products (PPCPs) have been discovered to bind to the allosteric sites of NRs and induce similar effects. However, it remains unclear how diverse EDCs work in this new way. Therefore, we have systematically summarized the allosteric sites and underlying mechanisms based on existing studies, mainly regarding drugs belonging to the PPCP class. Advanced methods, classified as structural biology, biochemistry and computational simulation, together with their advantages and hurdles for allosteric site recognition and mechanism insight have also been described. Furthermore, we have highlighted two available strategies for virtual screening of numerous EDCs, relying on the structural features of allosteric sites and lead compounds, respectively. We aim to provide reliable theoretical and technical support for a broader view of various allosteric interactions between EDCs and NRs, and to drive high-throughput and accurate screening of potential EDCs with non-competitive effects.
Collapse
Affiliation(s)
- Chi Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China; Jiangsu Province Ecology and Environment Protection Key Laboratory of Chemical Safety and Health Risk, Nanjing 210023, Jiangsu, China
| | - Jinqiu Wu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China; Jiangsu Province Ecology and Environment Protection Key Laboratory of Chemical Safety and Health Risk, Nanjing 210023, Jiangsu, China
| | - Qinchang Chen
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China; Jiangsu Province Ecology and Environment Protection Key Laboratory of Chemical Safety and Health Risk, Nanjing 210023, Jiangsu, China
| | - Haoyue Tan
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China; Jiangsu Province Ecology and Environment Protection Key Laboratory of Chemical Safety and Health Risk, Nanjing 210023, Jiangsu, China
| | - Fuyan Huang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China; Jiangsu Province Ecology and Environment Protection Key Laboratory of Chemical Safety and Health Risk, Nanjing 210023, Jiangsu, China
| | - Jing Guo
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China; Jiangsu Province Ecology and Environment Protection Key Laboratory of Chemical Safety and Health Risk, Nanjing 210023, Jiangsu, China
| | - Xiaowei Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China; Jiangsu Province Ecology and Environment Protection Key Laboratory of Chemical Safety and Health Risk, Nanjing 210023, Jiangsu, China
| | - Hongxia Yu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China; Jiangsu Province Ecology and Environment Protection Key Laboratory of Chemical Safety and Health Risk, Nanjing 210023, Jiangsu, China
| | - Wei Shi
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China; Jiangsu Province Ecology and Environment Protection Key Laboratory of Chemical Safety and Health Risk, Nanjing 210023, Jiangsu, China.
| |
Collapse
|
20
|
Kong X, Xing E, Zhuang T, Li PK, Cheng X. Mechanistic Insights into the Allosteric Inhibition of Androgen Receptors by Binding Function 3 Antagonists from an Integrated Molecular Modeling Study. J Chem Inf Model 2021; 61:3477-3494. [PMID: 34165949 DOI: 10.1021/acs.jcim.1c00124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An androgen receptor (AR) is an intensively studied treatment target for castration-resistant prostate cancer that is irresponsive to conventional antiandrogen therapeutics. Binding function 3 (BF3) inhibitors with alternative modes of action have emerged as a promising approach to overcoming antiandrogen resistance. However, how these BF3 inhibitors modulate AR function remains elusive, hindering the development of BF3-targeting agents. Here, we performed an integrated computational study to interrogate the binding mechanism of several known BF3 inhibitors with ARs. Our results show that the inhibitory effect of the BF3 antagonists arises from their allosteric modulation of the activation function (AF2) site, which alters the dynamic coupling between the BF3 and AF2 sites as well as the AF2-coactivator (SRC2-3) interaction. Moreover, the per-residue binding energy analyses reveal the "anchor" role of the linker connecting the phenyl ring and benzimidazole/indole in these BF3 inhibitors. Furthermore, the allosteric driver-interacting residues are found to include both "positive", e.g., Phe673 and Asn833, and "negative" ones, e.g., Phe826, and the differential interactions with these residues provide an explanation why stronger binding does not necessarily result in higher inhibitory activities. Finally, our allosteric communication pathway analyses delineate how the allosteric signals triggered by BF3 binding are propagated to the AF2 pocket through multiple short- and/or long-ranged transmission pathways. Collectively, our combined computational study provides a comprehensive structural mechanism underlying how the selected set of BF3 inhibitors modulate AR function, which will help guide future development of BF3 antagonists.
Collapse
Affiliation(s)
- Xiaotian Kong
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Enming Xing
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Tony Zhuang
- J. Willis Hurst Internal Medicine Program, Department of Medicine, Emory University, 100 Woodruff Circle, Atlanta, Georgia 30329, United States
| | - Pui-Kai Li
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Xiaolin Cheng
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
21
|
Serçinoğlu O, Bereketoglu C, Olsson PE, Pradhan A. In silico and in vitro assessment of androgen receptor antagonists. Comput Biol Chem 2021; 92:107490. [PMID: 33932781 DOI: 10.1016/j.compbiolchem.2021.107490] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 04/20/2021] [Accepted: 04/20/2021] [Indexed: 11/25/2022]
Abstract
There is a growing concern for male reproductive health as studies suggest that there is a sharp increase in prostate cancer and other fertility related problems. Apart from lifestyle, pollutants are also known to negatively affect the reproductive system. In addition to many other compounds that have been shown to alter androgen signaling, several environmental pollutants are known to disrupt androgen signaling via binding to androgen receptor (AR) or indirectly affecting the androgen synthesis. We analyzed here the molecular mechanism of the interaction between the human AR Ligand Binding Domain (hAR-LBD) and two environmental pollutants, linuron (a herbicide) and procymidone (a pesticide), and compared with the steroid agonist dihydrotestosterone (DHT) and well-known hAR antagonists bicalutamide and enzalutamide. Using molecular docking and dynamics simulations, we showed that the co-activator interaction site of the hAR-LBD is disrupted in different ways by different ligands. Binding free energies of the ligands were also ordered in increasing order as follows: linuron, procymidone, DHT, bicalutamide, and enzalutamide. These data were confirmed by in vitro assays. Reporter assay with MDA-kb2 cells showed that linuron, procymidone, bicalutamide and enzalutamide can inhibit androgen mediated activation of luciferase activity. Gene expression analysis further showed that these compounds can inhibit the expression of prostate specific antigen (PSA) and microseminoprotein beta (MSMB) in prostate cell line LNCaP. Comparative analysis showed that procymidone is more potent than linuron in inhibiting AR activity. Furthermore, procymidone at 10 μM dose showed equivalent and higher activity to AR inhibitor enzalutamide and bicalutamide respectively.
Collapse
Affiliation(s)
- Onur Serçinoğlu
- Department of Bioengineering, Faculty of Engineering, Gebze Technical University, 41400, Gebze, Kocaeli, Turkey
| | - Ceyhun Bereketoglu
- Iskenderun Technical University, Faculty of Engineering and Natural Sciences, Department of Biomedical Engineering, Hatay, Turkey
| | - Per-Erik Olsson
- Biology, The Life Science Center, School of Science and Technology, Örebro University, SE-701 82, Örebro, Sweden
| | - Ajay Pradhan
- Biology, The Life Science Center, School of Science and Technology, Örebro University, SE-701 82, Örebro, Sweden.
| |
Collapse
|
22
|
Fischer A, Häuptli F, Lill MA, Smieško M. Computational Assessment of Combination Therapy of Androgen Receptor-Targeting Compounds. J Chem Inf Model 2021; 61:1001-1009. [PMID: 33523669 DOI: 10.1021/acs.jcim.0c01194] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The ligand-binding domain of the androgen receptor (AR) is a target for drugs against prostate cancer and offers three distinct binding sites for small molecules. Drugs acting on the orthosteric hormone binding site suffer from resistance mechanisms that can, in the worst case, reverse their therapeutic effect. While many allosteric ligands targeting either the activation function-2 (AF-2) or the binding function-3 (BF-3) have been reported, their potential for simultaneous administration with currently prescribed antiandrogens was disregarded. Here, we report results of 60 μs molecular dynamics simulations to investigate combinations of orthosteric and allosteric AR antagonists. Our results suggest BF-3 inhibitors to be more suitable in combination with classical antiandrogens as opposed to AF-2 inhibitors based on binding free energies and binding modes. As a mechanistic explanation for these observations, we deduced a structural adaptation of helix-12 involved in the formation of the AF-2 site by classical AR antagonists. Additionally, the changes were accompanied by an expansion of the orthosteric binding site. Considering our predictions, the selective combination of AR-targeting compounds may improve the treatment of prostate cancer.
Collapse
Affiliation(s)
- André Fischer
- Computational Pharmacy, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 61, 4056 Basel, Switzerland
| | - Florian Häuptli
- Computational Pharmacy, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 61, 4056 Basel, Switzerland
| | - Markus A Lill
- Computational Pharmacy, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 61, 4056 Basel, Switzerland
| | - Martin Smieško
- Computational Pharmacy, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 61, 4056 Basel, Switzerland
| |
Collapse
|
23
|
Chen J, Wang W, Pang L, Zhu W. Unveiling conformational dynamics changes of H-Ras induced by mutations based on accelerated molecular dynamics. Phys Chem Chem Phys 2021; 22:21238-21250. [PMID: 32930679 DOI: 10.1039/d0cp03766d] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Uncovering molecular basis with regard to the conformational change of two switches I and II in the GppNHp (GNP)-bound H-Ras is highly significant for the understanding of Ras signaling. For this purpose, accelerated molecular dynamics (aMD) simulations and principal component (PC) analysis are integrated to probe the effect of mutations G12V, T35S and Q61K on conformational transformation between two switches of the GNP-bound H-Ras. The RMSF and cross-correlation analyses suggest that three mutations exert a vital effect on the flexibility and internal dynamics of two switches in the GNP-bound H-Ras. The results stemming from PC analysis indicate that two switches in the GNP-bound WT H-Ras tend to form a closed state in most conformations, while those in the GNP-bound mutated H-Ras display transformation between different states. This conclusion is further supported by free energy landscapes constructed by using the distances of residues 12 away from 35 and 35 away from 61 as reaction coordinates and different experimental studies. Interaction scanning is performed on aMD trajectories and the information shows that conformational transformations of two switches I and II induced by mutations extremely affect the GNP-residue interactions. Meanwhile, the scanning results also signify that residues G15, A18, F28, K117, A146 and K147 form stable contacts with GNP, while residues D30, E31, Y32, D33, P34 and E62 in two switches I and II produce unstable contacts with GNP. This study not only reveals dynamic behavior changes of two switches in H-Ras induced by mutations, but also unveils general principles and mechanisms with regard to functional conformational changes of H-Ras.
Collapse
Affiliation(s)
- Jianzhong Chen
- School of Science, Shandong Jiaotong University, Jinan 250357, China.
| | - Wei Wang
- School of Science, Shandong Jiaotong University, Jinan 250357, China.
| | - Laixue Pang
- School of Science, Shandong Jiaotong University, Jinan 250357, China.
| | - Weiliang Zhu
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.
| |
Collapse
|
24
|
Fischer A, Frehner G, Lill MA, Smieško M. Conformational Changes of Thyroid Receptors in Response to Antagonists. J Chem Inf Model 2021; 61:1010-1019. [PMID: 33449688 DOI: 10.1021/acs.jcim.0c01403] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Thyroid hormone receptors (TRs) play a critical role in human development, growth, and metabolism. Antagonists of TRs offer an attractive strategy to treat hyperthyroidism without the disadvantage of a delayed onset of drug action. While it is challenging to examine the atomistic behavior of TRs in a laboratory setting, computational methods such as molecular dynamics (MD) simulations have proven their value to elucidate ligand-induced conformational changes in nuclear receptors. Here, we performed MD simulations of TRα and TRβ complexed to their native ligand triiodothyronine (T3) as well as several antagonists. Based on the examination of 27 μs MD trajectories, we showed how binding of these compounds influences various structural features of the receptors including the helicity of helices 3 and 10 as well as the location of helix-12. Helices 3 and 12 are known to mediate coactivator association required for downstream signaling, suggesting these changes to be the molecular basis for TR antagonism. A mechanistic analysis of the trajectories revealed an allosteric pathway between H3 and H12 to be responsible for the conformational adaptations. Even though a mechanistic understanding of conformational adaptations triggered by TR antagonists is important for the development of novel therapeutics, they have not been previously examined in detail as it was done here.
Collapse
Affiliation(s)
- André Fischer
- Computational Pharmacy, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 61, Basel 4056, Switzerland
| | - Gabriela Frehner
- Computational Pharmacy, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 61, Basel 4056, Switzerland
| | - Markus A Lill
- Computational Pharmacy, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 61, Basel 4056, Switzerland
| | - Martin Smieško
- Computational Pharmacy, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 61, Basel 4056, Switzerland
| |
Collapse
|
25
|
Verma S, Prajapati KS, Kushwaha PP, Shuaib M, Kumar Singh A, Kumar S, Gupta S. Resistance to second generation antiandrogens in prostate cancer: pathways and mechanisms. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2020; 3:742-761. [PMID: 35582225 PMCID: PMC8992566 DOI: 10.20517/cdr.2020.45] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/03/2020] [Accepted: 08/06/2020] [Indexed: 02/05/2023]
Abstract
Androgen deprivation therapy targeting the androgens/androgen receptor (AR) signaling continues to be the mainstay treatment of advanced-stage prostate cancer. The use of second-generation antiandrogens, such as abiraterone acetate and enzalutamide, has improved the survival of prostate cancer patients; however, a majority of these patients progress to castration-resistant prostate cancer (CRPC). The mechanisms of resistance to antiandrogen treatments are complex, including specific mutations, alternative splicing, and amplification of oncogenic proteins resulting in dysregulation of various signaling pathways. In this review, we focus on the major mechanisms of acquired resistance to second generation antiandrogens, including AR-dependent and AR-independent resistance mechanisms as well as other resistance mechanisms leading to CRPC emergence. Evolving knowledge of resistance mechanisms to AR targeted treatments will lead to additional research on designing more effective therapies for advanced-stage prostate cancer.
Collapse
Affiliation(s)
- Shiv Verma
- Department of Urology, Case Western Reserve University, Cleveland, OH 44106, USA
- The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Kumari Sunita Prajapati
- School of Basic and Applied Sciences, Department of Biochemistry and Microbial Sciences, Central University of Punjab, Bathinda 151001, India
| | - Prem Prakash Kushwaha
- School of Basic and Applied Sciences, Department of Biochemistry and Microbial Sciences, Central University of Punjab, Bathinda 151001, India
| | - Mohd Shuaib
- School of Basic and Applied Sciences, Department of Biochemistry and Microbial Sciences, Central University of Punjab, Bathinda 151001, India
| | - Atul Kumar Singh
- School of Basic and Applied Sciences, Department of Biochemistry and Microbial Sciences, Central University of Punjab, Bathinda 151001, India
| | - Shashank Kumar
- School of Basic and Applied Sciences, Department of Biochemistry and Microbial Sciences, Central University of Punjab, Bathinda 151001, India
| | - Sanjay Gupta
- Department of Urology, Case Western Reserve University, Cleveland, OH 44106, USA
- The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
- School of Basic and Applied Sciences, Department of Biochemistry and Microbial Sciences, Central University of Punjab, Bathinda 151001, India
- Department of Nutrition, Case Western Reserve University, Cleveland, OH 44106, USA
- Divison of General Medical Sciences, Case Comprehensive Cancer Center, Cleveland, OH 44106, USA
- Department of Urology, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH 44106, USA
| |
Collapse
|
26
|
Identifying new liver X receptor alpha modulators and distinguishing between agonists and antagonists by crystal ligand pocket screening. Future Med Chem 2020; 12:1227-1237. [PMID: 32432891 DOI: 10.4155/fmc-2020-0069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background: Modulators of LXRα are of high pharmacological interest as LXRα regulates fatty acid metabolism, inflammatory processes and cancer. We aim to identify new LXRα modulators and to recognize a distinguishable feature of agonists. Results&methodology: The ligand self-dock and largest-cavity-size searching purposely located two appropriate ligand-binding sites to reach the two aims. One is identifying the new modulators from Maybridge library. 20 new compounds are confirmed by the in vitro reporter gene assay. The other is denoting an agonist by at least one best docking pose having one hydrogen bond to LXRα Helix12 His421. Conclusion: Based on the quality x-ray binding pocket, we can identify new LXRα modulators and distinguish between agonists and antagonists by molecular docking.
Collapse
|
27
|
Hu G, Li H, Xu S, Wang J. Ligand Binding Mechanism and Its Relationship with Conformational Changes in Adenine Riboswitch. Int J Mol Sci 2020; 21:ijms21061926. [PMID: 32168940 PMCID: PMC7139962 DOI: 10.3390/ijms21061926] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/01/2020] [Accepted: 03/09/2020] [Indexed: 12/13/2022] Open
Abstract
Riboswitches are naturally occurring RNA aptamers that control the expression of essential bacterial genes by binding to specific small molecules. The binding with both high affinity and specificity induces conformational changes. Thus, riboswitches were proposed as a possible molecular target for developing antibiotics and chemical tools. The adenine riboswitch can bind not only to purine analogues but also to pyrimidine analogues. Here, long molecular dynamics (MD) simulations and molecular mechanics Poisson–Boltzmann surface area (MM-PBSA) computational methodologies were carried out to show the differences in the binding model and the conformational changes upon five ligands binding. The binding free energies of the guanine riboswitch aptamer with C74U mutation complexes were compared to the binding free energies of the adenine riboswitch (AR) aptamer complexes. The calculated results are in agreement with the experimental data. The differences for the same ligand binding to two different aptamers are related to the electrostatic contribution. Binding dynamical analysis suggests a flexible binding pocket for the pyrimidine ligand in comparison with the purine ligand. The 18 μs of MD simulations in total indicate that both ligand-unbound and ligand-bound aptamers transfer their conformation between open and closed states. The ligand binding obviously affects the conformational change. The conformational states of the aptamer are associated with the distance between the mass center of two key nucleotides (U51 and A52) and the mass center of the other two key nucleotides (C74 and C75). The results suggest that the dynamical character of the binding pocket would affect its biofunction. To design new ligands of the adenine riboswitch, it is recommended to consider the binding affinities of the ligand and the conformational change of the ligand binding pocket.
Collapse
Affiliation(s)
- Guodong Hu
- Correspondence: (G.H.); (J.W.); Tel.: +86-534-8987536 (G.H.); +86-534-8985933 (J.W.)
| | | | | | - Jihua Wang
- Correspondence: (G.H.); (J.W.); Tel.: +86-534-8987536 (G.H.); +86-534-8985933 (J.W.)
| |
Collapse
|
28
|
Alves NRC, Pecci A, Alvarez LD. Structural Insights into the Ligand Binding Domain of the Glucocorticoid Receptor: A Molecular Dynamics Study. J Chem Inf Model 2019; 60:794-804. [DOI: 10.1021/acs.jcim.9b00776] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- N. R. Carina Alves
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EGA Buenos Aires, Argentina
| | - Adali Pecci
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EGA Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, IFIBYNE, C1428EGA Buenos Aires, Argentina
| | - Lautaro D. Alvarez
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EGA Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, UMYMFOR, C1428EGA Buenos Aires, Argentina
| |
Collapse
|
29
|
Singam ERA, Tachachartvanich P, Merrill MAL, Smith MT, Durkin KA. Structural Dynamics of Agonist and Antagonist Binding to the Androgen Receptor. J Phys Chem B 2019; 123:7657-7666. [PMID: 31431014 PMCID: PMC6742532 DOI: 10.1021/acs.jpcb.9b05654] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Androgen receptor (AR) is a steroid hormone nuclear receptor which upon binding its endogenous androgenic ligands (agonists), testosterone and dihydrotestosterone (DHT), alters gene transcription, producing a diverse range of biological effects. Antiandrogens, such as the pharmaceuticals bicalutamide and hydroxyflutamide, act as agonists in the absence of androgens and as antagonists in their presence or in high concentration. The atomic level mechanism of action by agonists and antagonists of AR is less well characterized. Therefore, in this study, multiple 1 μs molecular dynamics (MD), docking simulations, and perturbation-response analyses were performed to more fully explore the nature of interaction between agonist or antagonist and AR and the conformational changes induced in the AR upon interaction with different ligands. We characterized the mechanism of the ligand entry/exit and found that helix-12 and nearby structural motifs respond dynamically in that process. Modeling showed that the agonist and antagonist/agonist form a hydrogen bond with Thr877/Asn705 and that this interaction is absent for antagonists. Agonist binding to AR increases the mobility of residues at allosteric sites and coactivator binding sites, while antagonist binding decreases mobility at these important sites. A new site was also identified as a potential surface for allosteric binding. These results shed light on the effect of agonists and antagonists on the structure and dynamics of AR.
Collapse
Affiliation(s)
| | | | | | - Martyn T. Smith
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA
| | - Kathleen A. Durkin
- Molecular Graphics and Computation Facility, College of Chemistry, University of California, Berkeley, CA, USA
| |
Collapse
|
30
|
Abstract
Nuclear receptors (NRs) are ligand-inducible transcription factors that play an essential role in a multitude of physiological processes as well as diseases, rendering them attractive drug targets. Crystal structures revealed the binding site of NRs to be buried in the core of the protein, with no obvious route for ligands to access this cavity. The process of ligand binding is known to be an often-neglected contributor to the efficacy of drug candidates and is thought to influence the selectivity and specificity of NRs. While experimental methods generally fail to highlight the dynamic processes of ligand access or egress on the atomistic scale, computational methods have provided fundamental insight into the pathways connecting the buried binding pocket to the surrounding environment. Methods based on molecular dynamics (MD) and Monte Carlo simulations have been applied to identify pathways and quantify their capability to transport ligands. Here, we systematically review findings of more than 20 years of research in the field, including the applied methodology and controversies. Further, we establish a unified nomenclature to describe the pathways with respect to their location relative to protein secondary structure elements and summarize findings relevant to drug design. Lastly, we discuss the effect of NR interaction partners such as coactivators and corepressors, as well as mutations on the pathways.
Collapse
Affiliation(s)
- André Fischer
- Molecular Modeling, Pharmacenter of the University of Basel , University of Basel , Klingelbergstrasse 50 , 4056 Basel , Switzerland
| | - Martin Smieško
- Molecular Modeling, Pharmacenter of the University of Basel , University of Basel , Klingelbergstrasse 50 , 4056 Basel , Switzerland
| |
Collapse
|