• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (5082019)   Today's Articles (1)
For: Eckhoff M, Behler J. From Molecular Fragments to the Bulk: Development of a Neural Network Potential for MOF-5. J Chem Theory Comput 2019;15:3793-3809. [PMID: 31091097 DOI: 10.1021/acs.jctc.8b01288] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Number Cited by Other Article(s)
1
Mészáros BB, Szabó A, Daru J. Short-Range Δ-Machine Learning: A Cost-Efficient Strategy to Transfer Chemical Accuracy to Condensed Phase Systems. J Chem Theory Comput 2025;21:5372-5381. [PMID: 40434991 DOI: 10.1021/acs.jctc.5c00367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2025]
2
Tokita AM, Devergne T, Saitta AM, Behler J. Free energy profiles for chemical reactions in solution from high-dimensional neural network potentials: The case of the Strecker synthesis. J Chem Phys 2025;162:174120. [PMID: 40326597 DOI: 10.1063/5.0268948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Accepted: 04/14/2025] [Indexed: 05/07/2025]  Open
3
Tayfuroglu O, Kocak A, Zorlu Y. Modeling Gas Adsorption and Mechanistic Insights into Flexibility in Isoreticular Metal-Organic Frameworks Using High-Dimensional Neural Network Potentials. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025;41:7323-7335. [PMID: 40084941 PMCID: PMC11948474 DOI: 10.1021/acs.langmuir.4c04578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 03/03/2025] [Accepted: 03/04/2025] [Indexed: 03/16/2025]
4
Shi J, Ren Q, Gao Y. Accelerating Global Optimization of Cerium Oxide Nanocluster Structures with High-Dimensional Neural Network Potential. J Phys Chem A 2025. [PMID: 39998976 DOI: 10.1021/acs.jpca.4c07840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
5
Zhao C, Liu H, Qu DH, Cooper AI, Chen L. A machine learned potential for investigating single crystal to single crystal transformations in complex organic molecular systems. Chem Sci 2025;16:2363-2372. [PMID: 39781216 PMCID: PMC11705379 DOI: 10.1039/d4sc06467d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 12/26/2024] [Indexed: 01/12/2025]  Open
6
Chen J, Gao Q, Huang M, Yu K. Application of modern artificial intelligence techniques in the development of organic molecular force fields. Phys Chem Chem Phys 2025;27:2294-2319. [PMID: 39820957 DOI: 10.1039/d4cp02989e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
7
Chong S, Bigi F, Grasselli F, Loche P, Kellner M, Ceriotti M. Prediction rigidities for data-driven chemistry. Faraday Discuss 2025;256:322-344. [PMID: 39319702 PMCID: PMC11423580 DOI: 10.1039/d4fd00101j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/22/2024] [Indexed: 09/26/2024]
8
Schienbein P, Blumberger J. Data-Efficient Active Learning for Thermodynamic Integration: Acidity Constants of BiVO4 in Water. Chemphyschem 2025;26:e202400490. [PMID: 39365878 DOI: 10.1002/cphc.202400490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 10/02/2024] [Accepted: 10/02/2024] [Indexed: 10/06/2024]
9
Liu D, Wu J, Lu D. Transferable performance of machine learning potentials across graphene-water systems of different sizes: Insights from numerical metrics and physical characteristics. J Chem Phys 2024;161:194710. [PMID: 39560090 DOI: 10.1063/5.0233395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 11/05/2024] [Indexed: 11/20/2024]  Open
10
Park J, Kim H, Kang Y, Lim Y, Kim J. From Data to Discovery: Recent Trends of Machine Learning in Metal-Organic Frameworks. JACS AU 2024;4:3727-3743. [PMID: 39483241 PMCID: PMC11522899 DOI: 10.1021/jacsau.4c00618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 11/03/2024]
11
Sharma A, Sanvito S. Quantum-accurate machine learning potentials for metal-organic frameworks using temperature driven active learning. NPJ COMPUTATIONAL MATERIALS 2024;10:237. [PMID: 39391672 PMCID: PMC11461275 DOI: 10.1038/s41524-024-01427-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/26/2024] [Indexed: 10/12/2024]
12
Xin R, Wang C, Zhang Y, Peng R, Li R, Wang J, Mao Y, Zhu X, Zhu W, Kim M, Nam HN, Yamauchi Y. Efficient Removal of Greenhouse Gases: Machine Learning-Assisted Exploration of Metal-Organic Framework Space. ACS NANO 2024. [PMID: 38951518 DOI: 10.1021/acsnano.4c04174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
13
Aldossary A, Campos-Gonzalez-Angulo JA, Pablo-García S, Leong SX, Rajaonson EM, Thiede L, Tom G, Wang A, Avagliano D, Aspuru-Guzik A. In Silico Chemical Experiments in the Age of AI: From Quantum Chemistry to Machine Learning and Back. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024;36:e2402369. [PMID: 38794859 DOI: 10.1002/adma.202402369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/28/2024] [Indexed: 05/26/2024]
14
Morrow JD, Ugwumadu C, Drabold DA, Elliott SR, Goodwin AL, Deringer VL. Understanding Defects in Amorphous Silicon with Million-Atom Simulations and Machine Learning. Angew Chem Int Ed Engl 2024;63:e202403842. [PMID: 38517212 PMCID: PMC11497335 DOI: 10.1002/anie.202403842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/14/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
15
Wan K, He J, Shi X. Construction of High Accuracy Machine Learning Interatomic Potential for Surface/Interface of Nanomaterials-A Review. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024;36:e2305758. [PMID: 37640376 DOI: 10.1002/adma.202305758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/24/2023] [Indexed: 08/31/2023]
16
Du T, Li S, Ganisetti S, Bauchy M, Yue Y, Smedskjaer MM. Deciphering the controlling factors for phase transitions in zeolitic imidazolate frameworks. Natl Sci Rev 2024;11:nwae023. [PMID: 38560493 PMCID: PMC10980346 DOI: 10.1093/nsr/nwae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 04/04/2024]  Open
17
Fan D, Ozcan A, Lyu P, Maurin G. Unravelling abnormal in-plane stretchability of two-dimensional metal-organic frameworks by machine learning potential molecular dynamics. NANOSCALE 2024;16:3438-3447. [PMID: 38265127 DOI: 10.1039/d3nr05966a] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
18
Chong S, Grasselli F, Ben Mahmoud C, Morrow JD, Deringer VL, Ceriotti M. Robustness of Local Predictions in Atomistic Machine Learning Models. J Chem Theory Comput 2023;19:8020-8031. [PMID: 37948446 PMCID: PMC10688186 DOI: 10.1021/acs.jctc.3c00704] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/12/2023] [Accepted: 10/12/2023] [Indexed: 11/12/2023]
19
Abedi M, Behler J, Goldsmith CF. High-Dimensional Neural Network Potentials for Accurate Prediction of Equation of State: A Case Study of Methane. J Chem Theory Comput 2023;19:7825-7832. [PMID: 37902963 DOI: 10.1021/acs.jctc.3c00469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
20
Tang H, Duan L, Jiang J. Leveraging Machine Learning for Metal-Organic Frameworks: A Perspective. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023;39:15849-15863. [PMID: 37922472 DOI: 10.1021/acs.langmuir.3c01964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2023]
21
Tokita AM, Behler J. How to train a neural network potential. J Chem Phys 2023;159:121501. [PMID: 38127396 DOI: 10.1063/5.0160326] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/24/2023] [Indexed: 12/23/2023]  Open
22
Goeminne R, Vanduyfhuys L, Van Speybroeck V, Verstraelen T. DFT-Quality Adsorption Simulations in Metal-Organic Frameworks Enabled by Machine Learning Potentials. J Chem Theory Comput 2023;19:6313-6325. [PMID: 37642314 DOI: 10.1021/acs.jctc.3c00495] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
23
Liu D, Wu J, Lu D. Transferability evaluation of the deep potential model for simulating water-graphene confined system. J Chem Phys 2023;159:044712. [PMID: 37522409 DOI: 10.1063/5.0153196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/11/2023] [Indexed: 08/01/2023]  Open
24
Ying P, Liang T, Xu K, Zhang J, Xu J, Zhong Z, Fan Z. Sub-Micrometer Phonon Mean Free Paths in Metal-Organic Frameworks Revealed by Machine Learning Molecular Dynamics Simulations. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37481760 DOI: 10.1021/acsami.3c07770] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
25
Van Speybroeck V. Challenges in modelling dynamic processes in realistic nanostructured materials at operating conditions. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2023;381:20220239. [PMID: 37211031 PMCID: PMC10200353 DOI: 10.1098/rsta.2022.0239] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/23/2023] [Indexed: 05/23/2023]
26
Eckhoff M, Reiher M. Lifelong Machine Learning Potentials. J Chem Theory Comput 2023;19:3509-3525. [PMID: 37288932 PMCID: PMC10308836 DOI: 10.1021/acs.jctc.3c00279] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Indexed: 06/09/2023]
27
Phan HT, Tsou PK, Hsu PJ, Kuo JL. A first-principles exploration of the conformational space of sodiated pyranose assisted by neural network potentials. Phys Chem Chem Phys 2023;25:5817-5826. [PMID: 36745400 DOI: 10.1039/d2cp04411k] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
28
Mai H, Le TC, Chen D, Winkler DA, Caruso RA. Machine Learning in the Development of Adsorbents for Clean Energy Application and Greenhouse Gas Capture. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022;9:e2203899. [PMID: 36285802 PMCID: PMC9798988 DOI: 10.1002/advs.202203899] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/27/2022] [Indexed: 06/04/2023]
29
El-Machachi Z, Wilson M, Deringer VL. Exploring the configurational space of amorphous graphene with machine-learned atomic energies. Chem Sci 2022;13:13720-13731. [PMID: 36544732 PMCID: PMC9710228 DOI: 10.1039/d2sc04326b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/14/2022] [Indexed: 12/24/2022]  Open
30
Khoshbin Z, Davoodian N, Taghdisi SM, Abnous K. Metal organic frameworks as advanced functional materials for aptasensor design. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022;276:121251. [PMID: 35429856 DOI: 10.1016/j.saa.2022.121251] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 03/18/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
31
Achar SK, Wardzala JJ, Bernasconi L, Zhang L, Johnson JK. Combined Deep Learning and Classical Potential Approach for Modeling Diffusion in UiO-66. J Chem Theory Comput 2022;18:3593-3606. [PMID: 35653218 DOI: 10.1021/acs.jctc.2c00010] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
32
Tayfuroglu O, Kocak A, Zorlu Y. A neural network potential for the IRMOF series and its application for thermal and mechanical behaviors. Phys Chem Chem Phys 2022;24:11882-11897. [PMID: 35510633 DOI: 10.1039/d1cp05973d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
33
Mirzoev AA, Gelchinski BR, Rempel AA. Neural Network Prediction of Interatomic Interaction in Multielement Substances and High-Entropy Alloys: A Review. DOKLADY PHYSICAL CHEMISTRY 2022. [DOI: 10.1134/s0012501622700026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
34
Herbold M, Behler J. A Hessian-based assessment of atomic forces for training machine learning interatomic potentials. J Chem Phys 2022;156:114106. [DOI: 10.1063/5.0082952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
35
Heiranian M, DuChanois RM, Ritt CL, Violet C, Elimelech M. Molecular Simulations to Elucidate Transport Phenomena in Polymeric Membranes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022;56:3313-3323. [PMID: 35235312 DOI: 10.1021/acs.est.2c00440] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
36
Eckhoff M, Behler J. Insights into lithium manganese oxide-water interfaces using machine learning potentials. J Chem Phys 2021;155:244703. [PMID: 34972388 DOI: 10.1063/5.0073449] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
37
Vandenhaute S, Rogge SMJ, Van Speybroeck V. Large-Scale Molecular Dynamics Simulations Reveal New Insights Into the Phase Transition Mechanisms in MIL-53(Al). Front Chem 2021;9:718920. [PMID: 34513797 PMCID: PMC8429608 DOI: 10.3389/fchem.2021.718920] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/13/2021] [Indexed: 01/16/2023]  Open
38
Deringer VL, Bartók AP, Bernstein N, Wilkins DM, Ceriotti M, Csányi G. Gaussian Process Regression for Materials and Molecules. Chem Rev 2021;121:10073-10141. [PMID: 34398616 PMCID: PMC8391963 DOI: 10.1021/acs.chemrev.1c00022] [Citation(s) in RCA: 325] [Impact Index Per Article: 81.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Indexed: 12/18/2022]
39
Van Speybroeck V, Vandenhaute S, Hoffman AE, Rogge SM. Towards modeling spatiotemporal processes in metal–organic frameworks. TRENDS IN CHEMISTRY 2021. [DOI: 10.1016/j.trechm.2021.04.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
40
McCarver GA, Rajeshkumar T, Vogiatzis KD. Computational catalysis for metal-organic frameworks: An overview. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213777] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
41
Friederich P, Häse F, Proppe J, Aspuru-Guzik A. Machine-learned potentials for next-generation matter simulations. NATURE MATERIALS 2021;20:750-761. [PMID: 34045696 DOI: 10.1038/s41563-020-0777-6] [Citation(s) in RCA: 160] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 07/17/2020] [Indexed: 05/18/2023]
42
Altintas C, Altundal OF, Keskin S, Yildirim R. Machine Learning Meets with Metal Organic Frameworks for Gas Storage and Separation. J Chem Inf Model 2021;61:2131-2146. [PMID: 33914526 PMCID: PMC8154255 DOI: 10.1021/acs.jcim.1c00191] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Indexed: 02/06/2023]
43
Laurens G, Rabary M, Lam J, Peláez D, Allouche AR. Infrared spectra of neutral polycyclic aromatic hydrocarbons based on machine learning potential energy surface and dipole mapping. Theor Chem Acc 2021. [DOI: 10.1007/s00214-021-02773-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
44
Parsaeifard B, Sankar De D, Christensen AS, Faber FA, Kocer E, De S, Behler J, Anatole von Lilienfeld O, Goedecker S. An assessment of the structural resolution of various fingerprints commonly used in machine learning. MACHINE LEARNING-SCIENCE AND TECHNOLOGY 2021. [DOI: 10.1088/2632-2153/abb212] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
45
Behler J. Four Generations of High-Dimensional Neural Network Potentials. Chem Rev 2021;121:10037-10072. [DOI: 10.1021/acs.chemrev.0c00868] [Citation(s) in RCA: 285] [Impact Index Per Article: 71.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
46
Hansen BB, Spittle S, Chen B, Poe D, Zhang Y, Klein JM, Horton A, Adhikari L, Zelovich T, Doherty BW, Gurkan B, Maginn EJ, Ragauskas A, Dadmun M, Zawodzinski TA, Baker GA, Tuckerman ME, Savinell RF, Sangoro JR. Deep Eutectic Solvents: A Review of Fundamentals and Applications. Chem Rev 2020;121:1232-1285. [PMID: 33315380 DOI: 10.1021/acs.chemrev.0c00385] [Citation(s) in RCA: 950] [Impact Index Per Article: 190.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
47
Eriksen JJ. Mean-field density matrix decompositions. J Chem Phys 2020;153:214109. [PMID: 33291929 DOI: 10.1063/5.0030764] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]  Open
48
Wieser S, Kamencek T, Dürholt JP, Schmid R, Bedoya‐Martínez N, Zojer E. Identifying the Bottleneck for Heat Transport in Metal–Organic Frameworks. ADVANCED THEORY AND SIMULATIONS 2020. [DOI: 10.1002/adts.202000211] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
49
Moosavi S, Jablonka KM, Smit B. The Role of Machine Learning in the Understanding and Design of Materials. J Am Chem Soc 2020;142:20273-20287. [PMID: 33170678 PMCID: PMC7716341 DOI: 10.1021/jacs.0c09105] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Indexed: 12/21/2022]
50
Chong S, Lee S, Kim B, Kim J. Applications of machine learning in metal-organic frameworks. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213487] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
PrevPage 1 of 2 12Next
© 2004-2025 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA