1
|
Citriniti EL, Rocca R, Costa G, Sciacca C, Cardullo N, Muccilli V, Karioti A, Carta F, Supuran CT, Alcaro S, Ortuso F. Discover the Power of Lithospermic Acid as Human Carbonic Anhydrase VA and Pancreatic Lipase Inhibitor Through In Silico and In Vitro Studies. Arch Pharm (Weinheim) 2025; 358:e3128. [PMID: 40257393 PMCID: PMC12010950 DOI: 10.1002/ardp.202500046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/24/2025] [Accepted: 03/21/2025] [Indexed: 04/22/2025]
Abstract
Obesity remains a significant global health concern, with limited pharmacological options that balance efficacy and safety. In this study, we identified lithospermic acid (LTS0059529) from Salvia miltiorrhiza as a potential dual inhibitor of pancreatic lipase (PL) and human carbonic anhydrase VA (hCA VA), two key enzymes in lipid metabolism. Using molecular docking and dynamics simulations, we observed that lithospermic acid interacts with Zn²⁺ in hCA VA via its benzofuran carboxylate moiety and forms stable complexes with PL through hydrogen bonding with ASP 205 and π-stacking interactions with PHE 77 and PHE 215. Experimental validation confirmed its inhibitory activity, with Ki values of 33.1 ± 1.6 μM for PL and 0.69 ± 0.01 μM for hCA VA. While its inhibition of hCA VA is not isoform-specific, lithospermic acid demonstrates significant potential as a dual inhibitor, targeting complementary pathways in obesity management. This study is the first to explore its dual action on PL and hCA VA, highlighting a promising strategy for future antiobesity therapies. Further research will focus on optimizing selectivity and potency to develop safer and more effective treatments.
Collapse
Affiliation(s)
| | - Roberta Rocca
- Dipartimento di Scienze della SaluteUniversità “Magna Græcia” di CatanzaroCatanzaroItaly
- Net4Science S.r.l.Università “Magna Græcia” di CatanzaroCatanzaroItaly
- Associazione CRISEA—Centro di Ricerca e Servizi Avanzati per l'Innovazione RuraleLocalità Condoleo di BelcastroCatanzaroItaly
| | - Giosuè Costa
- Dipartimento di Scienze della SaluteUniversità “Magna Græcia” di CatanzaroCatanzaroItaly
- Net4Science S.r.l.Università “Magna Græcia” di CatanzaroCatanzaroItaly
| | - Claudia Sciacca
- Dipartimento di Scienze ChimicheUniversità degli Studi di CataniaCataniaItaly
| | - Nunzio Cardullo
- Dipartimento di Scienze ChimicheUniversità degli Studi di CataniaCataniaItaly
| | - Vera Muccilli
- Dipartimento di Scienze ChimicheUniversità degli Studi di CataniaCataniaItaly
| | - Anastasia Karioti
- Laboratory of Pharmacognosy, School of PharmacyAristotle University of ThessalonikiThessalonikiGreece
| | - Fabrizio Carta
- NEUROFARBA Department, Sezione di Scienze FarmaceuticheUniversity of FlorenceFlorenceItaly
| | - Claudiu T. Supuran
- NEUROFARBA Department, Sezione di Scienze FarmaceuticheUniversity of FlorenceFlorenceItaly
| | - Stefano Alcaro
- Dipartimento di Scienze della SaluteUniversità “Magna Græcia” di CatanzaroCatanzaroItaly
- Net4Science S.r.l.Università “Magna Græcia” di CatanzaroCatanzaroItaly
- Associazione CRISEA—Centro di Ricerca e Servizi Avanzati per l'Innovazione RuraleLocalità Condoleo di BelcastroCatanzaroItaly
| | - Francesco Ortuso
- Dipartimento di Scienze della SaluteUniversità “Magna Græcia” di CatanzaroCatanzaroItaly
- Net4Science S.r.l.Università “Magna Græcia” di CatanzaroCatanzaroItaly
| |
Collapse
|
2
|
Kupikowska-Stobba B, Niu H, Klojdová I, Agregán R, Lorenzo JM, Kasprzak M. Controlled lipid digestion in the development of functional and personalized foods for a tailored delivery of dietary fats. Food Chem 2025; 466:142151. [PMID: 39615348 DOI: 10.1016/j.foodchem.2024.142151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/04/2024] [Accepted: 11/17/2024] [Indexed: 12/14/2024]
Abstract
In recent decades, obesity and its associated health issues have risen dramatically. The COVID-19 pandemic has further exacerbated this trend, underscoring the pressing need for new strategies to manage weight. Functional foods designed to modulate lipid digestion and absorption rates and thereby reduce the assimilation of dietary fats have gained increasing attention in food science as a potentially safer alternative to weight-loss medications. This review provides insights into controlled lipid digestion and customized delivery of fats. The first section introduces basic concepts of lipid digestion and absorption in the human gastrointestinal tract. The second section discusses factors regulating lipid digestion and absorption rates, as well as strategies for modulating lipid assimilation from food. The third section focuses on applications of controlled lipid digestion in developing personalized foods designed for specific consumer groups, with particular emphasis on two target populations: overweight individuals and infants.
Collapse
Affiliation(s)
- Barbara Kupikowska-Stobba
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02-106 Warsaw, Poland.
| | - Hui Niu
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Iveta Klojdová
- DRIFT-FOOD, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 21 Prague, Czech Republic
| | - Ruben Agregán
- Centro Tecnológico de la Carne de Galicia, Avd. Galicia N° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
| | - Jose Manuel Lorenzo
- Centro Tecnológico de la Carne de Galicia, Avd. Galicia N° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, Ourense, Spain
| | - Mirosław Kasprzak
- Department of Animal Product Technology, Faculty of Food Technology, University of Agriculture, Balicka 122, 30-149 Kraków, Poland
| |
Collapse
|
3
|
Mingmuang J, Bunwatcharaphansakun P, Suriya U, Pipatrattanaseree W, Andriyas T, Tansawat R, Chansriniyom C, De-Eknamkul W. Identification of pancreatin inhibitors from Thai medicinal Piper plants for antidiabetic and anti-obesity activities using high-performance thin-layer chromatography-bioautographic assay. J Chromatogr A 2024; 1736:465358. [PMID: 39277979 DOI: 10.1016/j.chroma.2024.465358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/17/2024]
Abstract
Exploring the potential of natural products against diabetes and obesity is in demand nowadays. Pancreatic α-amylase and pancreatic lipase are the drug targets to minimize the absorption of glucose from starch and fatty acids from lipids, respectively. In this study, five Piper species, namely P. sarmentosum (Ps), P. wallichii (Pw), P. retrofractum (Pr), P. nigrum (Pn), and P. betle (Pb), which are commonly used as food ingredients and traditional medicines, were evaluated for their inhibitory activities against pancreatin using the microtiter plate method. Additionally, pancreatin inhibitors were identified through a cost-effective high-performance thin-layer chromatography (HPTLC)-bioautography developed using red starch and p-nitrophenyl palmitate, corresponding to anti-amylase and -lipase activities, respectively. Of the 15 samples tested, leaf samples from Pb, which had the highest total phenolic and total flavonoid contents, exhibited remarkable inhibitory activity against pancreatin, with a relative amylase inhibitory capacity (RAIC) ranging between 4.260 × 10-5 and 4.861 × 10-5 and a reciprocal half-maximal inhibitory concentration (1/IC50, PTL) of 0.390-0.510 (mg/mL)-1. Additionally, Ps samples demonstrated the second-ranked anti-pancreatin activity. Principal component analysis indicated that total phenolic content contributed to the anti-pancreatin activities of Pb samples. The anti-pancreatin bands were isolated and identified as caffeic acid, myricetin, genistein, piperine, and eugenol. Myricetin, in the roots of Ps samples, showed notable anti-pancreatin activity, which was consistent with results from the in silico prediction toward pancreatic α-amylase and pancreatic lipase. Caffeic acid and eugenol were present in Pb samples. In conclusion, the developed cost-effective pancreatin HPTLC-bioautography efficiently identified amylase and lipase inhibitors from Piper herbs, which supported the use of these plants for antidiabetes and anti-obesity.
Collapse
Affiliation(s)
- Jiranuch Mingmuang
- Pharmaceutical Sciences and Technology Program, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | | | - Utid Suriya
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Weerachai Pipatrattanaseree
- Regional Medical Science Center 12 Songkhla, Department of Medical Sciences, Ministry of Public Health, Songkhla, 90110, Thailand
| | - Tushar Andriyas
- Metabolomics for Life Sciences Research Unit, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Rossarin Tansawat
- Metabolomics for Life Sciences Research Unit, Chulalongkorn University, Bangkok, 10330, Thailand; Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Chaisak Chansriniyom
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand; Center of Excellence in Natural Products and Nanoparticles, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Wanchai De-Eknamkul
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand; Center of Excellence in Natural Products and Nanoparticles, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
4
|
Modanwal S, Maurya AK, Mulpuru V, Mishra N. Exploring flavonoid derivatives as potential pancreatic lipase inhibitors for obesity management: An in silico and in vitro study. Mol Divers 2024:10.1007/s11030-024-11005-5. [PMID: 39394546 DOI: 10.1007/s11030-024-11005-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/27/2024] [Indexed: 10/13/2024]
Abstract
Obesity is widely recognized as a major public health issue and is one of the leading causes of death worldwide. Overweight and obesity are prominent lifestyle ailments that not only give rise to additional health issues but also play a role in the development of other chronic diseases, such as cancer, diabetes, metabolic syndrome, and cardiovascular diseases. Orlistat is now the only pharmaceutical drug for the management of obesity. However, prolonged use of orlistat has been associated with detrimental consequences, hence necessitating the development of a new drug with reduced or no adverse reactions. Pancreatic Lipase is a critical enzyme in lipid metabolism. Using naturally occurring compounds as PL inhibitors has garnered significant attention because of their diverse structure and low toxicity. The present work investigates the inhibitory action of flavonoids on PL using in silico and in vitro methods. Thirteen flavonoid derivatives and orlistat were docked with PL. The ADME properties of the flavonoid derivatives were studied, and most of the compounds are in admire range. The stability of the best-docked complexes was checked by REMD. The in silico study demonstrated favorable inhibitory activity of flavonoids compared to orlistat. Consequently, an enzyme inhibitory experiment was conducted to authenticate the in silico results. The lipase inhibitory activity was assessed by using p-nitrophenyl butyrate as the substrate. Kaempferol exhibited significant inhibitory activity against PL, as shown by its IC50 value of 72.7 ± 3 µM. This study proposed a natural drug candidate with promising inhibitory efficacy against PL for obesity.
Collapse
Affiliation(s)
- Shristi Modanwal
- Department of Applied Sciences, Indian Institute of Information of Technology Allahabad, Prayagraj, India
| | | | - Viswajit Mulpuru
- Vignan's Foundation for Science, Technology, and Research, Guntur, India
| | - Nidhi Mishra
- Department of Applied Sciences, Indian Institute of Information of Technology Allahabad, Prayagraj, India.
| |
Collapse
|
5
|
Cardullo N, Calcagno D, Pulvirenti L, Sciacca C, Pittalà MGG, Maccarronello AE, Thevenard F, Muccilli V. Flavonoids with lipase inhibitory activity from lemon squeezing waste: isolation, multispectroscopic and in silico studies. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:7639-7648. [PMID: 38775623 DOI: 10.1002/jsfa.13600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/30/2024] [Accepted: 05/06/2024] [Indexed: 08/07/2024]
Abstract
BACKGROUND Obesity is recognized as a lifestyle-related disease and the main risk factor for a series of pathological conditions, including cardiovascular diseases, hypertension and type 2 diabetes. Citrus limon is an important medicinal plant, and its fruits are rich in flavonoids investigated for their potential in managing obesity. In the present work, a green extraction applied to lemon squeezing waste (LSW) was optimized to recover pancreatic lipase (PL) inhibitors. RESULTS The microwave-assisted procedure yielded an extract with higher lipase inhibitory activity than those obtained by maceration and ultrasound. The main compounds present in the extract were identified by high-performance liquid chromatographic-mass spectrometric analysis, and hesperidin, eriocitrin and 4'-methyllucenin II were isolated. The three compounds were evaluated for in vitro PL inhibitory activity, and 4'-methyllucenin II resulted in the most promising inhibitor (IC50 = 12.1 μmol L-1; Ki = 62.2 μmol L-1). Multispectroscopic approaches suggested the three flavonoids act as competitive inhibitors and the binding studies indicated a greater interaction between PL and 4'-methyllucenin II. Docking analysis indicated the significant interactions of the three flavonoids with the PL catalytic site. CONCLUSION The present work highlights flavonoid glycosides as promising PL inhibitors and proposes LSW as a safe ingredient for the preparation of food supplements for managing obesity. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Nunzio Cardullo
- Department of Chemical Sciences, University of Catania, Catania, Italy
| | | | - Luana Pulvirenti
- CNR-ICB, Consiglio Nazionale delle Ricerche - Istituto di Chimica Biomolecolare, Catania, Italy
| | - Claudia Sciacca
- Department of Chemical Sciences, University of Catania, Catania, Italy
| | | | | | - Fernanda Thevenard
- Centre of Natural Sciences and Humanities, Federal University of ABC (UFABC), Santo Andre, São Paulo, Brazil
| | - Vera Muccilli
- Department of Chemical Sciences, University of Catania, Catania, Italy
| |
Collapse
|
6
|
Jing Y, Luo L, Zeng Z, Zhao X, Huang R, Song C, Chen G, Wei S, Yang H, Tang Y, Jin S. Targeted Screening of Curcumin Derivatives as Pancreatic Lipase Inhibitors Using Computer-Aided Drug Design. ACS OMEGA 2024; 9:27669-27679. [PMID: 38947805 PMCID: PMC11209693 DOI: 10.1021/acsomega.4c03596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 07/02/2024]
Abstract
Curcumin has demonstrated promising preclinical antiobesity effects, but its low bioavailability makes it difficult to exert its full effect at a suitable dose. The objective of this study was to screen curcumin derivatives with enhanced bioavailability and lipid-lowering activity under the guidance of computer-aided drug design (CADD). CAAD was used to perform virtual assays on curcumin derivatives to assess their pharmacokinetic properties and effects on pancreatic lipase activity. Subsequently, 19 curcumin derivatives containing 5 skeletons were synthesized to confirm the above virtual assay. The in vitro pancreatic lipase inhibition assay was employed to determine the half-maximal inhibitory concentration (IC50) of these 19 curcumin derivatives. Based on CADD analysis and in vitro pancreatic lipase inhibition, 2 curcumin derivatives outperformed curcumin in both aspects. Microscale thermophoresis (MST) experiments were employed to assess the binding equilibrium constants (K d) of the aforementioned 2 curcumin derivatives, curcumin, and the positive control drug with pancreatic lipase. Through virtual screening utilizing a chemoinformatics database and molecular docking, 6 derivatives of curcumin demonstrated superior solubility, absorption, and pancreatic lipase inhibitory activity compared to curcumin. The IC50 value for 1,7-bis(4-hydroxyphenyl)heptane-3,5-dione (C4), which displayed the most effective inhibitory effect, was 42.83 μM, while the IC50 value for 1,7-bis(4-hydroxy-3-methoxyphenyl)heptane-3,5-dione (C6) was 98.62 μM. On the other hand, the IC50 value for curcumin was 142.24 μM. The MST experiment results indicated that the K d values of C4, C6, and curcumin were 2.91, 18.20, and 23.53 μM, respectively. The results of the activity assays exhibited a relatively high degree of concordance with the outcomes yielded by CADD screening. Under the guidance of CADD, the targeted screening of curcumin derivatives with excellent properties in this study exhibited high-efficiency and low-cost benefits.
Collapse
Affiliation(s)
- Yuxuan Jing
- School
of Pharmacy, Hubei University of Chinese
Medicine, 430065 Wuhan, Hubei, China
| | - Laichun Luo
- School
of Pharmacy, Hubei University of Chinese
Medicine, 430065 Wuhan, Hubei, China
| | - Zhaoxiang Zeng
- School
of Pharmacy, Hubei University of Chinese
Medicine, 430065 Wuhan, Hubei, China
| | - Xueyan Zhao
- School
of Pharmacy, Hubei University of Chinese
Medicine, 430065 Wuhan, Hubei, China
| | - Rongzeng Huang
- School
of Pharmacy, Hubei University of Chinese
Medicine, 430065 Wuhan, Hubei, China
| | - Chengwu Song
- School
of Pharmacy, Hubei University of Chinese
Medicine, 430065 Wuhan, Hubei, China
- Center
of Traditional Chinese Medicine Modernization for Liver Diseases, 430065 Wuhan, Hubei, China
- Hubei
Shizhen Laboratory, 430065 Wuhan, Hubei, China
| | - Guiying Chen
- Wuhan
Hongren Biopharmaceutical Inc, 430065 Wuhan, Hubei, China
| | - Sha Wei
- School
of Basic Medical Sciences, Hubei University
of Chinese Medicine, 430065 Wuhan, Hubei, China
| | - Haijun Yang
- School
of Basic Medical Sciences, Hubei University
of Chinese Medicine, 430065 Wuhan, Hubei, China
| | - Yinping Tang
- School
of Pharmacy, Hubei University of Chinese
Medicine, 430065 Wuhan, Hubei, China
| | - Shuna Jin
- Hubei
Shizhen Laboratory, 430065 Wuhan, Hubei, China
- School
of Basic Medical Sciences, Hubei University
of Chinese Medicine, 430065 Wuhan, Hubei, China
| |
Collapse
|
7
|
Gao Z, Xu M, Liu C, Gong K, Yu X, Lu K, Zhu J, Guan H, Zhu Q. Structural Modification and Optimisation of Hyperoside Oriented to Inhibit TGF-β-Induced EMT Activity in Alveolar Epithelial Cells. Pharmaceuticals (Basel) 2024; 17:584. [PMID: 38794154 PMCID: PMC11124421 DOI: 10.3390/ph17050584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/16/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024] Open
Abstract
Pulmonary fibrosis (PF) is a disease characterised by diffuse nonspecific alveolar inflammation with interstitial fibrosis, which clinically manifests as dyspnoea and a significant decline in lung function. Many studies have shown that the epithelial-mesenchymal transition (EMT) plays a pivotal role in the pathogenesis of pulmonary fibrosis. Based on our previous findings, hypericin (Hyp) can effectively inhibit the process of the EMT to attenuate lung fibrosis. Therefore, a series of hyperoside derivatives were synthesised via modifying the structure of hyperoside, and subsequently evaluated for A549 cytotoxicity. Among these, the pre-screening of eight derivatives inhibits the EMT. In this study, we evaluated the efficacy of Z6, the most promising hyperoside derivative, in reversing TGF-β1-induced EMTs and inhibiting the EMT-associated migration of A549 cells. After the treatment of A549 cells with Z6 for 48 h, RT-qPCR and Western blot results showed that Z6 inhibited TGF-β1-induced EMTs in epithelial cells by supressing morphological changes in A549 cells, up-regulating E-cadherin (p < 0.01, p < 0.001), and down-regulating Vimentin (p < 0.01, p < 0.001). This treatment significantly reduced the mobility of transforming growth factor β1 (TGF-β1)-stimulated cells (p < 0.001) as assessed by wound closure, while increasing the adhesion rate of A549 cells (p < 0.001). In conclusion, our results suggest that hyperoside derivatives, especially compound Z6, are promising as potential lead compounds for treating pulmonary fibrosis, and therefore deserve further investigation.
Collapse
Affiliation(s)
- Ziye Gao
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (Z.G.); (M.X.); (K.G.); (X.Y.); (K.L.); (J.Z.)
| | - Mengzhen Xu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (Z.G.); (M.X.); (K.G.); (X.Y.); (K.L.); (J.Z.)
| | - Chuanguo Liu
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, China;
| | - Kai Gong
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (Z.G.); (M.X.); (K.G.); (X.Y.); (K.L.); (J.Z.)
| | - Xin Yu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (Z.G.); (M.X.); (K.G.); (X.Y.); (K.L.); (J.Z.)
| | - Kaihui Lu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (Z.G.); (M.X.); (K.G.); (X.Y.); (K.L.); (J.Z.)
| | - Jiang Zhu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (Z.G.); (M.X.); (K.G.); (X.Y.); (K.L.); (J.Z.)
| | - Haixing Guan
- Experimental Center, Shandong Provincial Key Laboratory of Traditional Chinese Medicine, Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Qingjun Zhu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (Z.G.); (M.X.); (K.G.); (X.Y.); (K.L.); (J.Z.)
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| |
Collapse
|
8
|
Pandey V, Adhikrao PA, Motiram GM, Yadav N, Jagtap U, Kumar G, Paul A. Biaryl carboxamide-based peptidomimetics analogs as potential pancreatic lipase inhibitors for treating obesity. Arch Pharm (Weinheim) 2024; 357:e2300503. [PMID: 38251950 DOI: 10.1002/ardp.202300503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/30/2023] [Accepted: 01/02/2024] [Indexed: 01/23/2024]
Abstract
A series of 1,1'-biphenyl-3-carboxamide and furan-phenyl-carboxamide analogs were synthesized using an optimized scheme and confirmed by 1H and 13C nuclear magnetic resonance and high-resolution mass spectrometry techniques. The synthesized peptidomimetics analogs were screened in vitro to understand the inhibitory potential of pancreatic lipase (PL). Analogs were assessed for the PL inhibitory activity based on interactions, geometric complementarity, and docking score. Among the synthesized analogs, 9, 29, and 24 were found to have the most potent PL inhibitory activity with IC50 values of 3.87, 4.95, and 5.34 µM, respectively, compared to that of the standard drug, that is, orlistat, which inhibits PL with an IC50 value of 0.99 µM. The most potent analog, 9, exhibited a competitive-type inhibition with an inhibition constant (Ki) of 2.72 µM. In silico molecular docking of analog 9 with the PL (PDB ID:1LPB) showed a docking score of -11.00 kcal/mol. Analog 9 formed crucial hydrogen bond interaction with Ser152, His263, π-cation interaction with Asp79, Arg256, and π-π stacking with Phe77, Tyr114 at the protein's active site. The molecular dynamic simulation confirmed that analog 9 forms stable interactions with PL at the end of 200 ns with root mean square deviation values of 2.5 and 6 Å. No toxicity was observed for analog 9 (concentration range of 1-20 µM) when tested by MTT assay in RAW 264.7 cells.
Collapse
Affiliation(s)
- Vikash Pandey
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Patil A Adhikrao
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Gudle M Motiram
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Nisha Yadav
- Laboratory of Natural Product Chemistry, Department of Pharmacy, Birla Institute of Technology and Science, Pilani (Pilani Campus), Pilani, Rajasthan, India
| | - Utkarsh Jagtap
- Laboratory of Natural Product Chemistry, Department of Pharmacy, Birla Institute of Technology and Science, Pilani (Pilani Campus), Pilani, Rajasthan, India
| | - Gautam Kumar
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Atish Paul
- Laboratory of Natural Product Chemistry, Department of Pharmacy, Birla Institute of Technology and Science, Pilani (Pilani Campus), Pilani, Rajasthan, India
| |
Collapse
|
9
|
Dhiman P, Yadav N, Auti PS, Jaswal S, Singh G, Mehan S, Ghosh B, Paul AT, Monga V. Discovery of thiazolidinedione-based pancreatic lipase inhibitors as anti-obesity agents: synthesis, in silico studies and pharmacological investigations. J Biomol Struct Dyn 2024:1-23. [PMID: 38315459 DOI: 10.1080/07391102.2024.2310799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/20/2024] [Indexed: 02/07/2024]
Abstract
A series of new 2,5-disubstituted arylidene derivatives of thiazolidinedione (16a-e, 17a-d, 18a-c) designed using molecular hybridization approach were synthesized, structurally characterized, and explored for their anti-obesity potential via inhibition of Pancreatic Lipase (PL). Compound 18a presented the most potent PL inhibitory activity with IC50 = 2.71 ± 0.31 µM, as compared to the standard drug, Orlistat (IC50 = 0.99 µM). Kinetic study revealed reversible competitive mode of enzyme inhibition by compound 18a with an inhibitory constant value of 1.19 µM. The most promising compound 18a revealed satisfactory binding mode within the active site of the target protein (human PL, PDB ID: 1LPB). Also, MM/PBSA binding free energy and molecular dynamics (MD) simulation analysis were performed for the most promising compound 18a, which showed potent inhibition according to the results of in vitro studies. Furthermore, a stable conformation of the 1LPB-ligand suggested the stability of this compound in the dynamic environment. The ADME and toxicity analysis of the compounds were examined using web-based online platforms. Results of in vivo studies confirmed the anti-obesity efficacy of compound 18a, wherein oral treatment with compound 18a (30 mg/kg) resulted in a significant reduction in the body weight, BMI, Lee index, feed intake (in Kcal), body fat depots and serum triglycerides. Compound 18a significantly decreased the levels of serum total cholesterol (TC) to 128.6 ± 0.59 mg/dl and serum total triglycerides (TG) to 95.73 ± 0.67 mg/dl as compared to the HFD control group. The present study identified disubstituted TZD derivatives as a new promising class of anti-obesity agents.
Collapse
Affiliation(s)
- Prashant Dhiman
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, India
| | - Nisha Yadav
- Laboratory of Natural Product Chemistry, Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS Pilani), Pilani, India
| | - Prashant S Auti
- Laboratory of Natural Product Chemistry, Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS Pilani), Pilani, India
| | - Shalini Jaswal
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, India
| | - Gurpreet Singh
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, India
| | - Sidharth Mehan
- Department of Pharmacology, ISF College of Pharmacy, Moga, India
| | - Balaram Ghosh
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad, India
| | - Atish T Paul
- Laboratory of Natural Product Chemistry, Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS Pilani), Pilani, India
| | - Vikramdeep Monga
- Drug Design and Molecular Synthesis Laboratory, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, VPO-Ghudda, Bathinda, India
| |
Collapse
|
10
|
Thi Vo CV, Thanh Nguyen T, Ngoc Dang T, Quoc Dao M, Thao Vo V, Thi Tran O, Thanh Vu L, Tran TD. Design, synthesis, biological evaluation and molecular docking of alkoxyaurones as potent pancreatic lipase inhibitors. Bioorg Med Chem Lett 2024; 98:129574. [PMID: 38052378 DOI: 10.1016/j.bmcl.2023.129574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 12/07/2023]
Abstract
Aurones are a minor subgroup of flavonoids. Unlike other subgroups such as chalcones, flavones, and isoflavones, aurones have not been extensively explored as pancreatic lipase inhibitors. In this work, we studied the pancreatic lipase inhibitory potency of synthetic aurone derivatives. Thirty-six compounds belonging to four series (4,6-dihydroxyaurone, 6-hydroxyaurone, 4,6-dialkoxyaurone, and 6-alkoxyaurone) were designed and synthesized. Their in vitro inhibitory activities were determined by spectrophotometric assay in comparison with quercetin and orlistat. Alkoxyaurone derivatives with long-chain (6-10 carbons) alkoxy substituents showed greater potency. Of them, 4,6-dialkoxyaurone 8 displayed the highest activity against pancreatic lipase (IC50 of 1.945 ± 0.520 µM) relative to quercetin (IC50 of 86.98 ± 3.859 µM) and orlistat (IC50 of 0.0334 ± 0.0015 µM). Fluorescence quenching measurement confirmed the affinity of alkoxyaurone derivatives to pancreatic lipase. Kinetic study showed that 8 inhibited lipase through a competitive mechanism (Ki of 1.288 ± 0.282 µM). Molecular docking results clarified the role of long-chain substituents on ring A in interacting with the hydrophobic pockets and pushing the inhibitor molecule closer to the catalytic triad. The findings in this study may contribute to the development of better pancreatic lipase inhibitors with aurone structure.
Collapse
Affiliation(s)
- Cam-Van Thi Vo
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City 700000, Viet Nam.
| | - Trang Thanh Nguyen
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City 700000, Viet Nam; Faculty of Pharmacy, Da Nang University of Medical Technology and Pharmacy, Danang 550000, Viet Nam
| | - Thien Ngoc Dang
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City 700000, Viet Nam
| | - Manh Quoc Dao
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City 700000, Viet Nam
| | - Vy Thao Vo
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City 700000, Viet Nam
| | - Oanh Thi Tran
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City 700000, Viet Nam
| | - Loc Thanh Vu
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City 700000, Viet Nam
| | - Thanh-Dao Tran
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City 700000, Viet Nam
| |
Collapse
|
11
|
Chen S, Dima C, Kharazmi MS, Yin L, Liu B, Jafari SM, Li Y. The colloid and interface strategies to inhibit lipid digestion for designing low-calorie food. Adv Colloid Interface Sci 2023; 321:103011. [PMID: 37826977 DOI: 10.1016/j.cis.2023.103011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 09/20/2023] [Accepted: 09/27/2023] [Indexed: 10/14/2023]
Abstract
Although fat is one of the indispensable components of food flavor, excessive fat consumption could cause obesity, metabolism syndromes and an imbalance in the intestinal flora. In the pursuit of a healthy diet, designing fat reducing foods by inhibiting lipid digestion and calorie intake is a promising strategy. Altering the gastric emptying rates of lipids as well as acting on the lipase by suppressing the enzymatic activity or limiting lipase diffusion via interfacial modulation can effectively decrease lipolysis rates. In this review, we provide a comprehensive overview of colloid-based strategies that can be employed to retard lipid hydrolysis, including pancreatic lipase inhibitors, emulsion-based interfacial modulation and fat substitutes. Plants-/microorganisms-derived lipase inhibitors bind to catalytic active sites and change the enzymatic conformation to inhibit lipase activity. Introducing oil-in-water Pickering emulsions into the food can effectively delay lipolysis via steric hindrance of interfacial particulates. Regulating stability and physical states of emulsions can also affect the rate of hydrolysis by altering the active hydrolysis surface. 3D network structure assembled by fat substitutes with high viscosity can not only slow down the peristole and obstruct the diffusion of lipase to the oil droplets but also impede the transportation of lipolysis products to epithelial cells for adsorption. Their applications in low-calorie bakery, dairy and meat products were also discussed, emphasizing fat intake reduction, structure and flavor retention and potential health benefits. However, further application of these strategies in large-scale food production still requires more optimization on cost and lipid reducing effects. This review provides a comprehensive review on colloidal approaches, design, principles and applications of fat reducing strategies to meet the growing demand for healthier diet and offer practical insights for the low-calorie food industry.
Collapse
Affiliation(s)
- Shanan Chen
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Cristian Dima
- Dunarea de Jos' University of Galati, Faculty of Food Science and Engineering, "Domnească" Str. 111, Building F, Room 107, 800201, Galati, Romania
| | | | - Lijun Yin
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Bin Liu
- Department of Nutrition and Health, China Agricultural University, Beijing 100091, China
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| | - Yuan Li
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China.
| |
Collapse
|
12
|
Aqeel MT, Rahman NU, Khan AU, Khan MT, Ashraf Z, Hassan SSU, Bungau SG, Majid M. Cardioprotective effect of 2-methoxy phenol derivatives against oxidative stress-induced vascular complications: An integrated in vitro, in silico, and in vivo investigation. Biomed Pharmacother 2023; 165:115240. [PMID: 37531779 DOI: 10.1016/j.biopha.2023.115240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/25/2023] [Accepted: 07/25/2023] [Indexed: 08/04/2023] Open
Abstract
BACKGROUND Oxidative stress and inflammation play crucial roles in macro/microvascular complications. Phenolic compounds and their derivatives show promise as therapeutic agents for diseases like cancer, metabolic disorders, and cardiovascular diseases. With their antioxidant and anti-inflammatory properties, these compounds hold potential for mitigating vascular complications and improving overall health. METHODOLOGY This study aimed to assess the therapeutic potential of five 2-methoxy phenol derivatives (T2, T5, T6, T7, and T8) as antioxidants, anti-inflammatory agents, and vasorelaxants using in vitro, in silico, and in vivo approaches. RESULTS Among all, T2 exhibited substantial antioxidant potential against 2, 2-diphenyl-1-picrylhydrazyl (DPPH) radicals with IC50 (27.97 µg/mL), nitric oxide (NO) radicals (IC50 = 34.36 µg/mL), hydroxyl (OH) radicals (IC50 = 34.83 µg/mL) and Iron chelation (IC50 = 24.32 µg/mL). Molecular docking analysis confirms that all derivatives, particularly T2, exhibit favorable binding energies with the target proteins, ACE (-7.7 Kcal/mol), ECE-1 (-7.9 Kcal/mol), and COX-1 (-7.8 Kcal/mol). All of the compounds demonstrated satisfactory physicochemical and pharmacokinetic characteristics, and showed minimal to no toxicity during in silico, in vitro, and in vivo assessments. In isolated aortic rings from Sprague Dawley rats, pre-contracted with high K+ (80 mM), T2 induced vasorelaxation in dose dependent manner and shifted calcium response curves to the right as compared to verapamil. T2 also showed substantial platelet aggregation inhibition in a dose dependent manner with IC50 21.29 µM. All derivatives except T7 exhibited significant conservation of endogenous antioxidants i.e. catalase (CAT), peroxidase (POD), superoxide dismutase (SOD) and reduced glutathione (GSH) and significantly suppressed serum levels of inflammatory markers i.e. nitric oxide (NO), peroxides (TBARS), interleukin-6 (IL-6) and cyclooxygenase-2 (COX-2). CONCLUSION The study concludes that T2 has significant antioxidant potential and vasorelaxant effects with adequate pharmacokinetics, making it a promising lead compound for further molecular investigation in cardiovascular disorders.
Collapse
Affiliation(s)
| | - Nisar-Ur Rahman
- Department of Pharmacy, COMSATS University Abbottabad, 22060, Pakistan
| | - Arif-Ullah Khan
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad 45320, Pakistan
| | - Muhammad Tariq Khan
- Faculty of Pharmacy, Capital University of Science and Technology, Islamabad 45720, Pakistan
| | - Zaman Ashraf
- Allama Iqbal Open University, Islamabad 44310, Pakistan
| | - Syed Shams Ul Hassan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Simona Gabriela Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania.
| | - Muhammad Majid
- Faculty of Pharmacy, Hamdard University Islamabad, 45550, Pakistan.
| |
Collapse
|
13
|
Yuan Y, Pan F, Zhu Z, Yang Z, Wang O, Li Q, Zhao L, Zhao L. Construction of a QSAR Model Based on Flavonoids and Screening of Natural Pancreatic Lipase Inhibitors. Nutrients 2023; 15:3489. [PMID: 37571426 PMCID: PMC10421515 DOI: 10.3390/nu15153489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/30/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
Pancreatic lipase (PL) is a key hydrolase in lipid metabolism. Inhibition of PL activity can intervene in obesity, a global sub-health disease. The natural product is considered a good alternative to chemically synthesized drugs due to its advantages, such as low side effects. However, traditional experimental screening methods are labor-intensive and cost-consuming, and there is an urgent need to develop high-throughput screening methods for the discovery of anti-PL natural products. In this study, a high-throughput virtual screening process for anti-PL natural products is provided. Firstly, a predictable anti-PL natural product QSAR model (R2train = 0.9444, R2test = 0.8962) were developed using the artificial intelligence drug design software MolAIcal based on genetic algorithms and their conformational relationships. 1068 highly similar (FS > 0.8) natural products were rapidly enriched based on the structure-activity similarity principle, combined with the QSAR model and the ADMET model, for rapid prediction of a total of five potentially efficient anti-PL natural products (IC50pre < 2 μM). Subsequently, molecular docking, molecular dynamics simulation, and MMGBSA free energy calculation were performed to not only reveal the interaction of candidate novel natural products with the amino acid residues of PL but also to validate the stability of these novel natural compounds bound to PL. In conclusion, this study greatly simplifies the screening and discovery of anti-PL natural products and accelerates the development of novel anti-obesity functional foods.
Collapse
Affiliation(s)
- Yutong Yuan
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (Y.Y.); (Z.Z.); (Z.Y.); (Q.L.)
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Fei Pan
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China;
| | - Zehui Zhu
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (Y.Y.); (Z.Z.); (Z.Y.); (Q.L.)
| | - Zichen Yang
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (Y.Y.); (Z.Z.); (Z.Y.); (Q.L.)
| | - Ou Wang
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China;
| | - Qing Li
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (Y.Y.); (Z.Z.); (Z.Y.); (Q.L.)
| | - Liang Zhao
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (Y.Y.); (Z.Z.); (Z.Y.); (Q.L.)
| | - Lei Zhao
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (Y.Y.); (Z.Z.); (Z.Y.); (Q.L.)
| |
Collapse
|
14
|
Zhao Y, Zhang M, Hou X, Han J, Qin X, Yang Y, Song Y, Liu Z, Zhang Y, Xu Z, Jia Q, Li Y, Chen K, Li B, Zhu W, Ge G. Design, synthesis and biological evaluation of salicylanilides as novel allosteric inhibitors of human pancreatic lipase. Bioorg Med Chem 2023; 91:117413. [PMID: 37490786 DOI: 10.1016/j.bmc.2023.117413] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 07/03/2023] [Accepted: 07/11/2023] [Indexed: 07/27/2023]
Abstract
Obesity is a growing global health problem and is associated with increased prevalence of many metabolic disorders, including diabetes, hypertension and cardiovascular disease. Pancreatic lipase (PL) has been validated as a key target for developing anti-obesity agents, owing to its crucial role in lipid digestion and absorption. In the past few decades, porcine PL (pPL) is always used as the enzyme source for screening PL inhibitors, which generate numerous pPL inhibitors but the potent inhibitors against human PL (hPL) are rarely reported. Herein, a series of salicylanilide derivatives were designed and synthesized, while their anti-hPL effects were assayed by a fluorescence-based biochemical approach. To investigate the structure-activity relationships of salicylanilide derivatives as hPL inhibitors in detail, structural modifications on three rings (A, B and C) of the salicylanilide skeleton were performed. Among all tested compounds, 2t and 2u were found possessing the most potent anti-PL activity, showing IC50 values of 1.86 μM and 1.63 μM, respectively. Inhibition kinetic analyses suggested that both 2t and 2u could effectively inhibit hPL in a non-competitive manner, with the ki value of 1.67 μM and 1.70 μM, respectively. Fluorescence quenching assays suggested that two inhibitors could quench the fluorescence of hPL via a static quenching procedure. Molecular docking simulations suggested that 2t and 2u could tightly bind on an allosteric site of hPL. Collectively, the structure-activity relationships of salicylanilide derivatives as hPL inhibitors were carefully investigated, while two newly identified reversible hPL inhibitors (2t and 2u) could be used as promising lead compounds to develop novel anti-obesity drugs.
Collapse
Affiliation(s)
- Yitian Zhao
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; State Key Laboratory of Drug Research; Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Min Zhang
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xudong Hou
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jiaxin Han
- State Key Laboratory of Drug Research; Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiaoya Qin
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yun Yang
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; State Key Laboratory of Drug Research; Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yunqing Song
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhikai Liu
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; State Key Laboratory of Drug Research; Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yong Zhang
- State Key Laboratory of Drug Research; Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhijian Xu
- State Key Laboratory of Drug Research; Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Jia
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yiming Li
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Kaixian Chen
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; State Key Laboratory of Drug Research; Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Li
- State Key Laboratory of Drug Research; Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Weiliang Zhu
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; State Key Laboratory of Drug Research; Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Guangbo Ge
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
15
|
Gościniak A, Szulc P, Zielewicz W, Walkowiak J, Cielecka-Piontek J. Multidirectional Effects of Red Clover ( Trifolium pratense L.) in Support of Menopause Therapy. Molecules 2023; 28:5178. [PMID: 37446841 DOI: 10.3390/molecules28135178] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Red clover is a raw material of interest primarily due to its isoflavone content. However, other groups of compounds may affect the pleiotropic biological effects of this raw material. It is used to alleviate menopausal symptoms, but the fact that there are many varieties of this plant that can be grown makes it necessary to compare the biological activity and phytochemical composition of this plant. Also of interest are the differences between the leaves and flowers of the plant. The aim of this study was to evaluate the properties of the leaves and flowers of six clover varieties-'Tenia', 'Atlantis', 'Milena', 'Magellan', 'Lemmon' and 'Lucrum'-with respect to their ability to inhibit α-glucosidase, lipase, collagenase and antioxidant activity. Therefore, the contents of polyphenols and the four main isoflavones-genistein, daidzein, biochanin and formononetin-were assessed. The study was complemented by testing for permeability through a model membrane system (PAMPA). Principal component analysis (PCA) identified a relationship between activity and the content of active compounds. It was concluded that antioxidant activity, inhibition of glucosidase, collagenase and lipase are not correlated with isoflavone content. A higher content of total polyphenols (TPC) was determined in the flowers of red clover while a higher content of isoflavones was determined in the leaves of almost every variety. The exception is the 'Lemmon' variety, characterized by high isoflavone content and high activity in the tests conducted.
Collapse
Affiliation(s)
- Anna Gościniak
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| | - Piotr Szulc
- Department of Agronomy, Poznan University of Life Sciences, Dojazd 11, 60-632 Poznan, Poland
| | - Waldemar Zielewicz
- Department of Grassland and Natural Landscape Sciences, Poznan University of Life Sciences, Dojazd 11, 60-632 Poznan, Poland
| | - Jarosław Walkowiak
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Szpitalna Str. 27/33, 60-572 Poznan, Poland
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| |
Collapse
|
16
|
Rocha S, Rufino AT, Freitas M, Silva AMS, Carvalho F, Fernandes E. Methodologies for Assessing Pancreatic Lipase Catalytic Activity: A Review. Crit Rev Anal Chem 2023; 54:3038-3065. [PMID: 37335098 DOI: 10.1080/10408347.2023.2221731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Obesity is a disease of epidemic proportions with a concerning increasing trend. Regarded as one of the main sources of energy, lipids can also represent a big part of an unnecessary intake of calories and be, therefore, directly related to the problem of obesity. Pancreatic lipase is an enzyme that is essential in the absorption and digestion of dietary fats and has been explored as an alternative for the reduction of fat absorption and consequent weigh loss. Literature describes a great variability of methodologies and experimental conditions used in research to evaluate the in vitro inhibitory activity of compounds against pancreatic lipase. However, in an attempt to choose the best approach, it is necessary to know all the reaction conditions and understand how these can affect the enzymatic assay. The objective of this review is to understand and summarize the methodologies and respective experimental conditions that are mainly used to evaluate pancreatic lipase catalytic activity. 156 studies were included in this work and a detailed description of the most commonly used UV/Vis spectrophotometric and fluorimetric instrumental techniques are presented, including a discussion regarding the differences found in the parameters used in both techniques, namely enzyme, substrate, buffer solutions, kinetics conditions, temperature and pH. This works shows that both UV/Vis spectrophotometry and fluorimetry are useful instrumental techniques for the evaluation of pancreatic lipase catalytic activity, presenting several advantages and limitations, which make the choice of parameters and experimental conditions a crucial decision to obtain the most reliable results.
Collapse
Affiliation(s)
- Sílvia Rocha
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Ana T Rufino
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Marisa Freitas
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Artur M S Silva
- LAQV, REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Félix Carvalho
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Eduarda Fernandes
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| |
Collapse
|
17
|
Allal H, Nemdili H, Zerizer MA, Zouchoune B. Molecular structures, chemical descriptors, and pancreatic lipase (1LPB) inhibition by natural products: a DFT investigation and molecular docking prediction. Struct Chem 2023; 35:1-17. [PMID: 37363042 PMCID: PMC10148582 DOI: 10.1007/s11224-023-02176-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/18/2023] [Indexed: 06/28/2023]
Abstract
Density functional theory (DFT) calculations and molecular docking have been carried out on natural products containing eugenol, gingerol, ascorbic acid, oleurpoein, piperine, hesperidin, quercetin, Luteolin, and curcumin in order to predict their biological activities and to analyze their pancreatic lipase inhibition. The biological activity predictions are based on the global and local chemical descriptors, namely, HOMO-LUMO gaps, chemical hardness, chemical potential, electrophilicity, dipole moment, and Fukui functions. Our findings show that the studied compounds can be divided into two groups based on the chemical descriptors; the first group is composed of eugenol, gingerol, ascorbic acid, and oleuropein and the second one is composed of piperine, hesperidin, quercetin, Luteolin, and curcumin depending on the HOMO-LUMO gaps and electrophilicity values predicting best reactivity for the second group than the first one. The frontier orbitals offer a deeper insight concerning the electron donor and electron acceptor capabilities, whereas the local descriptors resulting from Fukui functions put emphasis on the active sites of different candidate ligands. The molecular docking was performed in order to compare and identify the inhibition activity of the natural candidate ligands against pancreatic lipase which were compared to that of synthesized ones. The molecular docking results revealed that the Luteolin compound has the best binding affinity of -8.56 kcal/mol due to their unique molecular structure and the position of -OH aromatic substituents. Supplementary Information The online version contains supplementary material available at 10.1007/s11224-023-02176-2.
Collapse
Affiliation(s)
- Hamza Allal
- Unité de Recherche de Chimie de L’Environnement Et Moléculaire Structurale, Université de Constantine-1 (Mentouri), 25000 Constantine, Algeria
- Département de Génie Des Procédés, Faculté de Génie Des Procédés, Université Salah Boubnider Constantine 3, Constantine, Algeria
| | - Hacene Nemdili
- Unité de Recherche de Chimie de L’Environnement Et Moléculaire Structurale, Université de Constantine-1 (Mentouri), 25000 Constantine, Algeria
| | - Mohamed Amine Zerizer
- Unité de Recherche de Chimie de L’Environnement Et Moléculaire Structurale, Université de Constantine-1 (Mentouri), 25000 Constantine, Algeria
- Laboratoire de Chimie Appliquée Et Technologie Des Matériaux, Université Larbi Ben M’hidi Oum El Bouaghi, 04000 Oum El Bouaghi, Algeria
| | - Bachir Zouchoune
- Unité de Recherche de Chimie de L’Environnement Et Moléculaire Structurale, Université de Constantine-1 (Mentouri), 25000 Constantine, Algeria
- Laboratoire de Chimie Appliquée Et Technologie Des Matériaux, Université Larbi Ben M’hidi Oum El Bouaghi, 04000 Oum El Bouaghi, Algeria
| |
Collapse
|
18
|
Yehia SM, Ayoub IM, Watanabe M, Devkota HP, Singab ANB. Metabolic profiling, antioxidant, and enzyme inhibition potential of Iris pseudacorus L. from Egypt and Japan: A comparative study. Sci Rep 2023; 13:5233. [PMID: 36997571 PMCID: PMC10063562 DOI: 10.1038/s41598-023-32224-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 03/24/2023] [Indexed: 04/01/2023] Open
Abstract
Genus Iris comprises numerous and diverse phytoconstituents displaying marked biological activities. The rhizomes, and aerial parts of Iris pseudacorus L. cultivars from Egypt and Japan were subjected to comparative metabolic profiling using UPLC-ESI-MS/MS. The antioxidant capacity was determined using DPPH assay. In vitro enzyme inhibition potential against α-glucosidase, tyrosinase and lipase was evaluated. In silico molecular docking was conducted on the active sites of human α-glucosidase and human pancreatic lipase. Forty-three compounds were tentatively identified including flavonoids, isoflavonoids, phenolics and xanthones. I. pseudacorus rhizomes extracts (IPR-J and IPR-E) exhibited the highest radical scavenging activity with IC50 values of 40.89 µg/mL and 97.97 µg/mL, respectively (Trolox IC50 value was 14.59 µg/mL). Moreover, IPR-J and IPR-E exhibited promising α-glucosidase inhibitory activity displaying IC50 values of 18.52 µg/mL, 57.89 µg/mL, respectively being more potent as compared to acarbose with IC50 value of 362.088 µg/mL. All extracts exerted significant lipase inhibitory activity exhibiting IC50 values of 2.35, 4.81, 2.22 and 0.42 µg/mL, respectively compared to cetilistat with IC50 value of 7.47 µg/mL. However, no tyrosinase inhibitory activity was observed for all I. pseudacorus extracts up to 500 µg/mL. In silico molecular modelling revealed that quercetin, galloyl glucose, and irilin D exhibited the highest fitting scores within the active sites of human α-glucosidase and pancreatic lipase. ADMET prediction (absorption, distribution, metabolism, excretion, and toxicity) showed that most of the phytoconstituents exhibited promising pharmacokinetic, pharmacodynamics and tolerable toxicity properties. According to our findings, I. pseudacorus might be considered as a valuable source for designing novel phytopharmaceuticals.
Collapse
Affiliation(s)
- Suzan M Yehia
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, 11566, Cairo, Egypt
| | - Iriny M Ayoub
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, 11566, Cairo, Egypt.
| | - Masato Watanabe
- School of Pharmacy, Kumamoto University, 5-1 Oe-honmachi, Chuo ku, Kumamoto, 862-0973, Japan
| | - Hari Prasad Devkota
- School of Pharmacy, Kumamoto University, 5-1 Oe-honmachi, Chuo ku, Kumamoto, 862-0973, Japan
| | - Abdel Nasser B Singab
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, 11566, Cairo, Egypt.
- Center of Drug Discovery Research and Development, Faculty of Pharmacy, Ain Shams University, Abbassia, 11566, Cairo, Egypt.
| |
Collapse
|
19
|
Sciacca C, Cardullo N, Pulvirenti L, Di Francesco A, Muccilli V. Evaluation of honokiol, magnolol and of a library of new nitrogenated neolignans as pancreatic lipase inhibitors. Bioorg Chem 2023; 134:106455. [PMID: 36913880 DOI: 10.1016/j.bioorg.2023.106455] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/16/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023]
Abstract
Obesity is a complex disease defined as an excessive amount of body fat. It is considered a risk factor for several pathologies; therefore, there is an increasing interest in its treatment. Pancreatic lipase (PL) plays a key role in fat digestion, and its inhibition is a preliminary step in the search for anti-obesity agents. For this reason, many natural compounds and their derivatives are studied as new PL inhibitors. This study reports the synthesis of a library of new compounds inspired by two natural neolignans, honokiol (1) and magnolol (2) and bearing amino or nitro groups linked to a biphenyl core. The synthesis of unsymmetrically substituted biphenyls was achieved through an optimisation of the Suzuki-Miyaura cross-coupling reaction followed by the insertion of allyl chains, thus furnishing the O- and/or N-allyl derivatives, and finally, a sigmatropic rearrangement yielding in some cases, the C-allyl analogues. Magnolol, honokiol and the twenty-one synthesised biphenyls were evaluated for their in vitro inhibitory activity toward PL. Three compounds (15b, 16 and 17b) were more effective inhibitors than the natural neolignans (magnolol IC50 = 158.7 µM and honokiol IC50 = 115.5 µM) with IC50 of 41-44 µM. Detailed studies through kinetics suggested better inhibitory activity of the synthetic analogues compared with the natural 1 and 2. Magnolol (Ki = 614.3 µM; K'i of 140.9 µM) and the synthetic biphenyls 15b (Ki = 286.4 µM; K'i = 36.6 µM) and 16 (Ki = 176.2 µM; K'i = 6.4 µM) are mixed-type inhibitors, whereas honokiol (Ki = 674.8 µM) and 17b (Ki = 249 µM) are competitive inhibitors. Docking studies corroborated these findings, showing the best fitting for intermolecular interaction between biphenyl neolignans and PL. The above outcomes highlighted how the proposed structures could be considered interesting candidates for future studies for the development of more effective PL inhibitors.
Collapse
Affiliation(s)
- Claudia Sciacca
- Department of Chemical Sciences, University of Catania, V.le A. Doria 6. 95125, Catania, Italy
| | - Nunzio Cardullo
- Department of Chemical Sciences, University of Catania, V.le A. Doria 6. 95125, Catania, Italy
| | - Luana Pulvirenti
- Department of Chemical Sciences, University of Catania, V.le A. Doria 6. 95125, Catania, Italy
| | - Antonella Di Francesco
- Department of Chemical Sciences, University of Catania, V.le A. Doria 6. 95125, Catania, Italy
| | - Vera Muccilli
- Department of Chemical Sciences, University of Catania, V.le A. Doria 6. 95125, Catania, Italy.
| |
Collapse
|
20
|
Chen DJ, Yuan S, Zhang P, An Q, Zou JB, Yuan CM, Zhao LH, Hu ZX, Hao XJ. Two new isoflavones from the roots of Sophora tonkinensis. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2023; 25:163-170. [PMID: 35675145 DOI: 10.1080/10286020.2022.2077200] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/09/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Two new isoflavones (1 and 2), as well as eight known ones were isolated from the roots of Sophora tonkinensis Gagnep. Compound 1 represents an unprecedented polymerization pattern constructed by isoflavone and cytisine. Their structures were elucidated by comprehensive spectroscopic data analysis, combined with ECD calculations. Compound 1 displayed significant anti-tobacco mosaic virus (TMV) activity compared with the positive control ningnanmycin. Moreover, compound 6 exhibited potent α-glucosidase inhibitory activity with IC50 value of 47.4 mg/L.
Collapse
Affiliation(s)
- Dao-Jun Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- Guizhou Bailing Enterprise Group Pharmaceutical Co., Ltd, Anshun 561000, China
| | - Shuang Yuan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- Guizhou Bailing Enterprise Group Pharmaceutical Co., Ltd, Anshun 561000, China
| | - Peng Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550002, China
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Qiao An
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550002, China
| | - Ji-Bin Zou
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550002, China
| | - Chun-Mao Yuan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550002, China
| | - Li-Hua Zhao
- The Institute of Biotechnology and Germplasm Resources, Yunnan Academy of Agricultural Sciences, Kunming 650204, China
| | - Zhan-Xing Hu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550002, China
| | - Xiao-Jiang Hao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550002, China
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, China
| |
Collapse
|
21
|
Zhang P, Tangadanchu VKR, Zhou C. Identification of Novel Antifungal Skeleton of Hydroxyethyl Naphthalimides with Synergistic Potential for Chemical and Dynamic Treatments. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238453. [PMID: 36500547 PMCID: PMC9739515 DOI: 10.3390/molecules27238453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/23/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
The invasion of pathogenic fungi poses nonnegligible threats to the human health and agricultural industry. This work exploited a family of hydroxyethyl naphthalimides as novel antifungal species with synergistic potential of chemical and dynamic treatment to combat the fungal resistance. These prepared naphthalimides showed better antifungal potency than fluconazole towards some tested fungi including Aspergillus fumigatus, Candida tropicalis and Candida parapsilosis 22019. Especially, thioether benzimidazole derivative 7f with excellent anti-Candida tropicalis efficacy (MIC = 4 μg/mL) possessed low cytotoxicity, safe hemolysis level and less susceptibility to induce resistance. Biochemical interactions displayed that 7f could form a supramolecular complex with DNA to block DNA replication, and constitute a biosupermolecule with cytochrome P450 reductase (CPR) from Candida tropicalis to hinder CPR biological function. Additionally, 7f presented strong lipase affinity, which facilitated its permeation into cell membrane. Moreover, 7f with dynamic antifungal potency promoted the production and accumulation of reactive oxygen species (ROS) in cells, which destroyed the antioxidant defence system, led to oxidative stress with lipid peroxidation, loss of glutathione, membrane dysfunction and metabolic inactivation, and eventually caused cell death. The chemical and dynamic antifungal synergistic effect initiated by hydroxyethyl naphthalimides was a reasonable treatment window for prospective development.
Collapse
Affiliation(s)
- Pengli Zhang
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
- Drug Discovery and Development Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Vijai Kumar Reddy Tangadanchu
- Department of Radiology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
- Correspondence: (V.K.R.T.); (C.Z.)
| | - Chenghe Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
- Correspondence: (V.K.R.T.); (C.Z.)
| |
Collapse
|
22
|
Tian Y, Liu C, Wang S, Du M, Zhu B. Efficient screening of pancreatic lipase inhibitors from cod meat hydrolysate through ligand fishing strategy. Front Nutr 2022; 9:969558. [PMID: 36034931 PMCID: PMC9403610 DOI: 10.3389/fnut.2022.969558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/05/2022] [Indexed: 11/29/2022] Open
Abstract
Obesity has become an increasingly serious public health problem. Pancreatic lipase (PL) is identified as a ideal target for the prevention and treatment of obesity. Orlistat, the only approved PL inhibitor (PLI), is a powerful weight loss drug but has many side effects. Therefore, there is an urgent need to discover powerful PLIs with high safety. Protein hydrolysate has been demonstrated to be a treasure trove of PLIs, but recognizing responsible functional peptides from them is like looking for a needle in a haystack. In this work, we synthesized and optimized a PL ligand fishing model (PLLFM) using magnetic nanoparticles (MNPs), then PLLFM was used to quickly fish out potential PLIs from the Cod meat hydrolysate (CMH). Finally, two new PLIs, GSPPPSG and KLEGDLK were identified with IC50 of 0.60 and 1.08 mg/mL, respectively. The Lineweaver-Burk diagram showed that GSPPPSG is a non-competitively dominant mixed-type PLI, whereas KLEGDLK is a competitive inhibitory-type PLI. Moreover, molecular docking suggested that both peptides can stably bind to the key amino acid residues of the PL active site, mainly through hydrogen bonding, hydrophobic, and electrostatic interactions. In general, we not only established a method to rapidly fish out potential PLIs from protein hydrolysate, but also provided safe and efficient lead compounds for the development of novel diet foods or drugs.
Collapse
Affiliation(s)
- Yongqi Tian
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, China.,College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Cuicui Liu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, China
| | - Shaoyun Wang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Ming Du
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, China
| | - Beiwei Zhu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
23
|
Liu ZQ. What about the progress in the synthesis of flavonoid from 2020? Eur J Med Chem 2022; 243:114671. [DOI: 10.1016/j.ejmech.2022.114671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 08/06/2022] [Accepted: 08/06/2022] [Indexed: 11/04/2022]
|
24
|
Korkmaz A, Bursal E. Benzothiazole sulfonate derivatives bearing azomethine: Synthesis, characterization, enzyme inhibition, and molecular docking study. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132641] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
25
|
Fan X, Han J, Zhang F, Chen W. Red yeast rice: a functional food used to reduce hyperlipidemia. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2043894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Xiangcheng Fan
- Department of Pharmacy, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai, China
| | - Jun Han
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Feng Zhang
- Department of Pharmacy, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai, China
| | - Wansheng Chen
- Department of Pharmacy, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai, China
| |
Collapse
|
26
|
Zhang PL, Gopala L, Zhang SL, Cai GX, Zhou CH. An unanticipated discovery towards novel naphthalimide corbelled aminothiazoximes as potential anti-MRSA agents and allosteric modulators for PBP2a. Eur J Med Chem 2021; 229:114050. [PMID: 34922190 DOI: 10.1016/j.ejmech.2021.114050] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/26/2021] [Accepted: 12/09/2021] [Indexed: 12/14/2022]
Abstract
Available therapeutic strategies are urgently needed to conquer multidrug resistance of MRSA. A visible effort was guided towards the advancement of novel antibacterial framework of naphthalimide corbelled aminothiazoximes, and desired to assert some insight on the conjunction of individual pharmacophore with distinct biological activities and unique action mechanism. Preliminary assessment displayed that dimethylenediamine derivative 13d presented a wonderful inhibition on MRSA (MIC = 0.5 μg/mL), and showed excellent membrane selectivity (HC50 > 200 μg/mL) from an electrostatic distinction of the electronegative bacterial membranes and the electroneutral mammalian membranes. Moreover, 13d could effectually relieve the development of MRSA resistance. Investigations into explaining the mechanism of anti-MRSA disclosed that 13d displayed strong lipase affinity, which facilitated its permeation into cell membrane, causing membrane depolarization, leakage of cytoplasmic contents and lactate dehydrogenase (LDH) inhibition. Meanwhile, 13d could exert interaction with DNA to hinder biological function of DNA, and disrupt the antioxidant defense system of MRSA through up-regulation of ROS subjected the strain to oxidative stress. In particular, the unanticipated mechanism for naphthalimide corbelled aminothiazoximes that 13d could suppress the expression of PBP2a by inducing allosteric modulation of PBP2a and triggering the open of the active site, was discovered for the first time. These findings of naphthalimide corbelled aminothiazoximes as a small-molecule class of anti-MRSA agents held promise in strategies for treatment of MRSA infections.
Collapse
Affiliation(s)
- Peng-Li Zhang
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Lavanya Gopala
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Shao-Lin Zhang
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Chongqing, 401331, China.
| | - Gui-Xin Cai
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China.
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China.
| |
Collapse
|