1
|
Li F, Zhang X, Cui T, He F, Lu L, Wang CF, Chen S. Robust 3D-Printable, Injectable, and Adhesive Hydrogels with Stepwise-Triggered Dual Reversible/Irreversible Covalent Linkages for Wound Healing. Adv Healthc Mater 2025; 14:e2404683. [PMID: 39930769 DOI: 10.1002/adhm.202404683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/10/2025] [Indexed: 04/18/2025]
Abstract
The development of 3D-printable and injectable biocompatible hydrogels with robust mechanical and adhesive properties useful for biomedical applications remains a great challenge. Herein, stepwise-triggered dual reversible/irreversible covalent linkages are engineered between two functionalized polymers, glycidyl methacrylate-modified polyvinyl alcohol (PVA-GMA) and oxidized sodium alginate tailed with 3-aminophenylboronic acid (OSA-PBA), allowing the availability of PVA-GMA/OSA-PBA (PGOP) hydrogels with versatile properties and functions. The PGOP hydrogels have excellent injectability, processability, mechanical strength (39.5 ± 2.3 kPa), self-healing, elasticity and toughness (80% compressive strain at 84.5 kPa stress), bioadhesion (34.2 ± 2.7 kPa adhesive strength to fresh pig skin, vs 7.3-15.38 kPa for commercial fibrin glue adhesives), degradability, antibacterial property, and biocompatibility (265% cell survival with fibroblasts co-culture for 5 d). With these merits, PGOP pregel and hydrogels can be applied as 3D-printing glue and construct materials to produce diverse 3D hierarchical architectures with high shape fidelity, good mechanical properties, and active materials-laden capacity. The mouse liver hemorrhage model and the full-thickness skin defect model demonstrate that PGOP hydrogels have excellent hemostatic ability and accelerated wound healing capacity. Therefore, this work provides 3D-printable and injectable glue and hydrogel adhesives with favorable mechanical strength useful for various biomedical applications such as tissue engineering and wound healing.
Collapse
Affiliation(s)
- Fucheng Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, Nanjing, 210009, China
| | - Xiaoying Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, Nanjing, 210009, China
| | - Tingting Cui
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, Nanjing, 210009, China
| | - Fukun He
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, Nanjing, 210009, China
| | - Lingyu Lu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, Nanjing, 210009, China
| | - Cai-Feng Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, Nanjing, 210009, China
| | - Su Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, Nanjing, 210009, China
| |
Collapse
|
2
|
Falcioni S, Roht YL, Drazer G, Ippolito I. Swelling Kinetics of Hydrogel Beads in Aqueous Glycerin Solutions. J Phys Chem B 2024; 128:9598-9603. [PMID: 39303081 DOI: 10.1021/acs.jpcb.4c04248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
This study examines the swelling kinetics of polyacrylamide hydrogel beads in aqueous glycerin solutions of different concentrations. The total absorbed mass of the hydrogel beads remains nearly constant, independent of glycerin concentration, but the swelling process is markedly slower with increasing glycerin concentration in the aqueous solutions. Absorption capacity curves exhibit universal kinetics when time is rescaled using a characteristic time proportional to the viscosity of the solutions. Additionally, a novel visualization technique is employed to observe the core-shell structure of the hydrogel beads at early times in the swelling process. The evolution of the core-shell structure indicates a constant front velocity, which also reveals universal behavior with the same nondimensional time, suggesting a viscous dominated transport of the solution penetrating the beads.
Collapse
Affiliation(s)
- Sebastian Falcioni
- Universidad de Buenos Aires, Facultad de Ingeniería, Grupo de Medios Porosos, Paseo Colón 850, 1063 Buenos Aires, Argentina
| | - Yanina Lucrecia Roht
- Universidad de Buenos Aires, Facultad de Ingeniería, Grupo de Medios Porosos, Paseo Colón 850, 1063 Buenos Aires, Argentina
| | - Germán Drazer
- Mechanical and Aerospace Engineering Department, Rutgers, The State University of New Jersey, 08854, Piscataway, New Jersey, United States
| | - Irene Ippolito
- Universidad de Buenos Aires, Facultad de Ingeniería, Grupo de Medios Porosos, Paseo Colón 850, 1063 Buenos Aires, Argentina
| |
Collapse
|
3
|
Kim S, Shin Y, Han J, Kim HJ, Sunwoo SH. Introductory Review of Soft Implantable Bioelectronics Using Conductive and Functional Hydrogels and Hydrogel Nanocomposites. Gels 2024; 10:614. [PMID: 39451267 PMCID: PMC11506957 DOI: 10.3390/gels10100614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/20/2024] [Accepted: 09/21/2024] [Indexed: 10/26/2024] Open
Abstract
Interfaces between implantable bioelectrodes and tissues provide critical insights into the biological and pathological conditions of targeted organs, aiding diagnosis and treatment. While conventional bioelectronics, made from rigid materials like metals and silicon, have been essential for recording signals and delivering electric stimulation, they face limitations due to the mechanical mismatch between rigid devices and soft tissues. Recently, focus has shifted toward soft conductive materials, such as conductive hydrogels and hydrogel nanocomposites, known for their tissue-like softness, biocompatibility, and potential for functionalization. This review introduces these materials and provides an overview of recent advances in soft hydrogel nanocomposites for implantable electronics. It covers material strategies for conductive hydrogels, including both intrinsically conductive hydrogels and hydrogel nanocomposites, and explores key functionalization techniques like biodegradation, bioadhesiveness, injectability, and self-healing. Practical applications of these materials in implantable electronics are also highlighted, showcasing their effectiveness in real-world scenarios. Finally, we discuss emerging technologies and future needs for chronically implantable bioelectronics, offering insights into the evolving landscape of this field.
Collapse
Affiliation(s)
- San Kim
- Department of Chemical Engineering, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea
| | - Yumin Shin
- Department of Chemical Engineering, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea
| | - Jaewon Han
- Division of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Hye Jin Kim
- Division of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Sung-Hyuk Sunwoo
- Department of Chemical Engineering, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA 91106, USA
| |
Collapse
|
4
|
Arabpour Z, Salehi M, An S, Moghtader A, Anwar KN, Baharnoori SM, Shah RJ, Abedi F, Djalilian AR. Exploring Hydrogel Nanoparticle Systems for Enhanced Ocular Drug Delivery. Gels 2024; 10:589. [PMID: 39330191 PMCID: PMC11430953 DOI: 10.3390/gels10090589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/08/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024] Open
Abstract
Drug delivery to the ocular system is affected by anatomical factors like the corneal epithelium, blinking reflex, aqueous blood barrier, and retinal blood barrier, which lead to quick removal from the site and inefficient drug delivery. Developing a drug delivery mechanism that targets specific eye tissue is a major hurdle for researchers. Our study examines the challenges of drug absorption in these pathways. Hydrogels have been researched as a suitable delivery method to overcome some obstacles. These are developed alone or in conjunction with other technologies, such as nanoparticles. Many polymer hydrogel nanoparticle systems utilizing both natural and synthetic polymers have been created and investigated; each has pros and cons. The complex release mechanism of encapsulated agents from hydrogel nanoparticles depends on three key factors: hydrogel matrix swelling, drug-matrix chemical interactions, and drug diffusion. This mechanism exists regardless of the type of polymer. This study provides an overview of the classification of hydrogels, release mechanisms, and the role of controlled release systems in pharmaceutical applications. Additionally, it highlights the integration of nanotechnology in ocular disease therapy, focusing on different types of nanoparticles, including nanosuspensions, nanoemulsions, and pharmaceutical nanoparticles. Finally, the review discusses current commercial formulations for ocular drug delivery and recent advancements in non-invasive techniques. The objective is to present a comprehensive overview of the possibilities for enhancing ocular medication delivery through hydrogel nanoparticle systems.
Collapse
Affiliation(s)
- Zohreh Arabpour
- Department of Ophthalmology and Visual Science, University of Illinois, Chicago, IL 60612, USA
| | - Majid Salehi
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud 3614773955, Iran
| | - Seungwon An
- Clinical Stem Cell Laboratory, UI Blood & Marrow Transplant Program, University of Illinois Hospital and Health Sciences System, Chicago, IL 60612, USA
| | - Amirhossein Moghtader
- Department of Ophthalmology and Visual Science, University of Illinois, Chicago, IL 60612, USA
| | - Khandaker N Anwar
- Department of Ophthalmology and Visual Science, University of Illinois, Chicago, IL 60612, USA
| | - Seyed Mahbod Baharnoori
- Department of Ophthalmology and Visual Science, University of Illinois, Chicago, IL 60612, USA
| | - Rohan Jaimin Shah
- Department of Ophthalmology and Visual Science, University of Illinois, Chicago, IL 60612, USA
| | - Farshad Abedi
- Department of Ophthalmology and Visual Science, University of Illinois, Chicago, IL 60612, USA
| | - Ali R Djalilian
- Department of Ophthalmology and Visual Science, University of Illinois, Chicago, IL 60612, USA
| |
Collapse
|
5
|
An D, Wang Z, Ning Y, Yue Y, Xuan H, Hu Y, Yang M, Zhou H, Liu Q, Wang X, Wang P, Zhu Z, Rao J, Zhang J. One-Step Physical and Chemical Dual-Reinforcement with Hydrophobic Drug Delivery in Gelatin Hydrogels for Antibacterial Wound Healing. ACS OMEGA 2024; 9:34413-34427. [PMID: 39157075 PMCID: PMC11325409 DOI: 10.1021/acsomega.4c01963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 08/20/2024]
Abstract
Gelatin-based bioadhesives, especially methacrylated gelatin (GelMA), have emerged as superior alternatives to sutureless wound closure. Nowadays, their mechanical improvement and therapeutic delivery, particularly for hydrophobic antibiotics, have received ever-increasing interest. Herein, a reinforced gelatin-based hydrogel with a hydrophobic drug delivery property for skin wound treatment was reported. First, photosensitive monomers of N'-(2-nitrobenzyl)-N-acryloyl glycinamide (NBNAGA) were grafted onto GelMA via Michael addition, namely, GelMA-NBNAGA. Second, gelation of the GelMA-NBNAGA solution was accomplished in a few seconds under one step of ultraviolet (UV) light irradiation. Multiple effects were realized simultaneously, including chemical cross-linking initiated by lithium phenyl-2,4,6-trimethylbenzoylphosphinate (LAP), physical cross-linking of uncaged dual hydrogen bonding, and hydrophobic drug release along with o-NB group disintegration. The mechanical properties of the dual-reinforcement hydrogels were verified to be superior to those only with a chemical or physical single-cross-linked network. The hydrophobic anticancer doxorubicin (DOX) and antibiotic rifampicin (Rif) were successfully charged into the hydrogels, separately. The in vitro antimicrobial tests confirmed the antibacterial activity of the hydrogels against Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria. The in vivo wound-healing assessment in mice further assured their drug release and efficacy. Therefore, this NBNAGA-modified GelMA hydrogel has potential as a material in skin wound dressing with a hydrophobic antibiotic on-demand delivery.
Collapse
Affiliation(s)
- Di An
- Anhui
Advanced Building Materials International Joint Research Center, School
of Materials and Chemical Engineering, Anhui
Jianzhu University, Hefei, Anhui 230022, P. R. China
| | - Zhengkai Wang
- Anhui
Advanced Building Materials International Joint Research Center, School
of Materials and Chemical Engineering, Anhui
Jianzhu University, Hefei, Anhui 230022, P. R. China
| | - Yishuo Ning
- Anhui
Advanced Building Materials International Joint Research Center, School
of Materials and Chemical Engineering, Anhui
Jianzhu University, Hefei, Anhui 230022, P. R. China
| | - Yuxing Yue
- Anhui
Advanced Building Materials International Joint Research Center, School
of Materials and Chemical Engineering, Anhui
Jianzhu University, Hefei, Anhui 230022, P. R. China
| | - Han Xuan
- Anhui
Advanced Building Materials International Joint Research Center, School
of Materials and Chemical Engineering, Anhui
Jianzhu University, Hefei, Anhui 230022, P. R. China
| | - Yongjin Hu
- Hubei
Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering
Research Center for Biomaterials and Medical Protective Materials,
School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| | - Mingdi Yang
- Anhui
Advanced Building Materials International Joint Research Center, School
of Materials and Chemical Engineering, Anhui
Jianzhu University, Hefei, Anhui 230022, P. R. China
| | - Haiou Zhou
- Anhui
Advanced Building Materials International Joint Research Center, School
of Materials and Chemical Engineering, Anhui
Jianzhu University, Hefei, Anhui 230022, P. R. China
| | - Qianqian Liu
- Anhui
Advanced Building Materials International Joint Research Center, School
of Materials and Chemical Engineering, Anhui
Jianzhu University, Hefei, Anhui 230022, P. R. China
| | - Xianbiao Wang
- Anhui
Advanced Building Materials International Joint Research Center, School
of Materials and Chemical Engineering, Anhui
Jianzhu University, Hefei, Anhui 230022, P. R. China
| | - Ping Wang
- Anhui
Advanced Building Materials International Joint Research Center, School
of Materials and Chemical Engineering, Anhui
Jianzhu University, Hefei, Anhui 230022, P. R. China
| | - Zhiyuan Zhu
- Taizhou
Research Institute, Southern University
of Science and Technology, Taizhou, Zhejiang 318001, P. R. China
| | - Jingyi Rao
- Hubei
Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering
Research Center for Biomaterials and Medical Protective Materials,
School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| | - Jingyan Zhang
- Anhui
Advanced Building Materials International Joint Research Center, School
of Materials and Chemical Engineering, Anhui
Jianzhu University, Hefei, Anhui 230022, P. R. China
| |
Collapse
|
6
|
Sacchi M, Sauter-Starace F, Mailley P, Texier I. Resorbable conductive materials for optimally interfacing medical devices with the living. Front Bioeng Biotechnol 2024; 12:1294238. [PMID: 38449676 PMCID: PMC10916519 DOI: 10.3389/fbioe.2024.1294238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/02/2024] [Indexed: 03/08/2024] Open
Abstract
Implantable and wearable bioelectronic systems are arising growing interest in the medical field. Linking the microelectronic (electronic conductivity) and biological (ionic conductivity) worlds, the biocompatible conductive materials at the electrode/tissue interface are key components in these systems. We herein focus more particularly on resorbable bioelectronic systems, which can safely degrade in the biological environment once they have completed their purpose, namely, stimulating or sensing biological activity in the tissues. Resorbable conductive materials are also explored in the fields of tissue engineering and 3D cell culture. After a short description of polymer-based substrates and scaffolds, and resorbable electrical conductors, we review how they can be combined to design resorbable conductive materials. Although these materials are still emerging, various medical and biomedical applications are already taking shape that can profoundly modify post-operative and wound healing follow-up. Future challenges and perspectives in the field are proposed.
Collapse
Affiliation(s)
- Marta Sacchi
- Université Grenoble Alpes, CEA, LETI-DTIS (Département des Technologies pour l’Innovation en Santé), Grenoble, France
- Université Paris-Saclay, CEA, JACOB-SEPIA, Fontenay-aux-Roses, France
| | - Fabien Sauter-Starace
- Université Grenoble Alpes, CEA, LETI-DTIS (Département des Technologies pour l’Innovation en Santé), Grenoble, France
| | - Pascal Mailley
- Université Grenoble Alpes, CEA, LETI-DTIS (Département des Technologies pour l’Innovation en Santé), Grenoble, France
| | - Isabelle Texier
- Université Grenoble Alpes, CEA, LETI-DTIS (Département des Technologies pour l’Innovation en Santé), Grenoble, France
| |
Collapse
|
7
|
Toropitsyn E, Ščigalková I, Pravda M, Toropitsyna J, Velebný V. Enzymatically cross-linked hyaluronic acid hydrogels as in situ forming carriers of platelet-rich plasma: Mechanical properties and bioactivity levels evaluation. J Mech Behav Biomed Mater 2023; 143:105916. [PMID: 37224645 DOI: 10.1016/j.jmbbm.2023.105916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/14/2023] [Accepted: 05/15/2023] [Indexed: 05/26/2023]
Abstract
New studies have shown the great potential of the combination of in situ enzymatically cross-linked hydrogels based on tyramine derivative of hyaluronic acid (HA-TA) with platelet-rich plasma (PRP) and platelet lysate in regenerative medicine. This study describes how the presence of PRP and platelet lysate affects the kinetics of gelation, viscoelastic properties, swelling ratio, and the network structure of HA-TA hydrogels and how the encapsulation of PRP in hydrogels affects the bioactivity of released PRP determined as the ability to induce cell proliferation. The properties of hydrogels were tuned by a degree of substitution and concentration of HA-TA derivatives. The addition of platelet derivatives to the reaction mixture slowed down the cross-linking reaction and reduced elastic modulus (G') and thus cross-linking efficiency. However, low-swellable hydrogels (7-190%) suitable for soft tissue engineering with G' 200-1800 Pa were prepared with a gelation time within 1 min. It was confirmed that tested cross-linking reaction conditions are suitable for PRP incorporation because the total bioactivity level of PRP released from HA-TA hydrogels was ≥87% and HA-TA content in the hydrogels and thus mesh size (285-482 nm) has no significant effect on the bioactivity level of released PRP.
Collapse
Affiliation(s)
- Evgeniy Toropitsyn
- Contipro a.s., Dolní Dobrouč 401, 56102, Dolní Dobrouč, Czech Republic; Biocev, First Faculty of Medicine Charles University, Průmyslová 595, 25250, Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, Prague, 120 00, Czech Republic.
| | - Ivana Ščigalková
- Contipro a.s., Dolní Dobrouč 401, 56102, Dolní Dobrouč, Czech Republic
| | - Martin Pravda
- Contipro a.s., Dolní Dobrouč 401, 56102, Dolní Dobrouč, Czech Republic
| | - Jelena Toropitsyna
- Department of Power Engineering, University of Chemistry and Technology, Prague, Technická 5, Prague, 166 28, Czech Republic
| | - Vladimír Velebný
- Contipro a.s., Dolní Dobrouč 401, 56102, Dolní Dobrouč, Czech Republic
| |
Collapse
|
8
|
Emani S, Vangala A, Buonocore F, Yarandi N, Calabrese G. Chitosan Hydrogels Cross-Linked with Trimesic Acid for the Delivery of 5-Fluorouracil in Cancer Therapy. Pharmaceutics 2023; 15:pharmaceutics15041084. [PMID: 37111570 PMCID: PMC10143928 DOI: 10.3390/pharmaceutics15041084] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023] Open
Abstract
Chitosan exhibits unique properties making it a suitable material for drug delivery. Considering the rising popularity of hydrogels in this field, this work offers a comprehensive study of hydrogels constituted by chitosan and cross-linked with 1,3,5-benzene tricarboxylic acid (BTC; also known as trimesic acid). Hydrogels were prepared by cross-linking chitosan with BTC in different concentrations. The nature of the gels was studied through oscillatory amplitude strain and frequency sweep tests within the linear viscoelastic region (LVE) limit. The flow curves of the gels revealed shear thinning behavior. High G′ values imply strong cross-linking with improved stability. The rheological tests revealed that the strength of the hydrogel network increased with the cross-linking degree. Hardness, cohesiveness, adhesiveness, compressibility, and elasticity of the gels were determined using a texture analyzer. The scanning electron microscopy (SEM) data of the cross-linked hydrogels showed distinctive pores with a pore size increasing according to increasing concentrations (pore size range between 3–18 µm). Computational analysis was performed by docking simulations between chitosan and BTC. Drug release studies employing 5-fluorouracil (5-FU) yielded a more sustained release profile with 35 to 50% release among the formulations studied in a 3 h period. Overall, this work demonstrated that the presence of BTC as cross-linker leads to satisfactory mechanical properties of the chitosan hydrogel, suggesting potential applications in the sustained release of cancer therapeutics.
Collapse
|
9
|
Sedighim S, Chen Y, Xu C, Mohindra R, Liu H, Agrawal DK, Thankam FG. Carboxymethyl cellulose-alginate interpenetrating hydroxy ethyl methacrylate crosslinked polyvinyl alcohol reinforced hybrid hydrogel templates with improved biological performance for cardiac tissue engineering. Biotechnol Bioeng 2023; 120:819-835. [PMID: 36412070 PMCID: PMC9931685 DOI: 10.1002/bit.28291] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 10/31/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022]
Abstract
Cardiac tissue engineering is an emerging approach for cardiac regeneration utilizing the inherent healing responses elicited by the surviving heart using biomaterial templates. In this study, we aimed to develop hydrogel scaffolds for cardiac tissue regeneration following myocardial infarction (MI). Two superabsorbent hydrogels, CAHA2A and CAHA2AP, were developed employing interpenetration chemistry. CAHA2A was constituted with alginate, carboxymethyl cellulose, (hydroxyethyl) methacrylate, and acrylic acid, where CAHA2AP was prepared by interpenetrated CAHA2A with polyvinyl alcohol. Both hydrogels displayed superior physiochemical characteristics, as determined by attenuated total reflection infrared spectroscopy spectral analysis, differential scanning calorimetry measurements, tensile testing, contact angle, water profiling, dye release, and conductivity. In vitro degradation of the hydrogels displayed acceptable weight composure and pH changes. Both hydrogels were hemocompatible, and biocompatible as evidenced by direct contact and MTT assays. The hydrogels promoted anterograde and retrograde migration as determined by the z-stack analysis using H9c2 cells grown with both gels. Additionally, the coculture of the hydrogels with swine epicardial adipose tissue cells and cardiac fibroblasts resulted in synchronous growth without any toxicity. Also, both hydrogels facilitated the production of extracellular matrix by the H9c2 cells. Overall, the findings support an appreciable in vitro performance of both hydrogels for cardiac tissue engineering applications.
Collapse
Affiliation(s)
- Sharona Sedighim
- Department of Translational Research, Western University of Health Sciences, Pomona, California 91766, USA
| | - Yiqing Chen
- Department of Bioengineering, University of California, Riverside, CA 92521, USA
| | - Changlu Xu
- Department of Bioengineering, University of California, Riverside, CA 92521, USA
| | - Rohit Mohindra
- Department of Translational Research, Western University of Health Sciences, Pomona, California 91766, USA
| | - Huinan Liu
- Department of Bioengineering, University of California, Riverside, CA 92521, USA
| | - Devendra K. Agrawal
- Department of Translational Research, Western University of Health Sciences, Pomona, California 91766, USA
| | - Finosh G. Thankam
- Department of Translational Research, Western University of Health Sciences, Pomona, California 91766, USA
| |
Collapse
|
10
|
Shin YK, Shin Y, Lee JW, Seo MH. Micro-/Nano-Structured Biodegradable Pressure Sensors for Biomedical Applications. BIOSENSORS 2022; 12:952. [PMID: 36354461 PMCID: PMC9687959 DOI: 10.3390/bios12110952] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/24/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
The interest in biodegradable pressure sensors in the biomedical field is growing because of their temporary existence in wearable and implantable applications without any biocompatibility issues. In contrast to the limited sensing performance and biocompatibility of initially developed biodegradable pressure sensors, device performances and functionalities have drastically improved owing to the recent developments in micro-/nano-technologies including device structures and materials. Thus, there is greater possibility of their use in diagnosis and healthcare applications. This review article summarizes the recent advances in micro-/nano-structured biodegradable pressure sensor devices. In particular, we focus on the considerable improvement in performance and functionality at the device-level that has been achieved by adapting the geometrical design parameters in the micro- and nano-meter range. First, the material choices and sensing mechanisms available for fabricating micro-/nano-structured biodegradable pressure sensor devices are discussed. Then, this is followed by a historical development in the biodegradable pressure sensors. In particular, we highlight not only the fabrication methods and performances of the sensor device, but also their biocompatibility. Finally, we intoduce the recent examples of the micro/nano-structured biodegradable pressure sensor for biomedical applications.
Collapse
Affiliation(s)
- Yoo-Kyum Shin
- Department of Information Convergence Engineering, Pusan National University, 49 Busandaehak-ro, Mulgeum-eup, Yangsan-si 50612, Gyeongsangnam-do, Korea
| | - Yujin Shin
- Department of Materials Science and Engineering, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Korea
| | - Jung Woo Lee
- Department of Materials Science and Engineering, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Korea
| | - Min-Ho Seo
- Department of Information Convergence Engineering, Pusan National University, 49 Busandaehak-ro, Mulgeum-eup, Yangsan-si 50612, Gyeongsangnam-do, Korea
- School of Biomedical Convergence Engineering, Pusan National University, 49 Busandaehak-ro, Mulgeum-eup, Yangsan-si 50612, Gyeongsangnam-do, Korea
| |
Collapse
|
11
|
Tran TS, Balu R, Mettu S, Roy Choudhury N, Dutta NK. 4D Printing of Hydrogels: Innovation in Material Design and Emerging Smart Systems for Drug Delivery. Pharmaceuticals (Basel) 2022; 15:1282. [PMID: 36297394 PMCID: PMC9609121 DOI: 10.3390/ph15101282] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/23/2022] Open
Abstract
Advancements in the material design of smart hydrogels have transformed the way therapeutic agents are encapsulated and released in biological environments. On the other hand, the expeditious development of 3D printing technologies has revolutionized the fabrication of hydrogel systems for biomedical applications. By combining these two aspects, 4D printing (i.e., 3D printing of smart hydrogels) has emerged as a new promising platform for the development of novel controlled drug delivery systems that can adapt and mimic natural physio-mechanical changes over time. This allows printed objects to transform from static to dynamic in response to various physiological and chemical interactions, meeting the needs of the healthcare industry. In this review, we provide an overview of innovation in material design for smart hydrogel systems, current technical approaches toward 4D printing, and emerging 4D printed novel structures for drug delivery applications. Finally, we discuss the existing challenges in 4D printing hydrogels for drug delivery and their prospects.
Collapse
Affiliation(s)
| | | | | | | | - Naba Kumar Dutta
- School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
| |
Collapse
|
12
|
Rama M, Vijayalakshmi U. Drug delivery system in bone biology: an evolving platform for bone regeneration and bone infection management. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04442-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Napavichayanun S, Yamdech R, Pienpinijtham P, Srichana T, Chencharoenwong S, Reddy N, Aramwit P. Using polyvinyl alcohol-ionic hydrogels containing a wound healing agent to manage wounds in different environments. J Wound Care 2022; 31:S12-S21. [PMID: 36004939 DOI: 10.12968/jowc.2022.31.sup8.s12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE To explore the effects of pH on properties of polyvinyl alcohol (PVA)-ionic hydrogels containing wound healing promoters. METHOD PVA was combined with a natural wound healing promoter (silk sericin (SS)), and an anionic agent (eosin (ES)) or cationic agent (methylene blue (MB)), and made into hydrogels. Properties of the hydrogels and behaviour at different pHs were investigated. RESULTS The density and gel fraction of PVA/SS-ES hydrogel and PVA/SS-MB hydrogel were considerably lower compared with hydrogel without SS. The swelling ratio and degradation of the hydrogels increased with increasing SS concentration in all pH solutions. The influence of SS in interrupting long-chain PVA molecules was confirmed based on changes in Fourier-transform infrared spectroscopy (FTIR). The SS released from the gels was found to interact with the ionic agent and influenced the release profile of the ionic agent. Surprisingly, the anionic agent in PVA/SS-ES hydrogel showed 70% release in high pH solution whereas the cationic agent in PVA/SS-MB hydrogel showed 86% release in low pH solution. Moreover, the active agent could accumulate on the skin layer and had a positive effect on a specific wound area. CONCLUSION Based on the results obtained in this study, it is suggested to use anionic hydrogels containing wound healing promoter for wounds at high pH and cationic hydrogels containing wound healing promoter for wounds with low pH. Ability to improve wound healing using a natural healing agent combined with ionic agents and controlling the pH of hydrogels will help in developing quick and low-cost treatment for wounds.
Collapse
Affiliation(s)
- Supamas Napavichayanun
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand.,Center of Excellence in Bioactive Resources for Innovative Clinical Applications, Chulalongkorn University, Bangkok, Thailand
| | - Rungnapha Yamdech
- Center of Excellence in Bioactive Resources for Innovative Clinical Applications, Chulalongkorn University, Bangkok, Thailand
| | - Prompong Pienpinijtham
- Center of Excellence in Bioactive Resources for Innovative Clinical Applications, Chulalongkorn University, Bangkok, Thailand.,Sensor Research Unit (SRU), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand.,National Nanotechnology Center of Advanced Structural and Functional Nanomaterials, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Teerapol Srichana
- Department of Pharmaceutical Technology and Drug Delivery System Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla, Thailand
| | - Siripich Chencharoenwong
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Narendra Reddy
- Center of Incubation, Innovation, Research and Consultancy, Jyothy Institute of Technology, Bangalore, India
| | - Pornanong Aramwit
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand.,Center of Excellence in Bioactive Resources for Innovative Clinical Applications, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
14
|
Harms M, Hansson RF, Carmali S, Almeida-Hernández Y, Sanchez-Garcia E, Münch J, Zelikin AN. Dimerization of the Peptide CXCR4-Antagonist on Macromolecular and Supramolecular Protraction Arms Affords Increased Potency and Enhanced Plasma Stability. Bioconjug Chem 2022; 33:594-607. [PMID: 35293739 DOI: 10.1021/acs.bioconjchem.2c00034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Peptides are prime drug candidates due to their high specificity of action but are disadvantaged by low proteolytic stability. Here, we focus on the development of stabilized analogues of EPI-X4, an endogenous peptide antagonist of CXCR4. We synthesized macromolecular peptide conjugates and performed side-by-side comparison with their albumin-binding counterparts and considered monovalent conjugates, divalent telechelic conjugates, and Y-shaped peptide dimers. All constructs were tested for competition with the CXCR4 antibody-receptor engagement, inhibition of receptor activation, and inhibition of the CXCR4-tropic human immunodeficiency virus infection. We found that the Y-shaped conjugates were more potent than the parent peptide and at the same time more stable in human plasma, with a favorable outlook for translational studies.
Collapse
Affiliation(s)
- Mirja Harms
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Rikke Fabech Hansson
- Department of Chemistry and iNano Interdisciplinary Nanoscience Centre, Aarhus University, Aarhus 8000, Denmark
| | - Sheiliza Carmali
- Department of Chemistry and iNano Interdisciplinary Nanoscience Centre, Aarhus University, Aarhus 8000, Denmark
| | - Yasser Almeida-Hernández
- Computational Biochemistry, Center of Medical Biotechnology, University Duisburg-Essen, D-45141 Essen, Germany
| | - Elsa Sanchez-Garcia
- Computational Biochemistry, Center of Medical Biotechnology, University Duisburg-Essen, D-45141 Essen, Germany
| | - Jan Münch
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Alexander N Zelikin
- Department of Chemistry and iNano Interdisciplinary Nanoscience Centre, Aarhus University, Aarhus 8000, Denmark
| |
Collapse
|
15
|
Seshadri DR, Bianco ND, Radwan AN, Zorman CA, Bogie KM. An Absorbent, Flexible, Transparent, and Scalable Substrate for Wound Dressings. IEEE JOURNAL OF TRANSLATIONAL ENGINEERING IN HEALTH AND MEDICINE 2022; 10:4900909. [PMID: 35685338 PMCID: PMC9170071 DOI: 10.1109/jtehm.2022.3172847] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/12/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Dhruv R. Seshadri
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Nicholas D. Bianco
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Aziz N. Radwan
- Department of Electrical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Christian A. Zorman
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Kath M. Bogie
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
16
|
Leonarta F, Lee CK. Nanofibrous Membrane with Encapsulated Glucose Oxidase for Self-Sustained Antimicrobial Applications. MEMBRANES 2021; 11:997. [PMID: 34940498 PMCID: PMC8704349 DOI: 10.3390/membranes11120997] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 11/16/2022]
Abstract
Polyvinyl alcohol (PVA) nanofibrous membrane, consisting of separately encapsulated glucose oxidase (GOx) and glucose (Glu) nanofibers, was prepared via simultaneously electrospinning PVA/GOx and PVA/Glu dopes. The as-prepared pristine membrane could self-sustainably generate hydrogen peroxide (H2O2) only in contact with an aqueous solution. The H2O2 production level was well maintained even after storing the dry membrane at room temperature for 7 days. Cross-linking the membrane via reaction with glutaraldehyde (GA) vapor could not only prevent the nanofibrous membrane from dissolving in water but also prolonged the release of H2O2. The sustained release of H2O2 from the membrane achieved antimicrobial capability equivalent to that of 1% H2O2 against both Escherichia coli and Staphylococcus aureus. Gram(+) S. aureus cells were more susceptible to H2O2 than Gram(-) E. coli and >99% of S. aureus were killed after 1 h incubation with the membrane. Pristine and GA-crosslinked nanofibrous membrane with in situ production of H2O2 were self-sterilized in which no microorganism contamination on the membrane could be detected after 2 weeks incubation on an agar plate. The GOx/Glu membrane may find potential application as versatile antimicrobial materials in the field of biomedicine, in the food and health industries, and especially challenges related to wound healing in diabetic patients.
Collapse
Affiliation(s)
| | - Cheng-Kang Lee
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan;
| |
Collapse
|
17
|
Suflet DM, Popescu I, Pelin IM, Ichim DL, Daraba OM, Constantin M, Fundueanu G. Dual Cross-Linked Chitosan/PVA Hydrogels Containing Silver Nanoparticles with Antimicrobial Properties. Pharmaceutics 2021; 13:1461. [PMID: 34575536 PMCID: PMC8465188 DOI: 10.3390/pharmaceutics13091461] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/03/2021] [Accepted: 09/09/2021] [Indexed: 02/08/2023] Open
Abstract
Stable chitosan/PVA-based hydrogels were obtained by combining covalent and physical cross-linking methods. As covalent cross-linkers, epoxy agents with different chain lengths were used, while freeze-thaw cycles were applied for additional physical cross-linking. The chemical structure of the hydrogel was examined by FTIR spectroscopy whereas the morphology was analyzed by SEM, showing well-defined pores with dimensions of around 50 μm in diameter. It was proved that gel fraction and the network morphology were deeply influenced by the synthesis conditions. Chitosan/PVA hydrogel showed a relative high swelling rate, reaching equilibrium in the first hour. The values obtained for the elastic modulus were relatively low (3-30 kPa); as a result, these hydrogels are soft and very flexible, and are ideal candidates for medical applications as wound or oral dressings. In addition, the natural antimicrobial activity of chitosan was enhanced by in situ generation of silver nanoparticles (AgNPs) under UV irradiation. The total amount of Ag from hydrogel was determined by elemental analyses and its crystalline state was confirmed by XRD. The CS/PVA hydrogels entrapped with AgNPs exhibited high inhibitory activity against S. aureus and K. pneumonia. The vitality tests confirmed the lack of cytotoxicity of CS/PVA hydrogels without and with AgNPs.
Collapse
Affiliation(s)
- Dana M. Suflet
- Petru Poni Institute of Macromolecular Chemistry, Aleea Grigore Ghica Voda 41A, 700487 Iasi, Romania; (I.P.); (I.M.P.); (G.F.)
| | - Irina Popescu
- Petru Poni Institute of Macromolecular Chemistry, Aleea Grigore Ghica Voda 41A, 700487 Iasi, Romania; (I.P.); (I.M.P.); (G.F.)
| | - Irina M. Pelin
- Petru Poni Institute of Macromolecular Chemistry, Aleea Grigore Ghica Voda 41A, 700487 Iasi, Romania; (I.P.); (I.M.P.); (G.F.)
| | - Daniela L. Ichim
- Faculty of Medical Dentistry, “Apollonia” University of Iasi, 2 Muzicii Str., 700511 Iasi, Romania; (D.L.I.); (O.M.D.)
| | - Oana M. Daraba
- Faculty of Medical Dentistry, “Apollonia” University of Iasi, 2 Muzicii Str., 700511 Iasi, Romania; (D.L.I.); (O.M.D.)
| | - Marieta Constantin
- Petru Poni Institute of Macromolecular Chemistry, Aleea Grigore Ghica Voda 41A, 700487 Iasi, Romania; (I.P.); (I.M.P.); (G.F.)
| | - Gheorghe Fundueanu
- Petru Poni Institute of Macromolecular Chemistry, Aleea Grigore Ghica Voda 41A, 700487 Iasi, Romania; (I.P.); (I.M.P.); (G.F.)
| |
Collapse
|
18
|
Chimisso V, Aleman Garcia MA, Yorulmaz Avsar S, Dinu IA, Palivan CG. Design of Bio-Conjugated Hydrogels for Regenerative Medicine Applications: From Polymer Scaffold to Biomolecule Choice. Molecules 2020; 25:E4090. [PMID: 32906772 PMCID: PMC7571016 DOI: 10.3390/molecules25184090] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/28/2020] [Accepted: 09/04/2020] [Indexed: 12/26/2022] Open
Abstract
Bio-conjugated hydrogels merge the functionality of a synthetic network with the activity of a biomolecule, becoming thus an interesting class of materials for a variety of biomedical applications. This combination allows the fine tuning of their functionality and activity, whilst retaining biocompatibility, responsivity and displaying tunable chemical and mechanical properties. A complex scenario of molecular factors and conditions have to be taken into account to ensure the correct functionality of the bio-hydrogel as a scaffold or a delivery system, including the polymer backbone and biomolecule choice, polymerization conditions, architecture and biocompatibility. In this review, we present these key factors and conditions that have to match together to ensure the correct functionality of the bio-conjugated hydrogel. We then present recent examples of bio-conjugated hydrogel systems paving the way for regenerative medicine applications.
Collapse
Affiliation(s)
| | | | | | | | - Cornelia G. Palivan
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR-1096, 4058 Basel, Switzerland; (V.C.); (M.A.A.G.); (S.Y.A.); (I.A.D.)
| |
Collapse
|
19
|
Pedersen SL, Huynh TH, Pöschko P, Fruergaard AS, Jarlstad Olesen MT, Chen Y, Birkedal H, Subbiahdoss G, Reimhult E, Thøgersen J, Zelikin AN. Remotely Triggered Liquefaction of Hydrogel Materials. ACS NANO 2020; 14:9145-9155. [PMID: 32615036 DOI: 10.1021/acsnano.0c04522] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Adaptable behavior such as triggered disintegration affords a broad scope and utility for (bio)materials in diverse applications in materials science and engineering. The impact of such materials continues to grow due to the increased importance of environmental considerations as well as the increased use of implants in medical practices. However, examples of such materials are still few. In this work, we engineer triggered liquefaction of hydrogel biomaterials in response to internal, localized heating, mediated by near-infrared light as external stimulus. This adaptable behavior is engineered into the readily available physical hydrogels based on poly(vinyl alcohol), using gold nanoparticles or an organic photothermal dye as heat generators. Upon laser light irradiation, engineered biomaterials underwent liquefaction within seconds. Pulsed laser light irradiation afforded controlled, on-demand release of the incorporated cargo, successful for small molecules as well as proteins (enzymes) in their biofunctional form.
Collapse
Affiliation(s)
- Søren L Pedersen
- Department of Chemistry, Aarhus University, Aarhus 8000, Denmark
| | - Tin H Huynh
- Department of Chemistry, Aarhus University, Aarhus 8000, Denmark
| | - Philipp Pöschko
- Department of Chemistry, Aarhus University, Aarhus 8000, Denmark
| | | | | | - Yaqing Chen
- Department of Chemistry, Aarhus University, Aarhus 8000, Denmark
- iNano Interdisciplinary Nanoscience Centre, Aarhus University, Aarhus 8000, Denmark
| | - Henrik Birkedal
- Department of Chemistry, Aarhus University, Aarhus 8000, Denmark
- iNano Interdisciplinary Nanoscience Centre, Aarhus University, Aarhus 8000, Denmark
| | - Guruprakash Subbiahdoss
- Department of Nanobiotechnology, University of Natural Resources and Life Sciences, A-1190 Vienna, Austria
| | - Erik Reimhult
- Department of Nanobiotechnology, University of Natural Resources and Life Sciences, A-1190 Vienna, Austria
| | - Jan Thøgersen
- Department of Chemistry, Aarhus University, Aarhus 8000, Denmark
| | - Alexander N Zelikin
- Department of Chemistry, Aarhus University, Aarhus 8000, Denmark
- iNano Interdisciplinary Nanoscience Centre, Aarhus University, Aarhus 8000, Denmark
| |
Collapse
|
20
|
Li J, Wu C, Chu PK, Gelinsky M. 3D printing of hydrogels: Rational design strategies and emerging biomedical applications. MATERIALS SCIENCE AND ENGINEERING: R: REPORTS 2020; 140:100543. [DOI: 10.1016/j.mser.2020.100543] [Citation(s) in RCA: 350] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
21
|
Zhou X, Hou C, Chang TL, Zhang Q, Liang JF. Controlled released of drug from doubled-walled PVA hydrogel/PCL microspheres prepared by single needle electrospraying method. Colloids Surf B Biointerfaces 2020; 187:110645. [DOI: 10.1016/j.colsurfb.2019.110645] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/17/2019] [Accepted: 11/11/2019] [Indexed: 12/14/2022]
|
22
|
Charoenying T, Patrojanasophon P, Ngawhirunpat T, Rojanarata T, Akkaramongkolporn P, Opanasopit P. Fabrication of floating capsule-in- 3D-printed devices as gastro-retentive delivery systems of amoxicillin. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2019.101393] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
Dang QD, Park JH, Bhang SH, Kim JH. Synthesis and characterization of novel multi-hydroxy polyaspartamide derivative and its crosslinked hydrogels. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2019.104455] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
24
|
Gómez-Cerezo MN, Lozano D, Arcos D, Vallet-Regí M, Vaquette C. The effect of biomimetic mineralization of 3D-printed mesoporous bioglass scaffolds on physical properties and in vitro osteogenicity. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 109:110572. [PMID: 32228951 DOI: 10.1016/j.msec.2019.110572] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/16/2019] [Accepted: 12/18/2019] [Indexed: 01/24/2023]
Abstract
Three-dimensional Mesoporous bioactive glasses (MBGs) scaffolds has been widely considered for bone regeneration purposes and additive manufacturing enables the fabrication of highly bioactive patient-specific constructs for bone defects. Commonly, this process is performed with the addition of polymeric binders that facilitate the printability of scaffolds. However, these additives cover the MBG particles resulting in the reduction of their osteogenic potential. The present work investigates a simple yet effective phosphate-buffered saline immersion method for achieving polyvinyl alcohol binder removal while enables the maintenance of the mesoporous structure of MBG 3D-printed scaffolds. This resulted in significantly modifying the surface of the scaffold via the spontaneous formation of a biomimetic mineralized layer which positively affected the physical and biological properties of the scaffold. The extensive surface remodeling induced by the deposition of the apatite-like layer lead to a 3-fold increase in surface area, a 5-fold increase in the roughness, and 4-fold increase in the hardness of the PBS-immersed scaffolds when compared to the as-printed counterpart. The biomimetic mineralization also occurred throughout the bulk of the scaffold connecting the MBGs particles and was responsible for the maintenance of structural integrity. In vitro assays using MC3T3-E1 pre-osteoblast like cells demonstrated a significant upregulation of osteogenic-related genes for the scaffolds previously immersed in PBS when compared to the as-printed PVA-containing scaffolds. Although the pre-immersion scaffolds performed equally towards osteogenic cell differentiation, our data suggest that a short immersion in PBS of MBG scaffolds is beneficial for the osteogenic properties and might accelerate bone formation after implantation.
Collapse
Affiliation(s)
- M Natividad Gómez-Cerezo
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain; The University of Queensland, School of Dentistry, Herston, QLD, Australia
| | - Daniel Lozano
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain
| | - Daniel Arcos
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain
| | - María Vallet-Regí
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain
| | - Cedryck Vaquette
- The University of Queensland, School of Dentistry, Herston, QLD, Australia.
| |
Collapse
|
25
|
Abdel Bary EM, Harmal AN. A novel method to prepare microporous and nanofibrous hydrogel scaffolds as neural tissue engineering. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2019. [DOI: 10.1080/10601325.2019.1593792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- E. M. Abdel Bary
- Department of Chemistry, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Ammar N. Harmal
- Department of Chemistry, Faculty of Science, Mansoura University, Mansoura, Egypt
- Department of Chemistry, Faculty of Science, Sa'adah University, Sa'adah, Yemen
| |
Collapse
|
26
|
A novel double-layered polymeric nanofiber-based dressing with controlled drug delivery for pain management in burn wounds. Polym Bull (Berl) 2019. [DOI: 10.1007/s00289-019-02727-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
27
|
|
28
|
Ribeiro AM, Magalhães M, Veiga F, Figueiras A. Cellulose-Based Hydrogels in Topical Drug Delivery: A Challenge in Medical Devices. POLYMERS AND POLYMERIC COMPOSITES: A REFERENCE SERIES 2019. [DOI: 10.1007/978-3-319-77830-3_41] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
29
|
Pereira ICS, Santos NRRD, Middea A, Prudencio ER, Luchese RH, Moreira APD, Oliveira RN. In vitro evaluation of PVA gels loaded with Copaiba Oil and Duotrill®. POLIMEROS 2019. [DOI: 10.1590/0104-1428.03719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
30
|
Selvam R, Ramasamy S, Mohiyuddin S, Enoch IVMV, Gopinath P, Filimonov D. Molecular encapsulator-appended poly(vinyl alcohol) shroud on ferrite nanoparticles. Augmented cancer-drug loading and anticancer property. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 93:125-133. [PMID: 30274045 DOI: 10.1016/j.msec.2018.07.058] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 07/13/2018] [Accepted: 07/21/2018] [Indexed: 11/16/2022]
Abstract
Magnetic nanoparticles (MNPs) have the potency to deliver cancer drugs assisted by the application of a magnetic field. In this paper, we present the design of magnesium ferrite nanoparticles of size suitable for drug delivery. A coating polymer, poly(vinyl alcohol), tethered with a tapered cone-shaped cyclic oligosachcharide, β-cyclodextrin (β-CD) is synthesized and used to wrap and disperse the MNPs. The magnetic properties are explored using vibrating sample magnetometry and Mössbauer spectroscopy. The ∑130 nm MNPs, shrouded with the PVA-CD conjugate allows a high amount of the cancer drug, camptothecin, to be loaded on the nanocarrier. Cytotoxicity studies reveal that the loaded drug retains its potency against HEK 293 cells and the cells are sensitive to the treatment by the drug-loaded nanocarrier.
Collapse
Affiliation(s)
- Rajakar Selvam
- Nanotoxicology Research Lab, Department of Nanosciences, Karunya Institute of Technology & Sciences, Coimbatore 641 114, Tamil Nadu, India
| | - Sivaraj Ramasamy
- Chemistry Research Lab, Karunya Institute of Technology & Sciences, Coimbatore 641 114, Tamil Nadu, India
| | - Shanid Mohiyuddin
- Department of Biotechnology/Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247 667, Uttarakhand, India
| | - Israel V M V Enoch
- Nanotoxicology Research Lab, Department of Nanosciences, Karunya Institute of Technology & Sciences, Coimbatore 641 114, Tamil Nadu, India; Chemistry Research Lab, Karunya Institute of Technology & Sciences, Coimbatore 641 114, Tamil Nadu, India.
| | - Packirisamy Gopinath
- Department of Biotechnology/Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247 667, Uttarakhand, India.
| | - Dmitry Filimonov
- Radiochemistry branch, Department of Chemistry, GSP-1 Moscow State University, Leninskie Gory, 119991 Moscow, Russia.
| |
Collapse
|
31
|
Kaymakcalan OE, Jin JL, Sun Z, Ricapito NG, McCorry MC, Morrison KA, Putnam D, Spector JA. Transient phase behavior of an elastomeric biomaterial applied to abdominal laparotomy closure. Acta Biomater 2017; 58:413-420. [PMID: 28576717 DOI: 10.1016/j.actbio.2017.05.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 04/20/2017] [Accepted: 05/30/2017] [Indexed: 11/30/2022]
Abstract
Secure closure of the fascial layers after entry into the peritoneal cavity is crucial to prevent incisional hernia, yet appropriate purchase of the tissue can be challenging due to the proximity of the underlying protuberant bowel which may become punctured by the surgical needle or strangulated by the suture itself. Devices currently employed to provide visceral protection during abdominal closure, such as the metal malleable retractor and Glassman Visceral Retainer, are unable to provide complete protection as they must be removed prior to complete closure. A puncture resistant, biocompatible, and degradable matrix that can be left in place without need for removal would facilitate rapid and safe abdominal closure. We describe a novel elastomer (CC-DHA) that undergoes a rapid but controlled solid-to-liquid phase transition through the application of a destabilized carbonate cross-linked network. The elastomer is comprised of a polycarbonate cross-linked network of dihydroxyacetone, glycerol ethoxylate, and tri(ethylene glycol). The ketone functionality of the dihydroxyacetone facilitates hydrolytic cleavage of the carbonate linkages resulting in a rapidly degrading barrier that can be left in situ to facilitate abdominal fascial closure. Using a murine laparotomy model we demonstrated rapid dissolution and metabolism of the elastomer without evidence of toxicity or intraabdominal scarring. Furthermore, needle puncture and mechanical properties demonstrated the material to be both compliant and sufficiently puncture resistant. These unique characteristics make the biomaterial extraordinarily useful as a physical barrier to prevent inadvertent bowel injury during fascial closure, with the potential for wider application across a variety of medical and surgical applications. STATEMENT OF SIGNIFICANCE Fascial closure after abdominal surgery requires delicate maneuvers to prevent incisional hernia while minimizing risk for inadvertent bowel injury. We describe a novel biocompatible and biodegradable polycarbonate elastomer (CC-DHA) comprised of dihydroxyacetone, glycerol ethoxylate, and tri(ethylene glycol), for use as a rapidly degrading protective visceral barrier to aid in abdominal closure. Rapid polymer dissolution and metabolism was demonstrated using a murine laparotomy model without evidence of toxicity or intraabdominal scarring. Furthermore, mechanical studies showed the material to be sufficiently puncture resistant and compliant. Overall, this new biomaterial is extraordinary useful as a physical barrier to prevent inadvertent bowel injury during fascial closure, with the potential for wider application across a variety of medical and surgical applications.
Collapse
Affiliation(s)
- Omer E Kaymakcalan
- Laboratory of Bioregenerative Medicine & Surgery, Division of Plastic Surgery, Weill Cornell Medical Center, New York, NY, United States
| | - Julia L Jin
- Laboratory of Bioregenerative Medicine & Surgery, Division of Plastic Surgery, Weill Cornell Medical Center, New York, NY, United States
| | - Zhexun Sun
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, United States
| | - Nicole G Ricapito
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, United States
| | - Mary Clare McCorry
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, United States
| | - Kerry A Morrison
- Laboratory of Bioregenerative Medicine & Surgery, Division of Plastic Surgery, Weill Cornell Medical Center, New York, NY, United States
| | - David Putnam
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, United States; Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, United States
| | - Jason A Spector
- Laboratory of Bioregenerative Medicine & Surgery, Division of Plastic Surgery, Weill Cornell Medical Center, New York, NY, United States; Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, United States.
| |
Collapse
|
32
|
Abstract
Hydrogel delivery systems can leverage therapeutically beneficial outcomes of drug delivery and have found clinical use. Hydrogels can provide spatial and temporal control over the release of various therapeutic agents, including small-molecule drugs, macromolecular drugs and cells. Owing to their tunable physical properties, controllable degradability and capability to protect labile drugs from degradation, hydrogels serve as a platform in which various physiochemical interactions with the encapsulated drugs control their release. In this Review, we cover multiscale mechanisms underlying the design of hydrogel drug delivery systems, focusing on physical and chemical properties of the hydrogel network and the hydrogel-drug interactions across the network, mesh, and molecular (or atomistic) scales. We discuss how different mechanisms interact and can be integrated to exert fine control in time and space over the drug presentation. We also collect experimental release data from the literature, review clinical translation to date of these systems, and present quantitative comparisons between different systems to provide guidelines for the rational design of hydrogel delivery systems.
Collapse
Affiliation(s)
- Jianyu Li
- John A. Paulson School of Engineering and Applied Sciences, and the Wyss Institute for biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts 02138, USA
| | - David J Mooney
- John A. Paulson School of Engineering and Applied Sciences, and the Wyss Institute for biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
33
|
Alhijjaj M, Belton P, Qi S. An investigation into the use of polymer blends to improve the printability of and regulate drug release from pharmaceutical solid dispersions prepared via fused deposition modeling (FDM) 3D printing. Eur J Pharm Biopharm 2016; 108:111-125. [PMID: 27594210 DOI: 10.1016/j.ejpb.2016.08.016] [Citation(s) in RCA: 156] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 08/17/2016] [Accepted: 08/29/2016] [Indexed: 12/13/2022]
Abstract
FDM 3D printing has been recently attracted increasing research efforts towards the production of personalized solid oral formulations. However, commercially available FDM printers are extremely limited with regards to the materials that can be processed to few types of thermoplastic polymers, which often may not be pharmaceutically approved materials nor ideal for optimizing dosage form performance of poor soluble compounds. This study explored the use of polymer blends as a formulation strategy to overcome this processability issue and to provide adjustable drug release rates from the printed dispersions. Solid dispersions of felodipine, the model drug, were successfully fabricated using FDM 3D printing with polymer blends of PEG, PEO and Tween 80 with either Eudragit E PO or Soluplus. As PVA is one of most widely used polymers in FDM 3D printing, a PVA based solid dispersion was used as a benchmark to compare the polymer blend systems to in terms of processability. The polymer blends exhibited excellent printability and were suitable for processing using a commercially available FDM 3D printer. With 10% drug loading, all characterization data indicated that the model drug was molecularly dispersed in the matrices. During in vitro dissolution testing, it was clear that the disintegration behavior of the formulations significantly influenced the rates of drug release. Eudragit EPO based blend dispersions showed bulk disintegration; whereas the Soluplus based blends showed the 'peeling' style disintegration of strip-by-strip. The results indicated that interplay of the miscibility between excipients in the blends, the solubility of the materials in the dissolution media and the degree of fusion between the printed strips during FDM process can be used to manipulate the drug release rate of the dispersions. This brings new insight into the design principles of controlled release formulations using FDM 3D printing.
Collapse
Affiliation(s)
- Muqdad Alhijjaj
- School of Pharmacy, University of East Anglia, Norwich, Norfolk NR4 7TJ, UK; Department of Pharmaceutics, College of Pharmacy, University of Basrah, Basrah, Iraq
| | - Peter Belton
- School of Chemistry, University of East Anglia, Norwich, Norfolk NR4 7TJ, UK
| | - Sheng Qi
- School of Pharmacy, University of East Anglia, Norwich, Norfolk NR4 7TJ, UK.
| |
Collapse
|
34
|
|