1
|
Zawadzińska-Wrochniak K, Kula K, Ríos-Gutiérrez M, Gostyński B, Krawczyk T, Jasiński R. A Comprehensive Study of the Synthesis, Spectral Characteristics, Quantum-Chemical Molecular Electron Density Theory, and In Silico Future Perspective of Novel CBr 3-Functionalyzed Nitro-2-Isoxazolines Obtained via (3 + 2) Cycloaddition of ( E)-3,3,3-Tribromo-1-Nitroprop-1-ene. Molecules 2025; 30:2149. [PMID: 40430322 PMCID: PMC12114255 DOI: 10.3390/molecules30102149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 04/25/2025] [Accepted: 05/12/2025] [Indexed: 05/29/2025] Open
Abstract
The search for new heterocyclic compounds with biological potential is one of the current challenges in modern chemistry. Therefore, the comprehensive study of (3 + 2) cycloaddition (32CA) reactions between a series of aryl-substituted nitrile N-oxides (NOs) and (E)-3,3,3-tribromo-1-nitroprop-1-ene (TBNP) is carried out. According to the experimental research, in all tested 32CAs, the proper (4RS,5RS)-3-aryl-4-nitro-5-tribromomethyl-2-isoxazolines are obtained as only one reaction product. In turn, the quantum-chemical MEDT study shows that the creation of heterocycles occur via the polar attack of zwitterionic moderate-nucleophilic NOs to strong electrophilic TBNP. The reactions are realized according to a two-stage, one-step asynchronous mechanism, in which the formation of the O-C(CBr3) bond takes place once the C-C(NO2) bond is already formed. What is more, the computational analysis confirmed the experimental results. At the end, the obtained 2-isoxazolines were docked to three proteins: gelatinase B, cyclooxygenase COX-1, and Caspase-7. We hope that the presented study will be helpful for searching for the future direction of application for this class of organic compounds.
Collapse
Affiliation(s)
| | - Karolina Kula
- Department of Organic Chemistry and Technology, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland;
| | - Mar Ríos-Gutiérrez
- Department of Organic Chemistry, University of Valencia, Dr. Moliner 50, Burjassot, 46-100 Valencia, Spain;
| | - Bartłomiej Gostyński
- Department of Structural Chemistry, Centre of Molecular and Macromolecular Studies Polish Academy of Sciences, Sienkiewicza 112, 90-363 Łódź, Poland;
| | - Tomasz Krawczyk
- Department of Chemical Organic Technology and Petrochemistry, Silesian University of Technology, Krzywoustego 4, 44-100 Gliwice, Poland;
| | - Radomir Jasiński
- Department of Organic Chemistry and Technology, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland;
| |
Collapse
|
2
|
Colon-Caraballo M, Russell SR, Myers KM, Mahendroo M. Collagen turnover during cervical remodeling involves both intracellular and extracellular collagen degradation pathways†. Biol Reprod 2025; 112:709-727. [PMID: 39823285 PMCID: PMC11996760 DOI: 10.1093/biolre/ioaf012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/20/2024] [Accepted: 01/15/2025] [Indexed: 01/19/2025] Open
Abstract
Reproductive success requires accurately timed remodeling of the cervix to orchestrate the maintenance of pregnancy, the process of labor, and birth. Prior work in mice established that a combination of continuous turnover of fibrillar collagen and reduced formation of collagen cross-links allows for the gradual increase in tissue compliance and delivery of the fetus during labor. However, the mechanism for continuous collagen degradation to ensure turnover during cervical remodeling is still unknown. This study demonstrates the functional role of extracellular and intracellular collagen degradative pathways in two different settings of cervical remodeling: physiological term remodeling and inflammation-mediated premature remodeling. Extracellular collagen degradation is achieved by the activity of fibroblast-derived matrix metalloproteases MMP14, MMP2, and fibroblast activation protein (FAP). In parallel, we demonstrate the function of an intracellular collagen degradative pathway in fibroblast cells mediated by the collagen endocytic mannose receptor type-2 (MRC2). These pathways appear to be functionally redundant as loss of MRC2 does not obstruct collagen turnover or cervical function in pregnancy. While both extracellular and intracellular pathways are also utilized in inflammation-mediated premature cervical remodeling, the extracellular collagen degradation pathway uniquely employs fibroblast and immune-cell-derived proteases. In sum, these findings identify the dual utilization of two distinct degradative pathways as a failsafe mechanism to achieve continuous collagen turnover in the cervix, thereby allowing dynamic shifts in cervical tissue mechanics and function.
Collapse
Affiliation(s)
- Mariano Colon-Caraballo
- Department of Ob/Gyn and Cecil H. and Ida Green Center for Reproductive Biology Sciences, The University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Serena R Russell
- Department of Mechanical Engineering, Columbia University, New York, New York City, United States of America
| | - Kristin M Myers
- Department of Mechanical Engineering, Columbia University, New York, New York City, United States of America
| | - Mala Mahendroo
- Department of Ob/Gyn and Cecil H. and Ida Green Center for Reproductive Biology Sciences, The University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| |
Collapse
|
3
|
Oselusi SO, Sibuyi NR, Martin DR, Meyer M, Madiehe AM. Potential matrix metalloproteinase 2 and 9 inhibitors identified from Ehretia species for the treatment of chronic wounds - Computational drug discovery approaches. Comput Biol Med 2025; 185:109487. [PMID: 39637455 DOI: 10.1016/j.compbiomed.2024.109487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 10/29/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024]
Abstract
Matrix metalloproteinases (MMPs) serve as prognostic factors in several pathophysiological conditions, including chronic wounds. Therefore, they are considered important therapeutic targets in the intervention and treatment of these conditions. In this study, computational tools such as molecular docking and molecular dynamics simulations were used to gain insight into protein‒ligand interactions and determine the free binding energy between Ehretia species phytoconstituents and gelatinases (MMP2 and MMP9). A total of 74 phytoconstituents from Ehretia species were compiled from the literature, and 46 of these compounds were identified as potential inhibitors of at least one type of MMP. Molecular docking revealed that lithospermic acid B, rosmarinic acid, and danshensu had stronger binding affinities against the two enzymes than the reference ligands. Furthermore, (9S, 10E, 12Z, 15Z)-9-hydroxy-10,12,15-octadecatrienoic (∗-octadecatrienoic) had a higher binding energy for MMP2, whereas caffeic anhydride and caffeic acid established stronger binding energy with MMP9 than the reference ligand. These complexes also demonstrated relatively stable, favourable, and comparable conformational changes with those of unbound proteins at 500 ns. The free energy decomposition results further provide detailed insights into the contributions of active site residues and different types of interactions to the overall binding free energy. Finally, most of the hit phytoconstituents (rosmarinic acid, caffeic anhydride, caffeic acid, and danshensu) had good physicochemical, drug-likeness, and pharmacokinetic properties. Collectively, our findings showed that phytoconstituents from Ehretia species could be beneficial in the search for novel MMP inhibitors as therapeutic agents for the treatment of chronic wounds.
Collapse
Affiliation(s)
- Samson O Oselusi
- Nanobiotechnology Research Group, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville, Cape Town, 7535, South Africa; DSI/Mintek Nanotechnology Innovation Centre (NIC), Biolabels Research Node, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville, Cape Town, 7535, South Africa
| | - Nicole Rs Sibuyi
- DSI/Mintek Nanotechnology Innovation Centre (NIC), Biolabels Research Node, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville, Cape Town, 7535, South Africa; Health Platform, Advanced Materials Division, Mintek, 200 Malibongwe Drive, Randburg, South Africa
| | - Darius R Martin
- DSI/Mintek Nanotechnology Innovation Centre (NIC), Biolabels Research Node, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville, Cape Town, 7535, South Africa
| | - Mervin Meyer
- DSI/Mintek Nanotechnology Innovation Centre (NIC), Biolabels Research Node, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville, Cape Town, 7535, South Africa
| | - Abram M Madiehe
- Nanobiotechnology Research Group, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville, Cape Town, 7535, South Africa; DSI/Mintek Nanotechnology Innovation Centre (NIC), Biolabels Research Node, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville, Cape Town, 7535, South Africa.
| |
Collapse
|
4
|
Tabassum N, Spriha SE, Saha P, Rahman FI, Hossain AMA, Rahman SMA. Synthesis and pharmacological evaluation of heteroarylamide derivatives as potential analgesic, anti-inflammatory, antidiarrheal and cytotoxic agents. Heliyon 2024; 10:e40630. [PMID: 39660188 PMCID: PMC11629273 DOI: 10.1016/j.heliyon.2024.e40630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 10/23/2024] [Accepted: 11/20/2024] [Indexed: 12/12/2024] Open
Abstract
Six heteroarylamide derivatives were synthesized in good yields and screened for several biological activities. Compounds 1-5 demonstrated analgesic activity with percentage inhibition of writhing between 77.10 and 95.79 %, comparable to that of the standard aceclofenac having 91.12 % writhing inhibition. Evaluation of anti-inflammatory activity unveiled that compound 4 exhibited 36.9 %, 64.17 %, 82.9 % and 93.9 % inhibition of paw edema as compared to aceclofenac's inhibition of 35.5 %, 78.6 %, 79.3 % and 91.2 % at the 1st, 2nd, 3rd and 4th hours, respectively. Compounds 5 and 6 exerted considerable antidiarrheal effects with 85.00 % and 71.67 % inhibition of defecation at 25 mg/kg dose, respectively, whereas, the standard loperamide showed 85.00 % inhibition. Compounds 4-6 manifested promising activity in brine shrimp lethality bioassay as well as in trypan blue dye exclusion assay, resulting in 10-20 % cell viability on HeLa cell line and compound 5 was found to have the lowest IC50 of 281.96 μM in the MTT assay. Molecular docking analysis suggested that certain macromolecular targets such as cyclooxygenase-2, muscarinic M3 receptor and matrix metalloproteinase 9 (MMP9) might be involved for the observed activities. As predicted by in silico ADME/T analysis, the compounds also possessed good pharmacokinetic properties.
Collapse
Affiliation(s)
- Nazifa Tabassum
- Department of Clinical Pharmacy and Pharmacology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Sabiha Enam Spriha
- Department of Clinical Pharmacy and Pharmacology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Poushali Saha
- Department of Clinical Pharmacy and Pharmacology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Fahad Imtiaz Rahman
- Department of Clinical Pharmacy and Pharmacology, University of Dhaka, Dhaka, 1000, Bangladesh
| | | | - S. M. Abdur Rahman
- Department of Clinical Pharmacy and Pharmacology, University of Dhaka, Dhaka, 1000, Bangladesh
- Biomedical Research Center, University of Dhaka, Dhaka, 1000, Bangladesh
| |
Collapse
|
5
|
Sadowski M, Dresler E, Zawadzińska K, Wróblewska A, Jasiński R. Syn-Propanethial S-Oxide as an Available Natural Building Block for the Preparation of Nitro-Functionalized, Sulfur-Containing Five-Membered Heterocycles: An MEDT Study. Molecules 2024; 29:4892. [PMID: 39459260 PMCID: PMC11510298 DOI: 10.3390/molecules29204892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/11/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
The regio- and stereoselectivity and the molecular mechanisms of the [3 + 2] cycloaddition reactions between Syn-propanethial S-oxide and selected conjugated nitroalkenes were explored theoretically in the framework of the Molecular Electron Density Theory. It was found that cycloadditions with the participation of nitroethene as well as its methyl- and chloro-substituted analogs can be realized via a single-step mechanism. On the other hand, [3 + 2] cycloaddition reactions between Syn-propanethial S-oxide and 1,1-dinitroethene can proceed according to a stepwise mechanism with a zwitterionic intermediate. Finally, we evaluated the affinity of model reaction products for several target proteins: cytochrome P450 14α-sterol demethylase CYP51 (RSCB Database PDB ID: 1EA1), metalloproteinase gelatinase B (MMP-9; PDB ID: 4XCT), and the inhibitors of cyclooxygenase COX-1 (PDB:3KK6) and COX-2 (PDB:5KIR).
Collapse
Affiliation(s)
- Mikołaj Sadowski
- Department of Organic Chemistry and Technology, Cracow University of Technology, Warszawska 24, 31-155 Krakow, Poland;
| | - Ewa Dresler
- Łukasiewicz Research Network—Institute of Heavy Organic Synthesis “Blachownia”, Energetyków 9, 47-225 Kędzierzyn-Koźle, Poland;
| | | | - Aneta Wróblewska
- Department of Organic Chemistry, University of Lodz, Tamka 12, 91-403 Łódź, Poland;
| | - Radomir Jasiński
- Department of Organic Chemistry and Technology, Cracow University of Technology, Warszawska 24, 31-155 Krakow, Poland;
| |
Collapse
|
6
|
Pang G, Ye L, Jiang Y, Wu Y, Zhang R, Yang H, Yang Y. Unveiling the bidirectional role of MMP9: A key player in kidney injury. Cell Signal 2024; 122:111312. [PMID: 39074714 DOI: 10.1016/j.cellsig.2024.111312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/04/2024] [Accepted: 07/22/2024] [Indexed: 07/31/2024]
Abstract
Matrix metalloproteinases (MMPs) are a group of zinc-dependent proteolytic metalloenzymes that are involved in numerous pathological conditions, including nephropathy. MMP9, a member of the MMPs family, is categorized as a constituent of the gelatinase B subgroup, and its involvement in extracellular matrix (ECM) remodeling and renal fibrosis highlights its importance in the development and progression of renal diseases. The exact role of MMP9 in the development of kidney diseases is still controversial. This study investigated the dual role of MMP9 in kidney injury, discussing its implications in the pathogenesis of kidney diseases and investigating the design and mechanism of MMP9 inhibitors based on previous studies. This study provides an effective basis for the development of novel and selective MMP9 inhibitors for treating renal diseases.
Collapse
Affiliation(s)
- Guiying Pang
- Anhui University of Traditional Chinese Medicine, Hefei 230000, People's Republic of China; Institute of Innovative Medicine, Biocytogen Pharmaceuticals (Beijing) Co, Ltd., Beijing 102609, People's Republic of China; Joint Graduate School, Yangtze Delta Drug Advanced Research Institute, Nantong 226133, People's Republic of China
| | - Ling Ye
- Anhui University of Traditional Chinese Medicine, Hefei 230000, People's Republic of China; Department of Pharmacology, Biocytogen Pharmaceuticals (Beijing) Co, Ltd, Beijing 102609, People's Republic of China; Joint Graduate School, Yangtze Delta Drug Advanced Research Institute, Nantong 226133, People's Republic of China
| | - Yinxiao Jiang
- Anhui University of Traditional Chinese Medicine, Hefei 230000, People's Republic of China; Joint Graduate School, Yangtze Delta Drug Advanced Research Institute, Nantong 226133, People's Republic of China
| | - Yilin Wu
- Anhui University of Traditional Chinese Medicine, Hefei 230000, People's Republic of China; Institute of Innovative Medicine, Biocytogen Pharmaceuticals (Beijing) Co, Ltd., Beijing 102609, People's Republic of China; Joint Graduate School, Yangtze Delta Drug Advanced Research Institute, Nantong 226133, People's Republic of China
| | - Rufeng Zhang
- Institute of Innovative Medicine, Biocytogen Pharmaceuticals (Beijing) Co, Ltd., Beijing 102609, People's Republic of China; Department of Pharmacology, Biocytogen Pharmaceuticals (Beijing) Co, Ltd, Beijing 102609, People's Republic of China
| | - Hongxu Yang
- Institute of Innovative Medicine, Biocytogen Pharmaceuticals (Beijing) Co, Ltd., Beijing 102609, People's Republic of China.
| | - Yi Yang
- Institute of Innovative Medicine, Biocytogen Pharmaceuticals (Beijing) Co, Ltd., Beijing 102609, People's Republic of China; Joint Graduate School, Yangtze Delta Drug Advanced Research Institute, Nantong 226133, People's Republic of China.
| |
Collapse
|
7
|
Cvetanović Kljakić A, Ocvirk M, Rutnik K, Košir IJ, Pavlić B, Mašković P, Mašković J, Teslić N, Stupar A, Uba AI, Zengin G. Exploring the composition and potential uses of four hops varieties through different extraction techniques. Food Chem 2024; 447:138910. [PMID: 38479143 DOI: 10.1016/j.foodchem.2024.138910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/20/2024] [Accepted: 02/28/2024] [Indexed: 04/10/2024]
Abstract
Hydrophilic, lipophilic extracts and essential oil of four hops varieties from Slovenia were examined in this study. Lipophilic extracts were obtained by supercritical extraction (SFE), while for hydrophilic extracts ultrasound and microwave extraction were employed. Essential oils were isolated by the hydrodistillation process. The lipophilic composition of essential oils and lipophilic extracts was determined by GC-MS analysis. Monoterpenes and sesquiterpene hydrocarbons were the most abundant class of compounds in oils (62.27-79.65 %), with myrcene being the most abundant constituent. Limonene and trans-caryophyllene were two terpenes determined in all essential oils while only trans-caryophyllene was detected in SFE samples. Antioxidant, antimicrobial, and cytotoxic activity, determined by applying in vitro assays, was more influenced by extraction technique than by varieties. Molecular docking was carried out to gain insight into the potential cancer protein targets BCL-2 and MMP9, whereby humulene epoxide II displayed good binding configuration within the cavities of the two proteins.
Collapse
Affiliation(s)
| | - Miha Ocvirk
- Slovenian Institute of Hop Research and Brewing, Cesta Žalskega Tabora 2, 3310 Žalec, Slovenia
| | - Ksenija Rutnik
- Slovenian Institute of Hop Research and Brewing, Cesta Žalskega Tabora 2, 3310 Žalec, Slovenia
| | - Iztok Jože Košir
- Slovenian Institute of Hop Research and Brewing, Cesta Žalskega Tabora 2, 3310 Žalec, Slovenia
| | - Branimir Pavlić
- University of Novi Sad, Faculty of Technology, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
| | - Pavle Mašković
- University of Kragujevac, Faculty of Agriculture, Cara Dušana 34, Čačak, Serbia
| | - Jelena Mašković
- University of Kragujevac, Faculty of Agriculture, Cara Dušana 34, Čačak, Serbia
| | - Nemanja Teslić
- University of Novi Sad, Institute of Food Technology, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
| | - Alena Stupar
- University of Novi Sad, Institute of Food Technology, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
| | - Abdullahi Ibrahim Uba
- Department of Molecular Biology and Genetics, Istanbul AREL University, Istanbul 34537, Turkey
| | - Gökhan Zengin
- Department of Biology, Science Faculty, Selcuk University, 42130 Konya, Istanbul, Turkey
| |
Collapse
|
8
|
Zahran EM, Mohamad SA, Elsayed MM, Hisham M, Maher SA, Abdelmohsen UR, Elrehany M, Desoukey SY, Kamel MS. Ursolic acid inhibits NF-κB signaling and attenuates MMP-9/TIMP-1 in progressive osteoarthritis: a network pharmacology-based analysis. RSC Adv 2024; 14:18296-18310. [PMID: 38863821 PMCID: PMC11165403 DOI: 10.1039/d4ra02780a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 05/30/2024] [Indexed: 06/13/2024] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease, characterized by infiltration of monocytes into the synovial joint which promotes inflammation, stiffness, joint swelling, cartilage degradation and further bone destruction. The leaves of Ocimum forskolei have been used for inflammation-related disease management in traditional medicine. Additionally, the downregulation of NF-κB and the MMP/TIMP-1 ratio has been shown to protect against OA. The LC-HR-MS metabolic analysis of Ocimum yielded 19 putative compounds, among which ursolic acid (UA) was detected. Ursolic acid possesses significant anti-inflammatory effects and has been reported to downregulate oxidative stress and inflammatory biomarkers. It was tested on rats in a model of intra-articular carrageenan injection to investigate its efficacy on osteoarthritis progression. The UA emulgel exerted chondroprotective, analgesic and local anaesthetic efficacies confirmed via histopathological investigation and radiographical imaging. A network pharmacology followed by molecular docking highlighted TNF-α, TGF-β and NF-κB as the top filtered genes. Quantitative real-time PCR analysis showed that UA significantly attenuated serum levels of TNF-α, IL-1β, NF-κB, MMP-9/TIMP-1 and elevated levels of TGF-β. Taken together, these results suggest that UA could serve as a functional food-derived phytochemical with a multi-targeted efficacy on progression of OA, regulating the immune and inflammatory responses, particularly, attenuating chondrocytes degeneration via suppression of NF-κB and MMP-9/TIMP-1. Accordingly, UA might be a promising alternative to conventional therapy for safe, easily applicable and effective management of OA.
Collapse
Affiliation(s)
- Eman Maher Zahran
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University Universities Zone New Minia City 61111 Egypt
| | - Soad A Mohamad
- Department of Pharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, Deraya University Universities Zone New Minia City 61111 Egypt
| | - Mohamed M Elsayed
- Faculty of Pharmacy, Deraya University Universities Zone New Minia City 61111 Egypt
| | - Mohamed Hisham
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Deraya University Universities Zone New Minia City 61111 Egypt
| | - Sherif A Maher
- Department of Biochemistry, Faculty of Pharmacy, New Valley University New Valley Elkharga 71511 Egypt
| | - Usama Ramadan Abdelmohsen
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University Universities Zone New Minia City 61111 Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University 61519 Minia Egypt
| | - Mahmoud Elrehany
- Department of Biochemistry, Faculty of Pharmacy, Deraya University Universities Zone New Minia City 61111 Egypt
| | - Samar Yehia Desoukey
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University 61519 Minia Egypt
| | - Mohamed Salah Kamel
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University 61519 Minia Egypt
| |
Collapse
|
9
|
Li F, Zhi J, Zhao R, Sun Y, Wen H, Cai H, Chen W, Jiang X, Bai R. Discovery of matrix metalloproteinase inhibitors as anti-skin photoaging agents. Eur J Med Chem 2024; 267:116152. [PMID: 38278079 DOI: 10.1016/j.ejmech.2024.116152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/11/2024] [Indexed: 01/28/2024]
Abstract
Photodamage is the result of prolonged exposure of the skin to sunlight. This exposure causes an overexpression of matrix metalloproteinases (MMPs), leading to the abnormal degradation of collagen in the skin tissue and resulting in skin aging and damage. This review presents a detailed overview of MMPs as a potential target for addressing skin aging. Specifically, we elucidated the precise mechanisms by which MMP inhibitors exert their anti-photoaging effects. Furthermore, we comprehensively analyzed the current research progress on MMP inhibitors that demonstrate significant inhibitory activity against MMPs and anti-skin photoaging effects. The review also provides insights into the structure-activity relationships of these inhibitors. Our objective in conducting this review is to provide valuable practical information to researchers engaged in investigations on anti-skin photoaging.
Collapse
Affiliation(s)
- Feifan Li
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Jia Zhi
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Rui Zhao
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Yinyan Sun
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Hao Wen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Hong Cai
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Wenchao Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Xiaoying Jiang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Renren Bai
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China.
| |
Collapse
|
10
|
Kurt-Celep I, Zheleva-Dimitrova D, Sinan KI, Uba AI, Nilofar, Mahomoodally MF, Aumeeruddy MZ, Cakilcioglu U, Dall'Acqua S, Zengin G. Uncovering chemical profiles, biological potentials, and protection effect against ECM destruction in H 2 O 2 -treated HDF cells of the extracts of Stachys tundjeliensis. Arch Pharm (Weinheim) 2024; 357:e2300528. [PMID: 37974540 DOI: 10.1002/ardp.202300528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 11/19/2023]
Abstract
The genus Stachys L., one of the largest genera of the Lamiaceae family, is highly represented in Turkey. This study was conducted to determine the bio-pharmaceutical potential and phenolic contents of six different extracts from aerial parts of Stachys tundjeliensis. The obtained results showed that the ethanol extract exhibited the highest antioxidant activity in the antioxidant assays. Meanwhile, the ethanol extract displayed strong inhibitory activity against α-tyrosinase, the dichloromethane extract exhibited potent inhibition against butyrylcholinesterase, and the n-hexane extract against α-amylase. Based on ultra-high performance liquid chromatography coupled to high-resolution mass spectrometry analysis, more than 90 secondary metabolites, including hydroxybenzoic acid, hydroxycinnamic acid, and their glycosides, acylquinic acids, phenylethanoid glycosides, and various flavonoids were identified or tentatively annotated in the studied S. tundjeliensis extracts. It was observed that the application of S. tundjeliensis eliminated H2 O2 -induced oxidative stress. It was determined that protein levels of phospho-nuclear factor kappa B (NF-κB), receptor for advanced glycation endproducts, and activator protein-1, which are activated in the nucleus, decreased, and the synthesis of matrix metalloproteinase (MMP)-2 and MMP-9 also decreased to basal levels. Overall, these findings suggest that S. tundjeliensis contains diverse bioactive compounds for the development of nutraceuticals or functional foods with potent biological properties.
Collapse
Affiliation(s)
- Inci Kurt-Celep
- Department of Pharmacognosy, Faculty of Pharmacy, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | | | | | - Abdullahi Ibrahim Uba
- Department of Molecular Biology and Genetics, Istanbul AREL University, Istanbul, Turkey
| | - Nilofar
- Department of Biology, Science Faculty, Selcuk University, Konya, Turkey
- Department of Pharmacy, Botanic Garden "Giardino dei Semplici", Università degli Studi "Gabriele d'Annunzio", Chieti, Italy
| | - Mohamad Fawzi Mahomoodally
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
- School of Engineering & Technology, Duy Tan University, Da Nang, Vietnam
| | | | - Ugur Cakilcioglu
- Pertek Sakine Genç Vocational School, Munzur University, Pertek, Tunceli, Turkey
| | - Stefano Dall'Acqua
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Konya, Turkey
| |
Collapse
|
11
|
Song L, Xu J, Shi Y, Zhao H, Zhang M, Wang Y, Cui Y, Chai X. An integrated strategy of UPLC-Q-TOF-MS analysis, network pharmacology, and molecular docking to explore the chemical constituents and mechanism of Zixue Powder against febrile seizures. Heliyon 2024; 10:e23865. [PMID: 38192830 PMCID: PMC10772254 DOI: 10.1016/j.heliyon.2023.e23865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/14/2023] [Accepted: 12/14/2023] [Indexed: 01/10/2024] Open
Abstract
Febrile seizures (FS) are the most common type of seizures for children. As a commonly used representative cold formula for resuscitation, Zixue Powder (ZP) has shown great efficacy for the treatment of FS in clinic, while its active ingredients and underlying mechanism remain largely unclear. This study aimed to preliminarily elucidate the material basis of ZP and the potential mechanism for the treatment of FS through ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS), network pharmacology, and molecular docking. UPLC-Q-TOF-MS was firstly applied to characterize the ingredients in ZP, followed by network pharmacology to explore the potential bioactive ingredients and pathways of ZP against FS. Furthermore, molecular docking technique was employed to verify the binding affinity between the screened active ingredients and targets. As a result, 75 ingredients were identified, containing flavonoids, chromogenic ketones, triterpenes and their saponins, organic acids, etc. Through the current study, we focused on 13 potential active ingredients and 14 key potential anti-FS targets of ZP, such as IL6, STAT3, TNF, and MMP9. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis showed that inflammatory response, EGFR tyrosine kinase inhibitor resistance, AGE-RAGE signaling pathway in diabetic complications, and neuroactive ligand-receptor interaction were the main anti-FS signaling pathways. Licochalcones A and B, 26-deoxycimicifugoside, and hederagenin were screened as the main potential active ingredients by molecular docking. In conclusion, this study provides an effective in-depth investigation of the chemical composition, potential bioactive components, and possible anti-FS mechanism of ZP, which lays the foundation for pharmacodynamic studies and clinical applications of ZP.
Collapse
Affiliation(s)
- Lingling Song
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jian Xu
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yanqiong Shi
- Department of Pharmacy, Xuhui District Central Hospital, Shanghai, 200031, China
| | - Hemiao Zhao
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Min Zhang
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Yuefei Wang
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Ying Cui
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Xin Chai
- National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| |
Collapse
|
12
|
Baidya SK, Banerjee S, Ghosh B, Jha T, Adhikari N. A fragment-based exploration of diverse MMP-9 inhibitors through classification-dependent structural assessment. J Mol Graph Model 2024; 126:108671. [PMID: 37976979 DOI: 10.1016/j.jmgm.2023.108671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 11/04/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023]
Abstract
Matrix metalloproteinases (MMPs) are belonging to the Zn2+-dependent metalloenzymes. These can degenerate the extracellular matrix (ECM) that is entailed with various biological processes. Among the MMP family members, MMP-9 is associated with several pathophysiological circumstances. Apart from wound healing, remodeling of bone, inflammatory mechanisms, and rheumatoid arthritis, MMP-9 has also significant roles in tumor invasion and metastasis. Therefore, MMP-9 has been in the spotlight of anticancer drug discovery programs for more than a decade. In this present study, classification-based QSAR techniques along with fragment-based data mining have been carried out on divergent MMP-9 inhibitors to point out the important structural attributes. This current study may be able to elucidate the importance of several pivotal molecular fragments such as sulfonamide, hydroxamate, i-butyl, and ethoxy functions for imparting potential MMP-9 inhibition. These observations are in correlation with the ligand-bound co-crystal structures of MMP-9. Therefore, these findings are beneficial for the design and discovery of effective MMP-9 inhibitors in the future.
Collapse
Affiliation(s)
- Sandip Kumar Baidya
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| | - Suvankar Banerjee
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| | - Balaram Ghosh
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Shamirpet, Hyderabad, 500078, India
| | - Tarun Jha
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India.
| | - Nilanjan Adhikari
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India.
| |
Collapse
|
13
|
Kurt-Celep İ, Zengin G, Uba AI, Caprioli G, Mustafa AM, Angeloni S, Cakilcioglu U, Guler O, Kaplan A, Sharmeen J, Mahomoodally MF. Unraveling the chemical profile, antioxidant, enzyme inhibitory, cytotoxic potential of different extracts from Astragalus caraganae. Arch Pharm (Weinheim) 2023; 356:e2300263. [PMID: 37434089 DOI: 10.1002/ardp.202300263] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/13/2023]
Abstract
Six extracts (water, ethanol, ethanol-water, ethyl acetate, dichloromethane, and n-hexane) of Astragalus caraganae were studied for their biological activities and bioactive contents. Based on high-performance liquid chromatography-mass spectrometry (HPLC-MS), the ethanol-water extract yielded the highest total bioactive content (4242.90 µg g-1 ), followed by the ethanol and water extracts (3721.24 and 3661.37 µg g-1 , respectively), while the least total bioactive content was yielded by the hexane extract, followed by the dichloromethane and ethyl acetate extracts (47.44, 274.68, and 688.89 µg g-1 , respectively). Rutin, p-coumaric, chlorogenic, isoquercitrin, and delphindin-3,5-diglucoside were among the major components. Unlike the dichloromethane extracts, all the other extracts showed radical scavenging ability in the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay (8.73-52.11 mg Trolox equivalent [TE]/g), while all extracts displayed scavenging property in the 2,2-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) radical scavenging assay (16.18-282.74 mg TE/g). The extracts showed antiacetylcholinesterase (1.27-2.73 mg galantamine equivalent [GALAE]/g), antibutyrylcholinesterase (0.20-5.57 mg GALAE/g) and antityrosinase (9.37-63.56 mg kojic acid equivalent [KAE]/g) effects. The molecular mechanism of the H2 O2 -induced oxidative stress pathway was aimed to be elucidated by applying ethanol, ethanol/water and water extracts at 200 µg/mL concentration to human dermal cells (HDFs). A. caraganae in HDF cells had neither a cytotoxic nor genotoxic effect but could have a cytostatic effect in increasing concentrations. The findings have allowed a better insight into the pharmacological potential of the plant, with respect to their chemical entities and bioactive contents, as well as extraction solvents and their polarity.
Collapse
Affiliation(s)
- İnci Kurt-Celep
- Faculty of Pharmacy, Department of Pharmacognosy, Ataşehir, Acıbadem Mehmet Ali Aydınlar University, İstanbul, Turkey
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Konya, Turkey
| | - Abdullahi I Uba
- Department of Molecular Biology and Genetics, Istanbul AREL University, Istanbul, Turkey
| | | | | | | | - Ugur Cakilcioglu
- Pertek Sakine Genç Vocational School, Munzur University, Pertek, Turkey
| | - Osman Guler
- Pertek Sakine Genç Vocational School, Munzur University, Pertek, Turkey
| | - Alevcan Kaplan
- Sason Vocational School, Batman University, Batman, Turkey
| | - Jugreet Sharmeen
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Reduit, Mauritius
| | - Mohamad F Mahomoodally
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Reduit, Mauritius
- Department of Pharmacology, Center for Transdisciplinary Research, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, India
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| |
Collapse
|
14
|
Rashid ZA, Bardaweel SK. Novel Matrix Metalloproteinase-9 (MMP-9) Inhibitors in Cancer Treatment. Int J Mol Sci 2023; 24:12133. [PMID: 37569509 PMCID: PMC10418771 DOI: 10.3390/ijms241512133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Matrix metalloproteinases (MMPs) belong to a family of zinc-dependent proteolytic metalloenzymes. MMP-9, a member of the gelatinase B family, is characterized as one of the most intricate MMPs. The crucial involvement of MMP-9 in extracellular matrix (ECM) remodeling underscores its significant correlation with each stage of cancer pathogenesis and progression. The design and synthesis of MMP-9 inhibitors is a potentially attractive research area. Unfortunately, to date, there is no effective MMP-9 inhibitor that passes the clinical trials and is approved by the FDA. This review primarily focuses on exploring the diverse strategies employed in the design and advancement of MMP-9 inhibitors, along with their anticancer effects and selectivity. To illuminate the essential structural characteristics necessary for the future design of novel MMP-9 inhibitors, the current narrative review highlights several recently discovered MMP-9 inhibitors exhibiting notable selectivity and potency.
Collapse
Affiliation(s)
| | - Sanaa K. Bardaweel
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Jordan, Amman 11942, Jordan
| |
Collapse
|
15
|
Almutairi S, Kalloush HM, Manoon NA, Bardaweel SK. Matrix Metalloproteinases Inhibitors in Cancer Treatment: An Updated Review (2013-2023). Molecules 2023; 28:5567. [PMID: 37513440 PMCID: PMC10384300 DOI: 10.3390/molecules28145567] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/09/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Matrix metalloproteinases (MMPs) are identifiable members of proteolytic enzymes that can degrade a wide range of proteins in the extracellular matrix (ECM). MMPs can be categorized into six groups based on their substrate specificity and structural differences: collagenases, gelatinases, stromelysins, matrilysins, metalloelastase, and membrane-type MMPs. MMPs have been linked to a wide variety of biological processes, such as cell transformation and carcinogenesis. Over time, MMPs have been evaluated for their role in cancer progression, migration, and metastasis. Accordingly, various MMPs have become attractive therapeutic targets for anticancer drug development. The first generations of broad-spectrum MMP inhibitors displayed effective inhibitory activities but failed in clinical trials due to poor selectivity. Thanks to the evolution of X-ray crystallography, NMR analysis, and homology modeling studies, it has been possible to characterize the active sites of various MMPs and, consequently, to develop more selective, second-generation MMP inhibitors. In this review, we summarize the computational and synthesis approaches used in the development of MMP inhibitors and their evaluation as potential anticancer agents.
Collapse
Affiliation(s)
- Shriefa Almutairi
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Jordan, Amman 11942, Jordan
| | - Hanin Moh'd Kalloush
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Jordan, Amman 11942, Jordan
- Department of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| | - Nour A Manoon
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Jordan, Amman 11942, Jordan
| | - Sanaa K Bardaweel
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Jordan, Amman 11942, Jordan
| |
Collapse
|
16
|
Wang S, Ji T, Wang L, Qu Y, Wang X, Wang W, Lv M, Wang Y, Li X, Jiang P. Exploration of the mechanism by which Huangqi Guizhi Wuwu decoction inhibits Lps-induced inflammation by regulating macrophage polarization based on network pharmacology. BMC Complement Med Ther 2023; 23:8. [PMID: 36624435 PMCID: PMC9830836 DOI: 10.1186/s12906-022-03826-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/22/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Huangqi Guizhi Wuwu decoction (HQGZWWD) is a traditional Chinese herbal medicine formulation with significant anti-inflammatory activity. However, its underlying mechanism remains unknown. Through network pharmacology and experimental validation, this study aimed to examine the potential mechanism of HQGZWWD in regulating macrophage polarization and inflammation. METHODS The active components were obtained from the Traditional Chinese Medicine Systems Pharmacology database and Analysis Platform (TCMSP), whereas the corresponding targets were obtained from the TCMSP and Swiss Target Prediction database. The GeneCards database identified targets associated with macrophage polarization and inflammation. Multiple networks were developed to identify the key compounds, principal biological processes, and pathways of HQGZWWD that regulate macrophage polarization and inflammation. Autodock Vina is utilized to assess the binding ability between targets and active compounds. Finally, confirm the experiment's central hypothesis. Human histiocytic lymphoma (U-937) cells were transformed into M1 macrophages following stimulation with Lipopolysaccharide (LPS) to evaluate the effect of HQGZWWD drug-containing mouse serum (HQGZWWD serum) on regulating macrophage polarization and inflammation. RESULTS A total of 54 active components and 859 HQGZWWD targets were obtained. There were 9972 targets associated with macrophage polarization and 11,109 targets associated with inflammation. After screening, 34 overlapping targets were identified, of which 5 were identified as central targets confirmed by experiments, including the α7 nicotinic acetylcholine receptor (α7 nAchR), interleukin 6 (IL-6), Interleukin-1 beta (IL-1β), interleukin 10 (IL-10) and growth factor beta (TGF-β1). Pathway enrichment analysis revealed that 34 overlapping targets were enriched in multiple pathways associated with macrophage polarization and inflammation, including the TGF beta signaling pathway, NF-kappa B signaling pathway, JAK-STAT signaling pathway, and TNF signaling pathway. Molecular docking confirmed that the majority of HQGZWWD's compounds can bind to the target. In vitro experiments, HQGZWWD serum was shown to up-regulate the expression of α7 nAchR, reduce the number of M1 macrophages, stimulate the production of M2 macrophages, inhibit the expression of pro-inflammatory cytokines IL-6 and IL1-β, and increase the expression of anti-inflammatory cytokines IL-10 and TGF-β1. CONCLUSION HQGZWWD can regulate the number of M1/M2 macrophages and the level of inflammatory cytokines, and the underlying mechanism may be related to the up-regulation of α7 nAchR expression.
Collapse
Affiliation(s)
- Sutong Wang
- grid.464402.00000 0000 9459 9325Shandong University of Traditional Chinese Medicine, Jinan, 250014 Shandong China
| | - Tianshu Ji
- grid.464402.00000 0000 9459 9325Shandong University of Traditional Chinese Medicine, Jinan, 250014 Shandong China
| | - Lin Wang
- grid.464402.00000 0000 9459 9325Shandong University of Traditional Chinese Medicine, Jinan, 250014 Shandong China
| | - Yiwei Qu
- grid.464402.00000 0000 9459 9325Shandong University of Traditional Chinese Medicine, Jinan, 250014 Shandong China
| | - Xinhui Wang
- grid.464402.00000 0000 9459 9325Shandong University of Traditional Chinese Medicine, Jinan, 250014 Shandong China
| | - Wenting Wang
- grid.464481.b0000 0004 4687 044XNational Clincial Research Center for Cardiovascular Diseases of Traditional Chinese Medicine, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091 China
| | - Mujie Lv
- grid.464402.00000 0000 9459 9325Shandong University of Traditional Chinese Medicine, Jinan, 250014 Shandong China
| | - Yongcheng Wang
- grid.479672.9Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011 China
| | - Xiao Li
- grid.479672.9Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011 China
| | - Ping Jiang
- grid.479672.9Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011 China
| |
Collapse
|
17
|
Sanyal S, Amin SA, Banerjee P, Gayen S, Jha T. A review of MMP-2 structures and binding mode analysis of its inhibitors to strategize structure-based drug design. Bioorg Med Chem 2022; 74:117044. [DOI: 10.1016/j.bmc.2022.117044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 12/13/2022]
|
18
|
Kurt-Celep I, Zheleva-Dimitrova D, Gevrenova R, Uba AI, Zengin G, Yıldıztugay E, Picot-Allain CMN, Lorenzo JM, Mahomoodally MF, Montesano D. An In-Depth Study on the Metabolite Profile and Biological Properties of Primula auriculata Extracts: A Fascinating Sparkle on the Way from Nature to Functional Applications. Antioxidants (Basel) 2022; 11:1377. [PMID: 35883868 PMCID: PMC9312287 DOI: 10.3390/antiox11071377] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 12/26/2022] Open
Abstract
The biological activity of the aerial part and rhizomes of Primula auriculata were assessed for the first time. The biological activities (antioxidant properties, enzyme inhibition, and AGE inhibition) as well as the phenolic and flavonoid contents of the ethyl acetate, ethanol, hydro-ethanol and water extracts of P. auriculata aerial parts and rhizomes were determined. Cell viability assays and gelatin zymography were also performed for MMP-2/-9 to determine the molecular mechanisms of action. The gene expression for MMPs was described with RT-PCR. The levels of various proteins, including phospho-Nf-κB, BCL-2, BAX, p-53, and cyclin D1 as well as RAGE were measured using Western blot analysis. The hydro-ethanol extract of the aerial part possessed the highest phenolic (56.81 mg GAE/g) and flavonoid (63.92 mg RE/g) contents. In-depth profiling of the specialized metabolites by ultra-high-performance liquid chromatography-high-resolution mass spectrometry (UHPLC-HRMS) allowed for the identification and annotation of 65 compounds, including phenolic acids and glycosides, flavones, flavonols, chalcones, dihydrochalcones, and saponins. The hydro-ethanol extract of the aerial parts (132.65, 180.87, 172.46, and 108.37 mg TE/g, for the DPPH, ABTS, CUPRAC, and FRAP assays, respectively) and the ethanol extract of the rhizomes (415.06, 638.30, 477.77, and 301.02 mg TE/g, for the DPPH, ABTS, CUPRAC, and FRAP assays, respectively) exhibited the highest free radical scavenging and reducing activities. The ethanol and hydro-ethanol extracts of both the P. auriculata aerial part and rhizomes exhibited higher inhibitory activity against acetylcholinesterase, while the hydro-ethanol extracts (1.16 mmol ACAE/g, for both the aerial part and rhizomes extracts) were more active in the inhibition of α-glucosidase. After the treatment of an HT-29 colorectal cancer cell line with the extracts, the apoptosis mechanism was initiated, the integrity of the ECM was remodeled, and cell proliferation was also taken under control. In this way, Primula extracts were shown to be potential drug sources in the treatment of colorectal cancer. They were also detected as natural MMP inhibitors. The findings presented in the present study appraise the bioactivity of P. auriculata, an understudied species. Additional assessment is required to evaluate the cytotoxicity of P. auriculata as well as its activity in ex vivo systems.
Collapse
Affiliation(s)
- Inci Kurt-Celep
- Department of Pharmacognosy, Faculty of Pharmacy, Yeditepe University, 34755 Istanbul, Turkey;
| | - Dimitrina Zheleva-Dimitrova
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University-Sofia, 1000 Sofia, Bulgaria; (D.Z.-D.); (R.G.)
| | - Reneta Gevrenova
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University-Sofia, 1000 Sofia, Bulgaria; (D.Z.-D.); (R.G.)
| | - Abdullahi Ibrahim Uba
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Kadir Has University, 34083 Istanbul, Turkey;
| | - Gokhan Zengin
- Physiology and Biochemistry Research Laboratory, Department of Biology, Science Faculty, Selcuk University, 42130 Konya, Turkey
| | - Evren Yıldıztugay
- Department of Biotechnology, Science Faculty, Selcuk University, 42079 Konya, Turkey;
| | - Carene Marie Nancy Picot-Allain
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, 80837 Réduit, Mauritius; (C.M.N.P.-A.); (M.F.M.)
| | - José Manuel Lorenzo
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia No. 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain;
- Área de Tecnoloxía dos Alimentos, Facultade de Ciencias, Universidade de Vigo, 32004 Ourense, Spain
| | - Mohamad Fawzi Mahomoodally
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, 80837 Réduit, Mauritius; (C.M.N.P.-A.); (M.F.M.)
| | - Domenico Montesano
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| |
Collapse
|
19
|
Robinson BD, Isbell CL, Melge AR, Lomas AM, Shaji CA, Mohan CG, Huang JH, Tharakan B. Doxycycline prevents blood-brain barrier dysfunction and microvascular hyperpermeability after traumatic brain injury. Sci Rep 2022; 12:5415. [PMID: 35354869 PMCID: PMC8967830 DOI: 10.1038/s41598-022-09394-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 03/09/2022] [Indexed: 11/30/2022] Open
Abstract
The main objective of this study was to determine the cellular and molecular effects of doxycycline on the blood–brain barrier (BBB) and protection against secondary injuries following traumatic brain injury (TBI). Microvascular hyperpermeability and cerebral edema resulting from BBB dysfunction after TBI leads to elevation of intracranial pressure, secondary brain ischemia, herniation, and brain death. There are currently no effective therapies to modulate the underlying pathophysiology responsible for TBI-induced BBB dysfunction and hyperpermeability. The loss of BBB integrity by the proteolytic enzyme matrix metalloproteinase-9 (MMP-9) is critical to TBI-induced BBB hyperpermeability, and doxycycline possesses anti-MMP-9 effect. In this study, the effect of doxycycline on BBB hyperpermeability was studied utilizing molecular modeling (using Glide) in silico, cell culture-based models in vitro, and a mouse model of TBI in vivo. Brain microvascular endothelial cell assays of tight junction protein immunofluorescence and barrier permeability were performed. Adult C57BL/6 mice were subjected to sham versus TBI with or without doxycycline treatment and immediate intravital microscopic analysis for evaluating BBB integrity. Postmortem mouse brain tissue was collected to measure MMP-9 enzyme activity. It was found that doxycycline binding to the MMP-9 active sites have binding affinity of −7.07 kcal/mol. Doxycycline treated cell monolayers were protected from microvascular hyperpermeability and retained tight junction integrity (p < 0.05). Doxycycline treatment decreased BBB hyperpermeability following TBI in mice by 25% (p < 0.05). MMP-9 enzyme activity in brain tissue decreased with doxycycline treatment following TBI (p < 0.05). Doxycycline preserves BBB tight junction integrity following TBI via inhibiting MMP-9 activity. When established in human subjects, doxycycline, may provide readily accessible medical treatment after TBI to attenuate secondary injury.
Collapse
Affiliation(s)
- Bobby D Robinson
- Department of Surgery, Baylor Scott and White Medical Center, Baylor Scott and White Research Institute, Temple, TX, USA.,Texas A&M University Health Science Center College of Medicine, Temple, TX, USA
| | - Claire L Isbell
- Department of Surgery, Baylor Scott and White Medical Center, Baylor Scott and White Research Institute, Temple, TX, USA.,Texas A&M University Health Science Center College of Medicine, Temple, TX, USA
| | - Anu R Melge
- Amrita Center for Nanosciences and Molecular Medicine, Kochi, Kerala, India
| | - Angela M Lomas
- Department of Surgery, Baylor Scott and White Medical Center, Baylor Scott and White Research Institute, Temple, TX, USA.,Texas A&M University Health Science Center College of Medicine, Temple, TX, USA
| | - Chinchusha Anasooya Shaji
- Department of Surgery, Baylor Scott and White Medical Center, Baylor Scott and White Research Institute, Temple, TX, USA
| | - C Gopi Mohan
- Amrita Center for Nanosciences and Molecular Medicine, Kochi, Kerala, India
| | - Jason H Huang
- Department of Neurosurgery, Texas A&M University Health Science Center College of Medicine, Temple, TX, USA
| | - Binu Tharakan
- Department of Surgery, Baylor Scott and White Medical Center, Baylor Scott and White Research Institute, Temple, TX, USA. .,Texas A&M University Health Science Center College of Medicine, Temple, TX, USA. .,Department of Surgery, Morehouse School of Medicine, 720 Westview Dr, Atlanta, GA, 30310, USA.
| |
Collapse
|
20
|
Das S, Amin SA, Gayen S, Jha T. Insight into the structural requirements of gelatinases (MMP-2 and MMP-9) inhibitors by multiple validated molecular modelling approaches: Part II. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2022; 33:167-192. [PMID: 35301933 DOI: 10.1080/1062936x.2022.2041722] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/03/2022] [Indexed: 06/14/2023]
Abstract
Inhibition of the matrix metalloproteinases (MMPs) is effective against metastasis of secondary tumours. Previous MMP inhibitors have failed in clinical trials due to their off-target toxicity in solid tumours. Thus, newer MMP inhibitors now have paramount importance. Here, different molecular modelling techniques were applied on a dataset of 110 gelatinase (MMP-2 and MMP-9) inhibitors. The objectives of the present study were to identify structural fingerprints for gelatinase inhibition and also to develop statistically validated QSAR models for the screening and prediction of different derivatives as MMP-2 (gelatinase A) and MMP-9 (gelatinase B) inhibitors. The Bayesian classification study provided the ROC values for the training set of 0.837 and 0.815 for MMP-2 and MMP-9, respectively. The linear model also produced the leave-one-out cross-validated Q2 of 0.805 (eq. 1, MMP-2) and 0.724 (eq. 2, MMP-9), an r2 of 0.845 (eq. 1, MMP-2) and 0.782 (eq. 2, MMP-9), an r2Pred of 0.806 (eq. 1, MMP-2) and 0.732 (eq. 2, MMP-9). Similarly, non-linear learning models were also statistically significant and reliable. Overall, this study may help in the rational design of newer compounds with higher gelatinase inhibition to fight against both primary and secondary cancers in future.
Collapse
Affiliation(s)
- S Das
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - S A Amin
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - S Gayen
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - T Jha
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| |
Collapse
|
21
|
Sanapalli BKR, Yele V, Sigalapalli DK, Gadewal N, Shaik AB, Bhandare RR, Annadurai S, Karri VVSR. Forging of nicotine for the effective management of diabetic wounds: A hybrid of scaffold hopping and molecular dynamics simulation approaches. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
22
|
Abstract
MMP2, a Zn2+-dependent metalloproteinase, is related to cancer and angiogenesis. Inhibition of this enzyme might result in a potential antimetastatic drug to leverage the anticancer drug armory. In silico or computer-aided ligand-based drug design is a method of rational drug design that takes multiple chemometrics (i.e., multi-quantitative structure-activity relationship methods) into account for virtually selecting or developing a series of probable selective MMP2 inhibitors. Though existing matrix metalloproteinase inhibitors have shown plausible pan-matrix metalloproteinase (MMP) activity, they have resulted in various adverse effects leading to their being rescinded in later phases of clinical trials. Therefore a review of the ligand-based designing methods of MMP2 inhibitors would result in an explicit route map toward successfully designing and synthesizing novel and selective MMP2 inhibitors.
Collapse
|
23
|
Chin LT, Liu KW, Chen YH, Hsu SC, Huang L. Cell-based assays and molecular simulation reveal that the anti-cancer harmine is a specific matrix metalloproteinase-3 (MMP-3) inhibitor. Comput Biol Chem 2021; 94:107556. [PMID: 34384998 DOI: 10.1016/j.compbiolchem.2021.107556] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/20/2021] [Accepted: 07/29/2021] [Indexed: 10/20/2022]
Abstract
The biological activities of harmine have been a much clearer picture in recent years, which include anti-tumor, anti-inflammation and cytotoxic properties. Numerous in vitro and in vivo animal models have confirmed its activities, but its mode of action remains a relative unsolved issue. We therefore investigated harmine for its effects on MMP-3 and the molecular interaction was also simulated. The human glioma cancer cell line, U-87 MG cells, was subjected to different concentrations (1-10 μM) of harmine for 24 h. Methylthiazol tetrazolium (MTT) test, half maximal inhibitory concentration (IC50), western blot analysis, enzyme-linked immunosorbent assay and molecular docking through BIOVIA DiscoveryStudio™ were performed. These results showed that although harmine stimulation in vitro has very little or no effects on MMP-3 expression by U-87 MG cells, the treatment of harmine decreases MMP-3 activity in a dose dependent manner. It was further calculated that 7.9 μM is the IC50 towards MMP-3. Using a molecular dynamic simulation approach, we identified the N2, methyl of C1 and benzene ring of harmine interact with Zn2+ (2.4 Å), His205 (2.4 Å) and His211 (2.4 Å) as well as Val163 (2.7 Å) at the active site of MMP-3, respectively, and thus conferred a striking specific binding advantage. Taken altogether, the present study evidences that harmine acts as an MMP-3 inhibitor specially targeting the enzymatic active site and possibly efficiently ameliorates MMP-3-driven malignant and inflammatory diseases.
Collapse
Affiliation(s)
- Li-Te Chin
- Department of Microbiology, Immunology and Biopharmaceuticals, National Chiayi University, Chiayi City, 60004, Taiwan, ROC; Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei City, 11400, Taiwan, ROC
| | - Ke-Wei Liu
- Department of Microbiology, Immunology and Biopharmaceuticals, National Chiayi University, Chiayi City, 60004, Taiwan, ROC
| | - Yi-Han Chen
- Department of Microbiology, Immunology and Biopharmaceuticals, National Chiayi University, Chiayi City, 60004, Taiwan, ROC
| | - Shu-Ching Hsu
- Synergy Biomedical Corp., Hsinchu City, 30054, Taiwan, ROC
| | - Lin Huang
- Synergy Biomedical Corp., Hsinchu City, 30054, Taiwan, ROC.
| |
Collapse
|
24
|
Wang K, Chen Q, Liu N, Zhang J, Pan X. Recent advances in, and challenges of, anti-angiogenesis agents for tumor chemotherapy based on vascular normalization. Drug Discov Today 2021; 26:2743-2753. [PMID: 34332098 DOI: 10.1016/j.drudis.2021.07.024] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 07/02/2021] [Accepted: 07/06/2021] [Indexed: 12/18/2022]
Abstract
A major problem associated with cancer treatment is resistance-prone chemotherapeutic drugs. An increasing number of studies have documented that the occurrence of resistance tends to be associated with abnormal blood vessels. In 2001, Jain proposed the vascular normalization theory, which was recently applied to the drug-resistant treatment of tumors in the clinic. Through the intervention of angiogenesis inhibitors, remodeling the structure and function of abnormal vessels can maximize the efficacy of chemotherapeutic drugs. In this review, we systematically describe the occurrence and progress of tumor angiogenesis, as well as the pathological characteristics of tumor blood vessels. Moreover, druggable targets for vascular normalization and the development of related inhibitors are also outlined.
Collapse
Affiliation(s)
- Kai Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Qinhua Chen
- Department of Pharmacy, Shenzhen Baoan Authentic TCM Therapy Hospital, Shenzhen 518101, China
| | - Nanxin Liu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Jie Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Xiaoyan Pan
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
25
|
Rahman F, Nguyen TM, Adekoya OA, Campestre C, Tortorella P, Sylte I, Winberg JO. Inhibition of bacterial and human zinc-metalloproteases by bisphosphonate- and catechol-containing compounds. J Enzyme Inhib Med Chem 2021; 36:819-830. [PMID: 33757387 PMCID: PMC7993378 DOI: 10.1080/14756366.2021.1901088] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Compounds containg catechol or bisphosphonate were tested as inhibitors of the zinc metalloproteases, thermolysin (TLN), pseudolysin (PLN) and aureolysin (ALN) which are bacterial virulence factors, and the human matrix metalloproteases MMP-9 and -14. Inhibition of virulence is a putative strategy in the development of antibacterial drugs, but the inhibitors should not interfere with human enzymes. Docking indicated that the inhibitors bound MMP-9 and MMP-14 with the phenyl, biphenyl, chlorophenyl, nitrophenyl or methoxyphenyl ringsystem in the S1'-subpocket, while these ringsystems entered the S2'- or S1 -subpockets or a region involving amino acids in the S1'- and S2'-subpockets of the bacterial enzymes. An arginine conserved among the bacterial enzymes seemed to hinder entrance deeply into the S1'-subpocket. Only the bisphosphonate containing compound RC2 bound stronger to PLN and TLN than to MMP-9 and MMP-14. Docking indicated that the reason was that the conserved arginine (R203 in TLN and R198 in PLN) interacts with phosphate groups of RC2.
Collapse
Affiliation(s)
- Fatema Rahman
- Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Tra-Mi Nguyen
- Department of Pharmacy, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Olayiwola A Adekoya
- Department of Pharmacy, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Cristina Campestre
- Department of Pharmacy, University of "G. d'Annunzio" Chieti, Chieti, Italy
| | - Paolo Tortorella
- Department of Pharmacy, Science of Pharmacy, University "A. Moro" Bari, Bari, Italy
| | - Ingebrigt Sylte
- Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Jan-Olof Winberg
- Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
26
|
Kirchhain A, Zubrienė A, Kairys V, Vivaldi F, Bonini A, Biagini D, Santalucia D, Matulis D, Di Francesco F. Biphenyl substituted lysine derivatives as recognition elements for the matrix metalloproteinases MMP-2 and MMP-9. Bioorg Chem 2021; 115:105155. [PMID: 34303036 DOI: 10.1016/j.bioorg.2021.105155] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/30/2021] [Accepted: 07/05/2021] [Indexed: 12/25/2022]
Abstract
Matrix metalloproteinases (MMPs) are an important factor in cancer progression and metastasis, especially gelatinases MMP-2 and MMP-9. A simple methodology for their detection and monitoring is highly desirable. Molecular probes have been very widely and successfully applied to study the activity of MMPs in cellular processes in vitro. We thus synthesized a small compound library of MMP-2 and MMP-9 binding probes based on drug molecules and endowed with free amine groups for the functionalization of transducer surfaces. In this study, we combined experimental results obtained by a kinetic fluorogenic peptide substrate cleavage assay with molecular modeling studies in order to assess the ability of the probe to bind to their target enzymes. The synthesized biphenyl substituted lysine derivatives showed IC50-values in the low nanomolar concentration range against MMP-2 (ligands 3a-d: 3 nM to 8 µM, ligands 4a-d: 45 nM to 350 µM) and low micromolar range against MMP-9 (ligands 3a-d: 350 nM to 60 µM, ligands 4a-d: 5 µM to 600 µM), with a selectivity up to more than 160-fold for MMP-2. The experimental results correlated well with molecular modelling with FleXAID and X-score functions. We showed that in our compound series, the side chain remained far away from the S1' cavity and the ligand for all the docked minima. Ligands 4a-d with their free amine group on the side chain may thus be bound to transducer surfaces for the fabrication of sensors, while retaining their activity against their target enzymes.
Collapse
Affiliation(s)
- Arno Kirchhain
- Dipartimento di Chimica e Chimica Industriale, Via Giuseppe Moruzzi, 13, 56124 Pisa, Italy.
| | - Asta Zubrienė
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio 7, Vilnius LT-10257, Lithuania
| | - Visvaldas Kairys
- Department of Bioinformatics, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio 7, Vilnius LT-10257, Lithuania
| | - Federico Vivaldi
- Dipartimento di Chimica e Chimica Industriale, Via Giuseppe Moruzzi, 13, 56124 Pisa, Italy
| | - Andrea Bonini
- Dipartimento di Chimica e Chimica Industriale, Via Giuseppe Moruzzi, 13, 56124 Pisa, Italy
| | - Denise Biagini
- Dipartimento di Chimica e Chimica Industriale, Via Giuseppe Moruzzi, 13, 56124 Pisa, Italy
| | - Delio Santalucia
- Dipartimento di Chimica e Chimica Industriale, Via Giuseppe Moruzzi, 13, 56124 Pisa, Italy
| | - Daumantas Matulis
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio 7, Vilnius LT-10257, Lithuania
| | - Fabio Di Francesco
- Dipartimento di Chimica e Chimica Industriale, Via Giuseppe Moruzzi, 13, 56124 Pisa, Italy
| |
Collapse
|
27
|
Song R, Qiao W, He J, Huang J, Luo Y, Yang T. Proteases and Their Modulators in Cancer Therapy: Challenges and Opportunities. J Med Chem 2021; 64:2851-2877. [PMID: 33656892 DOI: 10.1021/acs.jmedchem.0c01640] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Proteostasis is the process of regulating intracellular proteins to maintain the balance of the cell proteome, which is crucial for cancer cell survival. Several proteases located in the cytoplasm, mitochondria, lysosome, and extracellular environment have been identified as potential antitumor targets because of their involvement in proteostasis. Although the discovery of small-molecule inhibitors targeting proteases faces particular challenges, rapid advances in chemical biology and structural biology, and the new technology of drug discovery have facilitated the development of promising protease modulators. In this review, the protein structure and function of important tumor-related proteases and their inhibitors are presented. We also provide a prospective on advances and the outlook of new drug strategies that target these proteases.
Collapse
Affiliation(s)
- Rao Song
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wenliang Qiao
- Lung Cancer Center, Laboratory of Lung Cancer, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Jun He
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jiasheng Huang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Youfu Luo
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Tao Yang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.,Laboratory of Human Disease and Immunotherapies, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
28
|
Shi Y, Ma X, Fang G, Tian X, Ge C. Matrix metalloproteinase inhibitors (MMPIs) as attractive therapeutic targets: Recent progress and current challenges. NANOIMPACT 2021; 21:100293. [PMID: 35559782 DOI: 10.1016/j.impact.2021.100293] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/14/2020] [Accepted: 01/05/2021] [Indexed: 06/15/2023]
Abstract
Matrix metalloproteinase (MMP) plays an essential role in many physiological and pathological processes. An increase in MMP activity contributes to excessive degradation and remodeling of the extracellular matrix (ECM), which has been correlated with invasion and metastasis of tumors. Matrix metalloproteinase inhibitor (MMPI) has been developed as an attractive therapeutic target for decades, suggesting inspiring therapeutic effects in preclinical studies. However, achieving specificity remains an important challenge in the development of MMPIs, limiting their clinical application and bringing about the risk of biosafety. Nanomaterials can be used as alternative candidates for MMPI design, providing a new strategy for this problem. This report reviewed the research about MMPIs, summarized their MMPs activity regulation mechanisms, and discussed their failures in clinical trials. Furthermore, we outlined several schemes of MMPIs screening and design. Finally, we reviewed the therapeutic application prospects of MMPIs and discussed the remaining challenges and solutions, which may offer new insights for the development of MMPIs studies.
Collapse
Affiliation(s)
- Ying Shi
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) & Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Xiaochuan Ma
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) & Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China.
| | - Ge Fang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) & Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Xin Tian
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) & Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Cuicui Ge
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) & Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China.
| |
Collapse
|
29
|
Baidya SK, Amin SA, Jha T. Outline of gelatinase inhibitors as anti-cancer agents: A patent mini-review for 2010-present. Eur J Med Chem 2020; 213:113044. [PMID: 33279289 DOI: 10.1016/j.ejmech.2020.113044] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/15/2020] [Accepted: 11/18/2020] [Indexed: 12/25/2022]
Abstract
Matrix metalloproteinases (MMPs) are involved in several pathological and physiological functions. Gelatinases (MMP-2 and -9) have significant attention as therapeutic targets against cancer. Gelatinase inhibitors have demonstrated their effectiveness in several diseases including cancer. However, it is quite a challenging task to develop inhibitors as a therapeutic agent. This review summarizes the patent dedicated to the medicinal chemistry of gelatinase inhibitor reported over last decades. We examine the patent being pursued for gelatinase inhibitor development to highlight the key issues. The main aim is to provide the scientific community with an overview of the patented gelatinase inhibitors to allow further development. During early 2000s, some MMP inhibitors failed to pass the clinical trials. Hence, the lessons learned from early evidence and recent knowledge in that field will rejuvenate the development of selective inhibitors. Various studies and patents have continued in the recent years to expand knowledge. Continuously, our research team has been involved in the design of potent and selective gelatinase inhibitors for the past few years. This study is a part of our efforts. This study may be beneficial in the design and development of better gelatinase inhibitors in the future.
Collapse
Affiliation(s)
- Sandip Kumar Baidya
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, P. O. Box 17020, Jadavpur University, Kolkata, 700032, West Bengal, India.
| | - Sk Abdul Amin
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, P. O. Box 17020, Jadavpur University, Kolkata, 700032, West Bengal, India.
| | - Tarun Jha
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, P. O. Box 17020, Jadavpur University, Kolkata, 700032, West Bengal, India.
| |
Collapse
|
30
|
Jamal S, Ahmed A, Moin ST. Evaluation of a sesquiterpene as possible drug lead against gelatinases via molecular dynamics simulations. J Biomol Struct Dyn 2020; 39:1645-1660. [PMID: 32174257 DOI: 10.1080/07391102.2020.1743363] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Malignant tumors can be targeted by accounting for their metastatic capabilities. Matrix metalloproteinases (MMPs) are the key players in tumor metastasis facilitating through their proteolytic activities of angiogenesis and extracellular matrix components (ECM) degradation. MMP-2 and MMP-9 being the members of a distinguished class of MMPs more commonly known as gelatinases are the prominent enzymes which are involved in different cancer progression stages. Targeting these isoforms specifically has always been a challenging task due to highly similar structural and functional features among the other members of MMPs with well preserve active sites containing catalytic zinc atom that was the only reason that none of the MMP inhibitor has been successfully marketed for the tumor pathology up till now. Therefore, non-competitive inhibitors with different structural attributed are needed to be evaluated at the molecular level for further experiments. The present study deals with the application of molecular dynamics simulation for the investigation of an alternative pathway for the inhibition of MMP-2 and MMP-9 by a sesquiterpene isolated from Polygonum barbatum which demonstrates the characteristics binding to the S1' subsite of the enzymes followed by in vitro gene expression studies. The simulation results provide information on the possible binding profile producing inhibitory effects imposed by the inhibitor to these enzymes by acquiring different structural and dynamical features. Moreover, thermodynamic quantities based on the computationally intensive thermodynamic integration approach were also obtained in terms of inhibitor binding affinity computed for the inhibitor against MMP-2 and MMP-9 that completely augmented the experimental gene expression study.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sehrish Jamal
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Ayaz Ahmed
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Syed Tarique Moin
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| |
Collapse
|
31
|
Mondal S, Adhikari N, Banerjee S, Amin SA, Jha T. Matrix metalloproteinase-9 (MMP-9) and its inhibitors in cancer: A minireview. Eur J Med Chem 2020; 194:112260. [PMID: 32224379 DOI: 10.1016/j.ejmech.2020.112260] [Citation(s) in RCA: 318] [Impact Index Per Article: 63.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/28/2020] [Accepted: 03/18/2020] [Indexed: 12/15/2022]
Abstract
Matrix metalloproteinases (MMPs) are zinc dependent proteolytic metalloenzyme. MMP-9 is one of the most complex forms of matrix metalloproteinases. MMP-9 has the ability to degrade the extracellular matrix (ECM) components and has important role in the pathophysiological functions. Overexpression and dysregulation of MMP-9 is associated with various diseases. Thus, regulation and inhibition of MMP-9 is an important therapeutic approach for combating various diseases including cancer. Inhibitors of MMP-9 can be used as anticancer agents. Till date no selective MMP-9 inhibitors passed the clinical trials. In this review the structure, activation, function and inhibitors of MMP-9 are mainly focused. Some highly active and/or selective MMP-9 inhibitors have been discussed which may be helpful to explore the structural significance of MMP-9 inhibitors. This study may be useful to design new potent and selective MMP-9 inhibitors against cancer in future.
Collapse
Affiliation(s)
- Subha Mondal
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, P. O. Box 17020, Jadavpur University, Kolkata, 700032, India
| | - Nilanjan Adhikari
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, P. O. Box 17020, Jadavpur University, Kolkata, 700032, India
| | - Suvankar Banerjee
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, P. O. Box 17020, Jadavpur University, Kolkata, 700032, India
| | - Sk Abdul Amin
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, P. O. Box 17020, Jadavpur University, Kolkata, 700032, India
| | - Tarun Jha
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, P. O. Box 17020, Jadavpur University, Kolkata, 700032, India.
| |
Collapse
|
32
|
Fischer T, Riedl R. Inhibitory Antibodies Designed for Matrix Metalloproteinase Modulation. Molecules 2019; 24:molecules24122265. [PMID: 31216704 PMCID: PMC6631688 DOI: 10.3390/molecules24122265] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/13/2019] [Accepted: 06/14/2019] [Indexed: 01/20/2023] Open
Abstract
The family of matrix metalloproteinases (MMPs) consists of a set of biological targets that are involved in a multitude of severe pathogenic events such as different forms of cancers or arthritis. Modulation of the target class with small molecule drugs has not led to the anticipated success until present, as all clinical trials failed due to unacceptable side effects or a lack of therapeutic outcome. Monoclonal antibodies offer a tremendous therapeutic potential given their high target selectivity and good pharmacokinetic profiles. For the treatment of a variety of diseases there are already antibody therapies available and the number is increasing. Recently, several antibodies were developed for the selective inhibition of single MMPs that showed high potency and were therefore investigated in in vivo studies with promising results. In this review, we highlight the progress that has been achieved toward the design of inhibitory antibodies that successfully modulate MMP-9 and MMP-14.
Collapse
Affiliation(s)
- Thomas Fischer
- Institute of Chemistry and Biotechnology, Center of Organic and Medicinal Chemistry, Zurich University of Applied Sciences, Einsiedlerstrasse 31, 8820 Wädenswil, Switzerland.
| | - Rainer Riedl
- Institute of Chemistry and Biotechnology, Center of Organic and Medicinal Chemistry, Zurich University of Applied Sciences, Einsiedlerstrasse 31, 8820 Wädenswil, Switzerland.
| |
Collapse
|
33
|
Zigrino P, Sengle G. Fibrillin microfibrils and proteases, key integrators of fibrotic pathways. Adv Drug Deliv Rev 2019; 146:3-16. [PMID: 29709492 DOI: 10.1016/j.addr.2018.04.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 04/12/2018] [Accepted: 04/25/2018] [Indexed: 02/06/2023]
Abstract
Supramolecular networks composed of multi-domain ECM proteins represent intricate cellular microenvironments which are required to balance tissue homeostasis and direct remodeling. Structural deficiency in ECM proteins results in imbalances in ECM-cell communication resulting often times in fibrotic reactions. To understand how individual components of the ECM integrate communication with the cell surface by presenting growth factors or providing fine-tuned biomechanical properties is mandatory for gaining a better understanding of disease mechanisms in the quest for new therapeutic approaches. Here we provide an overview about what we can learn from inherited connective tissue disorders caused primarily by mutations in fibrillin-1 and binding partners as well as by altered ECM processing leading to defined structural changes and similar functional knock-in mouse models. We will utilize this knowledge to propose new molecular hypotheses which should be tested in future studies.
Collapse
|
34
|
Sanyal S, Amin SA, Adhikari N, Jha T. QSAR modelling on a series of arylsulfonamide-based hydroxamates as potent MMP-2 inhibitors. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2019; 30:247-263. [PMID: 31012354 DOI: 10.1080/1062936x.2019.1588159] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 02/25/2019] [Indexed: 06/09/2023]
Abstract
Matrix metalloproteinase-2 (MMP-2) is a lucrative therapeutic target as far as anticancer drug discovery is concerned. Overexpression of MMP-2 is found to facilitate tumour propagation through the involvement of vascular endothelial growth factor (VEGF). However, even after different techniques, finding a target-specific MMP-2 inhibitor with respectable pharmacodynamic properties is still a challenging task. Regression-dependent quantitative structure-activity relationship (QSAR) strategies might be among the possible drug design methods to explore the essential structural features that would be valuable to find a suitable MMP-2 inhibitor. In this paper, 72 molecules were explored using the PaDEL descriptors and stepwise multiple linear regression (S-MLR). The partial least squares (PLS) method was also used to create a viable statistical model with an acceptable metric related to these models. The final statistical models were formed with statistical parameters within acceptable range (r2 = 0.797, Q2 = 0.725 and r2pred = 0.643 for the MLR model, and r2 = 0.780, Q2 = 0.685 and r2pred = 0.666 for the PLS model). The models were analysed and compared with those already published on the same endpoint.
Collapse
Affiliation(s)
- S Sanyal
- a Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology , Jadavpur University , Kolkata , India
| | - S A Amin
- a Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology , Jadavpur University , Kolkata , India
| | - N Adhikari
- a Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology , Jadavpur University , Kolkata , India
| | - T Jha
- a Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology , Jadavpur University , Kolkata , India
| |
Collapse
|
35
|
Fogli S, Neri T, Nuti E, Mattii L, Camodeca C, Rossello A. Matrix metalloproteinase inhibitors prevent the release and proteolytic activity of monocyte/macrophage-derived microparticles. Pharmacol Rep 2019; 71:485-490. [PMID: 31005034 DOI: 10.1016/j.pharep.2019.01.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 01/10/2019] [Accepted: 01/30/2019] [Indexed: 01/02/2023]
Abstract
BACKGROUND The role of monocyte/macrophage-derived microparticles (MPs) in the pathophysiology of cancer and chronic inflammatory diseases has been reported; nevertheless, the mechanism underlying microparticles release is currently unclear. The aim of the current study was to investigate whether matrix metalloproteinase (MMP) inhibitors could prevent MP shedding from stimulated human monocyte/macrophage. METHODS Microparticles were obtained by isolated peripheral blood mononuclear cells after stimulation with the calcium ionophore, A23187. MP shedding, intracellular calcium concentration, analysis of RhoA expression, and proteolytic activities of isolated MPs were assessed in the absence or presence of MMP inhibitors. RESULTS We demonstrated that MMP inhibitors remarkably prevented MP shedding in a concentration-dependent manner with IC50 values in the nano- to micromolar range. Such an effect was related to their ability to reduce the intracellular Ca2+ levels induced by the calcium ionophore and the consequent translocation of RhoA from cytosol to membrane. Furthermore, MMP inhibitors could inhibit the proteolytic activity of cell-derived MPs. CONCLUSIONS The current study provide evidence that MMP inhibitors can prevent MPs shedding from stimulated human monocyte/macrophage and the proteolytic activity of released MPs. Finally, the most active compound tested might represent the lead compound of a new class of molecules with therapeutic potential in cancer and chronic inflammatory diseases.
Collapse
Affiliation(s)
- Stefano Fogli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.
| | - Tommaso Neri
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Elisa Nuti
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | - Letizia Mattii
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | | |
Collapse
|
36
|
Jiang Z, You Q, Zhang X. Medicinal chemistry of metal chelating fragments in metalloenzyme active sites: A perspective. Eur J Med Chem 2019; 165:172-197. [PMID: 30684796 DOI: 10.1016/j.ejmech.2019.01.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 12/22/2018] [Accepted: 01/08/2019] [Indexed: 12/25/2022]
Abstract
Numerous metal-containing enzymes (metalloenzymes) have been considered as drug targets related to diseases such as cancers, diabetes, anemia, AIDS, malaria, bacterial infection, fibrosis, and neurodegenerative diseases. Inhibitors of the metalloenzymes have been developed independently, most of which are mimics of substrates of the corresponding enzymes. However, little attention has been paid to the interactions between inhibitors and active site metal ions. This review is focused on different metal binding fragments and their chelating properties in the metal-containing active binding pockets of metalloenzymes. We have enumerated over one hundred of inhibitors targeting various metalloenzymes and identified over ten kinds of fragments with different binding patterns. Furthermore, we have investigated the inhibitors that are undergoing clinical evaluation in order to help looking for more potential scaffolds bearing metal binding fragments. This review will provide deep insights for the rational design of novel inhibitors targeting the metal-containing binding sites of specific proteins.
Collapse
Affiliation(s)
- Zhensheng Jiang
- Sate Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qidong You
- Sate Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Xiaojin Zhang
- Sate Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Chemistry, School of Science, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
37
|
Cuffaro D, Nuti E, Gifford V, Ito N, Camodeca C, Tuccinardi T, Nencetti S, Orlandini E, Itoh Y, Rossello A. Design, synthesis and biological evaluation of bifunctional inhibitors of membrane type 1 matrix metalloproteinase (MT1-MMP). Bioorg Med Chem 2019; 27:196-207. [PMID: 30522899 DOI: 10.1016/j.bmc.2018.11.041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/27/2018] [Accepted: 11/28/2018] [Indexed: 11/20/2022]
Abstract
Collagen degradation and proMMP-2 activation are major functions of MT1-MMP to promote cancer cell invasion. Since both processes require MT1-MMP homodimerization on the cell surface, herein we propose that the use of bifunctional inhibitors of this enzyme could represent an innovative approach to efficiently reduce tumor growth. A small series of symmetrical dimers derived from previously described monomeric arylsulfonamide hydroxamates was synthesized and tested in vitro on isolated MMPs. A nanomolar MT1-MMP inhibitor, compound 6, was identified and then submitted to cell-based assays on HT1080 fibrosarcoma cells. Dimer 6 reduced MT1-MMP-dependent proMMP-2 activation, collagen degradation and collagen invasion in a dose-dependent manner with better results even compared to its monomeric analogue 4. This preliminary study suggests that dimeric MT1-MMP inhibitors might be further developed and exploited as an alternative tool to reduce cancer cell invasion.
Collapse
Affiliation(s)
- Doretta Cuffaro
- Department of Pharmacy, Università di Pisa, via Bonanno 6, 56126 Pisa, Italy
| | - Elisa Nuti
- Department of Pharmacy, Università di Pisa, via Bonanno 6, 56126 Pisa, Italy
| | - Valentina Gifford
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7FY, United Kingdom
| | - Noriko Ito
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7FY, United Kingdom
| | - Caterina Camodeca
- Department of Pharmacy, Università di Pisa, via Bonanno 6, 56126 Pisa, Italy
| | - Tiziano Tuccinardi
- Department of Pharmacy, Università di Pisa, via Bonanno 6, 56126 Pisa, Italy
| | - Susanna Nencetti
- Department of Pharmacy, Università di Pisa, via Bonanno 6, 56126 Pisa, Italy
| | - Elisabetta Orlandini
- Department of Earth Sciences, University of Pisa, Via Santa Maria 53, 56126 Pisa, Italy
| | - Yoshifumi Itoh
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7FY, United Kingdom
| | - Armando Rossello
- Department of Pharmacy, Università di Pisa, via Bonanno 6, 56126 Pisa, Italy.
| |
Collapse
|
38
|
Wang ZC, Shen FQ, Yang MR, You LX, Chen LZ, Zhu HL, Lu YD, Kong FL, Wang MH. Dihydropyrazothiazole derivatives as potential MMP-2/MMP-8 inhibitors for cancer therapy. Bioorg Med Chem Lett 2018; 28:3816-3821. [PMID: 30342958 DOI: 10.1016/j.bmcl.2018.05.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 04/17/2018] [Accepted: 05/02/2018] [Indexed: 01/24/2023]
|
39
|
Hariono M, Yuliani SH, Istyastono EP, Riswanto FD, Adhipandito CF. Matrix metalloproteinase 9 (MMP9) in wound healing of diabetic foot ulcer: Molecular target and structure-based drug design. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.wndm.2018.05.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
40
|
Sun QA, Lu ZH, Pu XQ, Hu HL, Zhang JH, Yang XJ. Deoxyalkoxyamination of Alcohols for the Synthesis of N
-Alkoxy- N
-alkylbenzenesulfonamides. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800526] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Qi-An Sun
- Key Lab for Advanced Material & Institute of Fine Chemicals; East China University of Science and Technology; 130 Meilong Road 200237 Shanghai China
| | - Ze-Hai Lu
- Key Laboratory of Organofluorine Chemistry; Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; 345 Lingling Road 200032 Shanghai China
| | - Xiao-Qiu Pu
- Key Lab for Advanced Material & Institute of Fine Chemicals; East China University of Science and Technology; 130 Meilong Road 200237 Shanghai China
| | - Hui-Lian Hu
- Key Lab for Advanced Material & Institute of Fine Chemicals; East China University of Science and Technology; 130 Meilong Road 200237 Shanghai China
| | - Jia-heng Zhang
- State Key Laboratory of Advanced Welding and Joining and Research Center of Flexible Printed Electronic Technology; Harbin Institute of Technology; 518055 Shenzhen People's Republic of China
| | - Xian-Jin Yang
- Key Lab for Advanced Material & Institute of Fine Chemicals; East China University of Science and Technology; 130 Meilong Road 200237 Shanghai China
- Key Laboratory of Organofluorine Chemistry; Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; 345 Lingling Road 200032 Shanghai China
| |
Collapse
|
41
|
Sylte I, Dawadi R, Malla N, von Hofsten S, Nguyen TM, Solli AI, Berg E, Adekoya OA, Svineng G, Winberg JO. The selectivity of galardin and an azasugar-based hydroxamate compound for human matrix metalloproteases and bacterial metalloproteases. PLoS One 2018; 13:e0200237. [PMID: 30075004 PMCID: PMC6075749 DOI: 10.1371/journal.pone.0200237] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 06/22/2018] [Indexed: 02/07/2023] Open
Abstract
Inhibitors targeting bacterial enzymes should not interfere with enzymes of the host, and knowledge about structural determinants for selectivity is important for designing inhibitors with a therapeutic potential. We have determined the binding strengths of two hydroxamate compounds, galardin and compound 1b for the bacterial zinc metalloproteases, thermolysin, pseudolysin and auerolysin, known to be bacterial virulence factors, and the two human zinc metalloproteases MMP-9 and MMP-14. The active sites of the bacterial and human enzymes have huge similarities. In addition, we also studied the enzyme-inhibitor interactions by molecular modelling. The obtained Ki values of galardin for MMP-9 and MMP-14 and compound 1b for MMP-9 are approximately ten times lower than previously reported. Compound 1b binds stronger than galardin to both MMP-9 and MMP-14, and docking studies indicated that the diphenyl ether moiety of compound 1b obtains more favourable interactions within the S´1-subpocket than the 4-methylpentanoyl moiety of galardin. Both compounds bind stronger to MMP-9 than to MMP-14, which appears to be due to a larger S´1-subpocket in the former enzyme. Galardin, but not 1b, inhibits the bacterial enzymes, but the galardin Ki values were much larger than for the MMPs. The docking indicates that the S´1-subpockets of the bacterial proteases are too small to accommodate the diphenyl ether moiety of 1b, while the 4-methylpentanoyl moiety of galardin enters the pocket. The present study indicates that the size and shape of the ligand structural moiety entering the S´1-subpocket is an important determinant for selectivity between the studied MMPs and bacterial MPs.
Collapse
Affiliation(s)
- Ingebrigt Sylte
- Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Rangita Dawadi
- Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Nabin Malla
- Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Susannah von Hofsten
- Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Tra-Mi Nguyen
- Department of Pharmacy, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Ann Iren Solli
- Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Eli Berg
- Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Olayiwola A. Adekoya
- Department of Pharmacy, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Gunbjørg Svineng
- Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Jan-Olof Winberg
- Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
- * E-mail:
| |
Collapse
|
42
|
Abstract
Matrix metalloproteinases (MMPs) are structurally related endopeptidases. They are also known as metzincins due to their interaction with zinc ion of the conserved methionine (Met) at the active site. MMPs play an important role in physiological and signaling processes of wound healing, bone resorption and angiogenesis. The structure of MMPs consists of signal peptide, propeptide, catalytic domain, hinge region and hemopexin-like domain. MMP-9 shares high structural and functional similarities with MMP-2, therefore designing selective MMP-9 inhibitors (MMPIs) is challenging. The selectivity can be achieved by targeting S2 subsite of MMP-9 that is having difference with MMP-2. Further, targeting its exosite and protein disulfide isomerase may also provide selective MMPIs. The review highlights the molecular features and basis of MMP-9 enzyme action. The MMPIs reported in the recent years have also been included.
Collapse
|
43
|
Synthesis of new analogs of tetraiodothyroacetic acid (tetrac) as novel angiogenesis inhibitors for treatment of cancer. Bioorg Med Chem Lett 2018. [DOI: 10.1016/j.bmcl.2018.02.045] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
44
|
Structural exploration for the refinement of anticancer matrix metalloproteinase-2 inhibitor designing approaches through robust validated multi-QSARs. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2017.12.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
45
|
Zhong Y, Lu YT, Sun Y, Shi ZH, Li NG, Tang YP, Duan JA. Recent opportunities in matrix metalloproteinase inhibitor drug design for cancer. Expert Opin Drug Discov 2017; 13:75-87. [PMID: 29088927 DOI: 10.1080/17460441.2018.1398732] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
INTRODUCTION The overexpression of matrix metalloproteinase (MMP) plays an important role in the context of tumor invasion and metastasis, and MMP-2 has been characterized as the most validated target for cancer. Therefore, it is necessary to design matrix metalloproteinase inhibitors (MMPIs) that would be active and selective against MMP-2 but non-selective toward other MMPs. Areas covered: This article clearly describes the structural character of MMP-2 followed by a review of the recent development of selective MMP-2 inhibitors based on their basic structures. Expert opinion: Over the past 30 years, MMPs have been considered to be attractive cancer targets, and several different types of synthetic inhibitors have been identified as anticancer agents, but only a small number of small MMPIs have been examined in clinical trials, and none of these molecules has been established as anticancer drugs due to their adverse effects. One major possibility is that the MMPIs used in clinical trials were broad-spectrum drugs that also inhibited the anti-tumor effects and influenced the mediation of the normal physiological processes of MMPs. MMP-2 has recently been characterized as the most validated target for cancer. Therefore, the design and synthesis of selective MMP-2 inhibitors would be helpful for the treatment of cancer.
Collapse
Affiliation(s)
- Yue Zhong
- a Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae , Nanjing University of Chinese Medicine , Nanjing , China
| | - Yu-Ting Lu
- a Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae , Nanjing University of Chinese Medicine , Nanjing , China
| | - Ying Sun
- a Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae , Nanjing University of Chinese Medicine , Nanjing , China
| | - Zhi-Hao Shi
- a Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae , Nanjing University of Chinese Medicine , Nanjing , China.,b Department of Organic Chemistry , China Pharmaceutical University , Nanjing , China
| | - Nian-Guang Li
- a Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae , Nanjing University of Chinese Medicine , Nanjing , China
| | - Yu-Ping Tang
- a Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae , Nanjing University of Chinese Medicine , Nanjing , China.,c Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization and College of Pharmacy , Shaanxi University of Chinese Medicine , Xianyang , China
| | - Jin-Ao Duan
- a Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae , Nanjing University of Chinese Medicine , Nanjing , China
| |
Collapse
|
46
|
Toxicological effects of NCKU-21, a phenanthrene derivative, on cell growth and migration of A549 and CL1-5 human lung adenocarcinoma cells. PLoS One 2017; 12:e0185021. [PMID: 28945763 PMCID: PMC5612657 DOI: 10.1371/journal.pone.0185021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 09/05/2017] [Indexed: 11/19/2022] Open
Abstract
Background Chemotherapy insensitivity continues to pose significant challenges for treating non-small cell lung cancer (NSCLC). The purposes of this study were to investigate whether 3,6-dimethoxy-1,4,5,8-phenanthrenetetraone (NCKU-21) has potential activity to induce effective toxicological effects in different ethnic NSCLC cell lines, A549 and CL1-5 cells, and to examine its anticancer mechanisms. Methods Mitochondrial metabolic activity and the cell-cycle distribution were analyzed using an MTT assay and flow cytometry in NCKU-21-treated cells. NCKU-21-induced cell apoptosis was verified by Annexin V-FITC/propidium iodide (PI) double-staining and measurement of caspase-3 activity. Western blotting and wound-healing assays were applied to respectively evaluate regulation of signaling pathways and cell migration by NCKU-21. Molecular interactions between target proteins and NCKU-21 were predicted and performed by molecular docking. A colorimetric screening assay kit was used to evaluate potential regulation of matrix metalloproteinase-9 (MMP-9) activity by NCKU-21. Results Results indicated that NCKU-21 markedly induced cytotoxic effects that reduced cell viability via cell apoptosis in tested NSCLC cells. Activation of AMP-activated protein kinase (AMPK) and p53 protein expression also increased in both NSCLC cell lines stimulated with NCKU-21. However, repression of PI3K-AKT activation by NCKU-21 was found in CL1-5 cells but not in A549 cells. In addition, increases in phosphatidylserine externalization and caspase-3 activity also confirmed the apoptotic effect of NCKU-21 in both NSCLC cell lines. Moreover, cell migration and translational levels of the gelatinases, MMP-2 and MMP-9, were obviously reduced in both NSCLC cell lines after incubation with NCKU-21. Experimental data obtained from molecular docking suggested that NCKU-21 can bind to the catalytic pocket of MMP-9. However, the in vitro enzyme activity assay indicated that NCKU-21 has the potential to increase MMP-9 activity. Conclusions Our results suggest that NCKU-21 can effectively reduce cell migration and induce apoptosis in A549 and CL1-5 cells, the toxicological effects of which may be partly modulated through PI3K-AKT inhibition, AMPK activation, an increase in the p53 protein, and gelatinase inhibition.
Collapse
|
47
|
Chen F, Wang Z, Wang C, Xu Q, Liang J, Xu X, Yang J, Wang C, Jiang T, Yu R. Application of reverse docking for target prediction of marine compounds with anti-tumor activity. J Mol Graph Model 2017; 77:372-377. [PMID: 28950183 DOI: 10.1016/j.jmgm.2017.09.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/12/2017] [Accepted: 09/14/2017] [Indexed: 11/29/2022]
Abstract
A large number of structures of anti-cancer drug targets have been solved and deposited to the protein data bank already. Identification of the targets for marine compounds with anti-tumor activity presents a challenge for marine natural products scientists. In this study, fast and efficient computational reverse docking was applied to predict the probable targeting proteins of the marine compounds with anti-tumor activity. Crystal structures of the proteins involved in tumor genesis, growth and metastasis were collected from PDB to construct the anti-tumor protein database (APD) for reverse docking. Two non-commercial docking programs, AutoDock Vina and LeDock, were used to perform the docking. Our results suggest that reverse docking is efficient for target fishing of compounds with known anti-tumor activities. In addition, the results show that performance of reverse docking using LeDock is superior to that using AutoDock Vina. Overall, reverse docking is a fast and efficient computational method to identify the probable target of the compounds with anti-tumor activities, and it can be complementary to the biological testing methods.
Collapse
Affiliation(s)
- Fangling Chen
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266003, China
| | - Zhuoya Wang
- School of Life Science, Lanzhou University, Lanzhou, Gansu, 73000, China
| | - Chaoyi Wang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266003, China
| | - Qingliang Xu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266003, China
| | - Jiazhen Liang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266003, China
| | - Ximing Xu
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, 213000, China
| | - Jinbo Yang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266003, China; School of Life Science, Lanzhou University, Lanzhou, Gansu, 73000, China
| | - Changyun Wang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266003, China
| | - Tao Jiang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266003, China
| | - Rilei Yu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266003, China.
| |
Collapse
|
48
|
Wang J, Li W, Wang B, Hu B, Jiang H, Lai B, Li N, Cheng M. In Silicon Approach for Discovery of Chemopreventive Agents. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/s40495-017-0094-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
49
|
Multiple receptor-ligand based pharmacophore modeling and molecular docking to screen the selective inhibitors of matrix metalloproteinase-9 from natural products. J Comput Aided Mol Des 2017. [PMID: 28623487 DOI: 10.1007/s10822-017-0028-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Matrix metalloproteinase-9 (MMP-9) is an attractive target for cancer therapy. In this study, the pharmacophore model of MMP-9 inhibitors is built based on the experimental binding structures of multiple receptor-ligand complexes. It is found that the pharmacophore model consists of six chemical features, including two hydrogen bond acceptors, one hydrogen bond donor, one ring aromatic regions, and two hydrophobic (HY) features. Among them, the two HY features are especially important because they can enter the S1' pocket of MMP-9 which determines the selectivity of MMP-9 inhibitors. The reliability of pharmacophore model is validated based on the two different decoy sets and relevant experimental data. The virtual screening, combining pharmacophore model with molecular docking, is performed to identify the selective MMP-9 inhibitors from a database of natural products. The four novel MMP-9 inhibitors of natural products, NP-000686, NP-001752, NP-014331, and NP-015905, are found; one of them, NP-000686, is used to perform the experiment of in vitro bioassay inhibiting MMP-9, and the IC50 value was estimated to be only 13.4 µM, showing the strongly inhibitory activity of NP-000686 against MMP-9, which suggests that our screening results should be reliable. The binding modes of screened inhibitors with MMP-9 active sites were discussed. In addition, the ADMET properties and physicochemical properties of screened four compounds were assessed. The found MMP-9 inhibitors of natural products could serve as the lead compounds for designing the new MMP-9 inhibitors by carrying out structural modifications in the future.
Collapse
|
50
|
Ara A, Kadoya R, Ishimura H, Shimamura K, Sylte I, Kurita N. Specific interactions between zinc metalloproteinase and its inhibitors: Ab initio fragment molecular orbital calculations. J Mol Graph Model 2017; 75:277-286. [PMID: 28618335 DOI: 10.1016/j.jmgm.2017.05.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 05/19/2017] [Accepted: 05/20/2017] [Indexed: 01/10/2023]
Abstract
Bacteria secrete the enzyme pseudolysin (PLN) to degrade exocellular proteins, and the produced peptides are used as a nutrient for the bacteria. It is thus expected that inhibition of PLN can suppress bacterial growth. Since such inhibitors do not attack to bacteria directly, the risk of producing drug-resistance bacteria is less. However, endogenous proteinases such as the matrix metalloproteinases (MMPs) have active site similar to that of PLN, and there is a possibility that PLN inhibitors also inhibit the activity of MMPs, resulting in a loss of substrate degradation by these proteinases. Therefore, agents that inhibit the activity of only PLN and not MMPs are required. In the present study, we select two compounds (ARP101 and LM2) and investigate their specific interactions with PLN and MMPs by use of ab initio molecular simulations. Based on the results, we propose several novel compounds as candidates for potent PLN inhibition and investigate their binding properties with PLN, elucidating that the compound, in which a toluene group is introduced into LM2, has larger binding energy with PLN compared with the pristine LM2. Therefore, this compound is suggested to be a potent PLN inhibitor.
Collapse
Affiliation(s)
- Ayami Ara
- Department of Computer Science and Engineering, Toyohashi University of Technology, Toyohashi, 441-8580, Japan
| | - Ryushi Kadoya
- Department of Computer Science and Engineering, Toyohashi University of Technology, Toyohashi, 441-8580, Japan
| | - Hiromi Ishimura
- Department of Computer Science and Engineering, Toyohashi University of Technology, Toyohashi, 441-8580, Japan
| | - Kanako Shimamura
- Department of Computer Science and Engineering, Toyohashi University of Technology, Toyohashi, 441-8580, Japan
| | - Ingebrigt Sylte
- Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, NO-9037 Tromsø, Norway
| | - Noriyuki Kurita
- Department of Computer Science and Engineering, Toyohashi University of Technology, Toyohashi, 441-8580, Japan.
| |
Collapse
|