1
|
Barraza SJ, Woll MG. Pre‐mRNA Splicing Modulation. METHODS AND PRINCIPLES IN MEDICINAL CHEMISTRY 2024:151-202. [DOI: 10.1002/9783527840458.ch7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
2
|
Hegde S, Akhter S, Tang Z, Qi C, Yu C, Lewicka A, Liu Y, Koirala K, Reibarkh M, Battaile KP, Cooper A, Lovell S, Holmstrom ED, Wang X, Piccirilli JA, Gao Q, Miao Y, Wang J. Mechanistic Studies of Small Molecule Ligands Selective to RNA Single G Bulges. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.14.618236. [PMID: 39464119 PMCID: PMC11507752 DOI: 10.1101/2024.10.14.618236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Small-molecule RNA binders have emerged as an important pharmacological modality. A profound understanding of the ligand selectivity, binding mode, and influential factors governing ligand engagement with RNA targets is the foundation for rational ligand design. Here, we report a novel class of coumarin derivatives exhibiting selective binding affinity towards single G RNA bulges. Harnessing the computational power of all-atom Gaussian accelerated Molecular Dynamics (GaMD) simulations, we unveiled a rare minor groove binding mode of the ligand with a key interaction between the coumarin moiety and the G bulge. This predicted binding mode is consistent with results obtained from structure-activity-relationship (SAR) studies and transverse relaxation measurements by NMR spectroscopy. We further generated 444 molecular descriptors from 69 coumarin derivatives and identified key contributors to the binding events, such as charge state and planarity, by lasso (least absolute shrinkage and selection operator) regression. Strikingly, small structure perturbations on these key contributors, such as the addition of a methyl group that disrupts the planarity of the ligand resulted in > 100-fold reduction in the binding affinity. Our work deepened the understanding of RNA-small molecule interactions and integrated a new generalizable platform for the rational design of selective small-molecule RNA binders.
Collapse
Affiliation(s)
- Shalakha Hegde
- Section of Genetic Medicine, Department of Medicine, Biological Sciences Division, University of Chicago, Chicago, IL, USA
- These authors contributed equally
| | - Sana Akhter
- Pharmacology and Computational Medicine Program, University of North Carolina, Chapel Hill, NC, USA
- These authors contributed equally
| | - Zhichao Tang
- Section of Genetic Medicine, Department of Medicine, Biological Sciences Division, University of Chicago, Chicago, IL, USA
- These authors contributed equally
| | - Chang Qi
- Analytical Research & Development, Merck & Co., Inc, Rahway, NJ, USA
| | - Chenguang Yu
- Calibr-Skaggs Institute for Innovative Medicines, The Scripps Research Institute, La Jolla, CA, USA
| | - Anna Lewicka
- Department of Biochemistry and Molecular Biology, Biological Sciences Division, University of Chicago, Chicago, IL, USA
| | - Yu Liu
- Department of Chemistry, Rockhurst University, Kansas City, MO, USA
| | - Kushal Koirala
- Pharmacology and Computational Medicine Program, University of North Carolina, Chapel Hill, NC, USA
| | - Mikhail Reibarkh
- Analytical Research & Development, Merck & Co., Inc, Rahway, NJ, USA
| | | | - Anne Cooper
- Protein Structure and X-ray Crystallography Laboratory, University of Kansas, Lawrence, KS, USA
| | - Scott Lovell
- Protein Structure and X-ray Crystallography Laboratory, University of Kansas, Lawrence, KS, USA
| | - Erik D. Holmstrom
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, USA
| | - Xiao Wang
- Analytical Research & Development, Merck & Co., Inc, Rahway, NJ, USA
| | - Joseph A. Piccirilli
- Department of Biochemistry and Molecular Biology, Biological Sciences Division, University of Chicago, Chicago, IL, USA
- Department of Chemistry, Physical Sciences Division, University of Chicago, Chicago, IL, USA
| | - Qi Gao
- Analytical Research & Development, Merck & Co., Inc, Rahway, NJ, USA
| | - Yinglong Miao
- Pharmacology and Computational Medicine Program, University of North Carolina, Chapel Hill, NC, USA
| | - Jingxin Wang
- Section of Genetic Medicine, Department of Medicine, Biological Sciences Division, University of Chicago, Chicago, IL, USA
| |
Collapse
|
3
|
Malard F, Wolter AC, Marquevielle J, Morvan E, Ecoutin A, Rüdisser S, Allain FT, Campagne S. The diversity of splicing modifiers acting on A-1 bulged 5'-splice sites reveals rules for rational drug design. Nucleic Acids Res 2024; 52:4124-4136. [PMID: 38554107 PMCID: PMC11077090 DOI: 10.1093/nar/gkae201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 12/07/2023] [Accepted: 03/07/2024] [Indexed: 04/01/2024] Open
Abstract
Pharmacological modulation of RNA splicing by small molecules is an emerging facet of drug discovery. In this context, the SMN2 splicing modifier SMN-C5 was used as a prototype to understand the mode of action of small molecule splicing modifiers and propose the concept of 5'-splice site bulge repair. In this study, we combined in vitro binding assays and structure determination by NMR spectroscopy to identify the binding modes of four other small molecule splicing modifiers that switch the splicing of either the SMN2 or the HTT gene. Here, we determined the solution structures of risdiplam, branaplam, SMN-CX and SMN-CY bound to the intermolecular RNA helix epitope containing an unpaired adenine within the G-2A-1G+1U+2 motif of the 5'-splice site. Despite notable differences in their scaffolds, risdiplam, SMN-CX, SMN-CY and branaplam contact the RNA epitope similarly to SMN-C5, suggesting that the 5'-splice site bulge repair mechanism can be generalised. These findings not only deepen our understanding of the chemical diversity of splicing modifiers that target A-1 bulged 5'-splice sites, but also identify common pharmacophores required for modulating 5'-splice site selection with small molecules.
Collapse
Affiliation(s)
- Florian Malard
- Université de Bordeaux, Inserm U1212, CNRS UMR5320, ARNA unit, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France
- Institut Européen de Chimie et Biologie, 2 rue Robert Escarpit, 33607 Pessac Cedex, France
| | - Antje C Wolter
- ETH Zürich, Department of Biology, Institute of Biochemistry, Hönggerbergring 64, 8093 Zürich, Switzerland
| | - Julien Marquevielle
- Université de Bordeaux, Inserm U1212, CNRS UMR5320, ARNA unit, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France
- Institut Européen de Chimie et Biologie, 2 rue Robert Escarpit, 33607 Pessac Cedex, France
| | - Estelle Morvan
- Institut Européen de Chimie et Biologie, UAR3033 CNRS, Université de Bordeaux, INSERM US01, Pessac 33600, France
| | - Agathe Ecoutin
- Université de Bordeaux, Inserm U1212, CNRS UMR5320, ARNA unit, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France
- Institut Européen de Chimie et Biologie, 2 rue Robert Escarpit, 33607 Pessac Cedex, France
| | - Simon H Rüdisser
- ETH Zürich, Department of Biology, BioNMR platform, Hönggerbergring 64, 8093 Zürich, Switzerland
| | - Frédéric H T Allain
- ETH Zürich, Department of Biology, Institute of Biochemistry, Hönggerbergring 64, 8093 Zürich, Switzerland
| | - Sebastien Campagne
- Université de Bordeaux, Inserm U1212, CNRS UMR5320, ARNA unit, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France
- Institut Européen de Chimie et Biologie, 2 rue Robert Escarpit, 33607 Pessac Cedex, France
- ETH Zürich, Department of Biology, Institute of Biochemistry, Hönggerbergring 64, 8093 Zürich, Switzerland
| |
Collapse
|
4
|
Vlodavets DV. [Risdiplam for the treatment of spinal muscular atrophy]. Zh Nevrol Psikhiatr Im S S Korsakova 2024; 124:45-57. [PMID: 38465810 DOI: 10.17116/jnevro202412402145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Spinal muscular atrophy (SMA) is a devastating disease that is the leading genetic cause of death in infants and young children. It includes a broad spectrum of phenotypes that are classified into clinical groups based on the age of onset and maximum motor function achieved. The most common form of SMA is due to a defect in the survival motor neuron 1 gene (SMN1) localized to 5q11.2-q13.3. The development of clinical symptoms and disease progression is thought to be due to decreased levels of survival motor neuron (SMN) protein. SMA type 1 results in almost inevitable mortality within the first 2 years of life. The first two drugs approved globally for the treatment of SMA were the antisense oligonucleotide nusinersen (Spinraza), and the gene therapy onasemnogene abeparvovec-xioi (Zolgensma). Both interventions have approval and restrictions on use in different countries around the world. Despite these approved therapies, the medical unmet need in SMA (the majority of patients with SMA are not on a disease-modifying therapy) remains high with therapies in the pipeline to address some of the remaining limitations. The third and more recently approved drug for SMA is risdiplam (Evrysdi), an orally administered, centrally and peripherally distributed small molecule that modulates SMN2 pre-mRNA splicing toward the production of full-length SMN2 mRNA to increase functional SMN protein levels. In Russia the drug risdiplam was approved for use on November 26, 2020 with indications for the treatment of SMA in patients aged 2 months and older, and in 2023 the indications were expanded - use is allowed starting from the birth. Risdiplam is widely distributed into the CNS and peripheral tissues including muscles. Following risdiplam administration, SMN protein levels compared with baseline levels increase between 2- and 6-fold depending on the SMA phenotype treated. The risdiplam clinical development program currently has four ongoing clinical trials assessing its safety and efficacy. Clinical trials included more than 450 patients receiving risdiplam to date, has been well tolerated and no treatment-related safety findings leading to study withdrawal have been observed. Data from real clinical practice - more than 11.000 patients worldwide receive therapy with risdiplam, also confirm the safety and good tolerability of the drug.
Collapse
Affiliation(s)
- D V Vlodavets
- Veltischev Clinical Pediatric Research Institute of Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
5
|
Liu L, Malagu K, Haughan AF, Khetarpal V, Stott AJ, Esmieu W, Vater HD, Webster SJ, Van de Poël AJ, Clissold C, Cosgrove B, Sutton B, Spencer JA, Breccia P, Gancia E, Bonomo S, Ladduwahetty T, Lazari O, Patel H, Atton HC, Clifton S, Mota DM, Magnani D, O'Neill A, Stebbeds M, Macabuag N, Todd D, Herva ME, Mitchell P, Visser M, Compte Sancerni S, Grand Moursel L, da Silva M, Kritikou E, Heikkinen TT, Bolkvadze T, Fodale V, Spadafora D, Daldin M, Bresciani A, Mangette JE, Doherty EM, Lee MR, Herbst T, Monteagudo E, Macdonald D, Plotnikov NV, Chambers M, McAllister G, Muňoz-Sanjuan I, Dominguez C. Identification and Optimization of RNA-Splicing Modulators as Huntingtin Protein-Lowering Agents for the Treatment of Huntington's Disease. J Med Chem 2023; 66:13205-13246. [PMID: 37712656 DOI: 10.1021/acs.jmedchem.3c01173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Huntington's disease (HD) is caused by an expanded CAG trinucleotide repeat in exon 1 of the huntingtin (HTT) gene. We report the design of a series of HTT pre-mRNA splicing modulators that lower huntingtin (HTT) protein, including the toxic mutant huntingtin (mHTT), by promoting insertion of a pseudoexon containing a premature termination codon at the exon 49-50 junction. The resulting transcript undergoes nonsense-mediated decay, leading to a reduction of HTT mRNA transcripts and protein levels. The starting benzamide core was modified to pyrazine amide and further optimized to give a potent, CNS-penetrant, and orally bioavailable HTT-splicing modulator 27. This compound reduced canonical splicing of the HTT RNA exon 49-50 and demonstrated significant HTT-lowering in both human HD stem cells and mouse BACHD models. Compound 27 is a structurally diverse HTT-splicing modulator that may help understand the mechanism of adverse effects such as peripheral neuropathy associated with branaplam.
Collapse
Affiliation(s)
- Longbin Liu
- CHDI Management/CHDI Foundation, 6080 Center Drive, Los Angeles, California 90045, United States
| | - Karine Malagu
- Discovery from Charles River, Charles River, Chesterford Research Park, Saffron Walden CB10 1XL, U.K
| | - Alan F Haughan
- Discovery from Charles River, Charles River, Chesterford Research Park, Saffron Walden CB10 1XL, U.K
| | - Vinod Khetarpal
- CHDI Management/CHDI Foundation, 6080 Center Drive, Los Angeles, California 90045, United States
| | - Andrew J Stott
- Discovery from Charles River, Charles River, Chesterford Research Park, Saffron Walden CB10 1XL, U.K
| | - William Esmieu
- Discovery from Charles River, Charles River, Chesterford Research Park, Saffron Walden CB10 1XL, U.K
| | - Huw D Vater
- Discovery from Charles River, Charles River, Chesterford Research Park, Saffron Walden CB10 1XL, U.K
| | - Stephen J Webster
- Discovery from Charles River, Charles River, Chesterford Research Park, Saffron Walden CB10 1XL, U.K
| | - Amanda J Van de Poël
- Discovery from Charles River, Charles River, Chesterford Research Park, Saffron Walden CB10 1XL, U.K
| | - Cole Clissold
- Discovery from Charles River, Charles River, Chesterford Research Park, Saffron Walden CB10 1XL, U.K
| | - Brett Cosgrove
- Discovery from Charles River, Charles River, Chesterford Research Park, Saffron Walden CB10 1XL, U.K
| | - Benjamin Sutton
- Discovery from Charles River, Charles River, Chesterford Research Park, Saffron Walden CB10 1XL, U.K
| | - Jonathan A Spencer
- Discovery from Charles River, Charles River, Chesterford Research Park, Saffron Walden CB10 1XL, U.K
| | - Perla Breccia
- Discovery from Charles River, Charles River, Chesterford Research Park, Saffron Walden CB10 1XL, U.K
| | - Emanuela Gancia
- Discovery from Charles River, Charles River, Chesterford Research Park, Saffron Walden CB10 1XL, U.K
| | - Silvia Bonomo
- Discovery from Charles River, Charles River, Chesterford Research Park, Saffron Walden CB10 1XL, U.K
| | - Tammy Ladduwahetty
- Discovery from Charles River, Charles River, Chesterford Research Park, Saffron Walden CB10 1XL, U.K
| | - Ovadia Lazari
- Discovery from Charles River, Charles River, Chesterford Research Park, Saffron Walden CB10 1XL, U.K
| | - Hiral Patel
- Discovery from Charles River, Charles River, Chesterford Research Park, Saffron Walden CB10 1XL, U.K
| | - Helen C Atton
- Discovery from Charles River, Charles River, Chesterford Research Park, Saffron Walden CB10 1XL, U.K
| | - Steve Clifton
- Discovery from Charles River, Charles River, Chesterford Research Park, Saffron Walden CB10 1XL, U.K
| | - Daniel M Mota
- Discovery from Charles River, Charles River, Chesterford Research Park, Saffron Walden CB10 1XL, U.K
| | - Dario Magnani
- Discovery from Charles River, Charles River, Chesterford Research Park, Saffron Walden CB10 1XL, U.K
| | - Amy O'Neill
- Discovery from Charles River, Charles River, Chesterford Research Park, Saffron Walden CB10 1XL, U.K
| | - Marta Stebbeds
- Discovery from Charles River, Charles River, Chesterford Research Park, Saffron Walden CB10 1XL, U.K
| | - Natsuko Macabuag
- Discovery from Charles River, Charles River, Chesterford Research Park, Saffron Walden CB10 1XL, U.K
| | - Daniel Todd
- Discovery from Charles River, Charles River, Chesterford Research Park, Saffron Walden CB10 1XL, U.K
| | - Maria E Herva
- Discovery from Charles River, Charles River, Chesterford Research Park, Saffron Walden CB10 1XL, U.K
| | - Philip Mitchell
- Discovery from Charles River, Charles River, Chesterford Research Park, Saffron Walden CB10 1XL, U.K
| | - Mijke Visser
- Charles River, Darwinweg 24, 2333 CR Leiden, The Netherlands
| | | | | | - Marta da Silva
- Charles River, Darwinweg 24, 2333 CR Leiden, The Netherlands
| | - Eva Kritikou
- Charles River, Darwinweg 24, 2333 CR Leiden, The Netherlands
| | | | | | | | | | | | | | | | - Elizabeth M Doherty
- CHDI Management/CHDI Foundation, 6080 Center Drive, Los Angeles, California 90045, United States
| | - Matthew R Lee
- CHDI Management/CHDI Foundation, 6080 Center Drive, Los Angeles, California 90045, United States
| | - Todd Herbst
- CHDI Management/CHDI Foundation, 6080 Center Drive, Los Angeles, California 90045, United States
| | - Edith Monteagudo
- CHDI Management/CHDI Foundation, 6080 Center Drive, Los Angeles, California 90045, United States
| | - Douglas Macdonald
- CHDI Management/CHDI Foundation, 6080 Center Drive, Los Angeles, California 90045, United States
| | - Nikolay V Plotnikov
- CHDI Management/CHDI Foundation, 6080 Center Drive, Los Angeles, California 90045, United States
| | - Mark Chambers
- Discovery from Charles River, Charles River, Chesterford Research Park, Saffron Walden CB10 1XL, U.K
| | - George McAllister
- CHDI Management/CHDI Foundation, 6080 Center Drive, Los Angeles, California 90045, United States
| | - Ignacio Muňoz-Sanjuan
- CHDI Management/CHDI Foundation, 6080 Center Drive, Los Angeles, California 90045, United States
| | - Celia Dominguez
- CHDI Management/CHDI Foundation, 6080 Center Drive, Los Angeles, California 90045, United States
| |
Collapse
|
6
|
Harrison TJ, Chen X, Yasoshima K, Bauer D. Phototoxicity─Medicinal Chemistry Strategies for Risk Mitigation in Drug Discovery. J Med Chem 2023. [PMID: 37450689 DOI: 10.1021/acs.jmedchem.3c00749] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Phototoxicity is a common safety concern encountered by project teams in pharmaceutical research and has the potential to stop progression of an otherwise promising candidate molecule. This perspective aims to provide an overview of the approaches toward mitigation of phototoxicity that medicinal chemists have taken during the lead optimization phase in the context of regulatory standards for photosafety evaluation. Various strategies are laid out based on available literature examples in order to highlight how structural modification can be utilized toward successful mitigation of a phototoxicity liability. A proposed flowchart is presented as a guidance tool to be used by the practicing medicinal chemist when facing a phototoxicity risk. The description of available tools to consider in the drug design process will include an overview of the evolution of in silico methods and their application as well as structure alerts for consideration as potential phototoxicophores.
Collapse
Affiliation(s)
- Tyler J Harrison
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, 22 Windsor Street, Cambridge, Massachusetts 02139, United States
| | - Xin Chen
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, 22 Windsor Street, Cambridge, Massachusetts 02139, United States
| | - Kayo Yasoshima
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, 22 Windsor Street, Cambridge, Massachusetts 02139, United States
| | - Daniel Bauer
- Preclinical Safety, Novartis Institutes for Biomedical Research, 4002 Basel, Switzerland
| |
Collapse
|
7
|
Zhang L, Xie X, Djokovic N, Nikolic K, Kosenkov D, Abendroth F, Vázquez O. Reversible Control of RNA Splicing by Photoswitchable Small Molecules. J Am Chem Soc 2023. [PMID: 37276581 DOI: 10.1021/jacs.3c03275] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Dynamics are intrinsic to both RNA function and structure. Yet, the available means to precisely provide RNA-based processes with spatiotemporal resolution are scarce. Here, our work pioneers a reversible approach to regulate RNA splicing within primary patient-derived cells by synthetic photoswitches. Our small molecule enables conditional real-time control at mRNA and protein levels. NMR experiments, together with theoretical calculations, photochemical characterization, fluorescence polarization measurements, and living cell-based assays, confirmed light-dependent exon inclusion as well as an increase in the target functional protein. Therefore, we first demonstrated the potential of photopharmacology modulation in splicing, tweaking the current optochemical toolkit. The timeliness on the consolidation of RNA research as the driving force toward therapeutical innovation holds the promise that our approach will contribute to redrawing the vision of RNA.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Chemistry, University of Marburg, Marburg, D-35043, Germany
| | - Xiulan Xie
- Department of Chemistry, University of Marburg, Marburg, D-35043, Germany
| | - Nemanja Djokovic
- Department of Pharmaceutical Chemistry, University of Belgrade, Belgrade, 11000, Serbia
| | - Katarina Nikolic
- Department of Pharmaceutical Chemistry, University of Belgrade, Belgrade, 11000, Serbia
| | - Dmitri Kosenkov
- Department of Chemistry and Physics, Monmouth University, West Long Branch, New Jersey 07764, United States
| | - Frank Abendroth
- Department of Chemistry, University of Marburg, Marburg, D-35043, Germany
| | - Olalla Vázquez
- Department of Chemistry, University of Marburg, Marburg, D-35043, Germany
- Center for Synthetic Microbiology (SYNMIKRO), University of Marburg, Marburg, D-35043, Germany
| |
Collapse
|
8
|
Polikarpova AV, Egorova TV, Bardina MV. Genetically modified animal models of hereditary diseases for testing of gene-directed therapy. RESEARCH RESULTS IN PHARMACOLOGY 2022. [DOI: 10.3897/rrpharmacology.8.82618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Disease-causing genes have been identified for many severe muscular and neurological genetic disorders. Advances in the gene therapy field offer promising solutions for drug development to treat these life-threatening conditions. Depending on how the mutation affects the function of the gene product, different gene therapy approaches may be beneficial. Gene replacement therapy is appropriate for diseases caused by mutations that result in the deficiency of the functional protein. Gene suppression strategy is suggested for disorders caused by the toxic product of the mutant gene. Splicing modulators, genome editing, and base editing techniques can be applied to disorders with different types of underlying mutations. Testing potential drugs in animal models of human diseases is an indispensable step of development. Given the specific gene therapy approach, appropriate animal models can be generated using a variety of technologies ranging from transgenesis to precise genome editing. In this review, we discuss technologies used to generate small and large animal models of the most common muscular and neurological genetic disorders. We specifically focus on animal models that were used to test gene therapies based on adeno-associated vectors and antisense nucleotides.
Collapse
|
9
|
Zhang L, Abendroth F, Vázquez O. A Chemical Biology Perspective to Therapeutic Regulation of RNA Splicing in Spinal Muscular Atrophy (SMA). ACS Chem Biol 2022; 17:1293-1307. [PMID: 35639849 DOI: 10.1021/acschembio.2c00161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Manipulation of RNA splicing machinery has emerged as a drug modality. Here, we illustrate the potential of this novel paradigm to correct aberrant splicing events focused on the recent therapeutic advances in spinal muscular atrophy (SMA). SMA is an incurable neuromuscular disorder and at present the primary genetic cause of early infant death. This Review summarizes the exciting journey from the first reported SMA cases to the currently approved splicing-switching treatments, i.e., antisense oligonucleotides and small-molecule modifiers. We emphasize both chemical structures and molecular bases for recognition. We briefly discuss the advantages and disadvantages of these treatments and include the remaining challenges and future directions. Finally, we also predict that these success stories will contribute to further therapies for human diseases by RNA-splicing control.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Chemistry, University of Marburg, Hans-Meerwein-Straße 4, 35043, Marburg, Germany
| | - Frank Abendroth
- Department of Chemistry, University of Marburg, Hans-Meerwein-Straße 4, 35043, Marburg, Germany
| | - Olalla Vázquez
- Department of Chemistry, University of Marburg, Hans-Meerwein-Straße 4, 35043, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), University of Marburg, Karl-von-Frisch-Straße 14, 35043 Marburg, Germany
| |
Collapse
|
10
|
Markati T, Fisher G, Ramdas S, Servais L. Risdiplam: an investigational motor neuron-2 (SMN-2) splicing modifier for spinal muscular atrophy (SMA). Expert Opin Investig Drugs 2022; 31:451-461. [PMID: 35316106 DOI: 10.1080/13543784.2022.2056836] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Spinal muscular atrophy (SMA) is a rare autosomal recessive neuromuscular disease which is characterized by muscle atrophy and early death in most patients. Risdiplam is the third overall and first oral drug approved for SMA with disease-modifying potential. Risdiplam acts as a survival motor neuron 2 (SMN2) pre-mRNA splicing modifier with satisfactory safety and efficacy profile. This review aims to critically appraise the place of risdiplam in the map of SMA therapeutics. AREAS COVERED This review gives an overview of the current market for SMA and presents the mechanism of action and the pharmacological properties of risdiplam. It also outlines the development of risdiplam from early preclinical stages through to the most recently published results from phase 2/3 clinical trials. Risdiplam has proved its efficacy in pivotal trials for SMA Types 1, 2, and 3 with a satisfactory safety profile. EXPERT OPINION In the absence of comparative data with the other two approved drugs, the role of risdiplam in the treatment algorithm of affected individuals is examined in three different patient populations based on the age and diagnosis method (newborn screening or clinical, symptom-driven diagnosis). Long-term data and real-world data will play a fundamental role in its future.
Collapse
Affiliation(s)
- Theodora Markati
- MDUK Oxford Neuromuscular Center, Department of Paediatrics, University of Oxford, Oxford, UK.,Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Gemma Fisher
- MDUK Oxford Neuromuscular Center, Department of Paediatrics, University of Oxford, Oxford, UK.,Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Sithara Ramdas
- MDUK Oxford Neuromuscular Center, Department of Paediatrics, University of Oxford, Oxford, UK.,Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Laurent Servais
- MDUK Oxford Neuromuscular Center, Department of Paediatrics, University of Oxford, Oxford, UK.,Oxford University Hospitals NHS Foundation Trust, Oxford, UK.,Division of Child Neurology, Centre de Références des Maladies Neuromusculaires, Department of Pediatrics, University Hospital Liège & University of Liège, Belgium
| |
Collapse
|
11
|
Tang Z, Hegde S, Zhao J, Zhu S, Johnson KA, Lorson CL, Wang J. CRISPR-mediated Enzyme Fragment Complementation Assay for Quantification of the Stability of Splice Isoforms. Chembiochem 2022; 23:e202200012. [PMID: 35235240 DOI: 10.1002/cbic.202200012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/22/2022] [Indexed: 11/06/2022]
Abstract
Small-molecule splicing modulators exemplified by an FDA-approved drug, risdiplam, are a new pharmacological modality for regulating the expression and stability of splice isoforms. We report a CRISPR-mediated enzyme fragment complementation (EFC) assay to quantify the splice isoform stability. The EFC assay harnessed a 42 amino acid split of a β-galactosidase (designate α-tag), which could be fused at the termini of the target genes using CRISPR/cas9. The α-tagged splice isoform would be quantified by measuring the enzymatic activity upon complementation with the rest of β-galactosidase. This EFC assay retained all the sequences of introns and exons of the target gene in the native genomic environment that recapitulates the cell biology of the diseases of interest. For a proof-of-concept, we developed a CRISPR-mediated EFC assay targeting the exon 7 of the survival of motor neuron 2 (SMN2) gene. The EFC assay compatible with 384-well plates robustly quantified the splicing modulation activity of small molecules. In this study, we also discovered that a coumarin derivative, compound 4, potently modulate SMN2 splicing at as low as 1.1 nM.
Collapse
Affiliation(s)
- Zhichao Tang
- University of Kansas School of Pharmacy, Medicinal Chemistry, UNITED STATES
| | - Shalakha Hegde
- University of Kansas School of Pharmacy, Medicinal Chemistry, UNITED STATES
| | - Junxing Zhao
- University of Kansas School of Pharmacy, Medicinal Chemistry, UNITED STATES
| | - Shoutian Zhu
- PhenoTarget BioSciences, Inc., Biology, UNITED STATES
| | | | | | - Jingxin Wang
- University of Kansas, Medicinal Chemistry, 2034 Becker Dr, 1050, 66047, Lawrence, UNITED STATES
| |
Collapse
|
12
|
Malard F, Mackereth CD, Campagne S. Principles and correction of 5'-splice site selection. RNA Biol 2022; 19:943-960. [PMID: 35866748 PMCID: PMC9311317 DOI: 10.1080/15476286.2022.2100971] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/06/2022] [Indexed: 11/04/2022] Open
Abstract
In Eukarya, immature mRNA transcripts (pre-mRNA) often contain coding sequences, or exons, interleaved by non-coding sequences, or introns. Introns are removed upon splicing, and further regulation of the retained exons leads to alternatively spliced mRNA. The splicing reaction requires the stepwise assembly of the spliceosome, a macromolecular machine composed of small nuclear ribonucleoproteins (snRNPs). This review focuses on the early stage of spliceosome assembly, when U1 snRNP defines each intron 5'-splice site (5'ss) in the pre-mRNA. We first introduce the splicing reaction and the impact of alternative splicing on gene expression regulation. Thereafter, we extensively discuss splicing descriptors that influence the 5'ss selection by U1 snRNP, such as sequence determinants, and interactions mediated by U1-specific proteins or U1 small nuclear RNA (U1 snRNA). We also include examples of diseases that affect the 5'ss selection by U1 snRNP, and discuss recent therapeutic advances that manipulate U1 snRNP 5'ss selectivity with antisense oligonucleotides and small-molecule splicing switches.
Collapse
Affiliation(s)
- Florian Malard
- Inserm U1212, CNRS UMR5320, ARNA Laboratory, University of Bordeaux, Bordeaux Cedex, France
| | - Cameron D Mackereth
- Inserm U1212, CNRS UMR5320, ARNA Laboratory, University of Bordeaux, Bordeaux Cedex, France
| | - Sébastien Campagne
- Inserm U1212, CNRS UMR5320, ARNA Laboratory, University of Bordeaux, Bordeaux Cedex, France
| |
Collapse
|
13
|
Lejman J, Zieliński G, Gawda P, Lejman M. Alternative Splicing Role in New Therapies of Spinal Muscular Atrophy. Genes (Basel) 2021; 12:1346. [PMID: 34573328 PMCID: PMC8468182 DOI: 10.3390/genes12091346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 11/17/2022] Open
Abstract
It has been estimated that 80% of the pre-mRNA undergoes alternative splicing, which exponentially increases the flow of biological information in cellular processes and can be an attractive therapeutic target. It is a crucial mechanism to increase genetic diversity. Disturbed alternative splicing is observed in many disorders, including neuromuscular diseases and carcinomas. Spinal Muscular Atrophy (SMA) is an autosomal recessive neurodegenerative disease. Homozygous deletion in 5q13 (the region coding for the motor neuron survival gene (SMN1)) is responsible for 95% of SMA cases. The nearly identical SMN2 gene does not compensate for SMN loss caused by SMN1 gene mutation due to different splicing of exon 7. A pathologically low level of survival motor neuron protein (SMN) causes degeneration of the anterior horn cells in the spinal cord with associated destruction of α-motor cells and manifested by muscle weakness and loss. Understanding the regulation of the SMN2 pre-mRNA splicing process has allowed for innovative treatment and the introduction of new medicines for SMA. After describing the concept of splicing modulation, this review will cover the progress achieved in this field, by highlighting the breakthrough accomplished recently for the treatment of SMA using the mechanism of alternative splicing.
Collapse
Affiliation(s)
- Jan Lejman
- Student Scientific Society, Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Grzegorz Zieliński
- Department of Sports Medicine, Medical University of Lublin, 20-093 Lublin, Poland; (G.Z.); (P.G.)
| | - Piotr Gawda
- Department of Sports Medicine, Medical University of Lublin, 20-093 Lublin, Poland; (G.Z.); (P.G.)
| | - Monika Lejman
- Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
14
|
Bush JA, Williams CC, Meyer SM, Tong Y, Haniff HS, Childs-Disney JL, Disney MD. Systematically Studying the Effect of Small Molecules Interacting with RNA in Cellular and Preclinical Models. ACS Chem Biol 2021; 16:1111-1127. [PMID: 34166593 PMCID: PMC8867596 DOI: 10.1021/acschembio.1c00014] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The interrogation and manipulation of biological systems by small molecules is a powerful approach in chemical biology. Ideal compounds selectively engage a target and mediate a downstream phenotypic response. Although historically small molecule drug discovery has focused on proteins and enzymes, targeting RNA is an attractive therapeutic alternative, as many disease-causing or -associated RNAs have been identified through genome-wide association studies. As the field of RNA chemical biology emerges, the systematic evaluation of target validation and modulation of target-associated pathways is of paramount importance. In this Review, through an examination of case studies, we outline the experimental characterization, including methods and tools, to evaluate comprehensively the impact of small molecules that target RNA on cellular phenotype.
Collapse
Affiliation(s)
- Jessica A Bush
- The Scripps Research Institute, Department of Chemistry, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Christopher C Williams
- The Scripps Research Institute, Department of Chemistry, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Samantha M Meyer
- The Scripps Research Institute, Department of Chemistry, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Yuquan Tong
- The Scripps Research Institute, Department of Chemistry, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Hafeez S Haniff
- The Scripps Research Institute, Department of Chemistry, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Jessica L Childs-Disney
- The Scripps Research Institute, Department of Chemistry, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Matthew D Disney
- The Scripps Research Institute, Department of Chemistry, 130 Scripps Way, Jupiter, Florida 33458, United States
| |
Collapse
|
15
|
Axford J, Sung MJ, Manchester J, Chin D, Jain M, Shin Y, Dix I, Hamann LG, Cheung AK, Sivasankaran R, Briner K, Dales NA, Hurley B. Use of Intramolecular 1,5-Sulfur-Oxygen and 1,5-Sulfur-Halogen Interactions in the Design of N-Methyl-5-aryl- N-(2,2,6,6-tetramethylpiperidin-4-yl)-1,3,4-thiadiazol-2-amine SMN2 Splicing Modulators. J Med Chem 2021; 64:4744-4761. [PMID: 33822618 DOI: 10.1021/acs.jmedchem.0c02173] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Spinal muscular atrophy (SMA) is a debilitating neuromuscular disease caused by low levels of functional survival motor neuron protein (SMN) resulting from a deletion or loss of function mutation of the survival motor neuron 1 (SMN1) gene. Branaplam (1) elevates levels of full-length SMN protein in vivo by modulating the splicing of the related gene SMN2 to enhance the exon-7 inclusion and increase levels of the SMN. The intramolecular hydrogen bond present in the 2-hydroxyphenyl pyridazine core of 1 enforces a planar conformation of the biaryl system and is critical for the compound activity. Scaffold morphing revealed that the pyridazine could be replaced by a 1,3,4-thiadiazole, which provided additional opportunities for a conformational constraint of the biaryl through intramolecular 1,5-sulfur-oxygen (S···O) or 1,5-sulfur-halogen (S···X) noncovalent interactions. Compound 26, which incorporates a 2-fluorophenyl thiadiazole motif, demonstrated a greater than 50% increase in production of full-length SMN protein in a mouse model of SMA.
Collapse
Affiliation(s)
- Jake Axford
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Moo Je Sung
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - John Manchester
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Donovan Chin
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Monish Jain
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Youngah Shin
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Ina Dix
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Lawrence G Hamann
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Atwood K Cheung
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Rajeev Sivasankaran
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Karin Briner
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Natalie A Dales
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Brian Hurley
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
16
|
Konieczny P, Artero R. Drosophila SMN2 minigene reporter model identifies moxifloxacin as a candidate therapy for SMA. FASEB J 2019; 34:3021-3036. [PMID: 31909520 DOI: 10.1096/fj.201802554rrr] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 12/12/2019] [Accepted: 12/16/2019] [Indexed: 12/24/2022]
Abstract
Spinal muscular atrophy is a rare and fatal neuromuscular disorder caused by the loss of alpha motor neurons. The affected individuals have mutated the ubiquitously expressed SMN1 gene resulting in the loss or reduction in the survival motor neuron (SMN) protein levels. However, an almost identical paralog exists in humans: SMN2. Pharmacological activation of SMN2 exon 7 inclusion by small molecules or modified antisense oligonucleotides is a valid approach to treat SMA. Here we describe an in vivo SMN2 minigene reporter system in Drosophila motor neurons that serves as a cost-effective, feasible, and stringent primary screening model for identifying chemicals capable of crossing the conserved Drosophila blood-brain barrier and modulating exon 7 inclusion. The model was used for the screening of 1100 drugs from the Prestwick Chemical Library, resulting in 2.45% hit rate. The most promising candidate drugs were validated in patient-derived fibroblasts where they proved to increase SMN protein levels. Among them, moxifloxacin modulated SMN2 splicing by promoting exon 7 inclusion. The recovery of SMN protein levels was confirmed by increased colocalization of nuclear gems with Cajal Bodies. Thus, a Drosophila-based drug screen allowed the discovery of an FDA-approved small molecule with the potential to become a novel therapy for SMA.
Collapse
Affiliation(s)
- Piotr Konieczny
- Interdisciplinary Research Structure for Biotechnology and Biomedicine (ERI BIOTECMED), University of Valencia, Valencia, Spain.,Translational Genomics Group, Incliva Health Research Institute, Valencia, Spain.,Incliva-CIPF Joint Unit, Valencia, Spain
| | - Rubén Artero
- Interdisciplinary Research Structure for Biotechnology and Biomedicine (ERI BIOTECMED), University of Valencia, Valencia, Spain.,Translational Genomics Group, Incliva Health Research Institute, Valencia, Spain.,Incliva-CIPF Joint Unit, Valencia, Spain
| |
Collapse
|
17
|
Campagne S, Boigner S, Rüdisser S, Moursy A, Gillioz L, Knörlein A, Hall J, Ratni H, Cléry A, Allain FHT. Structural basis of a small molecule targeting RNA for a specific splicing correction. Nat Chem Biol 2019; 15:1191-1198. [PMID: 31636429 PMCID: PMC7617061 DOI: 10.1038/s41589-019-0384-5] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 09/07/2019] [Indexed: 12/24/2022]
Abstract
Splicing modifiers promoting SMN2 exon 7 inclusion have the potential to treat spinal muscular atrophy, the leading genetic cause of infantile death. These small molecules are SMN2 exon 7 selective and act during the early stages of spliceosome assembly. Here, we show at atomic resolution how the drug selectively promotes the recognition of the weak 5' splice site of SMN2 exon 7 by U1 snRNP. The solution structure of the RNA duplex formed following 5' splice site recognition in the presence of the splicing modifier revealed that the drug specifically stabilizes a bulged adenine at this exon-intron junction and converts the weak 5' splice site of SMN2 exon 7 into a stronger one. The small molecule acts as a specific splicing enhancer cooperatively with the splicing regulatory network. Our investigations uncovered a novel concept for gene-specific alternative splicing correction that we coined 5' splice site bulge repair.
Collapse
Affiliation(s)
- Sébastien Campagne
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland.
| | - Sarah Boigner
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - Simon Rüdisser
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
- Biomolecular NMR Spectroscopy Platform, ETH Zurich, Zurich, Switzerland
| | - Ahmed Moursy
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - Laurent Gillioz
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - Anna Knörlein
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Jonathan Hall
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Hasane Ratni
- F. Hoffmann-La Roche Ltd, Pharma Research & Early Development, Roche Innovation Center, Basel, Switzerland
| | - Antoine Cléry
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - Frédéric H-T Allain
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
18
|
Nussbacher JK, Tabet R, Yeo GW, Lagier-Tourenne C. Disruption of RNA Metabolism in Neurological Diseases and Emerging Therapeutic Interventions. Neuron 2019; 102:294-320. [PMID: 30998900 DOI: 10.1016/j.neuron.2019.03.014] [Citation(s) in RCA: 184] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 01/24/2019] [Accepted: 03/12/2019] [Indexed: 02/06/2023]
Abstract
RNA binding proteins are critical to the maintenance of the transcriptome via controlled regulation of RNA processing and transport. Alterations of these proteins impact multiple steps of the RNA life cycle resulting in various molecular phenotypes such as aberrant RNA splicing, transport, and stability. Disruption of RNA binding proteins and widespread RNA processing defects are increasingly recognized as critical determinants of neurological diseases. Here, we describe distinct mechanisms by which the homeostasis of RNA binding proteins is compromised in neurological disorders through their reduced expression level, increased propensity to aggregate or sequestration by abnormal RNAs. These mechanisms all converge toward altered neuronal function highlighting the susceptibility of neurons to deleterious changes in RNA expression and the central role of RNA binding proteins in preserving neuronal integrity. Emerging therapeutic approaches to mitigate or reverse alterations of RNA binding proteins in neurological diseases are discussed.
Collapse
Affiliation(s)
- Julia K Nussbacher
- Department of Cellular and Molecular Medicine, Institute for Genomic Medicine, UCSD Stem Cell Program, University of California, San Diego, La Jolla, CA, USA
| | - Ricardos Tabet
- Department of Neurology, The Sean M. Healey and AMG Center for ALS at Mass General, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; Broad Institute of Harvard University and MIT, Cambridge, MA 02142, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, Institute for Genomic Medicine, UCSD Stem Cell Program, University of California, San Diego, La Jolla, CA, USA.
| | - Clotilde Lagier-Tourenne
- Department of Neurology, The Sean M. Healey and AMG Center for ALS at Mass General, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; Broad Institute of Harvard University and MIT, Cambridge, MA 02142, USA.
| |
Collapse
|
19
|
More than a messenger: Alternative splicing as a therapeutic target. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:194395. [PMID: 31271898 DOI: 10.1016/j.bbagrm.2019.06.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 06/18/2019] [Accepted: 06/19/2019] [Indexed: 12/30/2022]
Abstract
Alternative splicing of pre-mRNA is an essential post- and co-transcriptional mechanism of gene expression regulation that produces multiple mature mRNA transcripts from a single gene. Genetic mutations that affect splicing underlie numerous devastating diseases. The complexity of splicing regulation allows for multiple therapeutic approaches to correct disease-associated mis-splicing events. In this review, we first highlight recent findings from therapeutic strategies that have used splice switching antisense oligonucleotides and small molecules that bind directly to RNA. Second, we summarize different genetic and chemical approaches to target components of the spliceosome to correct splicing defects in pathological conditions. Finally, we present an overview of compounds that target kinases and accessory pathways that intersect with the splicing machinery. Advancements in the understanding of disease-specific defects caused by mis-regulation of alternative splicing will certainly increase the development of therapeutic options for the clinic. This article is part of a Special Issue entitled: RNA structure and splicing regulation edited by Francisco Baralle, Ravindra Singh and Stefan Stamm.
Collapse
|
20
|
Taladriz-Sender A, Campbell E, Burley GA. Splice-switching small molecules: A new therapeutic approach to modulate gene expression. Methods 2019; 167:134-142. [PMID: 31203161 DOI: 10.1016/j.ymeth.2019.06.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 06/10/2019] [Accepted: 06/11/2019] [Indexed: 12/12/2022] Open
Abstract
Manipulating alternative RNA splicing events with small molecules is emerging as a viable mechanism for the development of therapeutics. A salient challenge in the field is understanding the molecular determinants defining the selectivity of splice-switching events and their mechanisms of action. In this review, the current state-of-the-art in splice-switching small molecules is described. Three examples of splice-switching small molecules are presented, and the differences in their modes of action compared.
Collapse
Affiliation(s)
- Andrea Taladriz-Sender
- Department of Pure and Applied Chemistry, University of Strathclyde. Thomas Graham Building, 295 Cathedral Street, Glasgow G1 1XL, United Kingdom
| | - Emma Campbell
- Department of Pure and Applied Chemistry, University of Strathclyde. Thomas Graham Building, 295 Cathedral Street, Glasgow G1 1XL, United Kingdom
| | - Glenn A Burley
- Department of Pure and Applied Chemistry, University of Strathclyde. Thomas Graham Building, 295 Cathedral Street, Glasgow G1 1XL, United Kingdom.
| |
Collapse
|
21
|
Pharmacologic normalization of pathogenic dosage underlying genetic diseases: an overview of the literature and path forward. Emerg Top Life Sci 2019; 3:53-62. [PMID: 33523192 DOI: 10.1042/etls20180099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/22/2019] [Accepted: 02/25/2019] [Indexed: 12/17/2022]
Abstract
Most monogenic disorders are caused by a pathologic deficit or excess of a single transcript and/or protein. Given that small molecules, including drugs, can affect levels of mRNA and protein, the pharmacologic normalization of such pathogenic dosage represents a possible therapeutic approach for such conditions. Here, we review the literature exploring pharmacologic modulation of mRNA and/or protein levels for disorders with paralogous modifier genes, for haploinsufficient disorders (insufficient gene-product), as well as toxic gain-of-function disorders (surplus or pathologic gene-product). We also discuss challenges facing the development of rare disease therapy by pharmacologic modulation of mRNA and protein. Finally, we lay out guiding principles for selection of disorders which may be amenable to this approach.
Collapse
|
22
|
Ratni H, Mueller L, Ebeling M. Rewriting the (tran)script: Application to spinal muscular atrophy. PROGRESS IN MEDICINAL CHEMISTRY 2019; 58:119-156. [PMID: 30879473 DOI: 10.1016/bs.pmch.2018.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Targeting RNA drastically expands our target space to therapeutically modulate numerous cellular processes implicated in human diseases. Of particular interest, drugging pre-mRNA splicing appears a very viable strategy; to control levels of splicing product by promoting the inclusion or exclusion of exons. After describing the concept of "splicing modulation", this chapter will cover the outstanding progress achieved in this field, by highlighting the breakthrough accomplished recently for the treatment of spinal muscular atrophy using two therapeutic modalities: splice switching oligonucleotides and small molecules. This review discusses the vital but feasible requirement for such drugs to deliver selectivity, and critical safety aspects are highlighted. Transformational medicines such as those developed to treat SMA are likely just the beginning of this story.
Collapse
Affiliation(s)
- Hasane Ratni
- F. Hoffmann-La Roche Ltd., pRED, Pharma Research & Early Development, Roche Innovation Center Basel, Basel, Switzerland.
| | - Lutz Mueller
- F. Hoffmann-La Roche Ltd., pRED, Pharma Research & Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Martin Ebeling
- F. Hoffmann-La Roche Ltd., pRED, Pharma Research & Early Development, Roche Innovation Center Basel, Basel, Switzerland
| |
Collapse
|
23
|
Gayduk AI, Vlasov YV. Spinal muscular atrophy in samara region. Epidemiology, classification, prospects for health care. Zh Nevrol Psikhiatr Im S S Korsakova 2019; 119:88-93. [DOI: 10.17116/jnevro201911912188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
24
|
Cheung AK, Hurley B, Kerrigan R, Shu L, Chin DN, Shen Y, O'Brien G, Sung MJ, Hou Y, Axford J, Cody E, Sun R, Fazal A, Fridrich C, Sanchez CC, Tomlinson RC, Jain M, Deng L, Hoffmaster K, Song C, Van Hoosear M, Shin Y, Servais R, Towler C, Hild M, Curtis D, Dietrich WF, Hamann LG, Briner K, Chen KS, Kobayashi D, Sivasankaran R, Dales NA. Discovery of Small Molecule Splicing Modulators of Survival Motor Neuron-2 (SMN2) for the Treatment of Spinal Muscular Atrophy (SMA). J Med Chem 2018; 61:11021-11036. [PMID: 30407821 DOI: 10.1021/acs.jmedchem.8b01291] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Spinal muscular atrophy (SMA), a rare neuromuscular disorder, is the leading genetic cause of death in infants and toddlers. SMA is caused by the deletion or a loss of function mutation of the survival motor neuron 1 (SMN1) gene. In humans, a second closely related gene SMN2 exists; however it codes for a less stable SMN protein. In recent years, significant progress has been made toward disease modifying treatments for SMA by modulating SMN2 pre-mRNA splicing. Herein, we describe the discovery of LMI070/branaplam, a small molecule that stabilizes the interaction between the spliceosome and SMN2 pre-mRNA. Branaplam (1) originated from a high-throughput phenotypic screening hit, pyridazine 2, and evolved via multiparameter lead optimization. In a severe mouse SMA model, branaplam treatment increased full-length SMN RNA and protein levels, and extended survival. Currently, branaplam is in clinical studies for SMA.
Collapse
Affiliation(s)
- Atwood K Cheung
- Novartis Institutes for BioMedical Research , 250 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Brian Hurley
- Novartis Institutes for BioMedical Research , 250 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Ryan Kerrigan
- Novartis Institutes for BioMedical Research , 250 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Lei Shu
- Novartis Institutes for BioMedical Research , 250 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Donovan N Chin
- Novartis Institutes for BioMedical Research , 250 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Yiping Shen
- Novartis Institutes for BioMedical Research , 250 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Gary O'Brien
- Novartis Institutes for BioMedical Research , 250 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Moo Je Sung
- Novartis Institutes for BioMedical Research , 250 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Ying Hou
- Novartis Institutes for BioMedical Research , 250 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Jake Axford
- Novartis Institutes for BioMedical Research , 250 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Emma Cody
- Novartis Institutes for BioMedical Research , 250 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Robert Sun
- Novartis Institutes for BioMedical Research , 250 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Aleem Fazal
- Novartis Institutes for BioMedical Research , 250 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Cary Fridrich
- Novartis Institutes for BioMedical Research , 250 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Carina C Sanchez
- Novartis Institutes for BioMedical Research , 250 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Ronald C Tomlinson
- Novartis Institutes for BioMedical Research , 250 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Monish Jain
- Novartis Institutes for BioMedical Research , 250 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Lin Deng
- Novartis Institutes for BioMedical Research , 250 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Keith Hoffmaster
- Novartis Institutes for BioMedical Research , 250 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Cheng Song
- Novartis Institutes for BioMedical Research , 250 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Mailin Van Hoosear
- Novartis Institutes for BioMedical Research , 250 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Youngah Shin
- Novartis Institutes for BioMedical Research , 250 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Rebecca Servais
- Novartis Institutes for BioMedical Research , 250 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Christopher Towler
- Novartis Pharmaceuticals , 250 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Marc Hild
- Novartis Institutes for BioMedical Research , 250 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Daniel Curtis
- Novartis Institutes for BioMedical Research , 250 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - William F Dietrich
- Novartis Institutes for BioMedical Research , 250 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Lawrence G Hamann
- Novartis Institutes for BioMedical Research , 250 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Karin Briner
- Novartis Institutes for BioMedical Research , 250 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Karen S Chen
- SMA Foundation , 888 Seventh Avenue, Suite 400 , New York , New York 10019 , United States
| | - Dione Kobayashi
- SMA Foundation , 888 Seventh Avenue, Suite 400 , New York , New York 10019 , United States
| | - Rajeev Sivasankaran
- Novartis Institutes for BioMedical Research , 250 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Natalie A Dales
- Novartis Institutes for BioMedical Research , 250 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| |
Collapse
|
25
|
Ratni H, Ebeling M, Baird J, Bendels S, Bylund J, Chen KS, Denk N, Feng Z, Green L, Guerard M, Jablonski P, Jacobsen B, Khwaja O, Kletzl H, Ko CP, Kustermann S, Marquet A, Metzger F, Mueller B, Naryshkin NA, Paushkin SV, Pinard E, Poirier A, Reutlinger M, Weetall M, Zeller A, Zhao X, Mueller L. Discovery of Risdiplam, a Selective Survival of Motor Neuron-2 ( SMN2) Gene Splicing Modifier for the Treatment of Spinal Muscular Atrophy (SMA). J Med Chem 2018; 61:6501-6517. [PMID: 30044619 DOI: 10.1021/acs.jmedchem.8b00741] [Citation(s) in RCA: 336] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
SMA is an inherited disease that leads to loss of motor function and ambulation and a reduced life expectancy. We have been working to develop orally administrated, systemically distributed small molecules to increase levels of functional SMN protein. Compound 2 was the first SMN2 splicing modifier tested in clinical trials in healthy volunteers and SMA patients. It was safe and well tolerated and increased SMN protein levels up to 2-fold in patients. Nevertheless, its development was stopped as a precautionary measure because retinal toxicity was observed in cynomolgus monkeys after chronic daily oral dosing (39 weeks) at exposures in excess of those investigated in patients. Herein, we describe the discovery of 1 (risdiplam, RG7916, RO7034067) that focused on thorough pharmacology, DMPK and safety characterization and optimization. This compound is undergoing pivotal clinical trials and is a promising medicine for the treatment of patients in all ages and stages with SMA.
Collapse
Affiliation(s)
- Hasane Ratni
- F. Hoffmann-La Roche Ltd., pRED, Pharma Research & Early Development , Roche Innovation Center Basel , Grenzacherstrasse 124 , 4070 Basel , Switzerland
| | - Martin Ebeling
- F. Hoffmann-La Roche Ltd., pRED, Pharma Research & Early Development , Roche Innovation Center Basel , Grenzacherstrasse 124 , 4070 Basel , Switzerland
| | - John Baird
- PTC Therapeutics, Inc. , 100 Corporate Court , South Plainfield , New Jersey 07080 , United States
| | - Stefanie Bendels
- F. Hoffmann-La Roche Ltd., pRED, Pharma Research & Early Development , Roche Innovation Center Basel , Grenzacherstrasse 124 , 4070 Basel , Switzerland
| | - Johan Bylund
- F. Hoffmann-La Roche Ltd., pRED, Pharma Research & Early Development , Roche Innovation Center Basel , Grenzacherstrasse 124 , 4070 Basel , Switzerland
| | - Karen S Chen
- SMA Foundation , 888 Seventh Avenue, Suite 400 , New York , New York 10019 , United States
| | - Nora Denk
- F. Hoffmann-La Roche Ltd., pRED, Pharma Research & Early Development , Roche Innovation Center Basel , Grenzacherstrasse 124 , 4070 Basel , Switzerland
| | - Zhihua Feng
- Section of Neurobiology, Department of Biological Sciences , University of Southern California , Los Angeles , California 90089 , United States
| | - Luke Green
- F. Hoffmann-La Roche Ltd., pRED, Pharma Research & Early Development , Roche Innovation Center Basel , Grenzacherstrasse 124 , 4070 Basel , Switzerland
| | - Melanie Guerard
- F. Hoffmann-La Roche Ltd., pRED, Pharma Research & Early Development , Roche Innovation Center Basel , Grenzacherstrasse 124 , 4070 Basel , Switzerland
| | - Philippe Jablonski
- F. Hoffmann-La Roche Ltd., pRED, Pharma Research & Early Development , Roche Innovation Center Basel , Grenzacherstrasse 124 , 4070 Basel , Switzerland
| | - Bjoern Jacobsen
- F. Hoffmann-La Roche Ltd., pRED, Pharma Research & Early Development , Roche Innovation Center Basel , Grenzacherstrasse 124 , 4070 Basel , Switzerland
| | - Omar Khwaja
- F. Hoffmann-La Roche Ltd., pRED, Pharma Research & Early Development , Roche Innovation Center Basel , Grenzacherstrasse 124 , 4070 Basel , Switzerland
| | - Heidemarie Kletzl
- F. Hoffmann-La Roche Ltd., pRED, Pharma Research & Early Development , Roche Innovation Center Basel , Grenzacherstrasse 124 , 4070 Basel , Switzerland
| | - Chien-Ping Ko
- Section of Neurobiology, Department of Biological Sciences , University of Southern California , Los Angeles , California 90089 , United States
| | - Stefan Kustermann
- F. Hoffmann-La Roche Ltd., pRED, Pharma Research & Early Development , Roche Innovation Center Basel , Grenzacherstrasse 124 , 4070 Basel , Switzerland
| | - Anne Marquet
- F. Hoffmann-La Roche Ltd., pRED, Pharma Research & Early Development , Roche Innovation Center Basel , Grenzacherstrasse 124 , 4070 Basel , Switzerland
| | - Friedrich Metzger
- F. Hoffmann-La Roche Ltd., pRED, Pharma Research & Early Development , Roche Innovation Center Basel , Grenzacherstrasse 124 , 4070 Basel , Switzerland
| | - Barbara Mueller
- F. Hoffmann-La Roche Ltd., pRED, Pharma Research & Early Development , Roche Innovation Center Basel , Grenzacherstrasse 124 , 4070 Basel , Switzerland
| | - Nikolai A Naryshkin
- PTC Therapeutics, Inc. , 100 Corporate Court , South Plainfield , New Jersey 07080 , United States
| | - Sergey V Paushkin
- SMA Foundation , 888 Seventh Avenue, Suite 400 , New York , New York 10019 , United States
| | - Emmanuel Pinard
- F. Hoffmann-La Roche Ltd., pRED, Pharma Research & Early Development , Roche Innovation Center Basel , Grenzacherstrasse 124 , 4070 Basel , Switzerland
| | - Agnès Poirier
- F. Hoffmann-La Roche Ltd., pRED, Pharma Research & Early Development , Roche Innovation Center Basel , Grenzacherstrasse 124 , 4070 Basel , Switzerland
| | - Michael Reutlinger
- F. Hoffmann-La Roche Ltd., pRED, Pharma Research & Early Development , Roche Innovation Center Basel , Grenzacherstrasse 124 , 4070 Basel , Switzerland
| | - Marla Weetall
- PTC Therapeutics, Inc. , 100 Corporate Court , South Plainfield , New Jersey 07080 , United States
| | - Andreas Zeller
- F. Hoffmann-La Roche Ltd., pRED, Pharma Research & Early Development , Roche Innovation Center Basel , Grenzacherstrasse 124 , 4070 Basel , Switzerland
| | - Xin Zhao
- PTC Therapeutics, Inc. , 100 Corporate Court , South Plainfield , New Jersey 07080 , United States
| | - Lutz Mueller
- F. Hoffmann-La Roche Ltd., pRED, Pharma Research & Early Development , Roche Innovation Center Basel , Grenzacherstrasse 124 , 4070 Basel , Switzerland
| |
Collapse
|
26
|
Scoto M, Finkel R, Mercuri E, Muntoni F. Genetic therapies for inherited neuromuscular disorders. THE LANCET CHILD & ADOLESCENT HEALTH 2018; 2:600-609. [PMID: 30119719 DOI: 10.1016/s2352-4642(18)30140-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/23/2018] [Accepted: 04/24/2018] [Indexed: 01/15/2023]
Abstract
Inherited neuromuscular disorders encompass a broad group of genetic conditions, and the discovery of these underlying genes has expanded greatly in the past three decades. The discovery of such genes has enabled more precise diagnosis of these disorders and the development of specific therapeutic approaches that target the genetic basis and pathophysiological pathways. Such translational research has led to the approval of two genetic therapies by the US Food and Drug Administration: eteplirsen for Duchenne muscular dystrophy and nusinersen for spinal muscular atrophy, which are both antisense oligonucleotides that modify pre-mRNA splicing. In this Review we aim to discuss new genetic therapies and ongoing clinical trials for Duchenne muscular dystrophy, spinal muscular atrophy, and other less common childhood neuromuscular disorders.
Collapse
Affiliation(s)
- Mariacristina Scoto
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Richard Finkel
- Division of Pediatric Neurology, Nemours Children's Hospital, University of Central Florida College of Medicine, Orlando, FL, USA
| | - Eugenio Mercuri
- Pediatric Neurology and Centro Nemo, IRCSS Fondazione Policlinico Gemelli, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Francesco Muntoni
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, UK; National Institute for Health Research Great Ormond Street Hospital Biomedical Research Centre, London, UK.
| |
Collapse
|
27
|
Bowerman M, Becker CG, Yáñez-Muñoz RJ, Ning K, Wood MJA, Gillingwater TH, Talbot K. Therapeutic strategies for spinal muscular atrophy: SMN and beyond. Dis Model Mech 2018; 10:943-954. [PMID: 28768735 PMCID: PMC5560066 DOI: 10.1242/dmm.030148] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a devastating neuromuscular disorder characterized by loss of motor neurons and muscle atrophy, generally presenting in childhood. SMA is caused by low levels of the survival motor neuron protein (SMN) due to inactivating mutations in the encoding gene SMN1. A second duplicated gene, SMN2, produces very little but sufficient functional protein for survival. Therapeutic strategies to increase SMN are in clinical trials, and the first SMN2-directed antisense oligonucleotide (ASO) therapy has recently been licensed. However, several factors suggest that complementary strategies may be needed for the long-term maintenance of neuromuscular and other functions in SMA patients. Pre-clinical SMA models demonstrate that the requirement for SMN protein is highest when the structural connections of the neuromuscular system are being established, from late fetal life throughout infancy. Augmenting SMN may not address the slow neurodegenerative process underlying progressive functional decline beyond childhood in less severe types of SMA. Furthermore, individuals receiving SMN-based treatments may be vulnerable to delayed symptoms if rescue of the neuromuscular system is incomplete. Finally, a large number of older patients living with SMA do not fulfill the present criteria for inclusion in gene therapy and ASO clinical trials, and may not benefit from SMN-inducing treatments. Therefore, a comprehensive whole-lifespan approach to SMA therapy is required that includes both SMN-dependent and SMN-independent strategies that treat the CNS and periphery. Here, we review the range of non-SMN pathways implicated in SMA pathophysiology and discuss how various model systems can serve as valuable tools for SMA drug discovery. Summary: Translational research for spinal muscular atrophy (SMA) should address the development of non-CNS and survival motor neuron (SMN)-independent therapeutic approaches to complement and enhance the benefits of CNS-directed and SMN-dependent therapies.
Collapse
Affiliation(s)
- Melissa Bowerman
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| | - Catherina G Becker
- Euan MacDonald Centre for Motor Neurone Disease Research and Centre for Neuroregeneration, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Rafael J Yáñez-Muñoz
- AGCTlab.org, Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway, University of London, Egham Hill, Egham, Surrey TW20 0EX, UK
| | - Ke Ning
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield S10 2HQ, UK
| | - Matthew J A Wood
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| | - Thomas H Gillingwater
- Euan MacDonald Centre for Motor Neurone Disease Research and Centre for Integrative Physiology, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Kevin Talbot
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | | |
Collapse
|