1
|
Shen M, Huang Y, Cai Z, Cherny VV, DeCoursey TE, Shen J. Interior pH-sensing residue of human voltage-gated proton channel H v1 is histidine 168. Biophys J 2024; 123:4211-4220. [PMID: 39054673 DOI: 10.1016/j.bpj.2024.07.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/07/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024] Open
Abstract
The molecular mechanisms governing the human voltage-gated proton channel hHv1 remain elusive. Here, we used membrane-enabled hybrid-solvent continuous constant pH molecular dynamics (CpHMD) simulations with pH replica exchange to further evaluate the structural models of hHv1 in the closed (hyperpolarized) and open (depolarized) states recently obtained with MD simulations and explore potential pH-sensing residues. The CpHMD titration at a set of symmetric pH conditions revealed three residues that can gain or lose protons upon channel depolarization. Among them, residue H168 at the intracellular end of the S3 helix switches from the deprotonated to the protonated state and its protonation is correlated with the increased tilting of the S3 helix during the transition from the closed to the open state. Thus, the simulation data suggest H168 as an interior pH sensor, in support of a recent finding based on electrophysiological experiments of Hv1 mutants. We propose that protonation of H168 acts as a key that unlocks the closed channel configuration by increasing the flexibility of the S2-S3 linker, which increases the tilt angle of S3 and enhances the mobility of the S4 helix, thus promoting channel opening. Our work represents an important step toward deciphering the pH-dependent gating mechanism of hHv1.
Collapse
Affiliation(s)
- Mingzhe Shen
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland
| | - Yandong Huang
- College of Computer Engineering, Jimei University, Xiamen, Fujian Province, China.
| | - Zhitao Cai
- College of Computer Engineering, Jimei University, Xiamen, Fujian Province, China
| | - Vladimir V Cherny
- Department of Physiology & Biophysics, Rush University Medical Center, Chicago, Illinois
| | - Thomas E DeCoursey
- Department of Physiology & Biophysics, Rush University Medical Center, Chicago, Illinois
| | - Jana Shen
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland.
| |
Collapse
|
2
|
Yue Z, Wu J, Teng D, Wang Z, Voth GA. Activation of the Influenza B M2 Proton Channel (BM2). Biochemistry 2024; 63:3011-3019. [PMID: 39488842 PMCID: PMC11580745 DOI: 10.1021/acs.biochem.4c00607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024]
Abstract
Influenza B viruses have cocirculated during most seasonal flu epidemics and can cause significant human morbidity and mortality due to their rapid mutation, emerging drug resistance, and severe impact on vulnerable populations. The influenza B M2 proton channel (BM2) plays an essential role in viral replication, but the mechanisms behind its symmetric proton conductance and the involvement of a second histidine (His27) cluster remain unclear. Here we performed membrane-enabled continuous constant-pH molecular dynamics simulations on wildtype BM2 and a key H27A mutant channel to explore its pH-dependent conformational switch. Simulations captured the activation as the first histidine (His19) protonates and revealed the transition at lower pH values compared to AM2 is a result of electrostatic repulsions between His19 and preprotonated His27. Crucially, we provided an atomic-level understanding of the symmetric proton conduction by identifying preactivating channel hydration in the C-terminal portion. This research advances our understanding of the function of BM2 function and lays the groundwork for further chemically reactive modeling of the explicit proton transport process as well as possible antiflu drug design efforts.
Collapse
Affiliation(s)
- Zhi Yue
- Department of Chemistry,
Chicago Center for Theoretical Chemistry, James Frank Institute, and
Institute for Biophysical Dynamics, The
University of Chicago, Chicago, Illinois 60637, United States
| | - Jiangbo Wu
- Department of Chemistry,
Chicago Center for Theoretical Chemistry, James Frank Institute, and
Institute for Biophysical Dynamics, The
University of Chicago, Chicago, Illinois 60637, United States
| | - Da Teng
- Department of Chemistry,
Chicago Center for Theoretical Chemistry, James Frank Institute, and
Institute for Biophysical Dynamics, The
University of Chicago, Chicago, Illinois 60637, United States
| | | | - Gregory A. Voth
- Department of Chemistry,
Chicago Center for Theoretical Chemistry, James Frank Institute, and
Institute for Biophysical Dynamics, The
University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
3
|
Babii S, Li W, Yang L, Grzegorzewicz AE, Jackson M, Gumbart JC, Zgurskaya HI. Allosteric coupling of substrate binding and proton translocation in MmpL3 transporter from Mycobacterium tuberculosis. mBio 2024; 15:e0218324. [PMID: 39212407 PMCID: PMC11481577 DOI: 10.1128/mbio.02183-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
Infections caused by Mycobacterium spp. are very challenging to treat, and multidrug-resistant strains rapidly spread in human populations. Major contributing factors include the unique physiological features of these bacteria, drug efflux, and the low permeability barrier of their outer membrane. Here, we focus on MmpL3 from Mycobacterium tuberculosis, an essential inner membrane transporter of the resistance-nodulation-division superfamily required for the translocation of mycolic acids in the form of trehalose monomycolates (TMM) from the cytoplasm or plasma membrane to the periplasm or outer membrane. The MmpL3-dependent transport of TMM is essential for the growth of M. tuberculosis in vitro, inside macrophages, and in M. tuberculosis-infected mice. MmpL3 is also a validated target for several recently identified anti-mycobacterial agents. In this study, we reconstituted the lipid transport activity of the purified MmpL3 using a two-lipid vesicle system and established the ability of MmpL3 to actively extract phospholipids from the outer leaflet of a lipid bilayer. In contrast, we found that MmpL3 lacks the ability to translocate the same phospholipid substrate across the plasma membrane indicating that it is not an energy-dependent flippase. The lipid extraction activity was modulated by substitutions in critical charged and polar residues of the periplasmic substrate-binding pocket of MmpL3, coupled to the proton transfer activity of MmpL3 and inhibited by a small molecule inhibitor SQ109. Based on the results, we propose a mechanism of allosteric coupling wherein substrate translocation by MmpL3 is coupled to the energy provided by the downhill transfer of protons. The reconstituted activities will facilitate understanding the mechanism of MmpL3-dependent transport of lipids and the discovery of new therapeutic options for Mycobacterium spp. infections.IMPORTANCEMmpL3 from Mycobacterium tuberculosis is an essential transporter involved in the assembly of the mycobacterial outer membrane. It is also an important target in undergoing efforts to discover new anti-tuberculosis drugs effective against multidrug-resistant strains spreading in human populations. The recent breakthrough structural studies uncovered features of MmpL3 that suggested a possible lipid transport mechanism. In this study, we reconstituted and characterized the lipid transport activity of MmpL3 and demonstrated that this activity is blocked by MmpL3 inhibitors and substrate mimics. We further uncovered the mechanism of how the binding of a substrate in the periplasmic domain is communicated to the transmembrane proton relay of MmpL3. The uncovered mechanism and the developed assays provide new opportunities for mechanistic analyses of MmpL3 function and its inhibition.
Collapse
Affiliation(s)
- Svitlana Babii
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, USA
| | - Wei Li
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Lixinhao Yang
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Anna E. Grzegorzewicz
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Mary Jackson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - James C. Gumbart
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Helen I. Zgurskaya
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, USA
| |
Collapse
|
4
|
Yue Z, Wu J, Teng D, Wang Z, Voth GA. Activation of the influenza B M2 proton channel (BM2). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.26.605324. [PMID: 39091734 PMCID: PMC11291123 DOI: 10.1101/2024.07.26.605324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Influenza B viruses have co-circulated during most seasonal flu epidemics and can cause significant human morbidity and mortality due to their rapid mutation, emerging drug resistance, and severe impact on vulnerable populations. The influenza B M2 proton channel (BM2) plays an essential role in viral replication, but the mechanisms behind its symmetric proton conductance and the involvement of a second histidine (His27) cluster remain unclear. Here we perform the membrane-enabled continuous constant-pH molecular dynamics simulations on wildtype BM2 and a key H27A mutant to explore its pH-dependent conformational switch. Simulations capture the activation as the first histidine (His19) protonates and reveal the transition at lower pH values compared to AM2 is a result of electrostatic repulsions between His19 and pre-protonated His27. Crucially, we provide an atomic-level understanding of the symmetric proton conduction by identifying pre-activating channel hydration in the C-terminal portion. This research advances our understanding of the function of BM2 function and lays the groundwork for further chemically reactive modeling of the explicit proton transport process as well as possible anti-flu drug design efforts.
Collapse
Affiliation(s)
- Zhi Yue
- Department of Chemistry, Chicago Center for Theoretical Chemistry, James Frank Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Jiangbo Wu
- Department of Chemistry, Chicago Center for Theoretical Chemistry, James Frank Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Da Teng
- Department of Chemistry, Chicago Center for Theoretical Chemistry, James Frank Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, USA
| | | | - Gregory A. Voth
- Department of Chemistry, Chicago Center for Theoretical Chemistry, James Frank Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
5
|
Wilson CJ, de Groot BL, Gapsys V. Resolving coupled pH titrations using alchemical free energy calculations. J Comput Chem 2024; 45:1444-1455. [PMID: 38471815 DOI: 10.1002/jcc.27318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 01/11/2024] [Accepted: 01/16/2024] [Indexed: 03/14/2024]
Abstract
In a protein, nearby titratable sites can be coupled: the (de)protonation of one may affect the other. The degree of this interaction depends on several factors and can influence the measured p K a . Here, we derive a formalism based on double free energy differences ( Δ Δ G ) for quantifying the individual site p K a values of coupled residues. As Δ Δ G values can be obtained by means of alchemical free energy calculations, the presented approach allows for a convenient estimation of coupled residue p K a s in practice. We demonstrate that our approach and a previously proposed microscopic p K a formalism, can be combined with alchemical free energy calculations to resolve pH-dependent protein p K a values. Toy models and both, regular and constant-pH molecular dynamics simulations, alongside experimental data, are used to validate this approach. Our results highlight the insights gleaned when coupling and microstate probabilities are analyzed and suggest extensions to more complex enzymatic contexts. Furthermore, we find that naïvely computed p K a values that ignore coupling, can be significantly improved when coupling is accounted for, in some cases reducing the error by half. In short, alchemical free energy methods can resolve the p K a values of both uncoupled and coupled residues.
Collapse
Affiliation(s)
- Carter J Wilson
- Department of Mathematics, The University of Western Ontario, London, Ontario, Canada
- Centre for Advanced Materials and Biomaterials Research (CAMBR), The University of Western Ontario, London, Ontario, Canada
- Computational Biomolecular Dynamics Group, Department of Theoretical and Computational Biophysics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Bert L de Groot
- Computational Biomolecular Dynamics Group, Department of Theoretical and Computational Biophysics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Vytautas Gapsys
- Computational Biomolecular Dynamics Group, Department of Theoretical and Computational Biophysics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Computational Chemistry, Janssen Research & Development, Beerse, Belgium
| |
Collapse
|
6
|
Clark R, Newman KE, Khalid S. Titratable residues that drive RND efflux: Insights from molecular simulations. QRB DISCOVERY 2024; 5:e5. [PMID: 38689873 PMCID: PMC11058585 DOI: 10.1017/qrd.2024.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 05/02/2024] Open
Abstract
The resistance-nodulation-division efflux machinery confers antimicrobial resistance to Gram-negative bacteria by actively pumping antibiotics out of the cell. The protein complex is powered by proton motive force; however, the proton transfer mechanism itself and indeed even its stoichiometry is still unclear. Here we review computational studies from the last decade that focus on elucidating the number of protons transferred per conformational cycle of the pump. Given the difficulties in studying proton movement using even state-of-the-art structural biology methods, the contributions from computational studies have been invaluable from a mechanistic perspective.
Collapse
Affiliation(s)
- Robert Clark
- Department of Biochemistry, University of Oxford, Oxford, UK
| | | | - Syma Khalid
- Department of Biochemistry, University of Oxford, Oxford, UK
- School of Chemistry, University of Southampton, Southampton, UK
| |
Collapse
|
7
|
Lasham J, Djurabekova A, Zickermann V, Vonck J, Sharma V. Role of Protonation States in the Stability of Molecular Dynamics Simulations of High-Resolution Membrane Protein Structures. J Phys Chem B 2024; 128:2304-2316. [PMID: 38430110 PMCID: PMC11389979 DOI: 10.1021/acs.jpcb.3c07421] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/29/2024] [Accepted: 02/13/2024] [Indexed: 03/03/2024]
Abstract
Classical molecular dynamics (MD) simulations provide unmatched spatial and time resolution of protein structure and function. However, the accuracy of MD simulations often depends on the quality of force field parameters and the time scale of sampling. Another limitation of conventional MD simulations is that the protonation states of titratable amino acid residues remain fixed during simulations, even though protonation state changes coupled to conformational dynamics are central to protein function. Due to the uncertainty in selecting protonation states, classical MD simulations are sometimes performed with all amino acids modeled in their standard charged states at pH 7. Here, we performed and analyzed classical MD simulations on high-resolution cryo-EM structures of two large membrane proteins that transfer protons by catalyzing protonation/deprotonation reactions. In simulations performed with titratable amino acids modeled in their standard protonation (charged) states, the structure diverges far from its starting conformation. In comparison, MD simulations performed with predetermined protonation states of amino acid residues reproduce the structural conformation, protein hydration, and protein-water and protein-protein interactions of the structure much better. The results support the notion that it is crucial to perform basic protonation state calculations, especially on structures where protonation changes play an important functional role, prior to the launch of any conventional MD simulations. Furthermore, the combined approach of fast protonation state prediction and MD simulations can provide valuable information about the charge states of amino acids in the cryo-EM sample. Even though accurate prediction of protonation states in proteinaceous environments currently remains a challenge, we introduce an approach of combining pKa prediction with cryo-EM density map analysis that helps in improving not only the protonation state predictions but also the atomic modeling of density data.
Collapse
Affiliation(s)
- Jonathan Lasham
- Department
of Physics, University of Helsinki, 00014 Helsinki, Finland
| | - Amina Djurabekova
- Department
of Physics, University of Helsinki, 00014 Helsinki, Finland
| | - Volker Zickermann
- Institute
of Biochemistry II, University Hospital,
Goethe University, 60590 Frankfurt am Main, Germany
- Centre
for Biomolecular Magnetic Resonance, Institute for Biophysical Chemistry, Goethe University, 60438 Frankfurt am Main, Germany
| | - Janet Vonck
- Department
of Structural Biology, Max Planck Institute
of Biophysics, 60438 Frankfurt am Main, Germany
| | - Vivek Sharma
- Department
of Physics, University of Helsinki, 00014 Helsinki, Finland
- HiLIFE
Institute of Biotechnology, University of
Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
8
|
Nam K, Shao Y, Major DT, Wolf-Watz M. Perspectives on Computational Enzyme Modeling: From Mechanisms to Design and Drug Development. ACS OMEGA 2024; 9:7393-7412. [PMID: 38405524 PMCID: PMC10883025 DOI: 10.1021/acsomega.3c09084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/15/2024] [Accepted: 01/19/2024] [Indexed: 02/27/2024]
Abstract
Understanding enzyme mechanisms is essential for unraveling the complex molecular machinery of life. In this review, we survey the field of computational enzymology, highlighting key principles governing enzyme mechanisms and discussing ongoing challenges and promising advances. Over the years, computer simulations have become indispensable in the study of enzyme mechanisms, with the integration of experimental and computational exploration now established as a holistic approach to gain deep insights into enzymatic catalysis. Numerous studies have demonstrated the power of computer simulations in characterizing reaction pathways, transition states, substrate selectivity, product distribution, and dynamic conformational changes for various enzymes. Nevertheless, significant challenges remain in investigating the mechanisms of complex multistep reactions, large-scale conformational changes, and allosteric regulation. Beyond mechanistic studies, computational enzyme modeling has emerged as an essential tool for computer-aided enzyme design and the rational discovery of covalent drugs for targeted therapies. Overall, enzyme design/engineering and covalent drug development can greatly benefit from our understanding of the detailed mechanisms of enzymes, such as protein dynamics, entropy contributions, and allostery, as revealed by computational studies. Such a convergence of different research approaches is expected to continue, creating synergies in enzyme research. This review, by outlining the ever-expanding field of enzyme research, aims to provide guidance for future research directions and facilitate new developments in this important and evolving field.
Collapse
Affiliation(s)
- Kwangho Nam
- Department
of Chemistry and Biochemistry, University
of Texas at Arlington, Arlington, Texas 76019, United States
| | - Yihan Shao
- Department
of Chemistry and Biochemistry, University
of Oklahoma, Norman, Oklahoma 73019-5251, United States
| | - Dan T. Major
- Department
of Chemistry and Institute for Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| | | |
Collapse
|
9
|
Wilhelm J, Pos KM. Molecular insights into the determinants of substrate specificity and efflux inhibition of the RND efflux pumps AcrB and AdeB. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001438. [PMID: 38358391 PMCID: PMC10924465 DOI: 10.1099/mic.0.001438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/30/2024] [Indexed: 02/16/2024]
Abstract
Gram-negative bacterial members of the Resistance Nodulation and cell Division (RND) superfamily form tripartite efflux pump systems that span the cell envelope. One of the intriguing features of the multiple drug efflux members of this superfamily is their ability to recognize different classes of antibiotics, dyes, solvents, bile salts, and detergents. This review provides an overview of the molecular mechanisms of multiple drug efflux catalysed by the tripartite RND efflux system AcrAB-TolC from Eschericha coli. The determinants for sequential or simultaneous multiple substrate binding and efflux pump inhibitor binding are discussed. A comparison is made with the determinants for substrate binding of AdeB from Acinetobacter baumannii, which acts within the AdeABC multidrug efflux system. There is an apparent general similarity between the structures of AcrB and AdeB and their substrate specificity. However, the presence of distinct conformational states and different drug efflux capacities as revealed by single-particle cryo-EM and mutational analysis suggest that the drug binding and transport features exhibited by AcrB may not be directly extrapolated to the homolog AdeB efflux pump.
Collapse
Affiliation(s)
- Julia Wilhelm
- Institute of Biochemistry, Goethe-University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany
| | - Klaas Martinus Pos
- Institute of Biochemistry, Goethe-University Frankfurt, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany
| |
Collapse
|
10
|
Yu Z, Shi X, Wang Z. Structures and Efflux Mechanisms of the AcrAB-TolC Pump. Subcell Biochem 2024; 104:1-16. [PMID: 38963480 DOI: 10.1007/978-3-031-58843-3_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
The global emergence of multidrug resistance (MDR) in gram-negative bacteria has become a matter of worldwide concern. MDR in these pathogens is closely linked to the overexpression of certain efflux pumps, particularly the resistance-nodulation-cell division (RND) efflux pumps. Inhibition of these pumps presents an attractive and promising strategy to combat antibiotic resistance, as the efflux pump inhibitors can effectively restore the potency of existing antibiotics. AcrAB-TolC is one well-studied RND efflux pump, which transports a variety of substrates, therefore providing resistance to a broad spectrum of antibiotics. To develop effective pump inhibitors, a comprehensive understanding of the structural aspect of the AcrAB-TolC efflux pump is imperative. Previous studies on this pump's structure have been limited to individual components or in vitro determination of fully assembled pumps. Recent advancements in cellular cryo-electron tomography (cryo-ET) have provided novel insights into this pump's assembly and functional mechanism within its native cell membrane environment. Here, we present a summary of the structural data regarding the AcrAB-TolC efflux pump, shedding light on its assembly pathway and operational mechanism.
Collapse
Affiliation(s)
- Zhili Yu
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX, USA
| | - Xiaodong Shi
- Jiangsu Province Key Laboratory of Anesthesiology and Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhao Wang
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
11
|
Hussein A, Fan S, Lopez-Redondo M, Kenney I, Zhang X, Beckstein O, Stokes DL. Energy coupling and stoichiometry of Zn 2+/H + antiport by the prokaryotic cation diffusion facilitator YiiP. eLife 2023; 12:RP87167. [PMID: 37906094 PMCID: PMC10617992 DOI: 10.7554/elife.87167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023] Open
Abstract
YiiP from Shewanella oneidensis is a prokaryotic Zn2+/H+ antiporter that serves as a model for the Cation Diffusion Facilitator (CDF) superfamily, members of which are generally responsible for homeostasis of transition metal ions. Previous studies of YiiP as well as related CDF transporters have established a homodimeric architecture and the presence of three distinct Zn2+ binding sites named A, B, and C. In this study, we use cryo-EM, microscale thermophoresis and molecular dynamics simulations to address the structural and functional roles of individual sites as well as the interplay between Zn2+ binding and protonation. Structural studies indicate that site C in the cytoplasmic domain is primarily responsible for stabilizing the dimer and that site B at the cytoplasmic membrane surface controls the structural transition from an inward facing conformation to an occluded conformation. Binding data show that intramembrane site A, which is directly responsible for transport, has a dramatic pH dependence consistent with coupling to the proton motive force. A comprehensive thermodynamic model encompassing Zn2+ binding and protonation states of individual residues indicates a transport stoichiometry of 1 Zn2+ to 2-3 H+ depending on the external pH. This stoichiometry would be favorable in a physiological context, allowing the cell to use the proton gradient as well as the membrane potential to drive the export of Zn2+.
Collapse
Affiliation(s)
- Adel Hussein
- Department of Biochemistry and Molecular Pharmacology, NYU School of MedicineNew YorkUnited States
| | - Shujie Fan
- Department of Physics, Arizona State UniversityTempeUnited States
| | - Maria Lopez-Redondo
- Department of Biochemistry and Molecular Pharmacology, NYU School of MedicineNew YorkUnited States
| | - Ian Kenney
- Department of Physics, Arizona State UniversityTempeUnited States
| | - Xihui Zhang
- Department of Biochemistry and Molecular Pharmacology, NYU School of MedicineNew YorkUnited States
| | - Oliver Beckstein
- Department of Physics, Arizona State UniversityTempeUnited States
| | - David L Stokes
- Department of Biochemistry and Molecular Pharmacology, NYU School of MedicineNew YorkUnited States
| |
Collapse
|
12
|
Trinh TKH, Cabezas AJ, Joshi S, Catalano C, Siddique AB, Qiu W, Deshmukh S, des Georges A, Guo Y. pH-tunable membrane-active polymers, NCMNP2a- x, and their potential membrane protein applications. Chem Sci 2023; 14:7310-7326. [PMID: 37416719 PMCID: PMC10321531 DOI: 10.1039/d3sc01890c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/30/2023] [Indexed: 07/08/2023] Open
Abstract
Accurate 3D structures of membrane proteins are essential for comprehending their mechanisms of action and designing specific ligands to modulate their activities. However, these structures are still uncommon due to the involvement of detergents in the sample preparation. Recently, membrane-active polymers have emerged as an alternative to detergents, but their incompatibility with low pH and divalent cations has hindered their efficacy. Herein, we describe the design, synthesis, characterization, and application of a new class of pH-tunable membrane-active polymers, NCMNP2a-x. The results demonstrated that NCMNP2a-x could be used for high-resolution single-particle cryo-EM structural analysis of AcrB in various pH conditions and can effectively solubilize BcTSPO with the function preserved. Molecular dynamic simulation is consistent with experimental data that shed great insights into the working mechanism of this class of polymers. These results demonstrated that NCMNP2a-x might have broad applications in membrane protein research.
Collapse
Affiliation(s)
- Thi Kim Hoang Trinh
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University Richmond VA 23298 USA
- Institute for Structural Biology, Drug Discovery and Development, School of Pharmacy, Virginia Commonwealth University Richmond VA 23219 USA
| | - Andres Jorge Cabezas
- Structural Biology Initiative, CUNY Advanced Science Research Center, City University of New York New York New York 10017 USA
- PhD Program in Biochemistry, The Graduate Center of the City University of New York New York New York 10017 USA
| | - Soumil Joshi
- Department of Chemical Engineering, Virginia Tech Blacksburg VA2 4060 USA
| | - Claudio Catalano
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University Richmond VA 23298 USA
- Institute for Structural Biology, Drug Discovery and Development, School of Pharmacy, Virginia Commonwealth University Richmond VA 23219 USA
| | - Abu Bakkar Siddique
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University Richmond VA 23298 USA
- Institute for Structural Biology, Drug Discovery and Development, School of Pharmacy, Virginia Commonwealth University Richmond VA 23219 USA
| | - Weihua Qiu
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University Richmond VA 23298 USA
- Institute for Structural Biology, Drug Discovery and Development, School of Pharmacy, Virginia Commonwealth University Richmond VA 23219 USA
| | - Sanket Deshmukh
- Department of Chemical Engineering, Virginia Tech Blacksburg VA2 4060 USA
| | - Amedee des Georges
- Structural Biology Initiative, CUNY Advanced Science Research Center, City University of New York New York New York 10017 USA
- PhD Program in Biochemistry, The Graduate Center of the City University of New York New York New York 10017 USA
- Department of Chemistry & Biochemistry, City College of New York New York New York 10017 USA
| | - Youzhong Guo
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University Richmond VA 23298 USA
- Institute for Structural Biology, Drug Discovery and Development, School of Pharmacy, Virginia Commonwealth University Richmond VA 23219 USA
| |
Collapse
|
13
|
Li Y, Acharya A, Yang L, Liu J, Tajkhorshid E, Zgurskaya HI, Jackson M, Gumbart JC. Insights into substrate transport and water permeation in the mycobacterial transporter MmpL3. Biophys J 2023; 122:2342-2352. [PMID: 36926696 PMCID: PMC10257117 DOI: 10.1016/j.bpj.2023.03.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/04/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
Mycobacteria, such as Mycobacterium tuberculosis, are characterized by a uniquely thick and waxy cell envelope that consists of two membranes, with a variety of mycolates comprising their outer membrane (OM). The protein Mycobacterial membrane protein Large 3 (MmpL3) is responsible for the transport of a primary OM component, trehalose monomycolate (TMM), from the inner (cytoplasmic) membrane (IM) to the periplasmic space, a process driven by the proton gradient. Although multiple structures of MmpL3 with bound substrates have been solved, the exact pathway(s) for TMM or proton transport remains elusive. Here, employing molecular dynamics simulations we investigate putative pathways for either transport species. We hypothesized that MmpL3 will cycle through similar conformational states as the related transporter AcrB, which we used as targets for modeling the conformation of MmpL3. A continuous water pathway through the transmembrane region was found in one of these states, illustrating a putative pathway for protons. Additional equilibrium simulations revealed that TMM can diffuse from the membrane into a binding pocket in MmpL3 spontaneously. We also found that acetylation of TMM, which is required for transport, makes it more stable within MmpL3's periplasmic cavity compared with the unacetylated form.
Collapse
Affiliation(s)
- Yupeng Li
- Theoretical and Computational Biophysics Group, NIH Resource for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois; Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, Illinois
| | - Atanu Acharya
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia
| | - Lixinhao Yang
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia
| | - Jinchan Liu
- Department of Molecular Biophysics and Biochemistry (MB&B), Yale University, New Haven, Connecticut
| | - Emad Tajkhorshid
- Theoretical and Computational Biophysics Group, NIH Resource for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois; Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, Illinois; Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Helen I Zgurskaya
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma
| | - Mary Jackson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado
| | - James C Gumbart
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia; School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia.
| |
Collapse
|
14
|
Jang S. AcrAB-TolC, a major efflux pump in Gram negative bacteria: toward understanding its operation mechanism. BMB Rep 2023; 56:326-334. [PMID: 37254571 PMCID: PMC10315565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/18/2023] [Accepted: 05/30/2023] [Indexed: 06/01/2023] Open
Abstract
Antibiotic resistance (AR) is a silent pandemic that kills millions worldwide. Although the development of new therapeutic agents against antibiotic resistance is in urgent demand, this has presented a great challenge, especially for Gram-negative bacteria that have inherent drug-resistance mediated by impermeable outer membranes and multidrug efflux pumps that actively extrude various drugs from the bacteria. For the last two decades, multidrug efflux pumps, including AcrAB-TolC, the most clinically important efflux pump in Gram-negative bacteria, have drawn great attention as strategic targets for re-sensitizing bacteria to the existing antibiotics. This article aims to provide a concise overview of the AcrAB-TolC operational mechanism, reviewing its architecture and substrate specificity, as well as the recent development of AcrAB-TolC inhibitors. [BMB Reports 2023; 56(6): 326-334].
Collapse
Affiliation(s)
- Soojin Jang
- Department of Discovery Biology, Antibacterial Resistance Laboratory, Institut Pasteur Korea, Seongnam 13488, Korea
| |
Collapse
|
15
|
Jang S. AcrAB-TolC, a major efflux pump in Gram negative bacteria: toward understanding its operation mechanism. BMB Rep 2023; 56:326-334. [PMID: 37254571 PMCID: PMC10315565 DOI: 10.5483/bmbrep.2023-0070] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/18/2023] [Accepted: 05/30/2023] [Indexed: 08/27/2023] Open
Abstract
Antibiotic resistance (AR) is a silent pandemic that kills millions worldwide. Although the development of new therapeutic agents against antibiotic resistance is in urgent demand, this has presented a great challenge, especially for Gram-negative bacteria that have inherent drug-resistance mediated by impermeable outer membranes and multidrug efflux pumps that actively extrude various drugs from the bacteria. For the last two decades, multidrug efflux pumps, including AcrAB-TolC, the most clinically important efflux pump in Gram-negative bacteria, have drawn great attention as strategic targets for re-sensitizing bacteria to the existing antibiotics. This article aims to provide a concise overview of the AcrAB-TolC operational mechanism, reviewing its architecture and substrate specificity, as well as the recent development of AcrAB-TolC inhibitors. [BMB Reports 2023; 56(6): 326-334].
Collapse
Affiliation(s)
- Soojin Jang
- Department of Discovery Biology, Antibacterial Resistance Laboratory, Institut Pasteur Korea, Seongnam 13488, Korea
| |
Collapse
|
16
|
Yue Z, Li C, Voth GA. The role of conformational change and key glutamic acid residues in the ClC-ec1 antiporter. Biophys J 2023; 122:1068-1085. [PMID: 36698313 PMCID: PMC10111279 DOI: 10.1016/j.bpj.2023.01.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/16/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
The triple glutamine (Q) mutant (QQQ) structure of a Cl-/H+ antiporter from Escherichia coli (ClC-ec1) displaying a novel backbone arrangement has been used to challenge the long-held notion that Cl-/H+ antiporters do not operate through large conformational motions. The QQQ mutant substitutes the glutamine residue for an external glutamate E148, an internal glutamate E203, and a third glutamate E113 that hydrogen-bonds with E203. However, it is unknown if QQQ represents a physiologically relevant state, as well as how the protonation of the wild-type glutamates relates to the global dynamics. We herein apply continuous constant-pH molecular dynamics to investigate the H+-coupled dynamics of ClC-ec1. Although any large-scale conformational rearrangement upon acidification would be due to the accumulation of excess charge within the protein, protonation of the glutamates significantly impacts mainly the local structure and dynamics. Despite the fact that the extracellular pore enlarges at acidic pHs, an occluded ClC-ec1 within the active pH range of 3.5-7.5 requires a protonated E148 to facilitate extracellular Cl- release. E203 is also involved in the intracellular H+ transfer as an H+ acceptor. The water wire connection of E148 with the intracellular solution is regulated by the charge states of the E113/E203 dyad with coupled proton titration. However, the dynamics extracted from our simulations are not QQQ-like, indicating that the QQQ mutant does not represent the behavior of the wild-type ClC-ec1. These findings reinforce the necessity of having a protonatable residue at the E203 position in ClC-ec1 and suggest that a higher level of complexity exists for the intracellular H+ transfer in Cl-/H+ antiporters.
Collapse
Affiliation(s)
- Zhi Yue
- Department of Chemistry, Chicago Center for Theoretical Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois
| | - Chenghan Li
- Department of Chemistry, Chicago Center for Theoretical Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois
| | - Gregory A Voth
- Department of Chemistry, Chicago Center for Theoretical Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois.
| |
Collapse
|
17
|
Athar M, Gervasoni S, Catte A, Basciu A, Malloci G, Ruggerone P, Vargiu AV. Tripartite efflux pumps of the RND superfamily: what did we learn from computational studies? MICROBIOLOGY (READING, ENGLAND) 2023; 169. [PMID: 36972322 DOI: 10.1099/mic.0.001307] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Bacterial resistance to antibiotics has been long recognized as a priority to address for human health. Among all micro-organisms, the so-called multi-drug resistant (MDR) bacteria, which are resistant to most, if not all drugs in our current arsenal, are particularly worrisome. The World Health Organization has prioritized the ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter species) pathogens, which include four Gram-negative bacterial species. In these bacteria, active extrusion of antimicrobial compounds out of the cell by means of 'molecular guns' known as efflux pumps is a main determinant of MDR phenotypes. The resistance-nodulation-cell division (RND) superfamily of efflux pumps connecting the inner and outer membrane in Gram-negative bacteria is crucial to the onset of MDR and virulence, as well as biofilm formation. Thus, understanding the molecular basis of the interaction of antibiotics and inhibitors with these pumps is key to the design of more effective therapeutics. With the aim to contribute to this challenge, and complement and inspire experimental research, in silico studies on RND efflux pumps have flourished in recent decades. Here, we review a selection of such investigations addressing the main determinants behind the polyspecificity of these pumps, the mechanisms of substrate recognition, transport and inhibition, as well as the relevance of their assembly for proper functioning, and the role of protein-lipid interactions. The journey will end with a perspective on the role of computer simulations in addressing the challenges posed by these beautifully complex machineries and in supporting the fight against the spread of MDR bacteria.
Collapse
Affiliation(s)
- Mohd Athar
- Physics Department, University of Cagliari, Cittadella Universitaria, SP 8 km 0.700, 09042, Monserrato (CA), Italy
| | - Silvia Gervasoni
- Physics Department, University of Cagliari, Cittadella Universitaria, SP 8 km 0.700, 09042, Monserrato (CA), Italy
| | - Andrea Catte
- Physics Department, University of Cagliari, Cittadella Universitaria, SP 8 km 0.700, 09042, Monserrato (CA), Italy
| | - Andrea Basciu
- Physics Department, University of Cagliari, Cittadella Universitaria, SP 8 km 0.700, 09042, Monserrato (CA), Italy
| | - Giuliano Malloci
- Physics Department, University of Cagliari, Cittadella Universitaria, SP 8 km 0.700, 09042, Monserrato (CA), Italy
| | - Paolo Ruggerone
- Physics Department, University of Cagliari, Cittadella Universitaria, SP 8 km 0.700, 09042, Monserrato (CA), Italy
| | - Attilio Vittorio Vargiu
- Physics Department, University of Cagliari, Cittadella Universitaria, SP 8 km 0.700, 09042, Monserrato (CA), Italy
| |
Collapse
|
18
|
Guzmán-Ocampo DC, Aguayo-Ortiz R, Velasco-Bolom JL, Gupta PL, Roitberg AE, Dominguez L. Elucidating the Protonation State of the γ-Secretase Catalytic Dyad. ACS Chem Neurosci 2023; 14:261-269. [PMID: 36562727 DOI: 10.1021/acschemneuro.2c00563] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
γ-Secretase (GS) is an intramembrane aspartyl protease that participates in the sequential cleavage of C99 to generate different isoforms of the amyloid-β (Aβ) peptides that are associated with the development of Alzheimer's disease. Due to its importance in the proteolytic processing of C99 by GS, we performed pH replica exchange molecular dynamics (pH-REMD) simulations of GS in its apo and substrate-bound forms to sample the protonation states of the catalytic dyad. We found that the catalytic dyad is deprotonated at physiological pH in our apo form, but the presence of the substrate at the active site displaces its monoprotonated state toward physiological pH. Our results show that Asp257 acts as the general base and Asp385 as the general acid during the cleavage mechanism. We identified different amino acids such as Lys265, Arg269, and the PAL motif interacting with the catalytic dyad and promoting changes in its acid-base behavior. Finally, we also found a significant pKa shift of Glu280 related to the internalization of TM6-CT in the GS-apo form. Our study provides critical mechanistic insight into the GS mechanism and the basis for future research on the genesis of Aβ peptides and the development of Alzheimer's disease.
Collapse
Affiliation(s)
- Dulce C Guzmán-Ocampo
- Facultad de Química, Departamento de Fisicoquímica, Universidad Nacional Autónoma de México, Mexico City04510, Mexico
| | - Rodrigo Aguayo-Ortiz
- Facultad de Química, Departamento de Farmacia, Universidad Nacional Autónoma de México, Mexico City04510, Mexico
| | - José-Luis Velasco-Bolom
- Facultad de Química, Departamento de Fisicoquímica, Universidad Nacional Autónoma de México, Mexico City04510, Mexico
| | - Pancham Lal Gupta
- Department of Chemistry, University of Florida, Gainesville, Florida32611-7200, United States
| | - Adrian E Roitberg
- Department of Chemistry, University of Florida, Gainesville, Florida32611-7200, United States
| | - Laura Dominguez
- Facultad de Química, Departamento de Fisicoquímica, Universidad Nacional Autónoma de México, Mexico City04510, Mexico
| |
Collapse
|
19
|
Update on the Discovery of Efflux Pump Inhibitors against Critical Priority Gram-Negative Bacteria. Antibiotics (Basel) 2023; 12:antibiotics12010180. [PMID: 36671381 PMCID: PMC9854755 DOI: 10.3390/antibiotics12010180] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Antimicrobial resistance (AMR) has become a major problem in public health leading to an estimated 4.95 million deaths in 2019. The selective pressure caused by the massive and repeated use of antibiotics has led to bacterial strains that are partially or even entirely resistant to known antibiotics. AMR is caused by several mechanisms, among which the (over)expression of multidrug efflux pumps plays a central role. Multidrug efflux pumps are transmembrane transporters, naturally expressed by Gram-negative bacteria, able to extrude and confer resistance to several classes of antibiotics. Targeting them would be an effective way to revive various options for treatment. Many efflux pump inhibitors (EPIs) have been described in the literature; however, none of them have entered clinical trials to date. This review presents eight families of EPIs active against Escherichia coli or Pseudomonas aeruginosa. Structure-activity relationships, chemical synthesis, in vitro and in vivo activities, and pharmacological properties are reported. Their binding sites and their mechanisms of action are also analyzed comparatively.
Collapse
|
20
|
Li Y, Ge X. Molecular Dynamics Investigation of MFS Efflux Pump MdfA Reveals an Intermediate State between Its Inward and Outward Conformations. Int J Mol Sci 2022; 24:356. [PMID: 36613823 PMCID: PMC9820426 DOI: 10.3390/ijms24010356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
Multidrug resistance poses a major challenge to antibiotic therapy. A principal cause of antibiotic resistance is through active export by efflux pumps embedded in the bacterial membrane. Major facilitator superfamily (MFS) efflux pumps constitute a major group of transporters, which are often related to quinolone resistance in clinical settings. Although a rocker-switch model is proposed for description of their conformational transitions, detailed changes in this process remain poorly understood. Here we used MdfA from E. coli as a representative MFS efflux pump to investigate factors that can affect its conformational transition in silico. Molecular dynamics (MD) simulations of MdfA's inward and outward conformations revealed an intermediate state between these two conformations. By comparison of the subtle differences between the intermediate state and the average state, we indicated that conformational transition from outward to inward was initiated by protonation of the periplasmic side. Subsequently, hydrophilic interaction of the periplasmic side with water was promoted and the regional structure of helix 1 was altered to favor this process. As the hydrophobic interaction between MdfA and membrane was also increased, energy was concentrated and stored for the opposite transition. In parallel, salt bridges at the cytoplasmic side were altered to lower probabilities to facilitate the entrance of substrate. In summary, we described the total and local changes during MdfA's conformational transition, providing insights for the development of potential inhibitors.
Collapse
Affiliation(s)
| | - Xizhen Ge
- College of Biochemical Engineering, Beijing Union University, Beijing 100023, China
| |
Collapse
|
21
|
Harris JA, Liu R, Martins de Oliveira V, Vázquez-Montelongo EA, Henderson JA, Shen J. GPU-Accelerated All-Atom Particle-Mesh Ewald Continuous Constant pH Molecular Dynamics in Amber. J Chem Theory Comput 2022; 18:7510-7527. [PMID: 36377980 PMCID: PMC10130738 DOI: 10.1021/acs.jctc.2c00586] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Constant pH molecular dynamics (MD) simulations sample protonation states on the fly according to the conformational environment and user specified pH conditions; however, the current accuracy is limited due to the use of implicit-solvent models or a hybrid solvent scheme. Here, we report the first GPU-accelerated implementation, parametrization, and validation of the all-atom continuous constant pH MD (CpHMD) method with particle-mesh Ewald (PME) electrostatics in the Amber22 pmemd.cuda engine. The titration parameters for Asp, Glu, His, Cys, and Lys were derived for the CHARMM c22 and Amber ff14sb and ff19sb force fields. We then evaluated the PME-CpHMD method using the asynchronous pH replica-exchange titration simulations with the c22 force field for six benchmark proteins, including BBL, hen egg white lysozyme (HEWL), staphylococcal nuclease (SNase), thioredoxin, ribonuclease A (RNaseA), and human muscle creatine kinase (HMCK). The root-mean-square deviation from the experimental pKa's of Asp, Glu, His, and Cys is 0.76 pH units, and the Pearson's correlation coefficient for the pKa shifts with respect to model values is 0.80. We demonstrated that a finite-size correction or much enlarged simulation box size can remove a systematic error of the calculated pKa's and improve agreement with experiment. Importantly, the simulations captured the relevant biology in several challenging cases, e.g., the titration order of the catalytic dyad Glu35/Asp52 in HEWL and the coupled residues Asp19/Asp21 in SNase, the large pKa upshift of the deeply buried catalytic Asp26 in thioredoxin, and the large pKa downshift of the deeply buried catalytic Cys283 in HMCK. We anticipate that PME-CpHMD will offer proper pH control to improve the accuracies of MD simulations and enable mechanistic studies of proton-coupled dynamical processes that are ubiquitous in biology but remain poorly understood due to the lack of experimental tools and limitation of current MD simulations.
Collapse
Affiliation(s)
- Julie A Harris
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland21201, United States
| | - Ruibin Liu
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland21201, United States
| | - Vinicius Martins de Oliveira
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland21201, United States.,Lilly Biotechnology Center, San Diego, California92121, United States
| | | | - Jack A Henderson
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland21201, United States
| | - Jana Shen
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland21201, United States
| |
Collapse
|
22
|
Bignucolo O, Chipot C, Kellenberger S, Roux B. Galvani Offset Potential and Constant-pH Simulations of Membrane Proteins. J Phys Chem B 2022; 126:6868-6877. [PMID: 36049129 PMCID: PMC9483922 DOI: 10.1021/acs.jpcb.2c04593] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/17/2022] [Indexed: 02/01/2023]
Abstract
A central problem in computational biophysics is the treatment of titratable residues in molecular dynamics simulations of large biological macromolecular systems. Conventional simulation methods ascribe a fixed ionization state to titratable residues in accordance with their pKa and the pH of the system, assuming that an effective average model will be able to capture the predominant behavior of the system. While this assumption may be justifiable in many cases, it is certainly limited, and it is important to design alternative methodologies allowing a more realistic treatment. Constant-pH simulation methods provide powerful approaches to handle titratable residues more realistically by allowing the ionization state to vary statistically during the simulation. Extending the molecular mechanical (MM) potential energy function to a family of potential functions accounting for different ionization states, constant-pH simulations are designed to sample all accessible configurations and ionization states, properly weighted according to their Boltzmann factor. Because protonation and deprotonation events correspond to a change in the total charge, difficulties arise when the long-range Coulomb interaction is treated on the basis of an idealized infinite simulation model and periodic boundary conditions with particle-mesh Ewald lattice sums. Charging free-energy calculations performed under these conditions in aqueous solution depend on the Galvani potential of the bulk water phase. This has important implications for the equilibrium and nonequilibrium constant-pH simulation methods grounded in the relative free-energy difference corresponding to the protonated and unprotonated residues. Here, the effect of the Galvani potential is clarified, and a simple practical solution is introduced to address this issue in constant-pH simulations of the acid-sensing ion channel (ASIC).
Collapse
Affiliation(s)
- Olivier Bignucolo
- Department
of Biomedical Sciences, University of Lausanne, 1015 Lausanne, Switzerland
- SIB
Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Christophe Chipot
- Department
of Biochemistry and Molecular Biology, The
University of Chicago, Chicago, Illinois 60637, United States
- Laboratoire
International Associé Centre National de la Recherche Scientifique
et University of Illinois at Urbana−Champaign, Unité
Mixte de Recherche n◦7019, Université
de Lorraine, B.P. 70239, 54506 Cedex Vandœuvre-lès-Nancy, France
- Department
of Physics, University of Illinois at Urbana−Champaign, Urbana, Illinois 61820, United States
| | - Stephan Kellenberger
- Department
of Biomedical Sciences, University of Lausanne, 1015 Lausanne, Switzerland
| | - Benoît Roux
- Department
of Biochemistry and Molecular Biology, The
University of Chicago, Chicago, Illinois 60637, United States
- Department
of Chemistry, The University of Chicago, 5735 S. Ellis Ave., Chicago, Illinois 60637, United States
| |
Collapse
|
23
|
Henderson JA, Liu R, Harris JA, Huang Y, de Oliveira VM, Shen J. A Guide to the Continuous Constant pH Molecular Dynamics Methods in Amber and CHARMM [Article v1.0]. LIVING JOURNAL OF COMPUTATIONAL MOLECULAR SCIENCE 2022; 4:1563. [PMID: 36776714 PMCID: PMC9910290 DOI: 10.33011/livecoms.4.1.1563] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Like temperature and pressure, solution pH is an important environmental variable in biomolecular simulations. Virtually all proteins depend on pH to maintain their structure and function. In conventional molecular dynamics (MD) simulations of proteins, pH is implicitly accounted for by assigning and fixing protonation states of titratable sidechains. This is a significant limitation, as the assigned protonation states may be wrong and they may change during dynamics. In this tutorial, we guide the reader in learning and using the various continuous constant pH MD methods in Amber and CHARMM packages, which have been applied to predict pK a values and elucidate proton-coupled conformational dynamics of a variety of proteins including enzymes and membrane transporters.
Collapse
Affiliation(s)
| | - Ruibin Liu
- University of Maryland School of Pharmacy, Baltimore, MD
| | | | - Yandong Huang
- University of Maryland School of Pharmacy, Baltimore, MD
| | | | - Jana Shen
- University of Maryland School of Pharmacy, Baltimore, MD
| |
Collapse
|
24
|
Jardin C, Ohlwein N, Franzen A, Chaves G, Musset B. The pH-dependent gating of the human voltage-gated proton channel from computational simulations. Phys Chem Chem Phys 2022; 24:9964-9977. [PMID: 35445675 DOI: 10.1039/d1cp05609c] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Gating of the voltage-gated proton channel HV1 is strongly controlled by pH. There is evidence that this involves the sidechains of titratable amino acids that change their protonation state with changes of the pH. Despite experimental investigations to identify the amino acids involved in pH sensing only few progress has been made, including one histidine at the cytoplasmic side of the channel that is involved in sensing cellular pH. We have used constant pH molecular dynamics simulations in symmetrical and asymmetrical pH conditions across the membrane to investigate the pH- and ΔpH-dependent gating of the human HV1 channel. Therefore, the pKa of every titratable amino acids has been assessed in single simulations. Our simulations captured initial conformational changes between a deactivated and an activated state of the channel induced solely by changes of the pH. The pH-dependent gating is accompanied by an outward displacement of the three S4 voltage sensing arginines that moves the second arginine past the hydrophobic gasket (HG) which separates the inner and outer pores of the channel. HV1 activation, when outer pH increases, involves amino acids at the extracellular entrance of the channel that extend the network of interactions from the external solution down to the HG. Whereas, amino acids at the cytoplasmic entrance of the channel are involved in activation, when inner pH decreases, and in a network of interactions that extend from the cytoplasm up to the HG.
Collapse
Affiliation(s)
- Christophe Jardin
- Klinikum Nürnberg Medical School, CPPB, Institute of Physiology, Pathophysiology and Biophysics, Nuremberg, Germany.
| | - Niklas Ohlwein
- Klinikum Nürnberg Medical School, CPPB, Institute of Physiology, Pathophysiology and Biophysics, Nuremberg, Germany. .,Klinik für Anästhesiologie und operative Intensivmedizin, Universitätklinik der Paracelsus Medizinischen Privatuniversität, Nuremberg, Germany
| | - Arne Franzen
- Institute of Biological Information Processing, Molecular and Cellular Physiology (IBI-1), Forschungszentrum Jülich, Jülich, Germany
| | - Gustavo Chaves
- Klinikum Nürnberg Medical School, CPPB, Institute of Physiology, Pathophysiology and Biophysics, Nuremberg, Germany.
| | - Boris Musset
- Klinikum Nürnberg Medical School, CPPB, Institute of Physiology, Pathophysiology and Biophysics, Nuremberg, Germany.
| |
Collapse
|
25
|
Ion permeation, selectivity, and electronic polarization in fluoride channels. Biophys J 2022; 121:1336-1347. [PMID: 35151630 PMCID: PMC9034187 DOI: 10.1016/j.bpj.2022.02.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/01/2022] [Accepted: 02/09/2022] [Indexed: 12/16/2022] Open
Abstract
Fluoride channels (Flucs) export toxic F- from the cytoplasm. Crystallography and mutagenesis have identified several conserved residues crucial for fluoride transport, but the permeation mechanism at the molecular level has remained elusive. Herein, we have applied constant-pH molecular dynamics and free-energy-sampling methods to investigate fluoride permeation through a Fluc protein from Escherichia coli. We find that fluoride is facile to permeate in its charged form, i.e., F-, by traversing through a non-bonded network. The extraordinary F- selectivity is gained by the hydrogen-bonding capability of the central binding site and the Coulombic filter at the channel entrance. The F- permeation rate calculated using an electronically polarizable force field is significantly more accurate compared with the experimental value than that calculated using a more standard additive force field, suggesting an essential role for electronic polarization in the F--Fluc interactions.
Collapse
|
26
|
Webber A, Ratnaweera M, Harris A, Luisi BF, Ntsogo Enguéné VY. A Model for Allosteric Communication in Drug Transport by the AcrAB-TolC Tripartite Efflux Pump. Antibiotics (Basel) 2022; 11:52. [PMID: 35052929 PMCID: PMC8773123 DOI: 10.3390/antibiotics11010052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/22/2021] [Accepted: 12/28/2021] [Indexed: 01/30/2023] Open
Abstract
RND family efflux pumps are complex macromolecular machines involved in multidrug resistance by extruding antibiotics from the cell. While structural studies and molecular dynamics simulations have provided insights into the architecture and conformational states of the pumps, the path followed by conformational changes from the inner membrane protein (IMP) to the periplasmic membrane fusion protein (MFP) and to the outer membrane protein (OMP) in tripartite efflux assemblies is not fully understood. Here, we investigated AcrAB-TolC efflux pump's allostery by comparing resting and transport states using difference distance matrices supplemented with evolutionary couplings data and buried surface area measurements. Our analysis indicated that substrate binding by the IMP triggers quaternary level conformational changes in the MFP, which induce OMP to switch from the closed state to the open state, accompanied by a considerable increase in the interface area between the MFP subunits and between the OMPs and MFPs. This suggests that the pump's transport-ready state is at a more favourable energy level than the resting state, but raises the puzzle of how the pump does not become stably trapped in a transport-intermediate state. We propose a model for pump allostery that includes a downhill energetic transition process from a proposed 'activated' transport state back to the resting pump.
Collapse
Affiliation(s)
- Anya Webber
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK; (A.W.); (A.H.)
| | - Malitha Ratnaweera
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK;
| | - Andrzej Harris
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK; (A.W.); (A.H.)
| | - Ben F. Luisi
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK; (A.W.); (A.H.)
| | | |
Collapse
|
27
|
Structural and energetic analysis of metastable intermediate states in the E1P-E2P transition of Ca 2+-ATPase. Proc Natl Acad Sci U S A 2021; 118:2105507118. [PMID: 34593638 PMCID: PMC8501872 DOI: 10.1073/pnas.2105507118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2021] [Indexed: 01/05/2023] Open
Abstract
Ion pumps (or P-type ATPases) are membrane proteins, which transport ions through biological membranes against a concentration gradient, a function essential for many biological processes, such as muscle contraction, neurotransmission, and metabolism. Molecular mechanisms underlying active ion transport by ion pumps have been investigated by biochemical experiments and high-resolution structure analyses. Here, the transition of sarcoplasmic reticulum Ca2+-ATPase upon dissociation of Ca2+ is investigated using atomistic molecular dynamics simulations. We find intermediate structures along the pathway are stabilized by transient interactions between A- and P-domains as well as lipid molecules in the transmembrane helices. Sarcoplasmic reticulum (SR) Ca2+-ATPase transports two Ca2+ ions from the cytoplasm to the SR lumen against a large concentration gradient. X-ray crystallography has revealed the atomic structures of the protein before and after the dissociation of Ca2+, while biochemical studies have suggested the existence of intermediate states in the transition between E1P⋅ADP⋅2Ca2+ and E2P. Here, we explore the pathway and free energy profile of the transition using atomistic molecular dynamics simulations with the mean-force string method and umbrella sampling. The simulations suggest that a series of structural changes accompany the ordered dissociation of ADP, the A-domain rotation, and the rearrangement of the transmembrane (TM) helices. The luminal gate then opens to release Ca2+ ions toward the SR lumen. Intermediate structures on the pathway are stabilized by transient sidechain interactions between the A- and P-domains. Lipid molecules between TM helices play a key role in the stabilization. Free energy profiles of the transition assuming different protonation states suggest rapid exchanges between Ca2+ ions and protons when the Ca2+ ions are released toward the SR lumen.
Collapse
|
28
|
Fairweather SJ, Gupta V, Chitsaz M, Booth L, Brown MH, O’Mara ML. Coordination of Substrate Binding and Protonation in the N. gonorrhoeae MtrD Efflux Pump Controls the Functionally Rotating Transport Mechanism. ACS Infect Dis 2021; 7:1833-1847. [PMID: 33980014 DOI: 10.1021/acsinfecdis.1c00149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Multidrug resistance is a serious problem that threatens the effective treatment of the widespread sexually transmitted disease gonorrhea, caused by the Gram-negative bacterium Neisseria gonorrhoeae. The drug efflux pump primarily implicated in N. gonorrhoeae antimicrobial resistance is the inner membrane transporter MtrD, which forms part of the tripartite multiple transferable resistance (Mtr) CDE efflux system. A structure of MtrD was first solved in 2014 as a symmetrical homotrimer, and then, recently, as an asymmetrical homotrimer. Through a series of molecular dynamics simulations and mutagenesis experiments, we identify the combination of substrate binding and protonation states of the proton relay network that drives the transition from the symmetric to the asymmetric conformation of MtrD. We characterize the allosteric coupling between the functionally important local regions that control conformational changes between the access, binding, and extrusion states and allow for transition to the asymmetric MtrD conformation. We also highlight a significant rotation of the transmembrane helices caused by protonation of the proton relay network, which widens the intermonomeric gap that is a hallmark of the rotational transporter mechanism. This is the first analysis and description of the transport mechanism for the N. gonorrhoeae MtrD transporter and provides evidence that antimicrobial efflux in MtrD follows the functionally rotating transport mechanism seen in protein homologues from the same transport protein superfamily.
Collapse
Affiliation(s)
- Stephen J. Fairweather
- Research School of Chemistry, The Australian National University, Canberra, ACT 0200, Australia
- Research School of Biology, The Australian National University, Canberra, ACT 0200, Australia
| | - Vrinda Gupta
- Research School of Chemistry, The Australian National University, Canberra, ACT 0200, Australia
| | - Mohsen Chitsaz
- College of Science and Engineering, Flinders University, Bedford Park, SA 5042, Australia
| | - Lauren Booth
- Research School of Chemistry, The Australian National University, Canberra, ACT 0200, Australia
| | - Melissa H. Brown
- College of Science and Engineering, Flinders University, Bedford Park, SA 5042, Australia
| | - Megan L. O’Mara
- Research School of Chemistry, The Australian National University, Canberra, ACT 0200, Australia
| |
Collapse
|
29
|
Rybenkov VV, Zgurskaya HI, Ganguly C, Leus IV, Zhang Z, Moniruzzaman M. The Whole Is Bigger than the Sum of Its Parts: Drug Transport in the Context of Two Membranes with Active Efflux. Chem Rev 2021; 121:5597-5631. [PMID: 33596653 PMCID: PMC8369882 DOI: 10.1021/acs.chemrev.0c01137] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cell envelope plays a dual role in the life of bacteria by simultaneously protecting it from a hostile environment and facilitating access to beneficial molecules. At the heart of this ability lie the restrictive properties of the cellular membrane augmented by efflux transporters, which preclude intracellular penetration of most molecules except with the help of specialized uptake mediators. Recently, kinetic properties of the cell envelope came into focus driven on one hand by the urgent need in new antibiotics and, on the other hand, by experimental and theoretical advances in studies of transmembrane transport. A notable result from these studies is the development of a kinetic formalism that integrates the Michaelis-Menten behavior of individual transporters with transmembrane diffusion and offers a quantitative basis for the analysis of intracellular penetration of bioactive compounds. This review surveys key experimental and computational approaches to the investigation of transport by individual translocators and in whole cells, summarizes key findings from these studies and outlines implications for antibiotic discovery. Special emphasis is placed on Gram-negative bacteria, whose envelope contains two separate membranes. This feature sets these organisms apart from Gram-positive bacteria and eukaryotic cells by providing them with full benefits of the synergy between slow transmembrane diffusion and active efflux.
Collapse
Affiliation(s)
- Valentin V Rybenkov
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Helen I Zgurskaya
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Chhandosee Ganguly
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Inga V Leus
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Zhen Zhang
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Mohammad Moniruzzaman
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| |
Collapse
|
30
|
Alav I, Kobylka J, Kuth MS, Pos KM, Picard M, Blair JMA, Bavro VN. Structure, Assembly, and Function of Tripartite Efflux and Type 1 Secretion Systems in Gram-Negative Bacteria. Chem Rev 2021; 121:5479-5596. [PMID: 33909410 PMCID: PMC8277102 DOI: 10.1021/acs.chemrev.1c00055] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Indexed: 12/11/2022]
Abstract
Tripartite efflux pumps and the related type 1 secretion systems (T1SSs) in Gram-negative organisms are diverse in function, energization, and structural organization. They form continuous conduits spanning both the inner and the outer membrane and are composed of three principal components-the energized inner membrane transporters (belonging to ABC, RND, and MFS families), the outer membrane factor channel-like proteins, and linking the two, the periplasmic adaptor proteins (PAPs), also known as the membrane fusion proteins (MFPs). In this review we summarize the recent advances in understanding of structural biology, function, and regulation of these systems, highlighting the previously undescribed role of PAPs in providing a common architectural scaffold across diverse families of transporters. Despite being built from a limited number of basic structural domains, these complexes present a staggering variety of architectures. While key insights have been derived from the RND transporter systems, a closer inspection of the operation and structural organization of different tripartite systems reveals unexpected analogies between them, including those formed around MFS- and ATP-driven transporters, suggesting that they operate around basic common principles. Based on that we are proposing a new integrated model of PAP-mediated communication within the conformational cycling of tripartite systems, which could be expanded to other types of assemblies.
Collapse
Affiliation(s)
- Ilyas Alav
- Institute
of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Jessica Kobylka
- Institute
of Biochemistry, Biocenter, Goethe Universität
Frankfurt, Max-von-Laue-Straße 9, D-60438 Frankfurt, Germany
| | - Miriam S. Kuth
- Institute
of Biochemistry, Biocenter, Goethe Universität
Frankfurt, Max-von-Laue-Straße 9, D-60438 Frankfurt, Germany
| | - Klaas M. Pos
- Institute
of Biochemistry, Biocenter, Goethe Universität
Frankfurt, Max-von-Laue-Straße 9, D-60438 Frankfurt, Germany
| | - Martin Picard
- Laboratoire
de Biologie Physico-Chimique des Protéines Membranaires, CNRS
UMR 7099, Université de Paris, 75005 Paris, France
- Fondation
Edmond de Rothschild pour le développement de la recherche
Scientifique, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | - Jessica M. A. Blair
- Institute
of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Vassiliy N. Bavro
- School
of Life Sciences, University of Essex, Colchester, CO4 3SQ United Kingdom
| |
Collapse
|
31
|
Jackson M, Stevens CM, Zhang L, Zgurskaya HI, Niederweis M. Transporters Involved in the Biogenesis and Functionalization of the Mycobacterial Cell Envelope. Chem Rev 2021; 121:5124-5157. [PMID: 33170669 PMCID: PMC8107195 DOI: 10.1021/acs.chemrev.0c00869] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The biology of mycobacteria is dominated by a complex cell envelope of unique composition and structure and of exceptionally low permeability. This cell envelope is the basis of many of the pathogenic features of mycobacteria and the site of susceptibility and resistance to many antibiotics and host defense mechanisms. This review is focused on the transporters that assemble and functionalize this complex structure. It highlights both the progress and the limits of our understanding of how (lipo)polysaccharides, (glyco)lipids, and other bacterial secretion products are translocated across the different layers of the cell envelope to their final extra-cytoplasmic location. It further describes some of the unique strategies evolved by mycobacteria to import nutrients and other products through this highly impermeable barrier.
Collapse
Affiliation(s)
- Mary Jackson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523-1682, USA
| | - Casey M. Stevens
- University of Oklahoma, Department of Chemistry and Biochemistry, 101 Stephenson Parkway, Norman, OK 73019, USA
| | - Lei Zhang
- Department of Microbiology, University of Alabama at Birmingham, 845 19th Street South, Birmingham, AL 35294, USA
| | - Helen I. Zgurskaya
- University of Oklahoma, Department of Chemistry and Biochemistry, 101 Stephenson Parkway, Norman, OK 73019, USA
| | - Michael Niederweis
- Department of Microbiology, University of Alabama at Birmingham, 845 19th Street South, Birmingham, AL 35294, USA
| |
Collapse
|
32
|
Zgurskaya HI, Walker JK, Parks JM, Rybenkov VV. Multidrug Efflux Pumps and the Two-Faced Janus of Substrates and Inhibitors. Acc Chem Res 2021; 54:930-939. [PMID: 33539084 PMCID: PMC8208102 DOI: 10.1021/acs.accounts.0c00843] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Antibiotics are miracle drugs that can cure infectious bacterial diseases. However, their utility is challenged by antibiotic-resistant bacteria emerging in clinics and straining modern medicine and our ways of life. Certain bacteria such as Gram-negative (Gram(-)) and Mycobacteriales species are intrinsically resistant to most clinical antibiotics and can further gain multidrug resistance through mutations and plasmid acquisition. These species stand out by the presence of an additional external lipidic membrane, the outer membrane (OM), that is composed of unique glycolipids. Although formidable, the OM is a passive permeability barrier that can reduce penetration of antibiotics but cannot affect intracellular steady-state concentrations of drugs. The two-membrane envelopes are further reinforced by active efflux transporters that expel antibiotics from cells against their concentration gradients. The major mechanism of antibiotic resistance in Gram(-) pathogens is the active efflux of drugs, which acts synergistically with the low permeability barrier of the OM and other mutational and plasmid-borne mechanisms of antibiotic resistance.The synergy between active efflux and slow uptake offers Gram(-) bacteria an impressive degree of protection from potentially harmful chemicals, but it is also their Achilles heel. Kinetic studies have revealed that even small changes in the efficiency of either of the two factors can have dramatic effects on drug penetration into the cell. In line with these expectations, two major approaches to overcome this antibiotic resistance mechanism are currently being explored: (1) facilitation of antibiotic penetration across the outer membranes and (2) avoidance and inhibition of clinically relevant multidrug efflux pumps. Herein we summarize the progress in the latter approach with a focus on efflux pumps from the resistance-nodulation-division (RND) superfamily. The ability to export various substrates across the OM at the expense of the proton-motive force acting on the inner membrane and the engagement of accessory proteins for their functions are the major mechanistic advantages of these pumps. Both the RND transporters and their accessory proteins are being targeted in the discovery of efflux pump inhibitors, which in combination with antibiotics can potentiate antibacterial activities. We discuss intriguing relationships between substrates and inhibitors of efflux pumps, as these two types of ligands face similar barriers and binding sites in the transporters and accessory proteins and both types of activities often occur with the same chemical scaffold. Several distinct chemical classes of efflux inhibitors have been discovered that are as structurally diverse as the substrates of efflux pumps. Recent mechanistic insights, both empirical and computational, have led to the identification of features that distinguish OM permeators and efflux pump avoiders as well as efflux inhibitors from substrates. These findings suggest a path forward for optimizing the OM permeation and efflux-inhibitory activities in antibiotics and other chemically diverse compounds.
Collapse
Affiliation(s)
- Helen I Zgurskaya
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - John K Walker
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, St. Louis, Missouri 63104, United States
| | - Jerry M Parks
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Valentin V Rybenkov
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| |
Collapse
|
33
|
Vo QN, Mahinthichaichan P, Shen J, Ellis CR. How μ-opioid receptor recognizes fentanyl. Nat Commun 2021; 12:984. [PMID: 33579956 PMCID: PMC7881245 DOI: 10.1038/s41467-021-21262-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 01/08/2021] [Indexed: 01/26/2023] Open
Abstract
Roughly half of the drug overdose-related deaths in the United States are related to synthetic opioids represented by fentanyl which is a potent agonist of mu-opioid receptor (mOR). In recent years, X-ray crystal structures of mOR in complex with morphine derivatives have been determined; however, structural basis of mOR activation by fentanyl-like opioids remains lacking. Exploiting the X-ray structure of BU72-bound mOR and several molecular simulation techniques, we elucidated the detailed binding mechanism of fentanyl. Surprisingly, in addition to the salt-bridge binding mode common to morphinan opiates, fentanyl can move deeper and form a stable hydrogen bond with the conserved His2976.52, which has been suggested to modulate mOR's ligand affinity and pH dependence by previous mutagenesis experiments. Intriguingly, this secondary binding mode is only accessible when His2976.52 adopts a neutral HID tautomer. Alternative binding modes may represent a general mechanism in G protein-coupled receptor-ligand recognition.
Collapse
Affiliation(s)
- Quynh N Vo
- Center for Drug Evaluation and Research, United State Food and Drug Administration, Silver Spring, MD, USA
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, USA
| | - Paween Mahinthichaichan
- Center for Drug Evaluation and Research, United State Food and Drug Administration, Silver Spring, MD, USA
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, USA
| | - Jana Shen
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, USA.
| | - Christopher R Ellis
- Center for Drug Evaluation and Research, United State Food and Drug Administration, Silver Spring, MD, USA.
| |
Collapse
|
34
|
Huang Y, Henderson JA, Shen J. Continuous Constant pH Molecular Dynamics Simulations of Transmembrane Proteins. Methods Mol Biol 2021; 2302:275-287. [PMID: 33877633 PMCID: PMC8062021 DOI: 10.1007/978-1-0716-1394-8_15] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Many membrane channels, transporters, and receptors utilize a pH gradient or proton coupling to drive functionally relevant conformational transitions. Conventional molecular dynamics simulations employ fixed protonation states, thus neglecting the coupling between protonation and conformational equilibria. Here we describe the membrane-enabled hybrid-solvent continuous constant pH molecular dynamics method for capturing atomic details of proton-coupled conformational dynamics of transmembrane proteins. Example protocols from our recent application studies of proton channels and ion/substrate transporters are discussed.
Collapse
Affiliation(s)
- Yandong Huang
- College of Computer Engineering, Jimei University, Xiamen, Fujian, China
| | | | - Jana Shen
- University of Maryland School of Pharmacy, Baltimore, MD, USA.
| |
Collapse
|
35
|
Vo QN, Mahinthichaichan P, Shen J, Ellis CR. How μ-Opioid Receptor Recognizes Fentanyl. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.08.16.253013. [PMID: 32839778 PMCID: PMC7444290 DOI: 10.1101/2020.08.16.253013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In 2019, drug overdose has claimed over 70,000 lives in the United States. More than half of the deaths are related to synthetic opioids represented by fentanyl which is a potent agonist of mu-opioid receptor (mOR). In recent years, the crystal structures of mOR in complex with morphine derivatives have been determined; however, structural basis of mOR activation by fentanyl-like synthetic opioids remains lacking. Exploiting the X-ray structure of mOR bound to a morphinan ligand and several state-of-the-art simulation techniques, including weighted ensemble and continuous constant pH molecular dynamics, we elucidated the detailed binding mechanism of fentanyl with mOR. Surprisingly, in addition to forming a salt-bridge with Asp1473.32 in the orthosteric site common to morphinan opiates, fentanyl can move deeper and bind mOR through hydrogen bonding with a conserved histidine His2976.52, which has been shown to modulate mOR's ligand affinity and pH dependence in mutagenesis experiments, but its precise role remains unclear. Intriguingly, the secondary binding mode is only accessible when His297 adopts a neutral HID tautomer. Alternative binding modes and involvement of tautomer states may represent general mechanisms in G protein-coupled receptor (GPCR)-ligand recognition. Our work provides a starting point for understanding the molecular basis of mOR activation by fentanyl which has many analogs emerging at a rapid pace. The knowledge may also inform the design of safer analgesics to combat the opioid crisis. Current protein simulation studies employ standard protonation and tautomer states; our work demonstrates the need to move beyond the practice to advance our understanding of protein-ligand recognition.
Collapse
Affiliation(s)
- Quynh N Vo
- Center for Drug Evaluation and Research, United State Food and Drug Administration, Silver Spring, Maryland 20993
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201
| | - Paween Mahinthichaichan
- Center for Drug Evaluation and Research, United State Food and Drug Administration, Silver Spring, Maryland 20993
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201
| | - Jana Shen
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201
| | - Christopher R Ellis
- Center for Drug Evaluation and Research, United State Food and Drug Administration, Silver Spring, Maryland 20993
| |
Collapse
|
36
|
Alternative proton-binding site and long-distance coupling in Escherichia coli sodium-proton antiporter NhaA. Proc Natl Acad Sci U S A 2020; 117:25517-25522. [PMID: 32973095 DOI: 10.1073/pnas.2005467117] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Escherichia coli NhaA is a prototypical sodium-proton antiporter responsible for maintaining cellular ion and volume homeostasis by exchanging two protons for one sodium ion; despite two decades of research, the transport mechanism of NhaA remains poorly understood. Recent crystal structure and computational studies suggested Lys300 as a second proton-binding site; however, functional measurements of several K300 mutants demonstrated electrogenic transport, thereby casting doubt on the role of Lys300. To address the controversy, we carried out state-of-the-art continuous constant pH molecular dynamics simulations of NhaA mutants K300A, K300R, K300Q/D163N, and K300Q/D163N/D133A. Simulations suggested that K300 mutants maintain the electrogenic transport by utilizing an alternative proton-binding residue Asp133. Surprisingly, while Asp133 is solely responsible for binding the second proton in K300R, Asp133 and Asp163 jointly bind the second proton in K300A, and Asp133 and Asp164 jointly bind two protons in K300Q/D163N. Intriguingly, the coupling between Asp133 and Asp163 or Asp164 is enabled through the proton-coupled hydrogen-bonding network at the flexible intersection of two disrupted helices. These data resolve the controversy and highlight the intricacy of the compensatory transport mechanism of NhaA mutants. Alternative proton-binding site and proton sharing between distant aspartates may represent important general mechanisms of proton-coupled transport in secondary active transporters.
Collapse
|
37
|
Fabre L, Ntreh AT, Yazidi A, Leus IV, Weeks JW, Bhattacharyya S, Ruickoldt J, Rouiller I, Zgurskaya HI, Sygusch J. A "Drug Sweeping" State of the TriABC Triclosan Efflux Pump from Pseudomonas aeruginosa. Structure 2020; 29:261-274.e6. [PMID: 32966762 DOI: 10.1016/j.str.2020.09.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 07/30/2020] [Accepted: 08/29/2020] [Indexed: 12/01/2022]
Abstract
The structure of the TriABC inner membrane component of the triclosan/SDS-specific efflux pump from Pseudomonas aeruginosa was determined by cryoelectron microscopy to 4.5 Å resolution. The complete structure of the inner membrane transporter TriC of the resistance-nodulation-division (RND) superfamily was solved, including a partial structure of the fused periplasmic membrane fusion subunits, TriA and TriB. The substrate-free conformation of TriABC represents an intermediate step in efflux complex assembly before the engagement of the outer membrane channel. Structural analysis identified a tunnel network whose constriction impedes substrate efflux, indicating inhibition of TriABC in the unengaged state. Blind docking studies revealed binding to TriC at the same loci by substrates and bulkier non-substrates. Together with functional analyses, we propose that selective substrate translocation involves conformational gating at the tunnel narrowing that, together with conformational ordering of TriA and TriB, creates an engaged state capable of mediating substrate efflux.
Collapse
Affiliation(s)
- Lucien Fabre
- McGill University, Department of Anatomy and Cell Biology, Montreal, QC H3A 0G4, Canada
| | - Abigail T Ntreh
- University of Oklahoma, Department of Chemistry and Biochemistry, 101 Stephenson Parkway, Norman, OK 73019, USA
| | - Amira Yazidi
- University of Montreal, Department of Biochemistry and Molecular Medicine, Medicine, CP 6128, Station Centre-ville, Montreal, QC H3C 3J7, Canada
| | - Inga V Leus
- University of Oklahoma, Department of Chemistry and Biochemistry, 101 Stephenson Parkway, Norman, OK 73019, USA
| | - Jon W Weeks
- University of Oklahoma, Department of Chemistry and Biochemistry, 101 Stephenson Parkway, Norman, OK 73019, USA
| | - Sudipta Bhattacharyya
- Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, 3010, Australia; Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, India
| | - Jakob Ruickoldt
- Institut für Biologie, Strukturbiologie/Biochemie, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany
| | - Isabelle Rouiller
- McGill University, Department of Anatomy and Cell Biology, Montreal, QC H3A 0G4, Canada; Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, 3010, Australia.
| | - Helen I Zgurskaya
- University of Oklahoma, Department of Chemistry and Biochemistry, 101 Stephenson Parkway, Norman, OK 73019, USA.
| | - Jurgen Sygusch
- University of Montreal, Department of Biochemistry and Molecular Medicine, Medicine, CP 6128, Station Centre-ville, Montreal, QC H3C 3J7, Canada.
| |
Collapse
|
38
|
Jiang T, Wen PC, Trebesch N, Zhao Z, Pant S, Kapoor K, Shekhar M, Tajkhorshid E. Computational Dissection of Membrane Transport at a Microscopic Level. Trends Biochem Sci 2020; 45:202-216. [PMID: 31813734 PMCID: PMC7024014 DOI: 10.1016/j.tibs.2019.09.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/16/2019] [Accepted: 09/03/2019] [Indexed: 01/28/2023]
Abstract
Membrane transporters are key gatekeeper proteins at cellular membranes that closely control the traffic of materials. Their function relies on structural rearrangements of varying degrees that facilitate substrate translocation across the membrane. Characterizing these functionally important molecular events at a microscopic level is key to our understanding of membrane transport, yet challenging to achieve experimentally. Recent advances in simulation technology and computing power have rendered molecular dynamics (MD) simulation a powerful biophysical tool to investigate a wide range of dynamical events spanning multiple spatial and temporal scales. Here, we review recent studies of diverse membrane transporters using computational methods, with an emphasis on highlighting the technical challenges, key lessons learned, and new opportunities to illuminate transporter structure and function.
Collapse
Affiliation(s)
- Tao Jiang
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Po-Chao Wen
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Noah Trebesch
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Zhiyu Zhao
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Shashank Pant
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Karan Kapoor
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Mrinal Shekhar
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Emad Tajkhorshid
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
39
|
de Oliveira IP, Martínez L. The shift in urea orientation at protein surfaces at low pH is compatible with a direct mechanism of protein denaturation. Phys Chem Chem Phys 2020; 22:354-367. [DOI: 10.1039/c9cp05196a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The protonation of acidic side-chains promotes a orientational shift of urea molecules, but only locally, with the interactions with other protein moieties being preserved.
Collapse
Affiliation(s)
- Ivan Pires de Oliveira
- Institute of Chemistry and Center for Computing in Engineering & Science
- University of Campinas
- Campinas
- Brazil
- Department of Pharmacology
| | - Leandro Martínez
- Institute of Chemistry and Center for Computing in Engineering & Science
- University of Campinas
- Campinas
- Brazil
| |
Collapse
|
40
|
Harris RC, Shen J. GPU-Accelerated Implementation of Continuous Constant pH Molecular Dynamics in Amber: p Ka Predictions with Single-pH Simulations. J Chem Inf Model 2019; 59:4821-4832. [PMID: 31661616 DOI: 10.1021/acs.jcim.9b00754] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We present a GPU implementation of the continuous constant pH molecular dynamics (CpHMD) based on the most recent generalized Born implicit-solvent model in the pmemd engine of the Amber molecular dynamics package. To test the accuracy of the tool for rapid pKa predictions, a series of 2 ns single-pH simulations were performed for over 120 titratable residues in 10 benchmark proteins that were previously used to test the various continuous CpHMD methods. The calculated pKa's showed a root-mean-square deviation of 0.80 and correlation coefficient of 0.83 with respect to experiment. Also, 90% of the pKa's were converged with estimated errors below 0.1 pH units. Surprisingly, this level of accuracy is similar to our previous replica-exchange simulations with 2 ns per replica and an exchange attempt frequency of 2 ps-1 (Huang, Harris, and Shen J. Chem. Inf. Model. 2018 , 58 , 1372 - 1383 ). Interestingly, for the linked titration sites in two enzymes, although residue-specific protonation state sampling in the single-pH simulations was not converged within 2 ns, the protonation fraction of the linked residues appeared to be largely converged, and the experimental macroscopic pKa values were reproduced to within 1 pH unit. Comparison with replica-exchange simulations with different exchange attempt frequencies showed that the splitting between the two macroscopic pKa's is underestimated with frequent exchange attempts such as 2 ps-1, while single-pH simulations overestimate the splitting. The same trend is seen for the single-pH vs replica-exchange simulations of a hydrogen-bonded aspartyl dyad in a much larger protein. A 2 ns single-pH simulation of a 400-residue protein takes about 1 h on a single NVIDIA GeForce RTX 2080 graphics card, which is over 1000 times faster than a CpHMD run on a single CPU core of a high-performance computing cluster node. Thus, we envision that GPU-accelerated continuous CpHMD may be used in routine pKa predictions for a variety of applications, from assisting MD simulations with protonation state assignment to offering pH-dependent corrections of binding free energies and identifying reactive hot spots for covalent drug design.
Collapse
Affiliation(s)
- Robert C Harris
- Department of Pharmaceutical Sciences , University of Maryland School of Pharmacy , Baltimore , Maryland 21201 , United States
| | - Jana Shen
- Department of Pharmaceutical Sciences , University of Maryland School of Pharmacy , Baltimore , Maryland 21201 , United States
| |
Collapse
|
41
|
Damjanovic A, Chen AY, Rosenberg RL, Roe DR, Wu X, Brooks BR. Protonation state of the selectivity filter of bacterial voltage‐gated sodium channels is modulated by ions. Proteins 2019; 88:527-539. [DOI: 10.1002/prot.25831] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 09/03/2019] [Accepted: 09/17/2019] [Indexed: 01/28/2023]
Affiliation(s)
- Ana Damjanovic
- Department of BiophysicsJohns Hopkins University Baltimore Maryland
| | - Ada Y. Chen
- Department of PhysicsJohns Hopkins University Baltimore Maryland
| | | | - Daniel R. Roe
- Laboratory of Computational Biology, National Heart, Lung and Blood InstituteNational Institutes of Health Bethesda Maryland
| | - Xiongwu Wu
- Laboratory of Computational Biology, National Heart, Lung and Blood InstituteNational Institutes of Health Bethesda Maryland
| | - Bernard R. Brooks
- Laboratory of Computational Biology, National Heart, Lung and Blood InstituteNational Institutes of Health Bethesda Maryland
| |
Collapse
|
42
|
Kobylka J, Kuth MS, Müller RT, Geertsma ER, Pos KM. AcrB: a mean, keen, drug efflux machine. Ann N Y Acad Sci 2019; 1459:38-68. [PMID: 31588569 DOI: 10.1111/nyas.14239] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/21/2019] [Accepted: 09/02/2019] [Indexed: 12/23/2022]
Abstract
Gram-negative bacteria are intrinsically resistant against cytotoxic substances by means of their outer membrane and a network of multidrug efflux systems, acting in synergy. Efflux pumps from various superfamilies with broad substrate preferences sequester and pump drugs across the inner membrane to supply the highly polyspecific and powerful tripartite resistance-nodulation-cell division (RND) efflux pumps with compounds to be extruded across the outer membrane barrier. In Escherichia coli, the tripartite efflux system AcrAB-TolC is the archetype RND multiple drug efflux pump complex. The homotrimeric inner membrane component acriflavine resistance B (AcrB) is the drug specificity and energy transduction center for the drug/proton antiport process. Drugs are bound and expelled via a cycle of mainly three consecutive states in every protomer, constituting a flexible alternating access channel system. This review recapitulates the molecular basis of drug and inhibitor binding, including mechanistic insights into drug efflux by AcrB. It also summarizes 17 years of mutational analysis of the gene acrB, reporting the effect of every substitution on the ability of E. coli to confer resistance toward antibiotics (http://goethe.link/AcrBsubstitutions). We emphasize the functional robustness of AcrB toward single-site substitutions and highlight regions that are more sensitive to perturbation.
Collapse
Affiliation(s)
- Jessica Kobylka
- Institute of Biochemistry, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Miriam S Kuth
- Institute of Biochemistry, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Reinke T Müller
- Institute of Biochemistry, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Eric R Geertsma
- Institute of Biochemistry, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Klaas M Pos
- Institute of Biochemistry, Goethe-University Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
43
|
Wu Z, Alibay I, Newstead S, Biggin PC. Proton Control of Transitions in an Amino Acid Transporter. Biophys J 2019; 117:1342-1351. [PMID: 31500802 PMCID: PMC6818167 DOI: 10.1016/j.bpj.2019.07.056] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 07/03/2019] [Accepted: 07/30/2019] [Indexed: 12/19/2022] Open
Abstract
Amino acid transport into the cell is often coupled to the proton electrochemical gradient, as found in the solute carrier 36 family of proton-coupled amino acid transporters. Although no structure of a human proton-coupled amino acid transporter exists, the crystal structure of a related homolog from bacteria, GkApcT, has recently been solved in an inward-occluded state and allows an opportunity to examine how protons are coupled to amino acid transport. Our working hypothesis is that release of the amino acid substrate is facilitated by the deprotonation of a key glutamate residue (E115) located at the bottom of the binding pocket, which forms part of the intracellular gate, allowing the protein to transition from an inward-occluded to an inward-open conformation. During unbiased molecular dynamics simulations, we observed a transition from the inward-occluded state captured in the crystal structure to a much more open state, which we consider likely to be representative of the inward-open state associated with substrate release. To explore this and the role of protons in these transitions, we have used umbrella sampling to demonstrate that the transition from inward occluded to inward open is more energetically favorable when E115 is deprotonated. That E115 is likely to be protonated in the inward-occluded state and deprotonated in the inward-open state is further confirmed via the use of absolute binding free energies. Finally, we also show, via the use of absolute binding free energy calculations, that the affinity of the protein for alanine is very similar regardless of either the conformational state or the protonation of E115, presumably reflecting the fact that all the key interactions are deep within the binding cavity. Together, our results give a detailed picture of the role of protons in driving one of the major transitions in this transporter.
Collapse
Affiliation(s)
- Zhiyi Wu
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Irfan Alibay
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Simon Newstead
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Philip C Biggin
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
44
|
Tsai CC, Yue Z, Shen J. How Electrostatic Coupling Enables Conformational Plasticity in a Tyrosine Kinase. J Am Chem Soc 2019; 141:15092-15101. [PMID: 31476863 DOI: 10.1021/jacs.9b06064] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Protein kinases are important cellular signaling molecules involved in cancer and a multitude of other diseases. It is well-known that inactive kinases display a remarkable conformational plasticity; however, the molecular mechanisms remain poorly understood. Conformational heterogeneity presents an opportunity but also a challenge in kinase drug discovery. The ability to predictively model various conformational states could accelerate selective inhibitor design. Here we performed a proton-coupled molecular dynamics study to explore the conformational landscape of a c-Src kinase. Starting from a completely inactive structure, the simulations captured all major types of conformational states without the use of a target structure, mutation, or bias. The simulations allowed us to test the experimental hypotheses regarding the mechanism of DFG flip, its coupling to the αC-helix movement, and the formation of regulatory spine. Perhaps the most significant finding is how key titratable residues, such as DFG-Asp, αC-Glu, and HRD-Asp, change protonation states dependent on the DFG, αC, and activation loop conformations. Our data offer direct evidence to support a long-standing hypothesis that protonation of Asp favors the DFG-out state and explain why DFG flip is also possible in simulations with deprotonated Asp. The simulations also revealed intermediate states, among which a unique DFG-out/α-C state formed as DFG-Asp is moved into a back pocket forming a salt bridge with catalytic Lys, which can be tested in selective inhibitor design. Our finding of how proton coupling enables the remarkable conformational plasticity may shift the paradigm of computational studies of kinases which assume fixed protonation states. Understanding proton-coupled conformational dynamics may hold a key to further innovation in kinase drug discovery.
Collapse
Affiliation(s)
- Cheng-Chieh Tsai
- Department of Pharmaceutical Sciences , University of Maryland School of Pharmacy , Baltimore , Maryland 21201 , United States
| | - Zhi Yue
- Department of Pharmaceutical Sciences , University of Maryland School of Pharmacy , Baltimore , Maryland 21201 , United States
| | - Jana Shen
- Department of Pharmaceutical Sciences , University of Maryland School of Pharmacy , Baltimore , Maryland 21201 , United States
| |
Collapse
|
45
|
Yue Z, Li C, Voth GA, Swanson JMJ. Dynamic Protonation Dramatically Affects the Membrane Permeability of Drug-like Molecules. J Am Chem Soc 2019; 141:13421-13433. [PMID: 31382734 DOI: 10.1021/jacs.9b04387] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Permeability (Pm) across biological membranes is of fundamental importance and a key factor in drug absorption, distribution, and development. Although the majority of drugs will be charged at some point during oral delivery, our understanding of membrane permeation by charged species is limited. The canonical model assumes that only neutral molecules partition into and passively permeate across membranes, but there is mounting evidence that these processes are also facile for certain charged species. However, it is unknown whether such ionizable permeants dynamically neutralize at the membrane surface or permeate in their charged form. To probe protonation-coupled permeation in atomic detail, we herein apply continuous constant-pH molecular dynamics along with free energy sampling to study the permeation of a weak base propranolol (PPL), and evaluate the impact of including dynamic protonation on Pm. The simulations reveal that PPL dynamically neutralizes at the lipid-tail interface, which dramatically influences the permeation free energy landscape and explains why the conventional model overestimates the assigned intrinsic permeability. We demonstrate how fixed-charge-state simulations can account for this effect, and propose a revised model that better describes pH-coupled partitioning and permeation. Our results demonstrate how dynamic changes in protonation state may play a critical role in the permeation of ionizable molecules, including pharmaceuticals and drug-like molecules, thus requiring a revision of the standard picture.
Collapse
Affiliation(s)
- Zhi Yue
- Department of Chemistry, James Frank Institute, and Institute for Biophysical Dynamics , The University of Chicago , Chicago , Illinois 60637 , United States
| | - Chenghan Li
- Department of Chemistry, James Frank Institute, and Institute for Biophysical Dynamics , The University of Chicago , Chicago , Illinois 60637 , United States
| | - Gregory A Voth
- Department of Chemistry, James Frank Institute, and Institute for Biophysical Dynamics , The University of Chicago , Chicago , Illinois 60637 , United States
| | - Jessica M J Swanson
- Department of Chemistry, James Frank Institute, and Institute for Biophysical Dynamics , The University of Chicago , Chicago , Illinois 60637 , United States
| |
Collapse
|
46
|
Tamura K, Sugimoto H, Shiro Y, Sugita Y. Chemo-Mechanical Coupling in the Transport Cycle of a Heme ABC Transporter. J Phys Chem B 2019; 123:7270-7281. [PMID: 31362510 DOI: 10.1021/acs.jpcb.9b04356] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The heme importer from pathogenic bacteria is a member of the ATP-binding cassette (ABC) transporter family, which uses the energy of ATP-binding and hydrolysis for extensive conformational changes. Previous studies have indicated that conformational changes after heme translocation are triggered by ATP-binding to nucleotide binding domains (NBDs) and then, in turn, induce conformational transitions of the transmembrane domains (TMDs). In this study, we applied a template-based iterative all-atom molecular dynamics (MD) simulation to predict the ATP-bound outward-facing conformation of the Burkholderia cenocepacia heme importer BhuUV-T. The resulting model showed a stable conformation of the TMD with the cytoplasmic gate in the closed state and the periplasmic gate in the open state. Furthermore, targeted MD simulation predicted the intermediate structure of an occluded form (Occ) with bound ATP, in which both ends of the heme translocation channel are closed. The MD simulation of the predicted Occ revealed that Ser147 on the ABC signature motifs (LSGG[Q/E]) of NBDs occasionally flips and loses the active conformation required for ATP-hydrolysis. The flipping motion was found to be coupled to the inter-NBD distance. Our results highlight the functional significance of the signature motif of ABC transporters in regulation of ATPase and chemo-mechanical coupling mechanism.
Collapse
Affiliation(s)
- Koichi Tamura
- Computational Biophysics Research Team , RIKEN Center for Computational Science , 6-7-1 minatojima-Minamimachi, Chuo-ku , Kobe , Hyogo 650-0047 , Japan
| | - Hiroshi Sugimoto
- Graduate School of Life Science , University of Hyogo , 3-2-1 Kouto, Kamigori , Ako , Hyogo 678-1297 , Japan.,Synchrotron Radiation Life Science Instrumentation Team , RIKEN SPring-8 Center , 1-1-1 Kouto , Sayo , Hyogo 679-5148 , Japan
| | - Yoshitsugu Shiro
- Graduate School of Life Science , University of Hyogo , 3-2-1 Kouto, Kamigori , Ako , Hyogo 678-1297 , Japan
| | - Yuji Sugita
- Computational Biophysics Research Team , RIKEN Center for Computational Science , 6-7-1 minatojima-Minamimachi, Chuo-ku , Kobe , Hyogo 650-0047 , Japan.,Theoretical Molecular Science Laboratory , RIKEN Cluster for Pioneering Research , 2-1 Hirosawa , Wako , Saitama 351-0198 , Japan.,Laboratory for Biomolecular Function Simulation , RIKEN Center for Biosystems Dynamics Research , 6-7-1 minatojima-Minamimachi, Chuo-ku , Kobe , Hyogo 650-0047 , Japan
| |
Collapse
|
47
|
Elghobashi-Meinhardt N. Computational Tools Unravel Putative Sterol Binding Sites in the Lysosomal NPC1 Protein. J Chem Inf Model 2019; 59:2432-2441. [PMID: 30942586 DOI: 10.1021/acs.jcim.9b00186] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Two proteins have been linked as the critical components in the molecular mechanisms involved in the Niemann Pick type C (NPC) disease: NPC1, a 140 kDa polytopic membrane-bound protein, and the smaller (132 residues), water-soluble NPC2 protein. NPC1 is believed to act in tandem with NPC2, transferring cholesterol and other sterols out of the LE/Lys compartments. Mutations in either NPC1 or NPC2 can lead to an accumulation of cholesterol and lipids in the LE/Lys, the primary phenotype of the NPC disease, but approximately 95% of identified disease-causing mutations have been mapped to the membrane-bound NPC1 protein. Here, we investigate the full length, membrane-bound NPC1 protein computationally using a combination of molecular modeling, docking, and molecular dynamics (MD) simulations. An analysis of titratable amino acid side chains, several buried in protein pockets, reveals several nonstandard protonation states for the low-pH scenario (pH 5) that is realized in the lysosome. Together with the location of these buried amino acids, docking studies have identified putative lipid binding domains that are in close proximity to amino acids that, when mutated, are connected to NPC1 loss-of-function. Using energy analyses and MD simulations, we analyze these domains as potential cholesterol binding sites and propose the possibility of multiple sterol binding pockets enabling the intramolecular transport of sterol molecules to the transmembrane domain.
Collapse
|
48
|
Damjanovic A, Miller BT, Okur A, Brooks BR. Reservoir pH replica exchange. J Chem Phys 2018; 149:072321. [PMID: 30134701 PMCID: PMC6005788 DOI: 10.1063/1.5027413] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 05/30/2018] [Indexed: 11/15/2022] Open
Abstract
We present the reservoir pH replica exchange (R-pH-REM) method for constant pH simulations. The R-pH-REM method consists of a two-step procedure; the first step involves generation of one or more reservoirs of conformations. Each reservoir is obtained from a standard or enhanced molecular dynamics simulation with a constrained (fixed) protonation state. In the second step, fixed charge constraints are relaxed, as the structures from one or more reservoirs are periodically injected into a constant pH or a pH-replica exchange (pH-REM) simulation. The benefit of this two-step process is that the computationally intensive part of conformational search can be decoupled from constant pH simulations, and various techniques for enhanced conformational sampling can be applied without the need to integrate such techniques into the pH-REM framework. Simulations on blocked Lys, KK, and KAAE peptides were used to demonstrate an agreement between pH-REM and R-pH-REM simulations. While the reservoir simulations are not needed for these small test systems, the real need arises in cases when ionizable molecules can sample two or more conformations separated by a large energy barrier, such that adequate sampling is not achieved on a time scale of standard constant pH simulations. Such problems might be encountered in protein systems that exploit conformational transitions for function. A hypothetical case is studied, a small molecule with a large torsional barrier; while results of pH-REM simulations depend on the starting structure, R-pH-REM calculations on this model system are in excellent agreement with a theoretical model.
Collapse
Affiliation(s)
- Ana Damjanovic
- Author to whom correspondence should be addressed: . Tel.: (410) 516-5390. FAX: (410) 516-4118
| | - Benjamin T. Miller
- Laboratory of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892-5690, USA
| | - Asim Okur
- Laboratory of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892-5690, USA
| | - Bernard R. Brooks
- Laboratory of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892-5690, USA
| |
Collapse
|
49
|
Vermaas JV, Rempe SB, Tajkhorshid E. Electrostatic lock in the transport cycle of the multidrug resistance transporter EmrE. Proc Natl Acad Sci U S A 2018; 115:E7502-E7511. [PMID: 30026196 PMCID: PMC6094130 DOI: 10.1073/pnas.1722399115] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
EmrE is a small, homodimeric membrane transporter that exploits the established electrochemical proton gradient across the Escherichia coli inner membrane to export toxic polyaromatic cations, prototypical of the wider small-multidrug resistance transporter family. While prior studies have established many fundamental aspects of the specificity and rate of substrate transport in EmrE, low resolution of available structures has hampered identification of the transport coupling mechanism. Here we present a complete, refined atomic structure of EmrE optimized against available cryo-electron microscopy (cryo-EM) data to delineate the critical interactions by which EmrE regulates its conformation during the transport process. With the model, we conduct molecular dynamics simulations of the transporter in explicit membranes to probe EmrE dynamics under different substrate loading and conformational states, representing different intermediates in the transport cycle. The refined model is stable under extended simulation. The water dynamics in simulation indicate that the hydrogen-bonding networks around a pair of solvent-exposed glutamate residues (E14) depend on the loading state of EmrE. One specific hydrogen bond from a tyrosine (Y60) on one monomer to a glutamate (E14) on the opposite monomer is especially critical, as it locks the protein conformation when the glutamate is deprotonated. The hydrogen bond provided by Y60 lowers the [Formula: see text] of one glutamate relative to the other, suggesting both glutamates should be protonated for the hydrogen bond to break and a substrate-free transition to take place. These findings establish the molecular mechanism for the coupling between proton transfer reactions and protein conformation in this proton-coupled secondary transporter.
Collapse
Affiliation(s)
- Josh V Vermaas
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Biological and Engineering Sciences Center, Sandia National Laboratories, Albuquerque, NM 87185
| | - Susan B Rempe
- Biological and Engineering Sciences Center, Sandia National Laboratories, Albuquerque, NM 87185
| | - Emad Tajkhorshid
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801;
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| |
Collapse
|
50
|
Zooming in on a small multidrug transporter reveals details of asymmetric protonation. Proc Natl Acad Sci U S A 2018; 115:8060-8062. [PMID: 30061423 DOI: 10.1073/pnas.1810814115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|