1
|
Majumder K, Mukherjee S, Park J, Kim W, Musser AJ, Patil S. The Acetylene Bridge in Intramolecular Singlet Fission: A Boon or A Nuisance? Angew Chem Int Ed Engl 2024; 63:e202408615. [PMID: 39405444 DOI: 10.1002/anie.202408615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 10/09/2024] [Indexed: 11/19/2024]
Abstract
Various analogues of the alkylsilylacetylene group are frequently used as auxiliary groups to enhance the solubility and stability of the acene dimer core, widely used as platforms to investigate intramolecular singlet fission (iSF) mechanisms. However, while in the 2,2'-linked dimers they are primarily auxiliary groups, these are essential fragments of the bridging units in 6,6'/5,5'-linked dimers, the two preferred choices for dimerization. The starkly different iSF dynamics observed in the two variants raise the question of what role the acetylene bridges play. Here, we systematically designed a set of (oligo-)para-phenylene bridged 2,2'-linked pentacene dimers with an additional acetylene fragment in the bridging unit to mimic the structure of 6,6'-linked dimers. Contrasting the results with previously reported analogous 2,2'-linked and 6,6'-linked pentacene dimers reveals that the acetylene bridges contribute to significant conformational freedom. This effect provides a mechanism to promote spin evolution within the triplet pair to achieve free triplets but also offers new parasitic pathways for triplet-pair recombination, revealing that this structural motif can be both a boon and a nuisance. Additionally, our analysis reveals that these bridges directly modify the electronic states, highlighting significant pitfalls of the standard chromophore-bridge-chromophore framework used to design and interpret photophysics of iSF materials.
Collapse
Affiliation(s)
- Kanad Majumder
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, 560012, India
| | - Soham Mukherjee
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, 14853, USA
| | - Jungjin Park
- Department of Chemistry, Yonsei University, Seoul, 03722, Republic of Korea
| | - Woojae Kim
- Department of Chemistry, Yonsei University, Seoul, 03722, Republic of Korea
| | - Andrew J Musser
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, 14853, USA
| | - Satish Patil
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, 560012, India
| |
Collapse
|
2
|
Fukumitsu M, Fukui T, Shoji Y, Kajitani T, Khan R, Tkachenko NV, Sakai H, Hasobe T, Fukushima T. Supramolecular scaffold-directed two-dimensional assembly of pentacene into a configuration to facilitate singlet fission. SCIENCE ADVANCES 2024; 10:eadn7763. [PMID: 39270030 PMCID: PMC11397492 DOI: 10.1126/sciadv.adn7763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 08/07/2024] [Indexed: 09/15/2024]
Abstract
Molecular assemblies featuring two-dimensionality have attracted increasing attention, whereas such structures are difficult to construct simply relying on spontaneous molecular assembly. Here, we present two-dimensional assemblies of acene chromophores achieved using a tripodal triptycene supramolecular scaffold, which have been shown to exhibit a strong ability to assemble molecular and polymer motifs two-dimensionally. We designed pentacene and anthracene derivatives sandwiched by two triptycene units. These compounds assemble into expected two-dimensional structures, with the pentacene chromophores having both sufficient overlap to cause singlet fission and space for conformational change to facilitate the dissociation of a triplet pair into free triplets, which is not the case for the anthracene analog. Detailed spectroscopic analysis revealed that the pentacene chromophore in the assembly undergoes singlet fission with a quantum yield of 88 ± 5%, giving rise to triplet pairs, from which free triplets are efficiently generated (ΦT = 130 ± 8.8%). This demonstrates the utility of the triptycene-based scaffold to design functional π-electronic molecular assemblies.
Collapse
Affiliation(s)
- Masato Fukumitsu
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | - Tomoya Fukui
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
- Research Center for Autonomous Systems Materialogy (ASMat), Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | - Yoshiaki Shoji
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
- Research Center for Autonomous Systems Materialogy (ASMat), Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | - Takashi Kajitani
- Open Facility Development Office, Open Facility Center, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | - Ramsha Khan
- Chemistry and Advanced Material Group, Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 8, FI33720 Tampere, Finland
| | - Nikolai V Tkachenko
- Chemistry and Advanced Material Group, Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 8, FI33720 Tampere, Finland
| | - Hayato Sakai
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Taku Hasobe
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Takanori Fukushima
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
- Research Center for Autonomous Systems Materialogy (ASMat), Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| |
Collapse
|
3
|
He G, Parenti KR, Budden PJ, Niklas J, Macdonald T, Kumarasamy E, Chen X, Yin X, McCamey DR, Poluektov OG, Campos LM, Sfeir MY. Unraveling Triplet Formation Mechanisms in Acenothiophene Chromophores. J Am Chem Soc 2023; 145:22058-22068. [PMID: 37787467 DOI: 10.1021/jacs.3c07082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
The evolution of molecular platforms for singlet fission (SF) chromophores has fueled the quest for new compounds capable of generating triplets quantitatively at fast time scales. As the exploration of molecular motifs for SF has diversified, a key challenge has emerged in identifying when the criteria for SF have been satisfied. Here, we show how covalently bound molecular dimers uniquely provide a set of characteristic optical markers that can be used to distinguish triplet pair formation from processes that generate an individual triplet. These markers are contained within (i) triplet charge-transfer excited state absorption features, (ii) kinetic signatures of triplet-triplet annihilation processes, and (iii) the modulation of triplet formation rates using bridging moieties between chromophores. Our assignments are verified by time-resolved electron paramagnetic resonance (EPR) measurements, which directly identify triplet pairs by their electron spin and polarization patterns. We apply these diagnostic criteria to dimers of acenothiophene derivatives in solution that were recently reported to undergo efficient intermolecular SF in condensed media. While the electronic structure of these heteroatom-containing chromophores can be broadly tuned, the effect of their enhanced spin-orbit coupling and low-energy nonbonding orbitals on their SF dynamics has not been fully determined. We find that SF is fast and efficient in tetracenothiophene but that anthradithiophene exhibits fast intersystem crossing due to modifications of the singlet and triplet excited state energies upon functionalization of the heterocycle. We conclude that it is not sufficient to assign SF based on comparisons of the triplet formation kinetics between monomer and multichromophore systems.
Collapse
Affiliation(s)
- Guiying He
- Department of Physics, Graduate Center, City University of New York, New York, New York 10016, United States
- Photonics Initiative, Advanced Science Research Center, City University of New York, New York, New York 10031, United States
| | - Kaia R Parenti
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Peter J Budden
- Department of Physics, Graduate Center, City University of New York, New York, New York 10016, United States
- Photonics Initiative, Advanced Science Research Center, City University of New York, New York, New York 10031, United States
| | - Jens Niklas
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Thomas Macdonald
- ARC Centre of Excellence in Exciton Science, School of Physics, UNSW Sydney, Sydney, 2052 NSW, Australia
| | - Elango Kumarasamy
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Xing Chen
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Xiaodong Yin
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Dane R McCamey
- ARC Centre of Excellence in Exciton Science, School of Physics, UNSW Sydney, Sydney, 2052 NSW, Australia
| | - Oleg G Poluektov
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Luis M Campos
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Matthew Y Sfeir
- Department of Physics, Graduate Center, City University of New York, New York, New York 10016, United States
- Photonics Initiative, Advanced Science Research Center, City University of New York, New York, New York 10031, United States
| |
Collapse
|
4
|
He G, Churchill EM, Parenti KR, Zhang J, Narayanan P, Namata F, Malkoch M, Congreve DN, Cacciuto A, Sfeir MY, Campos LM. Promoting multiexciton interactions in singlet fission and triplet fusion upconversion dendrimers. Nat Commun 2023; 14:6080. [PMID: 37770472 PMCID: PMC10539328 DOI: 10.1038/s41467-023-41818-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 09/20/2023] [Indexed: 09/30/2023] Open
Abstract
Singlet fission and triplet-triplet annihilation upconversion are two multiexciton processes intimately related to the dynamic interaction between one high-lying energy singlet and two low-lying energy triplet excitons. Here, we introduce a series of dendritic macromolecules that serve as platform to study the effect of interchromophore interactions on the dynamics of multiexciton generation and decay as a function of dendrimer generation. The dendrimers (generations 1-4) consist of trimethylolpropane core and 2,2-bis(methylol)propionic acid (bis-MPA) dendrons that provide exponential growth of the branches, leading to a corona decorated with pentacenes for SF or anthracenes for TTA-UC. The findings reveal a trend where a few highly ordered sites emerge as the dendrimer generation grows, dominating the multiexciton dynamics, as deduced from optical spectra, and transient absorption spectroscopy. While the dendritic structures enhance TTA-UC at low annihilator concentrations in the largest dendrimers, the paired chromophore interactions induce a broadened and red-shifted excimer emission. In SF dendrimers of higher generations, the triplet dynamics become increasingly dominated by pairwise sites exhibiting strong coupling (Type II), which can be readily distinguished from sites with weaker coupling (Type I) by their spectral dynamics and decay kinetics.
Collapse
Affiliation(s)
- Guiying He
- Department of Physics, Graduate Center, City University of New York, New York, NY, 10016, USA
- Photonics Initiative, Advanced Science Research Center, City University of New York, New York, NY, 10031, USA
| | - Emily M Churchill
- Department of Chemistry, Columbia University, New York, NY, 10027, USA
| | - Kaia R Parenti
- Department of Chemistry, Columbia University, New York, NY, 10027, USA
| | - Jocelyn Zhang
- Department of Chemistry, Columbia University, New York, NY, 10027, USA
| | - Pournima Narayanan
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| | - Faridah Namata
- KTH Royal Institute of Technology, Department of Fibre and Polymer Technology, SE-100 44, Stockholm, Sweden
| | - Michael Malkoch
- KTH Royal Institute of Technology, Department of Fibre and Polymer Technology, SE-100 44, Stockholm, Sweden
| | - Daniel N Congreve
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Angelo Cacciuto
- Department of Chemistry, Columbia University, New York, NY, 10027, USA
| | - Matthew Y Sfeir
- Department of Physics, Graduate Center, City University of New York, New York, NY, 10016, USA.
- Photonics Initiative, Advanced Science Research Center, City University of New York, New York, NY, 10031, USA.
| | - Luis M Campos
- Department of Chemistry, Columbia University, New York, NY, 10027, USA.
| |
Collapse
|
5
|
Kefer O, Ahrens L, Han J, Wollscheid N, Misselwitz E, Rominger F, Freudenberg J, Dreuw A, Bunz UHF, Buckup T. Efficient Intramolecular Singlet Fission in Spiro-Linked Heterodimers. J Am Chem Soc 2023; 145:17965-17974. [PMID: 37535495 DOI: 10.1021/jacs.3c05518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
We investigate intramolecular singlet fission (iSF) of spiro-linked azaacene heterodimers by time-resolved spectroscopy and quantum chemical calculations. Combining two different azaacenes through a nonconjugated linker using condensation chemistry furnishes azaacene heterodimers. Compared to their homodimers, iSF quantum yields are improved at an extended absorption range. The driving force of iSF, the energy difference ΔEiSF between the S1 state and the correlated triplet pair 1(TT), is tuned by the nature of the heterodimers. iSF is exothermic in all of the herein studied molecules. The overall quantum yield for triplet exciton formation reaches approximately 174%. This novel concept exploits large energy differences between singlet electronic states in combination with spatially fixed chromophores, which achieves efficient heterogeneous iSF, if the through-space interaction between the chromophores is minimal.
Collapse
Affiliation(s)
- Oskar Kefer
- Physikalisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, D-69120 Heidelberg, Germany
- Centre for Advanced Materials, Ruprecht-Karls-Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Lukas Ahrens
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Jie Han
- Centre for Advanced Materials, Ruprecht-Karls-Universität Heidelberg, D-69120 Heidelberg, Germany
- Interdisziplinäres Zentrum für Wissenschaftliches Rechnen, Ruprecht-Karls-Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Nikolaus Wollscheid
- Physikalisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, D-69120 Heidelberg, Germany
- Centre for Advanced Materials, Ruprecht-Karls-Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Erik Misselwitz
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Frank Rominger
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Jan Freudenberg
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Andreas Dreuw
- Centre for Advanced Materials, Ruprecht-Karls-Universität Heidelberg, D-69120 Heidelberg, Germany
- Interdisziplinäres Zentrum für Wissenschaftliches Rechnen, Ruprecht-Karls-Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Uwe H F Bunz
- Centre for Advanced Materials, Ruprecht-Karls-Universität Heidelberg, D-69120 Heidelberg, Germany
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Tiago Buckup
- Physikalisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, D-69120 Heidelberg, Germany
- Centre for Advanced Materials, Ruprecht-Karls-Universität Heidelberg, D-69120 Heidelberg, Germany
| |
Collapse
|
6
|
Qin C, Zhang Z, Xu Q, Song J, Jiao Z, Ma S, Qin R, Jiang Y. Direct Observation of Ultrafast Relaxation Dynamics of a Mixed Excimer State in Perylene Monoimide Dimer by Femtosecond Transient Absorption. J Phys Chem Lett 2023; 14:2455-2462. [PMID: 36867121 DOI: 10.1021/acs.jpclett.3c00106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
A J-type dimer PMI-2, two perylene monoimides linked by butadiynylene bridger was prepared, and its excited-state dynamics was studied using ultrafast femtosecond transient absorption spectroscopy, along with steady-state spectroscopy and quantum chemical calculations. It is evidently demonstrated that the symmetry-breaking charge separation (SB-CS) process in PMI-2 is positively mediated by an excimer, which is mixed by localized Frenkel excitation (LE) and an interunit charge transfer (CT) state. Kinetic studies show that, with the polarity increasing of the solvent, the transformation of excimer from a mixture to the CT state (SB-CS) is accelerated, and the recombination time of the CT state is reduced obviously. Theoretical calculations indicate that these are due to PMI-2 obtaining more negative free energy (ΔGcs) and lower CT state energy levels in highly polar solvents. Our work suggests that the mixed excimer can be formed in a J-type dimer with suitable structure, in which the charge separation the process is sensitive to the solvent environment.
Collapse
Affiliation(s)
- Chaochao Qin
- Henan Key Laboratory of Infrared Materials & Spectrum Measures and Applications, and School of Physics, Henan Normal University, Xinxiang, 453007, China
| | - Zheng Zhang
- Henan Key Laboratory of Infrared Materials & Spectrum Measures and Applications, and School of Physics, Henan Normal University, Xinxiang, 453007, China
| | - Qiaoling Xu
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Jian Song
- Henan Key Laboratory of Infrared Materials & Spectrum Measures and Applications, and School of Physics, Henan Normal University, Xinxiang, 453007, China
| | - Zhaoyong Jiao
- Henan Key Laboratory of Infrared Materials & Spectrum Measures and Applications, and School of Physics, Henan Normal University, Xinxiang, 453007, China
| | - Shuhong Ma
- Henan Key Laboratory of Infrared Materials & Spectrum Measures and Applications, and School of Physics, Henan Normal University, Xinxiang, 453007, China
| | - Ruiping Qin
- Henan Engineering Research Center of Design and Recycle for Advanced Electrochemical Energy Storage Materials & Key Laboratory of Photovoltaic Materials of Henan Province, School of Materials Science and Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Yuhai Jiang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| |
Collapse
|
7
|
Sullivan CM, Nienhaus L. Generating spin-triplet states at the bulk perovskite/organic interface for photon upconversion. NANOSCALE 2023; 15:998-1013. [PMID: 36594272 DOI: 10.1039/d2nr05767k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Perovskite-sensitized triplet-triplet annihilation (TTA) upconversion (UC) holds potential for practical applications of solid-state UC ranging from photovoltaics to sensing and imaging technologies. As the triplet sensitizer, the underlying perovskite properties heavily influence the generation of spin-triplet states once interfaced with the organic annihilator molecule, typically polyacene derivatives. Presently, most reported perovskite TTA-UC systems have utilized rubrene doped with ∼1% dibenzotetraphenylperiflanthene (RubDBP) as the annihilator/emitter species. However, practical applications require a larger apparent anti-Stokes than is currently achievable with this system due to the inherent 0.4 eV energy loss during triplet generation. In this minireview, we present the current understanding of the triplet sensitization process at the perovskite/organic semiconductor interface and introduce additional promising annihilators based on anthracene derivatives into the discussion of future directions in perovskite-sensitized TTA-UC.
Collapse
Affiliation(s)
- Colette M Sullivan
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA.
| | - Lea Nienhaus
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA.
| |
Collapse
|
8
|
Influence of core-twisted structure on singlet fission in perylenediimide film. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
9
|
Pensack RD, Purdum GE, Mazza SM, Grieco C, Asbury JB, Anthony JE, Loo YL, Scholes GD. Excited-State Dynamics of 5,14- vs 6,13-Bis(trialkylsilylethynyl)-Substituted Pentacenes: Implications for Singlet Fission. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2022; 126:9784-9793. [PMID: 35756579 PMCID: PMC9210346 DOI: 10.1021/acs.jpcc.2c00897] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 05/20/2022] [Indexed: 05/16/2023]
Abstract
Singlet fission is a process in conjugated organic materials that has the potential to considerably improve the performance of devices in many applications, including solar energy conversion. In any application involving singlet fission, efficient triplet harvesting is essential. At present, not much is known about molecular packing arrangements detrimental to singlet fission. In this work, we report a molecular packing arrangement in crystalline films of 5,14-bis(triisopropylsilylethynyl)-substituted pentacene, specifically a local (pairwise) packing arrangement, responsible for complete quenching of triplet pairs generated via singlet fission. We first demonstrate that the energetic condition necessary for singlet fission is satisfied in amorphous films of the 5,14-substituted pentacene derivative. However, while triplet pairs form highly efficiently in the amorphous films, only a modest yield of independent triplets is observed. In crystalline films, triplet pairs also form highly efficiently, although independent triplets are not observed because triplet pairs decay rapidly and are quenched completely. We assign the quenching to a rapid nonadiabatic transition directly to the ground state. Detrimental quenching is observed in crystalline films of two additional 5,14-bis(trialkylsilylethynyl)-substituted pentacenes with either ethyl or isobutyl substituents. Developing a better understanding of the losses identified in this work, and associated molecular packing, may benefit overcoming losses in solids of other singlet fission materials.
Collapse
Affiliation(s)
- Ryan D. Pensack
- Department
of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Geoffrey E. Purdum
- Department
of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Samuel M. Mazza
- Department
of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Christopher Grieco
- Department
of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - John B. Asbury
- Department
of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - John E. Anthony
- Department
of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Yueh-Lin Loo
- Department
of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
- Andlinger
Center for Energy and the Environment, Princeton
University, Princeton, New Jersey 08544, United States
| | - Gregory D. Scholes
- Department
of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
10
|
Alam B, Jiang H, Zimmerman PM, Herbert JM. State-specific solvation for restricted active space spin-flip (RAS-SF) wave functions based on the polarizable continuum formalism. J Chem Phys 2022; 156:194110. [PMID: 35597663 DOI: 10.1063/5.0091636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The restricted active space spin-flip (RAS-SF) formalism is a particular form of single-reference configuration interaction that can describe some forms of strong correlation at a relatively low cost and which has recently been formulated for the description of charge-transfer excited states. Here, we introduce both equilibrium and nonequilibrium versions of a state-specific solvation correction for vertical transition energies computed using RAS-SF wave functions, based on the framework of a polarizable continuum model (PCM). Ground-state polarization is described using the solvent's static dielectric constant and in the nonequilibrium solvation approach that polarization is modified upon vertical excitation using the solvent's optical dielectric constant. Benchmark calculations are reported for well-studied models of photo-induced charge transfer, including naphthalene dimer, C2H4⋯C2F4, pentacene dimer, and perylene diimide (PDI) dimer, several of which are important in organic photovoltaic applications. For the PDI dimer, we demonstrate that the charge-transfer character of the excited states is enhanced in the presence of a low-dielectric medium (static dielectric constant ɛ0 = 3) as compared to a gas-phase calculation (ɛ0 = 1). This stabilizes mechanistic traps for singlet fission and helps to explain experimental singlet fission rates. We also examine the effects of nonequilibrium solvation on charge-separated states in an intramolecular singlet fission chromophore, where we demonstrate that the energetic ordering of the states changes as a function of solvent polarity. The RAS-SF + PCM methodology that is reported here provides a framework to study charge-separated states in solution and in photovoltaic materials.
Collapse
Affiliation(s)
- Bushra Alam
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | - Hanjie Jiang
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Paul M Zimmerman
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - John M Herbert
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|