1
|
Asvos X, El Mubarak MA, Karampelas T, Rampias T, Tamvakopoulos C, Sivolapenko GB, Papakyriakou A, Topouzis S, Vassilatis DK, Fokas D. BRF110, an Orally Active Nurr1-RXRα-Selective Rexinoid, Enhances BDNF Expression without Elevating Triglycerides. J Med Chem 2025; 68:4763-4786. [PMID: 39945195 PMCID: PMC11874024 DOI: 10.1021/acs.jmedchem.4c03046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/27/2025] [Accepted: 01/31/2025] [Indexed: 02/28/2025]
Abstract
We report the discovery of a Nurr1-RXRα heterodimer-selective rexinoid which emerged from the structural modification of aminopyrimidine XCT0135908. Although XCT0135908 demonstrated high selectivity for the Nurr1-RXRα heterodimer over other RXRα dimerization partners, its poor in vivo stability and limited brain penetration hindered its utility. Structure-activity relationship (SAR) studies alongside bioactivity evaluations of a diverse series of substituted pyrimidines led to BRF110, a brain-penetrant compound retaining the selective activation of the Nurr1-RXRα heterodimer. BRF110, as XCT0135908, protects dopaminergic cells against the Parkinson's disease-related toxin MPP+ and increases BDNF transcription in mice. Notably, BRF110, in contrast to the market-approved pan-RXR agonist bexarotene, did not elevate triglyceride levels, indicating that enhanced heterodimer selectivity can mitigate off-target in vivo side effects of rexinoids. These findings highlight the potential of heterodimer-selective scaffolds as a strategy for improving the therapeutic profile of rexinoids, addressing significant challenges in the clinical development of RXR-targeting molecules.
Collapse
Affiliation(s)
- Xenophon Asvos
- Department
of Materials Science and Engineering, University
of Ioannina, Ioannina 45110, Greece
| | | | - Theodoros Karampelas
- Center
for Clinical Research, Experimental Surgery, and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens 11527, Greece
| | - Theodoros Rampias
- Center
for Clinical Research, Experimental Surgery, and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens 11527, Greece
| | - Constantin Tamvakopoulos
- Center
for Clinical Research, Experimental Surgery, and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens 11527, Greece
| | | | - Athanasios Papakyriakou
- Institute
of Biosciences and Applications, National
Centre for Scientific Research “Demokritos”, Athens 15341, Greece
| | - Stavros Topouzis
- Department
of Pharmacy, University of Patras, Patras 26504, Greece
| | - Demetrios K. Vassilatis
- Center
for Clinical Research, Experimental Surgery, and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens 11527, Greece
| | - Demosthenes Fokas
- Department
of Materials Science and Engineering, University
of Ioannina, Ioannina 45110, Greece
| |
Collapse
|
2
|
Belyaeva OV, Klyuyeva AV, Vyas A, Berger WK, Halasz L, Yu J, Atigadda VR, Slay A, Goggans KR, Renfrow MB, Kane MA, Nagy L, Kedishvili NY. The retinoid X receptor has a critical role in synthetic rexinoid-induced increase in cellular all-trans-retinoic acid. PLoS One 2024; 19:e0301447. [PMID: 38557762 PMCID: PMC10984533 DOI: 10.1371/journal.pone.0301447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/15/2024] [Indexed: 04/04/2024] Open
Abstract
Rexinoids are agonists of nuclear rexinoid X receptors (RXR) that heterodimerize with other nuclear receptors to regulate gene transcription. A number of selective RXR agonists have been developed for clinical use but their application has been hampered by the unwanted side effects associated with the use of rexinoids and a limited understanding of their mechanisms of action across different cell types. Our previous studies showed that treatment of organotypic human epidermis with the low toxicity UAB30 and UAB110 rexinoids resulted in increased steady-state levels of all-trans-retinoic acid (ATRA), the obligatory ligand of the RXR-RAR heterodimers. Here, we investigated the molecular mechanism underlying the increase in ATRA levels using a dominant negative RXRα that lacks the activation function 2 (AF-2) domain. The results demonstrated that overexpression of dnRXRα in human organotypic epidermis markedly reduced signaling by resident ATRA, suggesting the existence of endogenous RXR ligand, diminished the biological effects of UAB30 and UAB110 on epidermis morphology and gene expression, and nearly abolished the rexinoid-induced increase in ATRA levels. Global transcriptome analysis of dnRXRα-rafts in comparison to empty vector-transduced rafts showed that over 95% of the differentially expressed genes in rexinoid-treated rafts constitute direct or indirect ATRA-regulated genes. Thus, the biological effects of UAB30 and UAB110 are mediated through the AF-2 domain of RXRα with minimal side effects in human epidermis. As ATRA levels are known to be reduced in certain epithelial pathologies, treatment with UAB30 and UAB110 may represent a promising therapy for normalizing the endogenous ATRA concentration and signaling in epithelial tissues.
Collapse
Affiliation(s)
- Olga V. Belyaeva
- Department of Biochemistry and Molecular Genetics, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Alla V. Klyuyeva
- Department of Biochemistry and Molecular Genetics, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Ansh Vyas
- Department of Biochemistry and Molecular Genetics, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Wilhelm K. Berger
- Departments of Medicine and Biological Chemistry, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children’s Hospital, St. Petersburg, FL, United States of America
| | - Laszlo Halasz
- Departments of Medicine and Biological Chemistry, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children’s Hospital, St. Petersburg, FL, United States of America
| | - Jianshi Yu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD, United States of America
| | - Venkatram R. Atigadda
- Department of Dermatology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Aja Slay
- Department of Biochemistry and Molecular Genetics, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Kelli R. Goggans
- Department of Biochemistry and Molecular Genetics, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Matthew B. Renfrow
- Department of Biochemistry and Molecular Genetics, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Maureen A. Kane
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD, United States of America
| | - Laszlo Nagy
- Departments of Medicine and Biological Chemistry, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children’s Hospital, St. Petersburg, FL, United States of America
| | - Natalia Y. Kedishvili
- Department of Biochemistry and Molecular Genetics, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States of America
| |
Collapse
|
3
|
Jan N, Sofi S, Qayoom H, Haq BU, Shabir A, Mir MA. Targeting breast cancer stem cells through retinoids: A new hope for treatment. Crit Rev Oncol Hematol 2023; 192:104156. [PMID: 37827439 DOI: 10.1016/j.critrevonc.2023.104156] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 09/09/2023] [Accepted: 10/06/2023] [Indexed: 10/14/2023] Open
Abstract
Breast cancer is a complex and diverse disease accounting for nearly 30% of all cancers diagnosed in females. But unfortunately, patients develop resistance to the existing chemotherapeutic regimen, resulting in approximately 90% treatment failure. With over half a million deaths annually, it is imperative to explore new therapeutic approaches to combat the disease. Within a breast tumor, a small sub-population of heterogeneous cells, with a unique ability of self-renew and differentiation and responsible for tumor formation, initiation, and recurrence are referred to as breast cancer stem cells (BCSCs). These BCSCs have been identified as one of the main contributors to chemoresistance in breast cancer, making them an attractive target for developing novel therapeutic strategies. These cells exhibit surface biomarkers such as CD44+, CD24-/LOW, ALDH, CD133, and CD49f phenotypes. Higher expression of CD44+ and ALDH activity has been associated with the formation of tumors in various cancers. Moreover, the abnormal regulation of signaling pathways, including Hedgehog, Notch, β-catenin, JAK/STAT, and P13K/AKT/mTOR, leads to the formation of cancer stem cells, resulting in the development of tumors. The growing drug resistance in BC is a significant challenge, highlighting the need for new therapeutic strategies to combat this dreadful disease. Retinoids, a large group of synthetic derivatives of vitamin A, have been studied as chemopreventive agents in clinical trials and have been shown to regulate various crucial biological functions including vision, development, inflammation, and metabolism. On a cellular level, the retinoid activity has been well characterized and translated and is known to induce differentiation and apoptosis, which play important roles in the outcome of the transformation of tissues into malignant. Retinoids have been investigated extensively for their use in the treatment and prevention of cancer due to their high receptor-binding affinity to directly modulate gene expression programs. Therefore, in this study, we aim to summarize the current understanding of BCSCs, their biomarkers, and the associated signaling pathways. Retinoids, such as Adapalene, a third-generation retinoid, have shown promising anti-cancer potential and may serve as therapeutic agents to target BCSCs.
Collapse
Affiliation(s)
- Nusrat Jan
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar 190006, India
| | - Shazia Sofi
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar 190006, India
| | - Hina Qayoom
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar 190006, India
| | - Burhan Ul Haq
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar 190006, India
| | - Aisha Shabir
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar 190006, India
| | - Manzoor Ahmad Mir
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar 190006, India.
| |
Collapse
|
4
|
Yoo HS, Moss KO, Cockrum MA, Woo W, Napoli JL. Energy status regulates levels of the RAR/RXR ligand 9-cis-retinoic acid in mammalian tissues: Glucose reduces its synthesis in β-cells. J Biol Chem 2023; 299:105255. [PMID: 37714463 PMCID: PMC10582780 DOI: 10.1016/j.jbc.2023.105255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/01/2023] [Accepted: 09/10/2023] [Indexed: 09/17/2023] Open
Abstract
9-cis-retinoic acid (9cRA) binds retinoic acid receptors (RAR) and retinoid X receptors (RXR) with nanomolar affinities, in contrast to all-trans-retinoic acid (atRA), which binds only RAR with nanomolar affinities. RXR heterodimerize with type II nuclear receptors, including RAR, to regulate a vast gene array. Despite much effort, 9cRA has not been identified as an endogenous retinoid, other than in pancreas. By revising tissue analysis methods, 9cRA quantification by liquid chromatography-tandem mass spectrometry becomes possible in all mouse tissues analyzed. 9cRA occurs in concentrations similar to or greater than atRA. Fasting increases 9cRA in white and brown adipose, brain and pancreas, while increasing atRA in white adipose, liver and pancreas. 9cRA supports FoxO1 actions in pancreas β-cells and counteracts glucose actions that lead to glucotoxicity; in part by inducing Atg7 mRNA, which encodes the key enzyme essential for autophagy. Glucose suppresses 9cRA biosynthesis in the β-cell lines 832/13 and MIN6. Glucose reduces 9cRA biosynthesis in 832/13 cells by inhibiting Rdh5 transcription, unconnected to insulin, through cAMP and Akt, and inhibiting FoxO1. Through adapting tissue specifically to fasting, 9cRA would act independent of atRA. Widespread occurrence of 9cRA in vivo, and its self-sufficient adaptation to energy status, provides new perspectives into regulation of energy balance, attenuation of insulin and glucose actions, regulation of type II nuclear receptors, and retinoid biology.
Collapse
Affiliation(s)
- Hong Sik Yoo
- Department of Nutritional Sciences and Toxicology, Graduate Program in Metabolic Biology, University of California, Berkeley, Berkeley, California, USA
| | - Kristin Obrochta Moss
- Department of Nutritional Sciences and Toxicology, Graduate Program in Metabolic Biology, University of California, Berkeley, Berkeley, California, USA
| | - Michael A Cockrum
- Department of Nutritional Sciences and Toxicology, Graduate Program in Metabolic Biology, University of California, Berkeley, Berkeley, California, USA
| | - Wonsik Woo
- Department of Nutritional Sciences and Toxicology, Graduate Program in Metabolic Biology, University of California, Berkeley, Berkeley, California, USA
| | - Joseph L Napoli
- Department of Nutritional Sciences and Toxicology, Graduate Program in Metabolic Biology, University of California, Berkeley, Berkeley, California, USA.
| |
Collapse
|
5
|
Melo N, Belyaeva OV, Berger WK, Halasz L, Yu J, Pilli N, Yang Z, Klyuyeva AV, Elmets CA, Atigadda V, Muccio DD, Kane MA, Nagy L, Kedishvili NY, Renfrow MB. Next-generation retinoid X receptor agonists increase ATRA signaling in organotypic epithelium cultures and have distinct effects on receptor dynamics. J Biol Chem 2023; 299:102746. [PMID: 36436565 PMCID: PMC9807999 DOI: 10.1016/j.jbc.2022.102746] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/26/2022] Open
Abstract
Retinoid X receptors (RXRs) are nuclear transcription factors that partner with other nuclear receptors to regulate numerous physiological processes. Although RXR represents a valid therapeutic target, only a few RXR-specific ligands (rexinoids) have been identified, in part due to the lack of clarity on how rexinoids selectively modulate RXR response. Previously, we showed that rexinoid UAB30 potentiates all-trans-retinoic acid (ATRA) signaling in human keratinocytes, in part by stimulating ATRA biosynthesis. Here, we examined the mechanism of action of next-generation rexinoids UAB110 and UAB111 that are more potent in vitro than UAB30 and the FDA-approved Targretin. Both UAB110 and UAB111 enhanced ATRA signaling in human organotypic epithelium at a 50-fold lower concentration than UAB30. This was consistent with the 2- to 5- fold greater increase in ATRA in organotypic epidermis treated with UAB110/111 versus UAB30. Furthermore, at 0.2 μM, UAB110/111 increased the expression of ATRA genes up to 16-fold stronger than Targretin. The less toxic and more potent UAB110 also induced more changes in differential gene expression than Targretin. Additionally, our hydrogen deuterium exchange mass spectrometry analysis showed that both ligands reduced the dynamics of the ligand-binding pocket but also induced unique dynamic responses that were indicative of higher affinity binding relative to UAB30, especially for Helix 3. UAB110 binding also showed increased dynamics towards the dimer interface through the Helix 8 and Helix 9 regions. These data suggest that UAB110 and UAB111 are potent activators of RXR-RAR signaling pathways but accomplish activation through different molecular responses to ligand binding.
Collapse
Affiliation(s)
- Nathalia Melo
- O'Neil Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, USA; Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Olga V Belyaeva
- O'Neil Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, USA; Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Wilhelm K Berger
- Departments of Medicine and Biological Chemistry, Johns Hopkins University School of Medicine Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, Florida, USA
| | - Laszlo Halasz
- Departments of Medicine and Biological Chemistry, Johns Hopkins University School of Medicine Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, Florida, USA
| | - Jianshi Yu
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland, USA
| | - Nagesh Pilli
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland, USA
| | - Zhengrong Yang
- O'Neil Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, USA; Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Alla V Klyuyeva
- O'Neil Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Craig A Elmets
- O'Neil Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, USA; Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama, USA; Birmingham VA Medical Center, Birmingham, Alabama, USA
| | - Venkatram Atigadda
- O'Neil Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, USA; Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Donald D Muccio
- O'Neil Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, USA; Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Maureen A Kane
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland, USA
| | - Laszlo Nagy
- Departments of Medicine and Biological Chemistry, Johns Hopkins University School of Medicine Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, Florida, USA
| | - Natalia Y Kedishvili
- O'Neil Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, USA; Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA.
| | - Matthew B Renfrow
- O'Neil Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, USA; Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA.
| |
Collapse
|
6
|
Atigadda VR, Kashyap MP, Yang Z, Chattopadhyay D, Melo N, Sinha R, Belyaeva OV, Chou CF, Chang PL, Kedishvili NY, Grubbs CJ, Renfrow MB, Muccio DD, Elmets CA, Athar M. Conformationally Defined Rexinoids for the Prevention of Inflammation and Nonmelanoma Skin Cancers. J Med Chem 2022; 65:14409-14423. [PMID: 36318154 PMCID: PMC9942614 DOI: 10.1021/acs.jmedchem.2c00735] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Compound 1 is a potent rexinoid that is highly effective in cancer chemoprevention but elevates serum triglycerides. In an effort to separate the lipid toxicity from the anticancer activity of 1, we synthesized four new analogs of rexinoid 1, of which three rexinoids did not elevate serum triglycerides. Rexinoids 3 and 4 are twice as potent as rexinoid 1 in binding to Retinoid X receptor (RXR). All-trans retinoic acid (ATRA) plays a key role in maintaining skin homeostasis, and rexinoids 3-6 are highly effective in upregulating the genes responsible for the biosynthesis of ATRA. Inflammation plays a key role in skin cancer, and rexinoids 3 and 4 are highly effective in diminishing LPS-induced inflammation. Rexinoids 3 and 4 are highly effective in preventing UVB-induced nonmelanoma skin cancer (NMSC) without displaying any overt toxicities. Biophysical studies of rexinoids 3 and 5 bound to hRXRα-ligand binding domain (LBD) reveal important conformational and dynamical differences in the ligand binding domain.
Collapse
|
7
|
Jdeed S, Lengyel M, Uray IP. Redistribution of the SWI/SNF Complex Dictates Coordinated Transcriptional Control over Epithelial–Mesenchymal Transition of Normal Breast Cells through TGF-β Signaling. Cells 2022; 11:cells11172633. [PMID: 36078038 PMCID: PMC9454592 DOI: 10.3390/cells11172633] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/12/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
Therapeutic targets in cancer cells defective for the tumor suppressor ARID1A are fundamentals of synthetic lethal strategies. However, whether modulating ARID1A function in premalignant breast epithelial cells could be exploited to reduce carcinogenic potential remains to be elucidated. In search of chromatin-modulating mechanisms activated by anti-proliferative agents in normal breast epithelial (HME-hTert) cells, we identified a distinct pattern of genome-wide H3K27 histone acetylation marks characteristic for the combined treatment by the cancer preventive rexinoid bexarotene (Bex) and carvedilol (Carv). Among these marks, several enhancers functionally linked to TGF-β signaling were enriched for ARID1A and Brg1, subunits within the SWI/SNF chromatin-remodeling complex. The recruitment of ARID1A and Brg1 was associated with the suppression of TGFBR2, KLF4, and FoxQ1, and the induction of BMP6, while the inverse pattern ensued upon the knock-down of ARID1A. Bex+Carv treatment resulted in fewer cells expressing N-cadherin and dictated a more epithelial phenotype. However, the silencing of ARID1A expression reversed the ability of Bex and Carv to limit epithelial–mesenchymal transition. The nuclear levels of SMAD4, a canonical mediator of TGF-β action, were more effectively suppressed by the combination than by TGF-β. In contrast, TGF-β treatment exceeded the ability of Bex+Carv to lower nuclear FoxQ1 levels and induced markedly higher E-cadherin positivity, indicating a target-selective antagonism of Bex+Carv to TGF-β action. In summary, the chromatin-wide redistribution of ARID1A by Bex and Carv treatment is instrumental in the suppression of genes mediating TGF-β signaling, and, thus, the morphologic reprogramming of normal breast epithelial cells. The concerted engagement of functionally linked targets using low toxicity clinical agents represents an attractive new approach for cancer interception.
Collapse
|
8
|
Watanabe M, Nakamura-Nakayama M, Fujihara M, Kawasaki M, Nakano S, Kakuta H. Increased Molecular Flexibility Widens the Gap between K i and K d values in Screening for Retinoid X Receptor Modulators. ACS Med Chem Lett 2022; 13:211-217. [PMID: 35178177 PMCID: PMC8842113 DOI: 10.1021/acsmedchemlett.1c00575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 01/19/2022] [Indexed: 11/29/2022] Open
Abstract
Screening for small-molecule modulators targeting a particular receptor is frequently based on measurement of K d, i.e., the binding constant between the receptor and the compound of interest. However, K d values also reflect binding at receptor protein sites other than the modulatory site. We designed derivatives of retinoid X receptor (RXR) antagonist CBTF-EE (1) with modifications that altered their conformational flexibility. Compounds 6a,b and 7a,b showed quite similar K d values, but 7a,b exhibited 10-fold higher K i values than those of 6a,b. Further, 6a,b showed potent RXR-antagonistic activity, while 7a,b were inactive. These results suggest that increased conformational flexibility promotes binding at nontarget receptor sites. In this situation, conventional determination of K d is less effective for screening purposes than the determination of K i using a ligand that binds specifically to the site regulating transcriptional activity. Thus, the use of K i values for orthosteric ligands may increase the hit rate in screening active regulatory molecules.
Collapse
Affiliation(s)
- Masaki Watanabe
- Division
of Pharmaceutical Sciences, Okayama University
Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 1-1-1, Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Mariko Nakamura-Nakayama
- Division
of Pharmaceutical Sciences, Okayama University
Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 1-1-1, Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Michiko Fujihara
- Division
of Pharmaceutical Sciences, Okayama University
Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 1-1-1, Tsushima-naka, Kita-ku, Okayama 700-8530, Japan,AIBIOS
K.K., Tri-Seven Roppongi
8F, 7-7-7 Roppongi, Minato-ku, Tokyo 106-0032, Japan
| | - Mayu Kawasaki
- Graduate
School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Shogo Nakano
- Graduate
School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Hiroki Kakuta
- Division
of Pharmaceutical Sciences, Okayama University
Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 1-1-1, Tsushima-naka, Kita-ku, Okayama 700-8530, Japan,. Phone: +81-(0)86-251-7963
| |
Collapse
|
9
|
Yang Z, Muccio DD, Melo N, Atigadda VR, Renfrow MB. Stability of the Retinoid X Receptor-α Homodimer in the Presence and Absence of Rexinoid and Coactivator Peptide. Biochemistry 2021; 60:1165-1177. [PMID: 33792309 PMCID: PMC9949482 DOI: 10.1021/acs.biochem.0c00865] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Differential scanning calorimetry and differential scanning fluorimetry were used to measure the thermal stability of human retinoid X receptor-α ligand binding domain (RXRα LBD) homodimer in the absence or presence of rexinoid and coactivator peptide, GRIP-1. The apo-RXRα LBD homodimer displayed a single thermal unfolding transition with a Tm of 58.7 °C and an unfolding enthalpy (ΔH) of 673 kJ/mol (12.5 J/g), much lower than average value (35 J/g) of small globular proteins. Using a heat capacity change (ΔCp) of 15 kJ/(mol K) determined by measurements at different pH values, the free energy of unfolding (ΔG) of the native state was 33 kJ/mol at 37 °C. Rexinoid binding to the apo-homodimer increased Tm by 5 to 9 °C and increased the ΔG of the native homodimer by 12 to 20 kJ/mol at 37 °C, consistent with the nanomolar dissociation constant (Kd) of the rexinoids. GRIP-1 binding to holo-homodimers containing rexinoid resulted in additional increases in ΔG of 14 kJ/mol, a value that was the same for all three rexinoids. Binding of rexinoid and GRIP-1 resulted in a combined 50% increase in unfolding enthalpy, consistent with reduced structural fluidity and more compact folding observed in other published structural studies. The complexes of UAB110 and UAB111 are each more stable than the UAB30 complex by 8 kJ/mol due to enhanced hydrophobic interactions in the binding pocket because of their larger end groups. This increase in thermodynamic stability positively correlates with their improved RXR activation potency. Thermodynamic measurements are thus valuable in predicting agonist potency.
Collapse
Affiliation(s)
- Zhengrong Yang
- Department of Biochemistry & Molecular Genetics, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Donald D Muccio
- Department of Biochemistry & Molecular Genetics, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Nathalia Melo
- Department of Biochemistry & Molecular Genetics, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Venkatram R Atigadda
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Matthew B Renfrow
- Department of Biochemistry & Molecular Genetics, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| |
Collapse
|
10
|
Liang C, Qiao G, Liu Y, Tian L, Hui N, Li J, Ma Y, Li H, Zhao Q, Cao W, Liu H, Ren X. Overview of all-trans-retinoic acid (ATRA) and its analogues: Structures, activities, and mechanisms in acute promyelocytic leukaemia. Eur J Med Chem 2021; 220:113451. [PMID: 33895500 DOI: 10.1016/j.ejmech.2021.113451] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 04/01/2021] [Accepted: 04/04/2021] [Indexed: 02/04/2023]
Abstract
All-trans-retinoic acid (ATRA) is effective for preventing cancer and treating skin diseases and acute promyelocytic leukaemia (APL). These pharmacological effects of ATRA are mainly mediated by retinoid X receptors (RXRs) and retinoic acid receptors (RARs). This article provides a comprehensive overview of the clinical progress on and the molecular mechanisms of ATRA in the treatment of APL. ATRA can promote the transcriptional activation of differentiation-related genes and regulate autophagy by inhibiting mTOR, which results in anti-APL effects. In detail, the structures, pharmacological effects, and clinical studies of 68 types of ATRA analogues are described. These compounds have excellent antitumour therapeutic potential and could be used as lead compounds for further development and research.
Collapse
Affiliation(s)
- Chengyuan Liang
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an, 710021, PR China.
| | - Guaiping Qiao
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Yuzhi Liu
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Lei Tian
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Nan Hui
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Juan Li
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Yuling Ma
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Han Li
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Qianqian Zhao
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Wenqiang Cao
- Zhuhai Jinan Selenium Source Nanotechnology Co., Ltd., Hengqin New Area, Zhuhai, Guangdong, China
| | - Hong Liu
- Zhuhai Jinan Selenium Source Nanotechnology Co., Ltd., Hengqin New Area, Zhuhai, Guangdong, China.
| | - Xiaodong Ren
- Medical College, Guizhou University, Guiyang, 550025, PR China.
| |
Collapse
|
11
|
Marayati R, Bownes LV, Quinn CH, Wadhwani N, Williams AP, Markert HR, Atigadda V, Aye JM, Stewart JE, Yoon KJ, Beierle EA. Novel second-generation rexinoid induces growth arrest and reduces cancer cell stemness in human neuroblastoma patient-derived xenografts. J Pediatr Surg 2021; 56:1165-1173. [PMID: 33762121 PMCID: PMC8131234 DOI: 10.1016/j.jpedsurg.2021.02.041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 02/05/2021] [Indexed: 10/22/2022]
Abstract
INTRODUCTION The poor therapeutic efficacy seen with current treatments for neuroblastoma may be attributed to stem cell-like cancer cells (SCLCCs), a subpopulation of cancer cells associated with poor prognosis and disease recurrence. Retinoic acid (RA) is a differentiating agent used as maintenance therapy for high-risk neuroblastoma but nearly half of children treated with RA relapse. We hypothesized that 6-Methyl-UAB30 (6-Me), a second-generation rexinoid recently developed with a favorable toxicity profile compared to RA, would reduce cancer cell stemness in human neuroblastoma patient-derived xenografts (PDXs). METHODS Cells from three neuroblastoma PDXs were treated with 6-Me and proliferation, viability, motility, and cell-cycle progression were assessed. CD133 expression, sphere formation, and mRNA abundance of stemness and differentiation markers were evaluated using flow cytometry, in vitro extreme limiting dilution analysis, and real-time PCR, respectively. RESULTS Treatment with 6-Me decreased proliferation, viability, and motility, and induced cell-cycle arrest and differentiation in all three neuroblastoma PDXs. In addition, 6-Me treatment led to decreased CD133 expression, decreased sphere-forming ability, and decreased mRNA abundance of Oct4, Nanog, and Sox2, indicating decreased cancer cell stemness. CONCLUSIONS 6-Me decreased oncogenicity and reduced cancer cell stemness of neuroblastoma PDXs, warranting further exploration of 6-Me as potential novel therapy for neuroblastoma.
Collapse
Affiliation(s)
- Raoud Marayati
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Laura V. Bownes
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Colin H. Quinn
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Nikita Wadhwani
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Adele P. Williams
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Hooper R. Markert
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Venkatram Atigadda
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Jamie M. Aye
- Division of Pediatric Hematology Oncology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Jerry E. Stewart
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Karina J. Yoon
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Elizabeth A. Beierle
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| |
Collapse
|
12
|
Marayati R, Williams AP, Bownes LV, Quinn CH, Stewart JE, Mroczek-Musulman E, Atigadda VR, Beierle EA. Novel retinoic acid derivative induces differentiation and growth arrest in neuroblastoma. J Pediatr Surg 2020; 55:1072-1080. [PMID: 32164984 PMCID: PMC7299742 DOI: 10.1016/j.jpedsurg.2020.02.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 02/20/2020] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Retinoic acid (RA) is a differentiating agent utilized as maintenance therapy for high-risk neuroblastoma (NB), but associated toxicities limit its use. We have previously shown that a non-toxic, novel rexinoid, 9-cis-UAB30 (UAB30), decreased NB cell proliferation and in vivo tumor growth. A second generation, mono-methylated compound, 6-Methyl-UAB30 (6-Me), has been recently designed having greater potency compared with UAB30. In the current study, we hypothesized that 6-Me would inhibit NB cell proliferation and survival and induce differentiation and cell-cycle arrest. METHODS Proliferation and viability were measured in four human NB cell lines following treatment with UAB30 or 6-Me. Cell-cycle was analyzed and tumor cell stemness was evaluated with extreme limiting dilution assays and immunoblotting for expression of stem cell markers. A xenograft murine model was utilized to study the effects of 6-Me in vivo. RESULTS Treatment with 6-Me led to decreased proliferation and viability, induced cell cycle arrest, and increased neurite outgrowth, indicating differentiation of surviving cells. Furthermore, treatment with 6-Me decreased tumorsphere formation and expression of stem cell markers. Finally, inhibition of tumor growth and increased animal survival was observed in vivo following treatment with 6-Me. CONCLUSION These results indicate a potential therapeutic role for this novel rexinoid in neuroblastoma treatment.
Collapse
Affiliation(s)
- Raoud Marayati
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Adele P. Williams
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Laura V. Bownes
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Colin H. Quinn
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jerry E. Stewart
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | - Venkatram R. Atigadda
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Elizabeth A. Beierle
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
13
|
Application of human organotypic skin raft cultures for analysis of retinoid metabolism, retinoic acid signaling, and screening of bioactive rexinoids. Methods Enzymol 2020. [PMID: 32359656 DOI: 10.1016/bs.mie.2020.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Several human enzymes of the short-chain dehydrogenase/reductase (SDR) superfamily of proteins exhibit catalytic oxidoreductive activity toward retinoid substrates in vitro. For some retinoid-active enzymes, their physiological significance for retinoid metabolism is supported by phenotypes linked to naturally occurring mutations in human genes or by targeted gene knockout studies of their murine homologs. However, for those enzymes that are not well conserved or display properties different from their murine counterparts, evaluation of their physiological roles can be challenging. Here, we describe the adaptation of stratified organotypic culture of human epidermis for evaluating the contribution of human putative SDR retinol dehydrogenases to biosynthesis of all-trans-retinoic acid in a three-dimensional cellular model highly sensitive to the levels of all-trans-retinol and all-trans-retinoic acid. In addition to providing a valuable readout of metabolic changes occurring in the presence or absence of the enzyme of interest, this model allows for evaluation of the effects of various retinoid and rexinoid therapeutic compounds on retinoic acid signaling, cell growth and differentiation.
Collapse
|
14
|
Schierle S, Merk D. Therapeutic modulation of retinoid X receptors – SAR and therapeutic potential of RXR ligands and recent patents. Expert Opin Ther Pat 2019; 29:605-621. [DOI: 10.1080/13543776.2019.1643322] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Simone Schierle
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Frankfurt, Germany
| | - Daniel Merk
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Frankfurt, Germany
| |
Collapse
|
15
|
Giraudo A, Krall J, Bavo F, Nielsen B, Kongstad KT, Rolando B, De Blasio R, Gloriam DE, Löffler R, Thiesen L, Harpsøe K, Frydenvang K, Boschi D, Wellendorph P, Lolli ML, Jensen AA, Frølund B. Five-Membered N-Heterocyclic Scaffolds as Novel Amino Bioisosteres at γ-Aminobutyric Acid (GABA) Type A Receptors and GABA Transporters. J Med Chem 2019; 62:5797-5809. [DOI: 10.1021/acs.jmedchem.9b00026] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Alessandro Giraudo
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
- Department of Science and Drug Technology, University of Torino,
Via Pietro Giuria 9, 10125 Torino, Italy
| | - Jacob Krall
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Francesco Bavo
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
- Department of Pharmaceutical Sciences, University of Milan, via Mangiagalli 25, 20133 Milano, Italy
| | - Birgitte Nielsen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Kenneth T. Kongstad
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Barbara Rolando
- Department of Science and Drug Technology, University of Torino,
Via Pietro Giuria 9, 10125 Torino, Italy
| | - Rossella De Blasio
- Department of Science and Drug Technology, University of Torino,
Via Pietro Giuria 9, 10125 Torino, Italy
| | - David E. Gloriam
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Rebekka Löffler
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Louise Thiesen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Kasper Harpsøe
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Karla Frydenvang
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Donatella Boschi
- Department of Science and Drug Technology, University of Torino,
Via Pietro Giuria 9, 10125 Torino, Italy
| | - Petrine Wellendorph
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Marco L. Lolli
- Department of Science and Drug Technology, University of Torino,
Via Pietro Giuria 9, 10125 Torino, Italy
| | - Anders A. Jensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Bente Frølund
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| |
Collapse
|
16
|
de Almeida NR, Conda-Sheridan M. A review of the molecular design and biological activities of RXR agonists. Med Res Rev 2019; 39:1372-1397. [PMID: 30941786 DOI: 10.1002/med.21578] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 03/09/2019] [Accepted: 03/16/2019] [Indexed: 12/13/2022]
Abstract
An attractive approach to combat disease is to target theregulation of cell function. At the heart of this task are nuclear receptors (NRs); which control functions such as gene transcription. Arguably, the key player in this regulatory machinery is the retinoid X receptor (RXR). This NR associates with a third of the NRs found in humans. Scientists have hypothesized that controlling the activity of RXR is an attractive approach to control cellular functions that modulate diseases such as cancer, diabetes, Alzheimer's disease and Parkinson's disease. In this review, we will describe the key features of the RXR, present a historic perspective of the first RXR agonists, and discuss various templates that have been reported to activate RXR with a focus on their molecular structure, biological activity, and limitations. Finally, we will present an outlook of the field and future directions and considerations to synthesize or modulate RXR agonists to make these compounds a clinical reality.
Collapse
Affiliation(s)
| | - Martin Conda-Sheridan
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
17
|
Dheer Y, Chitranshi N, Gupta V, Sharma S, Pushpitha K, Abbasi M, Mirzaei M, You Y, Graham SL, Gupta V. Retinoid x receptor modulation protects against ER stress response and rescues glaucoma phenotypes in adult mice. Exp Neurol 2019; 314:111-125. [PMID: 30703361 DOI: 10.1016/j.expneurol.2019.01.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 11/23/2018] [Accepted: 01/22/2019] [Indexed: 11/26/2022]
Abstract
Retinoid X receptors (RXRs) play an important role in transcription, are involved in numerous cellular networks from cell proliferation to lipid metabolism and are essential for normal eye development. RXRs form homo or heterodimers with other nuclear receptors, bind to DNA response elements and regulate several biological processes including neurogenesis. Mounting evidence suggests that RXR activation by selective RXR modulators (sRXRms) may be neuroprotective in the central nervous system. However, their potential neuroprotective role in the retina and specifically in glaucoma remains unexplored. This study investigated changes in RXR expression in the human and mouse retina under glaucomatous stress conditions and investigated the effect of RXR modulation on the RGCs using pharmacological approaches. RXR protein levels in retina were downregulated in both human glaucoma and experimental RGC injury models while RXR agonist, bexarotene treatment resulted in upregulation of RXR expression particularly in the inner retinal layers. Retinal electrophysiological recordings and histological analysis indicated that inner retinal function and retinal laminar structure were preserved upon treatment with bexarotene. These protective effects were associated with downregulation of ER stress marker response upon bexarotene treatment under glaucoma conditions. Overall, retinal RXR modulation by bexarotene significantly protected RGCs in vivo in both acute and chronic glaucoma models.
Collapse
Affiliation(s)
- Yogita Dheer
- Faculty of Medicine and Health Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW 2109, Australia.
| | - Nitin Chitranshi
- Faculty of Medicine and Health Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW 2109, Australia
| | - Veer Gupta
- School of Medicine, Deakin University, Melbourne, Australia
| | - Samridhi Sharma
- Faculty of Medicine and Health Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW 2109, Australia
| | - Kanishka Pushpitha
- Faculty of Medicine and Health Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW 2109, Australia
| | - Mojdeh Abbasi
- Faculty of Medicine and Health Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW 2109, Australia
| | - Mehdi Mirzaei
- Department of Molecular Science, Macquarie University, North Ryde, NSW 2109, Australia
| | - Yuyi You
- Save Sight Institute, Sydney University, Sydney, NSW 2000, Australia
| | - Stuart L Graham
- Faculty of Medicine and Health Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW 2109, Australia; Save Sight Institute, Sydney University, Sydney, NSW 2000, Australia
| | - Vivek Gupta
- Faculty of Medicine and Health Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW 2109, Australia.
| |
Collapse
|
18
|
Abstract
Retinoid X receptors (RXRs) are promiscuous partners of heterodimeric associations with other members of the Nuclear Receptor (NR) superfamily. RXR ligands ("rexinoids") either transcriptionally activate the "permissive" subclass of heterodimers or synergize with partner ligands in the "nonpermissive" subclass of heterodimers. The rationale for rexinoid design with a wide structural diversity going from the structures of existing complexes with RXR determined by X-Ray, to natural products and other ligands discovered by high-throughput screening (HTS), mere serendipity, and rationally designed based on Molecular Modeling, will be described. Included is the new generation of ligands that modulate the structure of specific receptor surfaces that serve to communicate with other regulators. The panel of the known RXR agonists, partial (ant)agonists, and/or heterodimer-selective rexinoids require the exploration of their therapeutic potential in order to overcome some of the current limitations of rexinoids in therapy.
Collapse
Affiliation(s)
- Claudio Martínez
- Departamento de Química Orgánica, Facultade de Química, CINBIO and IBIV, Universidade de Vigo, Vigo, Spain
| | - José A Souto
- Departamento de Química Orgánica, Facultade de Química, CINBIO and IBIV, Universidade de Vigo, Vigo, Spain
| | - Angel R de Lera
- Departamento de Química Orgánica, Facultade de Química, CINBIO and IBIV, Universidade de Vigo, Vigo, Spain.
| |
Collapse
|
19
|
Abstract
In this review, we address selected areas that are central to the state-of-the-art of cancer prevention science. The emphasis on prevention as a viable and critical approach to decreasing cancer mortality has gained traction in recent years, evidenced by its inclusion in the US Vice President's Cancer Initiative (also termed 'Moonshot'). Cancer prevention occurs by arresting, slowing down, or reversing the carcinogenic process before invasion into surrounding tissue or by avoiding or blocking causative exposure. An important challenge is to identify individuals who will benefit most from preventive interventions with the least possible harm. Preventive interventions range from avoiding known carcinogens (e.g., tobacco or asbestos) to intervening with anticarcinogenic strategies (behavioral modifications , such as diet and exercise; medications; nutritional agents; and vaccination against causative agents). Here, we focus on active intervention with measures involving pharmaceutical and immunological agents.
Collapse
Affiliation(s)
- Barbara K Dunn
- National Cancer Institute, Division of Cancer Prevention, 9609 Medical Center Drive, MSC 9787, Bethesda, MD 20892-9787, USA
| | - Barnett S Kramer
- National Cancer Institute, Division of Cancer Prevention, 9609 Medical Center Drive, MSC 9787, Bethesda, MD 20892-9787, USA
| |
Collapse
|
20
|
Affiliation(s)
- Haider Behbehani
- Department of Chemistry, Faculty of Science, Kuwait University, Safat, Kuwait
| | - Kamal M. Dawood
- Department of Chemistry, Faculty of Science, Kuwait University, Safat, Kuwait
| | - Thoraya A. Farghaly
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah Almukkarramah, Saudi Arabia
| |
Collapse
|
21
|
Vitamin D receptor regulates autophagy in the normal mammary gland and in luminal breast cancer cells. Proc Natl Acad Sci U S A 2017; 114:E2186-E2194. [PMID: 28242709 PMCID: PMC5358377 DOI: 10.1073/pnas.1615015114] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Epidemiological evidence suggests that vitamin D can protect women from developing breast cancer (BC). This study reveals that vitamin D and its receptor regulate autophagy in both normal mammary epithelial cells and luminal BCs, and suggests a potential mechanism underlying the link between vitamin D levels and BC risk. In addition, this work suggests that vitamin D receptor ligands could be exploited therapeutically for the treatment of a significant subset of BCs. Women in North America have a one in eight lifetime risk of developing breast cancer (BC), and a significant proportion of these individuals will develop recurrent BC and will eventually succumb to the disease. Metastatic, therapy-resistant BC cells are refractory to cell death induced by multiple stresses. Here, we document that the vitamin D receptor (VDR) acts as a master transcriptional regulator of autophagy. Activation of the VDR by vitamin D induces autophagy and an autophagic transcriptional signature in BC cells that correlates with increased survival in patients; strikingly, this signature is present in the normal mammary gland and is progressively lost in patients with metastatic BC. A number of epidemiological studies have shown that sufficient vitamin D serum levels might be protective against BC. We observed that dietary vitamin D supplementation in mice increases basal levels of autophagy in the normal mammary gland, highlighting the potential of vitamin D as a cancer-preventive agent. These findings point to a role of vitamin D and the VDR in modulating autophagy and cell death in both the normal mammary gland and BC cells.
Collapse
|
22
|
Muccio DD, Atigadda VR, Brouillette WJ, Bland KI, Krontiras H, Grubbs CJ. Translation of a Tissue-Selective Rexinoid, UAB30, to the Clinic for Breast Cancer Prevention. Curr Top Med Chem 2017; 17:676-695. [PMID: 27320329 PMCID: PMC9904082 DOI: 10.2174/1568026616666160617093604] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 03/25/2016] [Accepted: 03/25/2016] [Indexed: 11/22/2022]
Abstract
This review focuses on our efforts to translate a low-toxicity retinoid X receptor-selective agonist, UAB30, to the clinic for the prevention of breast cancers. The review is divided into several sections. First, the current status of breast cancer prevention is discussed. Next, preclinical studies are presented that support translation of rexinoids to the clinic for cancer prevention. While current FDAapproved retinoids and rexinoids demonstrate profound effects in treating cancers, they lack sufficient safety for long term use in the high risk population that is otherwise disease free. The review stresses the need to identify cancer preventive drugs that are effective and safe in order to gain wide use in the clinic. Due to the heterogeneity of the disease, UAB30 is evaluated for the prevention of ER-positive and ER-negative mammary cancers. Since selective estrogen receptor modulators and aromatase inhibitors are used clinically to prevent and treat ER-positive breast cancers, preclinical studies also must demonstrate efficacy of UAB30 in combination with existing drugs under use in the clinic. To support an Investigational New Drug Application to the FDA, data on pharmacology and toxicity as well as mutagenicity is gathered prior to human trials. The review concludes with a discussion of the outcomes of human Phase 0/1 clinical trials that determine the safety and pharmacology of UAB30. These studies are essential before this agent is evaluated for efficacy in phase 2 trials. Success in phase 2 evaluation is critical before long-term and costly phase 3 trials are undertaken. The lack of surrogate biomarkers as endpoints for phase 2 evaluation of rexinoid preventive agents is discussed.
Collapse
Affiliation(s)
- Donald D. Muccio
- Department of Chemistry, University of Alabama at Birmingham, Birmingham Alabama 35294 USA
| | - Venkatram R Atigadda
- Department of Chemistry, University of Alabama at Birmingham, Birmingham Alabama 35294 USA
| | - Wayne J Brouillette
- Department of Chemistry, University of Alabama at Birmingham, Birmingham Alabama 35294 USA
| | - Kirby I Bland
- Department of Surgery, University of Alabama at Birmingham, Birmingham Alabama 35294 USA
| | - Helen Krontiras
- Department of Surgery, University of Alabama at Birmingham, Birmingham Alabama 35294 USA
| | - Clinton J Grubbs
- Department of Surgery, University of Alabama at Birmingham, Birmingham Alabama 35294 USA
| |
Collapse
|
23
|
Retinoid X Receptor Agonists Upregulate Genes Responsible for the Biosynthesis of All-Trans-Retinoic Acid in Human Epidermis. PLoS One 2016; 11:e0153556. [PMID: 27078158 PMCID: PMC4831765 DOI: 10.1371/journal.pone.0153556] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 03/31/2016] [Indexed: 11/26/2022] Open
Abstract
UAB30 is an RXR selective agonist that has been shown to have potential cancer chemopreventive properties. Due to high efficacy and low toxicity, it is currently being evaluated in human Phase I clinical trials by the National Cancer Institute. While UAB30 shows promise as a low toxicity chemopreventive drug, the mechanism of its action is not well understood. In this study, we investigated the effects of UAB30 on gene expression in human organotypic skin raft cultures and mouse epidermis. The results of this study indicate that treatment with UAB30 results in upregulation of genes responsible for the uptake and metabolism of all-trans-retinol to all-trans-retinoic acid (ATRA), the natural agonist of RAR nuclear receptors. Consistent with the increased expression of these genes, the steady-state levels of ATRA are elevated in human skin rafts. In ultraviolet B (UVB) irradiated mouse skin, the expression of ATRA target genes is found to be reduced. A reduced expression of ATRA sensitive genes is also observed in epidermis of mouse models of UVB-induced squamous cell carcinoma and basal cell carcinomas. However, treatment of mouse skin with UAB30 prior to UVB irradiation prevents the UVB-induced decrease in expression of some of the ATRA-responsive genes. Considering its positive effects on ATRA signaling in the epidermis and its low toxicity, UAB30 could be used as a chemoprophylactic agent in the treatment of non-melanoma skin cancer, particularly in organ transplant recipients and other high risk populations.
Collapse
|
24
|
Papi A, Orlandi M. Role of nuclear receptors in breast cancer stem cells. World J Stem Cells 2016; 8:62-72. [PMID: 27022437 PMCID: PMC4807310 DOI: 10.4252/wjsc.v8.i3.62] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 12/17/2015] [Accepted: 01/27/2016] [Indexed: 02/06/2023] Open
Abstract
The recapitulation of primary tumour heterogenity and the existence of a minor sub-population of cancer cells, capable of initiating tumour growth in xenografts on serial passages, led to the hypothesis that cancer stem cells (CSCs) exist. CSCs are present in many tumours, among which is breast cancer. Breast CSCs (BCSCs) are likely to sustain the growth of the primary tumour mass, as well as to be responsible for disease relapse and metastatic spreading. Consequently, BCSCs represent the most significant target for new drugs in breast cancer therapy. Both the hypoxic condition in BCSCs biology and pro-inflammatory cytokine network has gained increasing importance in the recent past. Breast stromal cells are crucial components of the tumours milieu and are a major source of inflammatory mediators. Recently, the anti-inflammatory role of some nuclear receptors ligands has emerged in several diseases, including breast cancer. Therefore, the use of nuclear receptors ligands may be a valid strategy to inhibit BCSCs viability and consequently breast cancer growth and disease relapse.
Collapse
Affiliation(s)
- Alessio Papi
- Alessio Papi, Marina Orlandi, Department of Biological, Geological and Environmental Science (BiGea), University of Bologna, 40126 Bologna, Italy
| | - Marina Orlandi
- Alessio Papi, Marina Orlandi, Department of Biological, Geological and Environmental Science (BiGea), University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
25
|
Waters AM, Stewart JE, Atigadda VR, Mroczek-Musulman E, Muccio DD, Grubbs CJ, Beierle EA. Preclinical Evaluation of UAB30 in Pediatric Renal and Hepatic Malignancies. Mol Cancer Ther 2016; 15:911-21. [PMID: 26873726 DOI: 10.1158/1535-7163.mct-15-0521] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 02/06/2016] [Indexed: 12/13/2022]
Abstract
Rare tumors of solid organs remain some of the most difficult pediatric cancers to cure. These difficult tumors include rare pediatric renal malignancies, such as malignant rhabdoid kidney tumors (MRKT) and non-osseous renal Ewing sarcoma, and hepatoblastoma, a pediatric liver tumor that arises from immature liver cells. There are data in adult renal and hepatic malignancies demonstrating the efficacy of retinoid therapy. The investigation of retinoic acid therapy in cancer is not a new strategy, but the widespread adoption of this therapy has been hindered by toxicities. Our laboratory has been investigating a novel synthetic rexinoid, UAB30, which exhibits a more favorable side-effect profile. In this study, we hypothesized that UAB30 would diminish the growth of tumor cells from both rare renal and liver tumors in vitro and in vivo We successfully demonstrated decreased cellular proliferation, invasion and migration, cell-cycle arrest, and increased apoptosis after treatment with UAB30. Additionally, in in vivo murine models of human hepatoblastoma or rare human renal tumors, there were significantly decreased tumor xenograft growth and increased animal survival after UAB30 treatment. UAB30 should be further investigated as a developing therapeutic in these rare and difficult-to-treat pediatric solid organ tumors. Mol Cancer Ther; 15(5); 911-21. ©2016 AACR.
Collapse
Affiliation(s)
- Alicia M Waters
- Department of Surgery, University of Alabama, Birmingham, Birmingham, Alabama
| | - Jerry E Stewart
- Department of Surgery, University of Alabama, Birmingham, Birmingham, Alabama
| | | | | | - Donald D Muccio
- Department of Chemistry, University of Alabama, Birmingham, Birmingham, Alabama
| | - Clinton J Grubbs
- Department of Surgery, University of Alabama, Birmingham, Birmingham, Alabama
| | - Elizabeth A Beierle
- Department of Surgery, University of Alabama, Birmingham, Birmingham, Alabama.
| |
Collapse
|