1
|
Pretti E, Shell MS. Characterizing the Sequence Landscape of Peptide Fibrillization with a Bottom-Up Coarse-Grained Model. J Phys Chem B 2025; 129:3559-3570. [PMID: 40146906 DOI: 10.1021/acs.jpcb.4c07248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Molecular insight into amyloid aggregation is crucial for understanding the details of protein fibril nucleation and growth, which play a significant role in a wide range of proteinopathies. The length and time scales for fibrillization make its computational study an intrinsically multiscale problem, necessitating the use of coarse-grained modeling. A wide variety of coarse-grained models for peptides have been proposed, often parametrized with a combination of top-down and bottom-up approaches. Here, we present a predictive, sequence-transferable bottom-up coarse-grained model, systematically developed using only information from atomistic simulations by applying an extended-ensemble relative entropy minimization technique. The resulting model is capable of accurately recovering conformational properties of peptides constructed from a reduced alphabet of amino acids, of predicting secondary structures of isolated and interacting peptides from their sequences alone, and of simulating aggregation of peptides that have been experimentally characterized as amyloidogenic. Finally, we couple such coarse-grained simulations with a genetic algorithm to characterize the sequence space of the reduced alphabet and identify features of sequences for which ordered fibrillar states are both thermodynamically favorable and kinetically accessible.
Collapse
Affiliation(s)
- Evan Pretti
- Department of Chemical Engineering, Engineering II Building, University of California, Santa Barbara, Santa Barbara, California 93106-5080, United States
| | - M Scott Shell
- Department of Chemical Engineering, Engineering II Building, University of California, Santa Barbara, Santa Barbara, California 93106-5080, United States
| |
Collapse
|
2
|
Liu C, Dan Y, Yun J, Adler-Abramovich L, Luo J. Unveiling the Assembly Transition of Diphenylalanine and Its Analogs: from Oligomer Equilibrium to Nanocluster Formation. ACS NANO 2025; 19:13250-13263. [PMID: 40134347 DOI: 10.1021/acsnano.5c00433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Peptide self-assembly is fundamental to various biological processes and holds significant potential for nanotechnology and biomedical applications. Despite progress in understanding larger-scale assemblies, the early formation of low-molecular-weight oligomers remains poorly understood. In this study, we investigate the aggregation behavior of the self-assembling diphenylalanine (FF) peptide and its analogs. Utilizing single-nanopore analysis, we detected and characterized the low-molecular-oligomer formation of FF, N-tert-butoxycarbonyl-diphenylalanine (BocFF), fluorenylmethyloxycarbonyl-diphenylalanine (FmocFF), and fluorenylmethyloxycarbonyl-pentafluoro-phenylalanine (Fmoc-F5-Phe) in real time. This approach provided detailed insights into the early stages of peptide self-assembly, revealing the dynamic behavior and formation kinetics of low-molecular-weight oligomeric species. Analysis revealed that the trimer is the key nucleus for FF, while the dimer is the primary nucleus for FmocFF and Fmoc-F5-Phe aggregation, whereas both the dimer and trimer serve as nuclei for BocFF. Mass photometry was employed to track the evolution of these oligomers, revealing the transition from low- to high-molecular-weight species, thereby elucidating intermediate phases in the aggregation process. Transmission electron microscopy and Fourier transform infrared spectroscopy were further employed to characterize the final assembly states, offering high-resolution imaging of morphological structures and detailed information on secondary structures. Based on these analyses, we constructed a comprehensive graph that correlates the entire aggregation processes of the tested self-assembling peptides across multiple scales. This integrative approach provides a holistic understanding of peptide self-assembly, particularly in the formation of low-molecular-weight oligomers toward mature supramolecular structures. These findings shed light on their assembly pathways and structural properties, advancing our understanding of their assembly pathways for nanotechnology and biomedical applications.
Collapse
Affiliation(s)
- Chang Liu
- PSI Center for Life Sciences, PSI, Villigen 5232, Switzerland
| | - Yoav Dan
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Faculty of Medical & Health Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
- Jan Koum Center for Nanoscience and Nanotechnology, Tel-Aviv University, Tel-Aviv 6997801, Israel
- The Center for Physics & Chemistry of Living Systems, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Ji Yun
- Department of Biology, University of Bern, Bern 3012, Switzerland
| | - Lihi Adler-Abramovich
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Faculty of Medical & Health Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
- Jan Koum Center for Nanoscience and Nanotechnology, Tel-Aviv University, Tel-Aviv 6997801, Israel
- The Center for Physics & Chemistry of Living Systems, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Jinghui Luo
- PSI Center for Life Sciences, PSI, Villigen 5232, Switzerland
| |
Collapse
|
3
|
Sheehan K, Jeon H, Corr SC, Hayes JM, Mok KH. Antibody Aggregation: A Problem Within the Biopharmaceutical Industry and Its Role in AL Amyloidosis Disease. Protein J 2025; 44:1-20. [PMID: 39527351 DOI: 10.1007/s10930-024-10237-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
Due to the large size and rapid growth of the global therapeutic antibody market, there is major interest in understanding the aggregation of protein products as it can compromise efficacy, concentration, and safety. Various production and storage conditions have been identified as capable of inducing aggregation of polyclonal and monoclonal antibody (mAb) therapies such as low pH, freezing, light exposure, lyophilisation and increased ionic strength. The addition of stabilising excipients to these therapeutics helps to combat the formation of aggregates with future aggregation inhibition mechanisms involving the introduction of point mutations and glycoengineering within aggregation prone regions (APRs). Antibody aggregation also plays an integral role in the pathogenesis of a condition known as amyloid light chain (AL) amyloidosis which is characterised by the production of improperly folded and amyloidogenic immunoglobulin light chains (LCs). Current diagnostic tools rely heavily on histological staining with their future moving towards amyloid component identification and proteomic analysis. For many years, treatment options designed for multiple myeloma (MM) have been applied to AL amyloidosis patients by depleting plasma cell numbers. More recently, treatment strategies more specific to this condition have been developed with many designed to recognize amyloid fibrils and trigger their degradation without causing systemic plasma cell cytotoxicity. Amyloid fibrils in AL disease and aggregates in antibody therapeutics are both formed through the oligomerisation of misfolded / modified proteins attempting to reach a thermodynamically stable, free energy minimum that is lower than the respective monomers themselves. Although the final morphologies are different, by understanding the principles underlying such aggregation, we expect to find common insights that may contribute to the development of new and effective methods of antibody aggregation and/or amyloidosis management. We envision that this area of research will continue to be very relevant in both industry and clinical settings.
Collapse
Affiliation(s)
- Kate Sheehan
- Trinity Biomedical Sciences Institute (TBSI), School of Biochemistry & Immunology, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
- School of Genetics & Microbiology, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
| | - Hyesoo Jeon
- Trinity Biomedical Sciences Institute (TBSI), School of Biochemistry & Immunology, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
- Lonza Biologics Tuas Pte. Ltd., 35 Tuas South Ave 6, Singapore, 637377, Republic of Singapore
| | - Sinéad C Corr
- School of Genetics & Microbiology, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
- School of Microbiology and APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Jerrard M Hayes
- Trinity Biomedical Sciences Institute (TBSI), School of Biochemistry & Immunology, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
| | - K H Mok
- Trinity Biomedical Sciences Institute (TBSI), School of Biochemistry & Immunology, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland.
- Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, The University of Dublin, Dublin 2, Ireland.
| |
Collapse
|
4
|
Li T, Kambanis J, Sorenson TL, Sunde M, Shen Y. From Fundamental Amyloid Protein Self-Assembly to Development of Bioplastics. Biomacromolecules 2024; 25:5-23. [PMID: 38147506 PMCID: PMC10777412 DOI: 10.1021/acs.biomac.3c01129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/03/2023] [Accepted: 12/04/2023] [Indexed: 12/28/2023]
Abstract
Proteins can self-assemble into a range of nanostructures as a result of molecular interactions. Amyloid nanofibrils, as one of them, were first discovered with regard to the relevance of neurodegenerative diseases but now have been exploited as building blocks to generate multiscale materials with designed functions for versatile applications. This review interconnects the mechanism of amyloid fibrillation, the current approaches to synthesizing amyloid protein-based materials, and the application in bioplastic development. We focus on the fundamental structures of self-assembled amyloid fibrils and how external factors can affect protein aggregation to optimize the process. Protein self-assembly is essentially the autonomous congregation of smaller protein units into larger, organized structures. Since the properties of the self-assembly can be manipulated by changing intrinsic factors and external conditions, protein self-assembly serves as an excellent building block for bioplastic development. Building on these principles, general processing methods and pathways from raw protein sources to mature state materials are proposed, providing a guide for the development of large-scale production. Additionally, this review discusses the diverse properties of protein-based amyloid nanofibrils and how they can be utilized as bioplastics. The economic feasibility of the protein bioplastics is also compared to conventional plastics in large-scale production scenarios, supporting their potential as sustainable bioplastics for future applications.
Collapse
Affiliation(s)
- Tianchen Li
- School
of Chemical and Biomolecular Engineering and Sydney Nano, The University of Sydney, PNR Building, Darlington NSW 2008, Australia
| | - Jordan Kambanis
- School
of Chemical and Biomolecular Engineering and Sydney Nano, The University of Sydney, PNR Building, Darlington NSW 2008, Australia
| | - Timothy L. Sorenson
- School
of Chemical and Biomolecular Engineering and Sydney Nano, The University of Sydney, PNR Building, Darlington NSW 2008, Australia
| | - Margaret Sunde
- School
of Medical Sciences and Sydney Nano, The
University of Sydney, Sydney NSW 2006, Australia
| | - Yi Shen
- School
of Chemical and Biomolecular Engineering and Sydney Nano, The University of Sydney, PNR Building, Darlington NSW 2008, Australia
| |
Collapse
|
5
|
Das BK, Singh O, Chakraborty D. Exploring the Barriers in the Aggregation of a Hexadecameric Human Prion Peptide through the Markov State Model. ACS Chem Neurosci 2023; 14:3622-3645. [PMID: 37705330 DOI: 10.1021/acschemneuro.3c00284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023] Open
Abstract
The prefibrillar aggregation kinetics of prion peptides are still an enigma. In this perspective, we employ atomistic molecular dynamics (MD) simulations of the shortest human prion peptide (HPP) (127GYMLGS132) at various temperatures and peptide concentrations and apply the Markov state model to determine the various intermediates and lag phases. Our results reveal that the natural mechanism of prion peptide self-assembly in the aqueous phase is impeded by two significant kinetic barriers with oligomer sizes of 6-9 and 12-13 peptides, respectively. The first one is the aggregation of unstructured lower-order oligomers, and the second is fibril nucleation, which impedes the further growth of prion aggregates. Among these two activation barriers, the second one is found to be dominant irrespective of the increase in temperature and peptide concentration. These lag phases are captured in all three different force-field parameters, namely, GROMOS-54a7, AMBER-99SB-ILDN, and CHARMMS 36m, at different concentrations. The GROMOS-54a7 and AMBER-99SB-ILDN force fields showed a comparatively higher percentage of β-sheet formation in the metastable aggregate that evolved during the aggregation process. In contrast, the CHARMM-36m force field showed mostly coil or turn conformations. The addition of a novel catecholamine derivative (naphthoquinone dopamine (NQDA)) arrests the aggregation process between the lag phases by increasing the activation barrier for the Lag1 and Lag2 phases in all of the force fields, which further validates the existence of these lag phases. The preferential binding of NQDA with the peptides increases the hydration of peptides and eventually disrupts the organized morphology of prefibrillar aggregates. It reduces the dimer dissociation energy by -24.34 kJ/mol.
Collapse
Affiliation(s)
- Bratin Kumar Das
- Biophysical and Computational Chemistry Laboratory, Department of Chemistry, National Institute of Technology Karnataka, Surathkal, Mangalore 575025, India
| | - Omkar Singh
- Biophysical and Computational Chemistry Laboratory, Department of Chemistry, National Institute of Technology Karnataka, Surathkal, Mangalore 575025, India
| | - Debashree Chakraborty
- Biophysical and Computational Chemistry Laboratory, Department of Chemistry, National Institute of Technology Karnataka, Surathkal, Mangalore 575025, India
| |
Collapse
|
6
|
Nguyen PH, Derreumaux P. Multistep molecular mechanisms of Aβ16-22 fibril formation revealed by lattice Monte Carlo simulations. J Chem Phys 2023; 158:235101. [PMID: 37318171 DOI: 10.1063/5.0149419] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/26/2023] [Indexed: 06/16/2023] Open
Abstract
As a model of self-assembly from disordered monomers to fibrils, the amyloid-β fragment Aβ16-22 was subject to past numerous experimental and computational studies. Because dynamics information between milliseconds and seconds cannot be assessed by both studies, we lack a full understanding of its oligomerization. Lattice simulations are particularly well suited to capture pathways to fibrils. In this study, we explored the aggregation of 10 Aβ16-22 peptides using 65 lattice Monte Carlo simulations, each simulation consisting of 3 × 109 steps. Based on a total of 24 and 41 simulations that converge and do not converge to the fibril state, respectively, we are able to reveal the diversity of the pathways leading to fibril structure and the conformational traps slowing down the fibril formation.
Collapse
Affiliation(s)
- Phuong H Nguyen
- CNRS, Université Paris Cité, UPR 9080, Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, 13 Rue Pierre et Marie Curie, 75005 Paris, France
| | - Philippe Derreumaux
- CNRS, Université Paris Cité, UPR 9080, Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, 13 Rue Pierre et Marie Curie, 75005 Paris, France
- Institut Universitaire de France (IUF), 75005 Paris, France
| |
Collapse
|
7
|
Iorio A, Timr Š, Chiodo L, Derreumaux P, Sterpone F. Evolution of large Aβ16-22 aggregates at atomic details and potential of mean force associated to peptide unbinding and fragmentation events. Proteins 2023. [PMID: 37139594 DOI: 10.1002/prot.26500] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/30/2023] [Accepted: 04/01/2023] [Indexed: 05/05/2023]
Abstract
Atomic characterization of large nonfibrillar aggregates of amyloid polypeptides cannot be determined by experimental means. Starting from β-rich aggregates of Y and elongated topologies predicted by coarse-grained simulations and consisting of more than 100 Aβ16-22 peptides, we performed atomistic molecular dynamics (MD), replica exchange with solute scaling (REST2), and umbrella sampling simulations using the CHARMM36m force field in explicit solvent. Here, we explored the dynamics within 3 μs, the free energy landscape, and the potential of mean force associated with either the unbinding of one single peptide in different configurations within the aggregate or fragmentation events of a large number of peptides. Within the time scale of MD and REST2, we find that the aggregates experience slow global conformational plasticity, and remain essentially random coil though we observe slow beta-strand structuring with a dominance of antiparallel beta-sheets over parallel beta-sheets. Enhanced REST2 simulation is able to capture fragmentation events, and the free energy of fragmentation of a large block of peptides is found to be similar to the free energy associated with fibril depolymerization by one chain for longer Aβ sequences.
Collapse
Affiliation(s)
- Antonio Iorio
- Laboratoire de Biochimie Théorique (UPR 9080), CNRS, Université Paris Cité, Paris, France
- Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, Paris, France
| | - Štěpán Timr
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Letizia Chiodo
- Research Unit in Non Linear Physics and Mathematical Modeling Engineering Department of Campus Bio-Medico, University of Rome, Rome, Italy
| | - Philippe Derreumaux
- Laboratoire de Biochimie Théorique (UPR 9080), CNRS, Université Paris Cité, Paris, France
- Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, Paris, France
- Institut Universitaire de France, Paris, France
| | - Fabio Sterpone
- Laboratoire de Biochimie Théorique (UPR 9080), CNRS, Université Paris Cité, Paris, France
- Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, Paris, France
| |
Collapse
|
8
|
Nguyen PH, Sterpone F, Derreumaux P. Self-Assembly of Amyloid-Beta (Aβ) Peptides from Solution to Near In Vivo Conditions. J Phys Chem B 2022; 126:10317-10326. [PMID: 36469912 DOI: 10.1021/acs.jpcb.2c06375] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Understanding the atomistic resolution changes during the self-assembly of amyloid peptides or proteins is important to develop compounds or conditions to alter the aggregation pathways and suppress the toxicity and potentially aid in the development of drugs. However, the complexity of protein aggregation and the transient order/disorder of oligomers along the pathways to fibril are very challenging. In this Perspective, we discuss computational studies of amyloid polypeptides carried out under various conditions, including conditions closely mimicking in vivo and point out the challenges in obtaining physiologically relevant results, focusing mainly on the amyloid-beta Aβ peptides.
Collapse
Affiliation(s)
- Phuong H Nguyen
- CNRS, Université Paris Cité, UPR 9080, Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Fabio Sterpone
- CNRS, Université Paris Cité, UPR 9080, Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Philippe Derreumaux
- CNRS, Université Paris Cité, UPR 9080, Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, 13 rue Pierre et Marie Curie, 75005 Paris, France.,Institut Universitaire de France (IUF), 75005, Paris, France
| |
Collapse
|
9
|
Phan TM, Schmit JD. Conformational entropy limits the transition from nucleation to elongation in amyloid aggregation. Biophys J 2022; 121:2931-2939. [PMID: 35778843 PMCID: PMC9388551 DOI: 10.1016/j.bpj.2022.06.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 06/11/2022] [Accepted: 06/17/2022] [Indexed: 11/30/2022] Open
Abstract
The formation of β-sheet rich amyloid fibrils in Alzheimer's disease and other neurodegenerative disorders is limited by a slow nucleation event. To understand the initial formation of β-sheets from disordered peptides, we used all-atom simulations to parameterize a lattice model that treats each amino acid as a binary variable with β and non-β states. We show that translational and conformational entropy give the nascent β-sheet an anisotropic surface tension which can be used to describe the nucleus with two-dimensional Classical Nucleation Theory. Since translational entropy depends on concentration, the aspect ratio of the critical β-sheet changes with protein concentration. Our model explains the transition from the nucleation phase to elongation as the point where the β-sheet core becomes large enough to overcome the conformational entropy cost to straighten the terminal molecule. At this point the β-strands in the nucleus spontaneously elongate, which results in a larger binding surface to capture new molecules. These results suggest that nucleation is relatively insensitive to sequence differences in co-aggregation experiments because the nucleus only involves a small portion of the peptide.
Collapse
Affiliation(s)
- Tien M Phan
- Department of Physics, Kansas State University, Manhattan, KS 66506, USA
| | - Jeremy D Schmit
- Department of Physics, Kansas State University, Manhattan, KS 66506, USA.
| |
Collapse
|
10
|
Tang X, Han W. Multiscale Exploration of Concentration-Dependent Amyloid-β(16-21) Amyloid Nucleation. J Phys Chem Lett 2022; 13:5009-5016. [PMID: 35649244 DOI: 10.1021/acs.jpclett.2c00685] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Atomic descriptions of peptide aggregation nucleation remain lacking due to the difficulty of exploring complex configurational spaces on long time scales. To elucidate this process, we develop a multiscale approach combining a metadynamics-based method with cluster statistical mechanics to derive concentration-dependent free energy surfaces of nucleation at near-atomic resolution. A kinetic transition network of nucleation is then constructed and employed to systematically explore nucleation pathways and kinetics through stochastic simulations. This approach is applied to describe Aβ16-21 amyloid nucleation, revealing a two-step mechanism involving disordered aggregates at millimolar concentration, and an unexpected mechanism at submillimolar concentrations that exhibits kinetics reminiscent of classical nucleation but atypical pathways involving growing clusters with structured cores wrapped by disordered surface. When this atypical mechanism is operative, critical nucleus size can be reflected by the nucleation reaction order. Collectively, our approach paves the way for a more quantitative and detailed understanding of peptide aggregation nucleation.
Collapse
Affiliation(s)
- Xuan Tang
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Wei Han
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| |
Collapse
|
11
|
Cai X, Han W. Development of a Hybrid-Resolution Force Field for Peptide Self-Assembly Simulations: Optimizing Peptide-Peptide and Peptide-Solvent Interactions. J Chem Inf Model 2022; 62:2744-2760. [PMID: 35561002 DOI: 10.1021/acs.jcim.2c00066] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Atomic descriptions of peptide self-assembly are crucial to an understanding of disease-related peptide aggregation and the design of peptide-assembled materials. Obtaining these descriptions through computer simulation is challenging because current force fields, which were not designed for this process and are often unable to describe correctly peptide self-assembly behavior and the sequence dependence. Here, we developed a framework using dipeptide aggregation as a model system to improve force fields for simulations of self-assembly. Aggregation-related structural properties were designed and used to guide the optimization of peptide-peptide and peptide-solvent interactions. With this framework, we developed a self-assembly force field, termed PACE-ASM, by reoptimizing a hybrid-resolution force field that was originally developed for folding simulation. With its applicability in folding simulations, the new PACE was used to simulate the self-assembly of two disease-related short peptides, Aβ16-21 and PHF6, into β-sheet-rich cross-β amyloids. These simulations reproduced the crystal structures of Aβ16-21 and PHF6 amyloids at near-atomic resolution and captured the difference in packing orientations between the two sequences, a task which is challenging even with all-atom force fields. Apart from cross-β amyloids, the self-assembly of emerging helix-rich cross-α amyloids by another peptide PSMα3 can also be correctly described with the new PACE, manifesting the versatility of the force field. We demonstrated that the ability of the PACE-ASM to model peptide self-assembly is based largely on its improved description of peptide-peptide and peptide-solvent interactions. This was achieved with our optimization framework that can readily identify and address the deficiency in describing these interactions.
Collapse
Affiliation(s)
- Xiang Cai
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Wei Han
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.,Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| |
Collapse
|
12
|
Blanco MA. Computational models for studying physical instabilities in high concentration biotherapeutic formulations. MAbs 2022; 14:2044744. [PMID: 35282775 PMCID: PMC8928847 DOI: 10.1080/19420862.2022.2044744] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Computational prediction of the behavior of concentrated protein solutions is particularly advantageous in early development stages of biotherapeutics when material availability is limited and a large set of formulation conditions needs to be explored. This review provides an overview of the different computational paradigms that have been successfully used in modeling undesirable physical behaviors of protein solutions with a particular emphasis on high-concentration drug formulations. This includes models ranging from all-atom simulations, coarse-grained representations to macro-scale mathematical descriptions used to study physical instability phenomena of protein solutions such as aggregation, elevated viscosity, and phase separation. These models are compared and summarized in the context of the physical processes and their underlying assumptions and limitations. A detailed analysis is also given for identifying protein interaction processes that are explicitly or implicitly considered in the different modeling approaches and particularly their relations to various formulation parameters. Lastly, many of the shortcomings of existing computational models are discussed, providing perspectives and possible directions toward an efficient computational framework for designing effective protein formulations.
Collapse
Affiliation(s)
- Marco A. Blanco
- Materials and Biophysical Characterization, Analytical R & D, Merck & Co., Inc, Kenilworth, NJ USA
| |
Collapse
|
13
|
Szała-Mendyk B, Molski A. Diverse Aggregation Kinetics Predicted by a Coarse-Grained Peptide Model. J Phys Chem B 2021; 125:7587-7597. [PMID: 34251838 PMCID: PMC8389928 DOI: 10.1021/acs.jpcb.1c00290] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
![]()
Protein and peptide
aggregation is a ubiquitous phenomenon with
implications in medicine, pharmaceutical industry, and materials science.
An important issue in peptide aggregation is the molecular mechanism
of aggregate nucleation and growth. In many experimental studies,
sigmoidal kinetics curves show a clear lag phase ascribed to nucleation;
however, experimental studies also show downhill kinetics curves,
where the monomers decay continuously and no lag phase can be seen.
In this work, we study peptide aggregation kinetics using a coarse-grained
implicit solvent model introduced in our previous work. Our simulations
explore the hypothesis that the interplay between interchain attraction
and intrachain bending stiffness controls the aggregation kinetics
and transient aggregate morphologies. Indeed, our model reproduces
the aggregation modes seen in experiment: no observed aggregation,
nucleated aggregation, and rapid downhill aggregation. We find that
the interaction strength is the primary parameter determining the
aggregation mode, whereas the stiffness is a secondary parameter modulating
the transient morphologies and aggregation rates: more attractive
and stiff chains aggregate more rapidly and the transient morphologies
are more ordered. We also explore the effects of the initial monomer
concentration and the chain length. As the concentration decreases,
the aggregation mode shifts from downhill to nucleated and no-aggregation.
This concentration effect is in line with an experimental observation
that the transition between downhill and nucleated kinetics is concentration-dependent.
We find that longer peptides can aggregate at conditions where short
peptides do not aggregate at all. It supports an experimental observation
that the elongation of a homopeptide, e.g., polyglutamine, can increase
the aggregation propensity.
Collapse
Affiliation(s)
- Beata Szała-Mendyk
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Umultowska 89b, 61-614 Poznań, Poland
| | - Andrzej Molski
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Umultowska 89b, 61-614 Poznań, Poland
| |
Collapse
|
14
|
Gomes GN, Levine ZA. Defining the Neuropathological Aggresome across in Silico, in Vitro, and ex Vivo Experiments. J Phys Chem B 2021; 125:1974-1996. [PMID: 33464098 PMCID: PMC8362740 DOI: 10.1021/acs.jpcb.0c09193] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The loss of proteostasis over the life course is associated with a wide range of debilitating degenerative diseases and is a central hallmark of human aging. When left unchecked, proteins that are intrinsically disordered can pathologically aggregate into highly ordered fibrils, plaques, and tangles (termed amyloids), which are associated with countless disorders such as Alzheimer's disease, Parkinson's disease, type II diabetes, cancer, and even certain viral infections. However, despite significant advances in protein folding and solution biophysics techniques, determining the molecular cause of these conditions in humans has remained elusive. This has been due, in part, to recent discoveries showing that soluble protein oligomers, not insoluble fibrils or plaques, drive the majority of pathological processes. This has subsequently led researchers to focus instead on heterogeneous and often promiscuous protein oligomers. Unfortunately, significant gaps remain in how to prepare, model, experimentally corroborate, and extract amyloid oligomers relevant to human disease in a systematic manner. This Review will report on each of these techniques and their successes and shortcomings in an attempt to standardize comparisons between protein oligomers across disciplines, especially in the context of neurodegeneration. By standardizing multiple techniques and identifying their common overlap, a clearer picture of the soluble neuropathological aggresome can be constructed and used as a baseline for studying human disease and aging.
Collapse
Affiliation(s)
- Gregory-Neal Gomes
- Department of Pathology, Yale School of Medicine, New Haven, CT, 06520, USA
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Zachary A. Levine
- Department of Pathology, Yale School of Medicine, New Haven, CT, 06520, USA
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06511, USA
| |
Collapse
|
15
|
Wu T, Lai R, Yao C, Juang J, Lin S. Supramolecular Bait to Trigger Non-Equilibrium Co-Assembly and Clearance of Aβ42. Angew Chem Int Ed Engl 2021; 60:4014-4017. [PMID: 33191624 PMCID: PMC7898541 DOI: 10.1002/anie.202013754] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Indexed: 12/20/2022]
Abstract
In living systems, non-equilibrium states that control the assembly-disassembly of cellular components underlie the gradual complexification of life, whereas in nonliving systems, most molecules follow the laws of thermodynamic equilibrium to sustain dynamic consistency. Little is known about the roles of non-equilibrium states of interactions between supramolecules in living systems. Here, a non-equilibrium state of interaction between supramolecular lipopolysaccharide (LPS) and Aβ42, an aggregate-prone protein that causes Alzheimer's disease (AD), was identified. Structurally, Aβ42 presents a specific groove that is recognized by the amphiphilicity of LPS bait in a non-equilibrium manner. Functionally, the transient complex elicits a cellular response to clear extracellular Aβ42 deposits in neuronal cells. Since the impaired clearance of toxic Aβ42 deposits correlates with AD pathology, the non-equilibrium LPS and Aβ42 could represent a useful target for developing AD therapeutics.
Collapse
Affiliation(s)
- Te‐Haw Wu
- Institute of Biomedical Engineering and NanomedicineNational Health Research Institutes (NHRI)Miaoli County35053Taiwan
| | - Rai‐Hua Lai
- Institute of Molecular and Genomic MedicineNHRITaiwan
| | - Chun‐Nien Yao
- Institute of Biomedical Engineering and NanomedicineNational Health Research Institutes (NHRI)Miaoli County35053Taiwan
| | - Jyh‐Lyh Juang
- Institute of Molecular and Genomic MedicineNHRITaiwan
| | - Shu‐Yi Lin
- Institute of Biomedical Engineering and NanomedicineNational Health Research Institutes (NHRI)Miaoli County35053Taiwan
| |
Collapse
|
16
|
Yang J, Agnihotri MV, Huseby CJ, Kuret J, Singer SJ. A theoretical study of polymorphism in VQIVYK fibrils. Biophys J 2021; 120:1396-1416. [PMID: 33571490 DOI: 10.1016/j.bpj.2021.01.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 01/07/2021] [Accepted: 01/11/2021] [Indexed: 02/06/2023] Open
Abstract
The VQIVYK fragment from the Tau protein, also known as PHF6, is essential for aggregation of Tau into neurofibrillary lesions associated with neurodegenerative diseases. VQIVYK itself forms amyloid fibrils composed of paired β-sheets. Therefore, the full Tau protein and VQIVYK fibrils have been intensively investigated. A central issue in these studies is polymorphism, the ability of a protein to fold into more than one structure. Using all-atom molecular simulations, we generate five stable polymorphs of VQIVYK fibrils, establish their relative free energy with umbrella sampling methods, and identify the side chain interactions that provide stability. The two most stable polymorphs, which have nearly equal free energy, are formed by interdigitation of the mostly hydrophobic VIY "face" sides of the β-sheets. Another stable polymorph is formed by interdigitation of the QVK "back" sides. When we turn to examine structures from cryo-electron microscopy experiments on Tau filaments taken from diseased patients or generated in vitro, we find that the pattern of side chain interactions found in the two most stable face-to-face as well as the back-to-back polymorphs are recapitulated in amyloid structures of the full protein. Thus, our studies suggest that the interactions stabilizing PHF6 fibrils explain the amyloidogenicity of the VQIVYK motif within the full Tau protein and provide justification for the use of VQIVYK fibrils as a test bed for the design of molecules that identify or inhibit amyloid structures.
Collapse
Affiliation(s)
- Jaehoon Yang
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio
| | - Mithila V Agnihotri
- Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, Ohio
| | - Carol J Huseby
- Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, Ohio
| | - Jeff Kuret
- Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, Ohio; Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, Ohio.
| | - Sherwin J Singer
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio; Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, Ohio.
| |
Collapse
|
17
|
Wu T, Lai R, Yao C, Juang J, Lin S. Supramolecular Bait to Trigger Non‐Equilibrium Co‐Assembly and Clearance of Aβ42. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202013754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Te‐Haw Wu
- Institute of Biomedical Engineering and Nanomedicine National Health Research Institutes (NHRI) Miaoli County 35053 Taiwan
| | - Rai‐Hua Lai
- Institute of Molecular and Genomic Medicine NHRI Taiwan
| | - Chun‐Nien Yao
- Institute of Biomedical Engineering and Nanomedicine National Health Research Institutes (NHRI) Miaoli County 35053 Taiwan
| | - Jyh‐Lyh Juang
- Institute of Molecular and Genomic Medicine NHRI Taiwan
| | - Shu‐Yi Lin
- Institute of Biomedical Engineering and Nanomedicine National Health Research Institutes (NHRI) Miaoli County 35053 Taiwan
| |
Collapse
|
18
|
Szała-Mendyk B, Molski A. Clustering and Fibril Formation during GNNQQNY Aggregation: A Molecular Dynamics Study. Biomolecules 2020; 10:biom10101362. [PMID: 32987720 PMCID: PMC7598727 DOI: 10.3390/biom10101362] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 12/02/2022] Open
Abstract
The precise kinetic pathways of peptide clustering and fibril formation are not fully understood. Here we study the initial clustering kinetics and transient cluster morphologies during aggregation of the heptapeptide fragment GNNQQNY from the yeast prion protein Sup35. We use a mid-resolution coarse-grained molecular dynamics model of Bereau and Deserno to explore the aggregation pathways from the initial random distribution of free monomers to the formation of large clusters. By increasing the system size to 72 peptides we could follow directly the molecular events leading to the formation of stable fibril-like structures. To quantify those structures we developed a new cluster helicity parameter. We found that the formation of fibril-like structures is a cooperative processes that requires a critical number of monomers, M⋆≈25, in a cluster. The terminal tyrosine residue is the structural determinant in the formation of helical fibril-like structures. This work supports and quantifies the two-step aggregation model where the initially formed amorphous clusters grow and, when they are large enough, rearrange into mature twisted structures. However, in addition to the nucleated fibrillation, growing aggregates undergo further internal reorganization, which leads to more compact structures of large aggregates.
Collapse
|
19
|
Man VH, He X, Ji B, Liu S, Xie XQ, Wang J. Introducing Virtual Oligomerization Inhibition to Identify Potent Inhibitors of Aβ Oligomerization. J Chem Theory Comput 2020; 16:3920-3935. [PMID: 32307994 DOI: 10.1021/acs.jctc.0c00185] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Amyloid-β (Aβ) oligomers are known as the most toxic form of Aβ peptides, and they are a major contributor to Alzheimer's disease. Therefore, developing antagonist screening methods for the formation of Aβ oligomers is urgent and of great interest. In this study, we introduce virtual oligomerization inhibition (VOI), a novel virtual screening protocol that applies atomistic simulation to quantitatively investigate the ability of a ligand in interfering Aβ oligomerization and the formation of Aβ oligomers. Results from the VOI performance on six known inhibitors of Aβ aggregation (brazilin, curcumin, EGCG, ELND005, resveratrol, and tacrine) are in excellent agreement with the results of expensive experiments. Moreover, VOI can reveal the mechanism and kinetics of the inhibition process at the atomistic level. VOI not only improves the efficiency of the antagonist screening for Aβ oligomerization but also reduces the cost of performing the task. Attractively, the principle of VOI can also be applied to inhibitor screening for the aggregation of other amyloid proteins/peptides.
Collapse
Affiliation(s)
- Viet Hoang Man
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, and NIDA National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Xibing He
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, and NIDA National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Beihong Ji
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, and NIDA National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Shuhan Liu
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, and NIDA National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Xiang-Qun Xie
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, and NIDA National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Junmei Wang
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, and NIDA National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
20
|
Hussain S, Haji-Akbari A. Studying rare events using forward-flux sampling: Recent breakthroughs and future outlook. J Chem Phys 2020; 152:060901. [DOI: 10.1063/1.5127780] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Sarwar Hussain
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, USA
| | - Amir Haji-Akbari
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, USA
| |
Collapse
|
21
|
Cosolvent effects on the growth of amyloid fibrils. Curr Opin Struct Biol 2020; 60:101-109. [DOI: 10.1016/j.sbi.2019.12.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 12/08/2019] [Accepted: 12/16/2019] [Indexed: 02/05/2023]
|
22
|
Szała B, Molski A. Aggregation kinetics of short peptides: All-atom and coarse-grained molecular dynamics study. Biophys Chem 2019; 253:106219. [PMID: 31301554 DOI: 10.1016/j.bpc.2019.106219] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/14/2019] [Accepted: 07/03/2019] [Indexed: 11/30/2022]
Abstract
Peptides can aggregate into ordered structures with different morphologies. The aggregation mechanism and evolving structures are the subject of intense research. In this paper we have used molecular dynamics to examine the sequence-dependence of aggregation kinetics for three short peptides: octaalanine (Ala8), octaasparagine (Asn8), and the heptapeptide GNNQQNY (abbreviated as GNN). First, we compared the aggregation of 20 randomly distributed peptides using the coarse-grained MARTINI force field and the atomistic OPLS-AA force field. We found that the MARTINI and OPLS-AA aggregation kinetics are similar for Ala8, Asn8, and GNN. Second, we used the MARTINI force field to study the early stages of aggregation kinetics for a larger system with 72 peptides. In the initial stage of aggregation small clusters grow by monomer addition. In the second stage, when the free monomers are depleted, the dominant cluster growth path is cluster-cluster coalescence. We quantified the aggregation kinetics in terms of rate equations. Our study shows that the initial aggregation kinetics are similar for Ala8, Asn8, and GNN but the molecular details can be different, especially for MARTINI Ala8. We hypothesize that peptide aggregation proceed in two steps. In the first step amorphous aggregates are formed, and then, in the second step, they reorganize into ordered structures. We conclude that sequence-specific differences show up in the second step of aggregation.
Collapse
Affiliation(s)
- Beata Szała
- Adam Mickiewicz University in Poznań, Faculty of Chemistry, Umultowska 89b, 61-614 Poznań, Poland.
| | - Andrzej Molski
- Adam Mickiewicz University in Poznań, Faculty of Chemistry, Umultowska 89b, 61-614 Poznań, Poland.
| |
Collapse
|
23
|
Nishikawa N, Sakae Y, Gouda T, Tsujimura Y, Okamoto Y. Structural Analysis of a Trimer of β 2-Microgloblin Fragment by Molecular Dynamics Simulations. Biophys J 2019; 116:781-790. [PMID: 30771855 DOI: 10.1016/j.bpj.2018.11.3143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 06/08/2018] [Accepted: 11/06/2018] [Indexed: 01/22/2023] Open
Abstract
A peptide β2-m21-31, which is a fragment from residue 21 to residue 31 of β2-microgloblin, is experimentally known to self-assemble and form amyloid fibrils. In order to understand the mechanism of amyloid fibril formations, we applied the replica-exchange molecular dynamics method to the system consisting of three fragments of β2-m21-31. From the analyses on the temperature dependence, we found that there is a clear phase transition temperature in which the peptides aggregate with each other. Moreover, we found by the free energy analyses that there are two major stable states: One of them is like amyloid fibrils and the other is amorphous aggregates.
Collapse
Affiliation(s)
- Naohiro Nishikawa
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan; Department of Theoretical and Computational Molecular Science, Institute for Molecular Science, Okazaki, Aichi, Japan
| | - Yoshitake Sakae
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
| | - Takuya Gouda
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
| | - Yuichiro Tsujimura
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
| | - Yuko Okamoto
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan; Structural Biology Research Center, Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan; Center for Computational Science, Graduate School of Engineering, Nagoya University, Nagoya, Aichi, Japan; Information Technology Center, Nagoya University, Nagoya, Aichi, Japan; JST-CREST, Nagoya, Aichi, Japan.
| |
Collapse
|
24
|
Wilson CJ, Bommarius AS, Champion JA, Chernoff YO, Lynn DG, Paravastu AK, Liang C, Hsieh MC, Heemstra JM. Biomolecular Assemblies: Moving from Observation to Predictive Design. Chem Rev 2018; 118:11519-11574. [PMID: 30281290 PMCID: PMC6650774 DOI: 10.1021/acs.chemrev.8b00038] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Biomolecular assembly is a key driving force in nearly all life processes, providing structure, information storage, and communication within cells and at the whole organism level. These assembly processes rely on precise interactions between functional groups on nucleic acids, proteins, carbohydrates, and small molecules, and can be fine-tuned to span a range of time, length, and complexity scales. Recognizing the power of these motifs, researchers have sought to emulate and engineer biomolecular assemblies in the laboratory, with goals ranging from modulating cellular function to the creation of new polymeric materials. In most cases, engineering efforts are inspired or informed by understanding the structure and properties of naturally occurring assemblies, which has in turn fueled the development of predictive models that enable computational design of novel assemblies. This Review will focus on selected examples of protein assemblies, highlighting the story arc from initial discovery of an assembly, through initial engineering attempts, toward the ultimate goal of predictive design. The aim of this Review is to highlight areas where significant progress has been made, as well as to outline remaining challenges, as solving these challenges will be the key that unlocks the full power of biomolecules for advances in technology and medicine.
Collapse
Affiliation(s)
- Corey J. Wilson
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Andreas S. Bommarius
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Julie A. Champion
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Yury O. Chernoff
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Laboratory of Amyloid Biology & Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
| | - David G. Lynn
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Anant K. Paravastu
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Chen Liang
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Ming-Chien Hsieh
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Jennifer M. Heemstra
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
25
|
Kashchiev D. Growth probability and formation time of the individual Oosawa-Kasai protein fibril. Phys Rev E 2018; 98:012412. [PMID: 30110800 DOI: 10.1103/physreve.98.012412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Indexed: 12/23/2022]
Abstract
Protein fibrils are currently of great academic and practical interest because of their involvement in scores of severe human diseases and their promising use in various high-technology devices. The Oosawa-Kasai (OK) model of protein self-assembly into fibrils has been widely used to gain mechanistic insight into the process of fibril formation and growth. Here this model is employed to obtain exact and mathematically simple expressions for the probability P_{n} of an individual fibril of n protein monomers to grow to a macroscopically large size and for the mean time τ_{n} that such a fibril needs for its formation. These expressions quantify the increase of P_{n} and the decrease of τ_{n} with increasing the concentration of monomeric protein in the solution. When used for analysis of experimental P_{n} and τ_{n} data, they make it possible to determine the parameters characterizing fibril nucleation and growth in the framework of the OK model. Finally, an expression is found for the mean time of the first appearance of an n-sized fibril in the protein solution. The results obtained are applicable to the formation of other aggregates corresponding to the OK fibrils, such as the one-dimensional Kossel-Stranski crystals and Ising ferromagnets.
Collapse
Affiliation(s)
- Dimo Kashchiev
- Institute of Physical Chemistry, Bulgarian Academy of Sciences, ul. Acad. G. Bonchev 11, Sofia 1113, Bulgaria
| |
Collapse
|
26
|
Carballo-Pacheco M, Ismail AE, Strodel B. On the Applicability of Force Fields To Study the Aggregation of Amyloidogenic Peptides Using Molecular Dynamics Simulations. J Chem Theory Comput 2018; 14:6063-6075. [PMID: 30336669 DOI: 10.1021/acs.jctc.8b00579] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Molecular dynamics simulations play an essential role in understanding biomolecular processes such as protein aggregation at temporal and spatial resolutions which are not attainable by experimental methods. For a correct modeling of protein aggregation, force fields must accurately represent molecular interactions. Here, we study the effect of five different force fields on the oligomer formation of Alzheimer's Aβ16-22 peptide and two of its mutants: Aβ16-22(F19V,F20V), which does not form fibrils, and Aβ16-22(F19L) which forms fibrils faster than the wild type. We observe that while oligomer formation kinetics depends strongly on the force field, structural properties, such as the most relevant protein-protein contacts, are similar between them. The oligomer formation kinetics obtained with different force fields differ more from each other than the kinetics between aggregating and nonaggregating peptides simulated with a single force field. We discuss the difficulties in comparing atomistic simulations of amyloid oligomer formation with experimental observables.
Collapse
Affiliation(s)
- Martín Carballo-Pacheco
- Institute of Complex Systems: Structural Biochemistry (ICS-6) , Forschungszentrum Jülich GmbH , 52425 Jülich , Germany.,AICES Graduate School , RWTH Aachen University , Schinkelstraße 2 , 52062 Aachen , Germany
| | - Ahmed E Ismail
- AICES Graduate School , RWTH Aachen University , Schinkelstraße 2 , 52062 Aachen , Germany.,Aachener Verfahrenstechnik, Faculty of Mechanical Engineering , RWTH Aachen University , Schinkelstraße 2 , 52062 Aachen , Germany
| | - Birgit Strodel
- Institute of Complex Systems: Structural Biochemistry (ICS-6) , Forschungszentrum Jülich GmbH , 52425 Jülich , Germany.,Institute of Theoretical and Computational Chemistry , Heinrich Heine University Düsseldorf , Universitätstrasse 1 , 40225 Düsseldorf , Germany
| |
Collapse
|
27
|
Hung NB, Le DM, Hoang TX. Sequence dependent aggregation of peptides and fibril formation. J Chem Phys 2018; 147:105102. [PMID: 28915764 DOI: 10.1063/1.5001517] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Deciphering the links between amino acid sequence and amyloid fibril formation is key for understanding protein misfolding diseases. Here we use Monte Carlo simulations to study the aggregation of short peptides in a coarse-grained model with hydrophobic-polar (HP) amino acid sequences and correlated side chain orientations for hydrophobic contacts. A significant heterogeneity is observed in the aggregate structures and in the thermodynamics of aggregation for systems of different HP sequences and different numbers of peptides. Fibril-like ordered aggregates are found for several sequences that contain the common HPH pattern, while other sequences may form helix bundles or disordered aggregates. A wide variation of the aggregation transition temperatures among sequences, even among those of the same hydrophobic fraction, indicates that not all sequences undergo aggregation at a presumable physiological temperature. The transition is found to be the most cooperative for sequences forming fibril-like structures. For a fibril-prone sequence, it is shown that fibril formation follows the nucleation and growth mechanism. Interestingly, a binary mixture of peptides of an aggregation-prone and a non-aggregation-prone sequence shows the association and conversion of the latter to the fibrillar structure. Our study highlights the role of a sequence in selecting fibril-like aggregates and also the impact of a structural template on fibril formation by peptides of unrelated sequences.
Collapse
Affiliation(s)
- Nguyen Ba Hung
- Institute of Physics, Vietnam Academy of Science and Technology, 10 Dao Tan, Ba Dinh, Hanoi, Vietnam
| | - Duy-Manh Le
- Institute of Research and Development, Duy Tan University, K7/25 Quang Trung, Da Nang, Vietnam
| | - Trinh X Hoang
- Institute of Physics, Vietnam Academy of Science and Technology, 10 Dao Tan, Ba Dinh, Hanoi, Vietnam
| |
Collapse
|
28
|
Peter EK. Adaptive enhanced sampling with a path-variable for the simulation of protein folding and aggregation. J Chem Phys 2018; 147:214902. [PMID: 29221375 DOI: 10.1063/1.5000930] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In this article, we present a novel adaptive enhanced sampling molecular dynamics (MD) method for the accelerated simulation of protein folding and aggregation. We introduce a path-variable L based on the un-biased momenta p and displacements dq for the definition of the bias s applied to the system and derive 3 algorithms: general adaptive bias MD, adaptive path-sampling, and a hybrid method which combines the first 2 methodologies. Through the analysis of the correlations between the bias and the un-biased gradient in the system, we find that the hybrid methodology leads to an improved force correlation and acceleration in the sampling of the phase space. We apply our method on SPC/E water, where we find a conservation of the average water structure. We then use our method to sample dialanine and the folding of TrpCage, where we find a good agreement with simulation data reported in the literature. Finally, we apply our methodologies on the initial stages of aggregation of a hexamer of Alzheimer's amyloid β fragment 25-35 (Aβ 25-35) and find that transitions within the hexameric aggregate are dominated by entropic barriers, while we speculate that especially the conformation entropy plays a major role in the formation of the fibril as a rate limiting factor.
Collapse
Affiliation(s)
- Emanuel K Peter
- Department of Pharmacy and Chemistry, Institute of Physical and Theoretical Chemistry, University of Regensburg, Regensburg, Germany
| |
Collapse
|
29
|
Gobeaux F, Wien F. Reversible Assembly of a Drug Peptide into Amyloid Fibrils: A Dynamic Circular Dichroism Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:7180-7191. [PMID: 29772895 DOI: 10.1021/acs.langmuir.8b00094] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The common view on the amyloid fibril formation is that it is a multistep process that involves many oligomeric intermediate species, which leads to a high degree of polymorphism. This view derives from numerous kinetic studies whose vast majority was carried out with amyloid β fragments or other pathological amyloidogenic sequences. Yet, it is not clear whether the mechanisms inferred from these studies are universal and also apply to functional amyloids, in particular to peptide hormones which form reversible amyloid structures. In the present work, we study the self-assembly properties of atosiban, a nonapeptide drug, whose sequence is very close to those of the oxytocin and vasopressin hormones. We show that this very soluble peptide consistently self-assembles into 7 nm wide amyloid fibrils above a critical aggregation concentration (2-10 w/w % depending on the buffer conditions). The peptide system is characterized in details, from the monomeric to the assembled form, with osmotic concentration measurements, transmission electron microscopy, small-angle X-ray scattering, infrared and fluorescence spectroscopy, and circular dichroism (CD). We have followed in situ the fibril assembly with fluorescence and synchrotron radiation CD and noticed that the peptide undergoes conformational changes during the process. However, several lines of evidence point toward the association of monomers and dimers into fibrils without passing through oligomeric intermediate species contrary to what is usually reported for pathogenic amyloids. The native β-hairpin conformation of the monomer could explain the straightforward assembly. The tyrosine stacking is also shown to play an important role.
Collapse
Affiliation(s)
- Frédéric Gobeaux
- LIONS-NIMBE CEA, CNRS, Université Paris-Saclay, CEA Saclay , 91191 Gif-sur-Yvette Cedex , France
| | - Frank Wien
- SOLEIL Synchrotron , Saint Aubin 91190 , France
| |
Collapse
|
30
|
Frederix PWJM, Patmanidis I, Marrink SJ. Molecular simulations of self-assembling bio-inspired supramolecular systems and their connection to experiments. Chem Soc Rev 2018; 47:3470-3489. [PMID: 29688238 PMCID: PMC5961611 DOI: 10.1039/c8cs00040a] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Indexed: 01/01/2023]
Abstract
In bionanotechnology, the field of creating functional materials consisting of bio-inspired molecules, the function and shape of a nanostructure only appear through the assembly of many small molecules together. The large number of building blocks required to define a nanostructure combined with the many degrees of freedom in packing small molecules has long precluded molecular simulations, but recent advances in computational hardware as well as software have made classical simulations available to this strongly expanding field. Here, we review the state of the art in simulations of self-assembling bio-inspired supramolecular systems. We will first discuss progress in force fields, simulation protocols and enhanced sampling techniques using recent examples. Secondly, we will focus on efforts to enable the comparison of experimentally accessible observables and computational results. Experimental quantities that can be measured by microscopy, spectroscopy and scattering can be linked to simulation output either directly or indirectly, via quantum mechanical or semi-empirical techniques. Overall, we aim to provide an overview of the various computational approaches to understand not only the molecular architecture of nanostructures, but also the mechanism of their formation.
Collapse
Affiliation(s)
- Pim W. J. M. Frederix
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials , University of Groningen , Groningen , The Netherlands . ;
| | - Ilias Patmanidis
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials , University of Groningen , Groningen , The Netherlands . ;
| | - Siewert J. Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials , University of Groningen , Groningen , The Netherlands . ;
| |
Collapse
|
31
|
Peter EK, Shea JE. An adaptive bias - hybrid MD/kMC algorithm for protein folding and aggregation. Phys Chem Chem Phys 2018. [PMID: 28650060 DOI: 10.1039/c7cp03035e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this paper, we present a novel hybrid Molecular Dynamics/kinetic Monte Carlo (MD/kMC) algorithm and apply it to protein folding and aggregation in explicit solvent. The new algorithm uses a dynamical definition of biases throughout the MD component of the simulation, normalized in relation to the unbiased forces. The algorithm guarantees sampling of the underlying ensemble in dependency of one average linear coupling factor 〈α〉τ. We test the validity of the kinetics in simulations of dialanine and compare dihedral transition kinetics with long-time MD-simulations. We find that for low 〈α〉τ values, kinetics are in good quantitative agreement. In folding simulations of TrpCage and TrpZip4 in explicit solvent, we also find good quantitative agreement with experimental results and prior MD/kMC simulations. Finally, we apply our algorithm to study growth of the Alzheimer Amyloid Aβ 16-22 fibril by monomer addition. We observe two possible binding modes, one at the extremity of the fibril (elongation) and one on the surface of the fibril (lateral growth), on timescales ranging from ns to 8 μs.
Collapse
Affiliation(s)
- Emanuel K Peter
- Department of Pharmacy and Chemistry, Institute of Physical and Theoretical Chemistry, University of Regensburg, Germany
| | | |
Collapse
|
32
|
Katyal N, Deep S. Inhibition of GNNQQNY prion peptide aggregation by trehalose: a mechanistic view. Phys Chem Chem Phys 2018; 19:19120-19138. [PMID: 28702592 DOI: 10.1039/c7cp02912h] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Deposition of amyloid fibrils is the seminal event in the pathogenesis of numerous neurodegenerative diseases. The formation of this amyloid assembly is the manifestation of a cascade of structural transitions including toxic oligomer formation in the early stages of aggregation. Thus a viable therapeutic strategy involves the use of small molecular ligands to interfere with this assembly. In this perspective, we have explored the kinetics of aggregate formation of the fibril forming GNNQQNY peptide fragment from the yeast prion protein SUP35 using multiple all atom MD simulations with explicit solvent and provided mechanistic insights into the way trehalose, an experimentally known aggregation inhibitor, modulates the aggregation pathway. The results suggest that the assimilation process is impeded by different barriers at smaller and larger oligomeric sizes: the initial one being easily surpassed at higher temperatures and peptide concentrations. The kinetic profile demonstrates that trehalose delays the aggregation process by increasing both these activation barriers, specifically the latter one. It increases the sampling of small-sized aggregates that lack the beta sheet conformation. Analysis reveals that the barrier in the growth of larger stable oligomers causes the formation of multiple stable small oligomers which then fuse together bimolecularly. The PCA of 26 properties was carried out to deconvolute the events within the temporary lag phases, which suggested dynamism in lags involving an increase in interchain contacts and burial of SASA. The predominant growth route is monomer addition, which changes to condensation on account of a large number of depolymerisation events in the presence of trehalose. The favourable interaction of trehalose specifically with the sidechain of the peptide promotes crowding of trehalose molecules in its vicinity - the combination of both these factors imparts the observed behaviour. Furthermore, increasing trehalose concentration leads to faster expulsion of water molecules than interpeptide interactions. These expelled water molecules have larger translational movement, suggesting an entropy factor to favor the assembly process. Different conformations observed under this condition suggest the role of water molecules in guiding the morphology of the aggregates as well. A similar scenario exists on increasing peptide concentration.
Collapse
Affiliation(s)
- Nidhi Katyal
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauzkhas, New Delhi, India.
| | - Shashank Deep
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauzkhas, New Delhi, India.
| |
Collapse
|
33
|
Haaga J, Gunton JD, Buckles CN, Rickman JM. Early stage aggregation of a coarse-grained model of polyglutamine. J Chem Phys 2018; 148:045106. [DOI: 10.1063/1.5010888] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Jason Haaga
- Department of Physics, Lehigh University, Bethlehem, Pennsylvania 18015, USA
| | - J. D. Gunton
- Department of Physics, Lehigh University, Bethlehem, Pennsylvania 18015, USA
| | - C. Nadia Buckles
- Department of Physics and Astronomy, University of Oklahoma, Norman, Oklahoma 73019, USA
| | - J. M. Rickman
- Department of Materials Science and Engineering and Department of Physics, Lehigh University, Bethlehem, Pennsylvania 18015, USA
| |
Collapse
|
34
|
Hsieh MC, Lynn DG, Grover MA. Kinetic Model for Two-Step Nucleation of Peptide Assembly. J Phys Chem B 2017; 121:7401-7411. [DOI: 10.1021/acs.jpcb.7b03085] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Ming-Chien Hsieh
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - David G. Lynn
- Departments
of Chemistry and Biology, Emory University, Atlanta, Georgia 30322, United States
| | - Martha A. Grover
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
35
|
Smit FX, Luiken JA, Bolhuis PG. Primary Fibril Nucleation of Aggregation Prone Tau Fragments PHF6 and PHF6. J Phys Chem B 2016; 121:3250-3261. [PMID: 27776213 DOI: 10.1021/acs.jpcb.6b07045] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We performed replica exchange molecular dynamics and forward flux sampling simulations of hexapeptide VQIINK and VQIVYK systems, also known as, respectively, fragments PHF6* and PHF6 from the tau protein. Being a part of the microtubule binding region, these fragments are known to be aggregation prone, and at least one of them is a prerequisite for fibril formation of the tau protein. Using a coarse-grained force field, we establish the phase behavior of both fragments, and investigate the nucleation kinetics for the conversion into a β-sheet fibril. As the conversion is, in principle, a reversible process, we predict the rate constants for both the fibril formation and melting, and examine the corresponding mechanisms. Our simulations indicate that, while both fragments form disordered aggregates, only PHF6 is able to form β-sheet fibrils. This observation provides a possible explanation for the lack of available steric zipper crystal structures for PHF6*.
Collapse
Affiliation(s)
- Florent X Smit
- van't Hoff Institute for Molecular Sciences, University of Amsterdam , PO Box 94157, 1090 GD Amsterdam, The Netherlands
| | - Jurriaan A Luiken
- van't Hoff Institute for Molecular Sciences, University of Amsterdam , PO Box 94157, 1090 GD Amsterdam, The Netherlands
| | - Peter G Bolhuis
- van't Hoff Institute for Molecular Sciences, University of Amsterdam , PO Box 94157, 1090 GD Amsterdam, The Netherlands
| |
Collapse
|
36
|
Musiani F, Giorgetti A. Protein Aggregation and Molecular Crowding: Perspectives From Multiscale Simulations. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 329:49-77. [PMID: 28109331 DOI: 10.1016/bs.ircmb.2016.08.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Cells are extremely crowded environments, thus the use of diluted salted aqueous solutions containing a single protein is too simplistic to mimic the real situation. Macromolecular crowding might affect protein structure, folding, shape, conformational stability, binding of small molecules, enzymatic activity, interactions with cognate biomolecules, and pathological aggregation. The latter phenomenon typically leads to the formation of amyloid fibrils that are linked to several lethal neurodegenerative diseases, but that can also play a functional role in certain organisms. The majority of molecular simulations performed before the last few years were conducted in diluted solutions and were restricted both in the timescales and in the system dimensions by the available computational resources. In recent years, several computational solutions were developed to get close to physiological conditions. In this review we summarize the main computational techniques used to tackle the issue of protein aggregation both in a diluted and in a crowded environment.
Collapse
Affiliation(s)
- F Musiani
- Laboratory of Bioinorganic Chemistry, University of Bologna, Bologna, Italy.
| | - A Giorgetti
- Applied Bioinformatics Group, University of Verona, Verona, Italy.
| |
Collapse
|
37
|
Chiricotto M, Tran TT, Nguyen PH, Melchionna S, Sterpone F, Derreumaux P. Coarse-grained and All-atom Simulations towards the Early and Late Steps of Amyloid Fibril Formation. Isr J Chem 2016. [DOI: 10.1002/ijch.201600048] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Mara Chiricotto
- Laboratoire de Biochimie Théorique, UPR 9080 CNRS; Université Paris Diderot, Sorbonne Paris Cité, IBPC; 13 Rue Pierre et Marie Curie 75005 Paris France
| | - Thanh Thuy Tran
- Laboratoire de Biochimie Théorique, UPR 9080 CNRS; Université Paris Diderot, Sorbonne Paris Cité, IBPC; 13 Rue Pierre et Marie Curie 75005 Paris France
| | - Phuong H. Nguyen
- Laboratoire de Biochimie Théorique, UPR 9080 CNRS; Université Paris Diderot, Sorbonne Paris Cité, IBPC; 13 Rue Pierre et Marie Curie 75005 Paris France
| | - Simone Melchionna
- Istituto Sistemi Complessi; Consiglio Nazionale delle Ricerche; P. le A. Moro 2 00185 Rome Italy
| | - Fabio Sterpone
- Laboratoire de Biochimie Théorique, UPR 9080 CNRS; Université Paris Diderot, Sorbonne Paris Cité, IBPC; 13 Rue Pierre et Marie Curie 75005 Paris France
| | - Philippe Derreumaux
- Laboratoire de Biochimie Théorique, UPR 9080 CNRS; Université Paris Diderot, Sorbonne Paris Cité, IBPC; 13 Rue Pierre et Marie Curie 75005 Paris France
| |
Collapse
|
38
|
Carballo-Pacheco M, Strodel B. Advances in the Simulation of Protein Aggregation at the Atomistic Scale. J Phys Chem B 2016; 120:2991-9. [PMID: 26965454 DOI: 10.1021/acs.jpcb.6b00059] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Protein aggregation into highly structured amyloid fibrils is associated with various diseases including Alzheimer's disease, Parkinson's disease, and type II diabetes. Amyloids can also have normal biological functions and, in the future, could be used as the basis for novel nanoscale materials. However, a full understanding of the physicochemical forces that drive protein aggregation is still lacking. Such understanding is crucial for the development of drugs that can effectively inhibit aberrant amyloid aggregation and for the directed design of functional amyloids. Atomistic simulations can help understand protein aggregation. In particular, atomistic simulations can be used to study the initial formation of toxic oligomers which are hard to characterize experimentally and to understand the difference in aggregation behavior between different amyloidogenic peptides. Here, we review the latest atomistic simulations of protein aggregation, concentrating on amyloidogenic protein fragments, and provide an outlook for the future in this field.
Collapse
Affiliation(s)
- Martín Carballo-Pacheco
- Institute of Complex Systems: Structural Biochemistry , Forschungszentrum Jülich, 52425 Jülich, Germany.,AICES Graduate School, RWTH Aachen University , Schinkelstraße 2, 52062 Aachen, Germany
| | - Birgit Strodel
- Institute of Complex Systems: Structural Biochemistry , Forschungszentrum Jülich, 52425 Jülich, Germany.,Institute of Theoretical and Computational Chemistry, Heinrich Heine University Düsseldorf , Universitätsstrasse 1, 40225 Düsseldorf, Germany
| |
Collapse
|