1
|
Li J, Jin X, Jiao Z, Gao L, Dai X, Cheng L, Wang Y, Yan LT. Designing antibacterial materials through simulation and theory. J Mater Chem B 2024; 12:9155-9172. [PMID: 39189825 DOI: 10.1039/d4tb01277a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Antibacterial materials have a wide range of potential applications in bio-antimicrobial, environmental antimicrobial, and food antimicrobial fields due to their intrinsic antimicrobial properties, which can circumvent the development of drug resistance in bacteria. Understanding the intricate mechanisms and intrinsic nature of diverse antibacterial materials is significant for the formulation of guidelines for the design of materials with rapid and efficacious antimicrobial action and a high degree of biomedical material safety. Herein, this review highlights the recent advances in investigating antimicrobial mechanisms of different antibacterial materials with a particular focus on tailored computer simulations and theoretical analysis. From the view of structure and function, we summarize the characteristics and mechanisms of different antibacterial materials, introduce the latest advances of new antibacterial materials, and discuss the design concept and development direction of new materials. In addition, we underscore the significance of employing simulation and theoretical methodologies to elucidate the intrinsic antimicrobial mechanisms, which is crucial for a comprehensive comprehension of the control strategies, safer biomedical applications, and the management of health and environmental concerns associated with antibacterial materials. This review could potentially stimulate further endeavors in fundamental research and facilitate the extensive utilization of computational and theoretical approaches in the design of novel functional nanomaterials.
Collapse
Affiliation(s)
- Jiaqi Li
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| | - Xueqing Jin
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| | - Zheng Jiao
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| | - Lijuan Gao
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| | - Xiaobin Dai
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| | - Linghe Cheng
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| | - Yuming Wang
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| | - Li-Tang Yan
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
2
|
Sharma P, Vaiwala R, Gopinath AK, Chockalingam R, Ayappa KG. Structure of the Bacterial Cell Envelope and Interactions with Antimicrobials: Insights from Molecular Dynamics Simulations. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:7791-7811. [PMID: 38451026 DOI: 10.1021/acs.langmuir.3c03474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Bacteria have evolved over 3 billion years, shaping our intrinsic and symbiotic coexistence with these single-celled organisms. With rising populations of drug-resistant strains, the search for novel antimicrobials is an ongoing area of research. Advances in high-performance computing platforms have led to a variety of molecular dynamics simulation strategies to study the interactions of antimicrobial molecules with different compartments of the bacterial cell envelope of both Gram-positive and Gram-negative species. In this review, we begin with a detailed description of the structural aspects of the bacterial cell envelope. Simulations concerned with the transport and associated free energy of small molecules and ions through the outer membrane, peptidoglycan, inner membrane and outer membrane porins are discussed. Since surfactants are widely used as antimicrobials, a section is devoted to the interactions of surfactants with the cell wall and inner membranes. The review ends with a discussion on antimicrobial peptides and the insights gained from the molecular simulations on the free energy of translocation. Challenges involved in developing accurate molecular models and coarse-grained strategies that provide a trade-off between atomic details with a gain in sampling time are highlighted. The need for efficient sampling strategies to obtain accurate free energies of translocation is also discussed. Molecular dynamics simulations have evolved as a powerful tool that can potentially be used to design and develop novel antimicrobials and strategies to effectively treat bacterial infections.
Collapse
Affiliation(s)
- Pradyumn Sharma
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, Karnataka, India, 560012
| | - Rakesh Vaiwala
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, Karnataka, India, 560012
| | - Amar Krishna Gopinath
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, Karnataka, India, 560012
| | - Rajalakshmi Chockalingam
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, Karnataka, India, 560012
| | - K Ganapathy Ayappa
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, Karnataka, India, 560012
| |
Collapse
|
3
|
Singh S, Sahani H. Current Advancement and Future Prospects: Biomedical Nanoengineering. Curr Radiopharm 2024; 17:120-137. [PMID: 38058099 DOI: 10.2174/0118744710274376231123063135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/19/2023] [Accepted: 10/27/2023] [Indexed: 12/08/2023]
Abstract
Recent advancements in biomedicine have seen a significant reliance on nanoengineering, as traditional methods often fall short in harnessing the unique attributes of biomaterials. Nanoengineering has emerged as a valuable approach to enhance and enrich the performance and functionalities of biomaterials, driving research and development in the field. This review emphasizes the most prevalent biomaterials used in biomedicine, including polymers, nanocomposites, and metallic materials, and explores the pivotal role of nanoengineering in developing biomedical treatments and processes. Particularly, the review highlights research focused on gaining an in-depth understanding of material properties and effectively enhancing material performance through molecular dynamics simulations, all from a nanoengineering perspective.
Collapse
Affiliation(s)
- Sonia Singh
- Institute of Pharmaceutical Research, GLA University, 17 km Stone, NH-2, Mathura-Delhi Road Mathura, Chaumuhan, Uttar Pradesh, 281406, India
| | - Hrishika Sahani
- Lifecell International Pvt. Ltd., NSP Office, Pearls Business Park, 8th Floor Office No-804, Netaji Subhash Palace Delhi, 110034, India
| |
Collapse
|
4
|
Meerovich GA, Akhlyustina EV, Romanishkin ID, Makarova EA, Tiganova IG, Zhukhovitsky VG, Kholina EG, Kovalenko IB, Romanova YM, Loschenov VB, Strakhovskaya MG. Photodynamic inactivation of bacteria: Why it is not enough to excite a photosensitizer. Photodiagnosis Photodyn Ther 2023; 44:103853. [PMID: 37863377 DOI: 10.1016/j.pdpdt.2023.103853] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/22/2023]
Abstract
BACKGROUND The development of multidrug resistance (MDR) in infectious agents is one of the most serious global problems facing humanity. Antimicrobial photodynamic therapy (APDT) shows encouraging results in the fight against MDR pathogens, including those in biofilms. METHODS Photosensitizers (PS), monocationic methylene blue, polycationic and polyanionic derivatives of phthalocyanines, electroneutral and polycationic derivatives of bacteriochlorin were used to study photodynamic inactivation of Gram-positive and Gram-negative planktonic bacteria and biofilms under LED irradiation. Zeta potential measurements, confocal fluorescence imaging, and coarse-grained modeling were used to evaluate the interactions of PS with bacteria. PS aggregation and photobleaching were studied using absorption and fluorescence spectroscopy. RESULTS The main approaches to ensure high efficiency of bacteria photosensitization are analyzed. CONCLUSIONS PS must maintain a delicate balance between binding to exocellular and external structures of bacterial cells and penetration through the cell wall so as not to get stuck on the way to photooxidation-sensitive structures of the bacterial cell.
Collapse
Affiliation(s)
- Gennady A Meerovich
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow 119991, Russia; National Research Nuclear University "MEPhI", Moscow 115409, Russia
| | | | - Igor D Romanishkin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow 119991, Russia.
| | | | - Irina G Tiganova
- Gamaleya National Research Centre for Epidemiology and Microbiology, Moscow 123098, Russia
| | - Vladimir G Zhukhovitsky
- Gamaleya National Research Centre for Epidemiology and Microbiology, Moscow 123098, Russia; Ministry of Public Health of the Russian Federation, Russian Medical Academy of Continuing Professional Education (RMANPO), Moscow 125993, Russia
| | | | - Ilya B Kovalenko
- Lomonosov Moscow State University, Moscow 119234, Russia; Federal Scientific and Clinical Center of Specialized Types of Medical Care and Medical Technologies of the Federal Medical and Biological Agency of Russia, Moscow 115682, Russia
| | - Yulia M Romanova
- Gamaleya National Research Centre for Epidemiology and Microbiology, Moscow 123098, Russia
| | - Victor B Loschenov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow 119991, Russia; National Research Nuclear University "MEPhI", Moscow 115409, Russia
| | | |
Collapse
|
5
|
Aceves-Luna H, Glossman-Mitnik D, Flores-Holguín N. Permeability of antioxidants through a lipid bilayer model with coarse-grained simulations. J Biomol Struct Dyn 2023; 42:11251-11269. [PMID: 37768552 DOI: 10.1080/07391102.2023.2262044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023]
Abstract
Oxidative stress caused by pollution and lifestyle changes causes an excess of free radicals that react chemically with cell constituents leading to irreversible damage. There are molecules known as antioxidants that reduce the levels of free radicals. Some pigments of fruits and vegetables known as anthocyanins have antioxidant properties. Their interaction with the cell membrane becomes a crucial step in studying these substances. In this research, molecular dynamics simulations, particularly, coarse-grained molecular dynamics (CGMD) were used. This technique aims to replace functional groups with corresponding beads that represent their level of polarity and affinities to other chemical groups. Also, umbrella sampling was carried out to obtain free energy profiles that describe well the orientation and location of antioxidants in a membrane considering Trolox, Cyanidin, Gallic Acid, and Resveratrol molecules to study the structural effects they cause on it. It was concluded in this study that an antioxidant when crossing the membrane does not cause either damage to the structural properties or the loss of packing and stratification of phospholipids. it was also observed that the most reactive part of the molecules could easily approach area A prone to lipid oxidation, which can describe the antioxidant capacity of these molecules.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Hugo Aceves-Luna
- Laboratorio Virtual NANOCOSMOS, Departamento de Medio Ambiente y Energía, Centro de Investigación en Materiales Avanzados, Chihuahua, Chih, Mexico
| | - Daniel Glossman-Mitnik
- Laboratorio Virtual NANOCOSMOS, Departamento de Medio Ambiente y Energía, Centro de Investigación en Materiales Avanzados, Chihuahua, Chih, Mexico
| | - Norma Flores-Holguín
- Laboratorio Virtual NANOCOSMOS, Departamento de Medio Ambiente y Energía, Centro de Investigación en Materiales Avanzados, Chihuahua, Chih, Mexico
| |
Collapse
|
6
|
Kogan EA, Meerovich GA, Karshieva SS, Makarova EA, Romanishkin ID, Akhlyustina EV, Meerovich IG, Zharkov NV, Koudan EV, Demura TA, Loschenov VB. Photodynamic therapy of lung cancer with photosensitizers based on polycationic derivatives of synthetic bacteriochlorin (experimental study). Photodiagnosis Photodyn Ther 2023; 42:103647. [PMID: 37271489 DOI: 10.1016/j.pdpdt.2023.103647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/06/2023]
Abstract
BACKGROUND One of the tasks of anticancer photodynamic therapy is increasing the efficacy of treatment of cancer nodes with large (clinically relevant) sizes using near-infrared photosensitizers (PS). METHODS The anticancer efficacy and mechanisms of the photodynamic action of PS based on polycationic derivatives of synthetic bacteriochlorin against Lewis lung carcinoma were studied in vitro and in vivo. RESULTS It was found that studied PS have high phototoxicity against Lewis lung carcinoma cells: the IC50 values were about 0.8 μM for tetracationic PS and 0.5 μM for octacationic PS. In vivo studies have shown that these PS provide effective inhibition of the tumor growth with an increase in the lifespan of mice in the group by more than 130%, and more than 50% survival of mice in the group. CONCLUSIONS Photosensitizers based on polycationic derivatives of synthetic bacteriochlorin have high photodynamic efficacy caused by the induction of necrosis and apoptosis of cancer cells, including cancer stem cells, and a sharp decrease of mitotic and proliferative activity. Studied polycationic photosensitizers are much more effective at destroying cancer stem cells and newly formed cancer vessels in comparison with anionic photosensitizers, and ensure the cessation of tumor blood flow without hemorrhages and thrombosis.
Collapse
Affiliation(s)
- Evgeniya A Kogan
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119992, Russia
| | - Gennady A Meerovich
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow 119991, Russia; National Research Nuclear University "MEPhI", Moscow 115409, Russia
| | - Saida Sh Karshieva
- N.N. Blokhin National Medical Research Center of Oncology, Moscow 115478, Russia; National University of Science and Technology MISIS, Moscow 119049, Russia
| | | | - Igor D Romanishkin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow 119991, Russia.
| | | | - Irina G Meerovich
- Research Center of Biotechnology of the Russian Academy of Sciences, A.N. Bach Institute of Biochemistry, Moscow 119071, Russia
| | - Nikolai V Zharkov
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119992, Russia
| | - Elizaveta V Koudan
- National University of Science and Technology MISIS, Moscow 119049, Russia
| | - Tatiana A Demura
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119992, Russia
| | - Victor B Loschenov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow 119991, Russia; National Research Nuclear University "MEPhI", Moscow 115409, Russia
| |
Collapse
|
7
|
Puelles JS, Ghorbani M, Tuck B, Machuca LL, Ackland ML, Chen F, Somers AE, Forsyth M. Effect of cetrimonium carrier micelles on bacterial membranes and extracellular DNA, an in silico study. Sci Rep 2023; 13:8041. [PMID: 37198168 DOI: 10.1038/s41598-023-32475-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 03/28/2023] [Indexed: 05/19/2023] Open
Abstract
Microorganisms do not live as dispersed single cells but rather they form aggregates with extracellular polymeric substances at interfaces. Biofilms are considered efficient life forms because they shield bacteria from biocides and collect dilute nutrients. This is a big concern in industry since the microorganisms can colonize a wide range of surfaces, accelerating material deterioration, colonizing medical devices, contaminating ultrapure drinking water, increasing energy costs and creating focus of infection. Conventional biocides that target a specific component of the bacteria are not effective in the presence of biofilms. Efficient biofilm inhibitors are based on a multitarget approach interacting with the bacteria and the biofilm matrix. Their rationale design requires a thorough understanding of inhibitory mechanisms that are still largely lacking today. Herein we uncover via molecular modelling the inhibition mechanism of cetrimonium 4-OH cinnamate (CTA-4OHcinn). Simulations show that CTA-4OH micelles can disrupt symmetric and asymmetric bilayers, representative of inner and outer bacterial membranes, following three stages: adsorption, assimilation, and defect formation. The main driving force for micellar attack is electrostatic interactions. In addition to disrupting the bilayers, the micelles work as carriers facilitating the trapping of 4OH cinnamate anions within the bilayer upper leaflet and overcoming electrostatic repulsion. The micelles also interact with extracellular DNA (e-DNA), which is one of the main components of biofilms. It is observed that CTA-4OHcinn forms spherical micelles on the DNA backbone; which hinders their ability to pack. This is demonstrated by modelling the DNA along the hbb histone-like protein, showing that in the presence of CTA-4OHcinn, DNA does not pack properly around hbb. The abilities of CTA-4OHcinn to cause cell death through membrane disruption and to disperse a mature, multi-species biofilm are also confirmed experimentally.
Collapse
Affiliation(s)
| | - Mahdi Ghorbani
- Institute for Frontier Materials, Deakin University, Geelong, VIC, 3217, Australia
| | - Benjamin Tuck
- Curtin Corrosion Centre, WA School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, Kent Street, Bentley, WA, 6102, Australia
| | - Laura L Machuca
- Curtin Corrosion Centre, WA School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, Kent Street, Bentley, WA, 6102, Australia
| | - M Leigh Ackland
- ARC Centre of Excellence for Electromaterials Science (ACES), Deakin University, Burwood, 3125, Australia
- School of Life and Environmental Sciences, Deakin University, Burwood, Victoria, 3125, Australia
| | - Fangfang Chen
- Institute for Frontier Materials, Deakin University, Geelong, VIC, 3217, Australia.
- ARC Centre of Excellence for Electromaterials Science (ACES), Deakin University, Burwood, 3125, Australia.
| | - Anthony E Somers
- Institute for Frontier Materials, Deakin University, Geelong, VIC, 3217, Australia.
| | - Maria Forsyth
- Institute for Frontier Materials, Deakin University, Geelong, VIC, 3217, Australia.
- ARC Centre of Excellence for Electromaterials Science (ACES), Deakin University, Burwood, 3125, Australia.
| |
Collapse
|
8
|
Singh SL, Chauhan K, Bharadwaj AS, Kishore V, Laux P, Luch A, Singh AV. Polymer Translocation and Nanopore Sequencing: A Review of Advances and Challenges. Int J Mol Sci 2023; 24:6153. [PMID: 37047125 PMCID: PMC10094227 DOI: 10.3390/ijms24076153] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/01/2023] [Accepted: 02/28/2023] [Indexed: 03/31/2023] Open
Abstract
Various biological processes involve the translocation of macromolecules across nanopores; these pores are basically protein channels embedded in membranes. Understanding the mechanism of translocation is crucial to a range of technological applications, including DNA sequencing, single molecule detection, and controlled drug delivery. In this spirit, numerous efforts have been made to develop polymer translocation-based sequencing devices, these efforts include findings and insights from theoretical modeling, simulations, and experimental studies. As much as the past and ongoing studies have added to the knowledge, the practical realization of low-cost, high-throughput sequencing devices, however, has still not been realized. There are challenges, the foremost of which is controlling the speed of translocation at the single monomer level, which remain to be addressed in order to use polymer translocation-based methods for sensing applications. In this article, we review the recent studies aimed at developing control over the dynamics of polymer translocation through nanopores.
Collapse
Affiliation(s)
- Swarn Lata Singh
- Department of Physics, Mahila Mahavidyalaya (MMV), Banaras Hindu University, Varanasi 221005, UP, India
| | - Keerti Chauhan
- Department of Physics, Banaras Hindu University, Varanasi 221005, UP, India
| | - Atul S. Bharadwaj
- Department of Physics, CMP Degree College, University of Allahabad, Prayagraj 211002, UP, India
| | - Vimal Kishore
- Department of Physics, Banaras Hindu University, Varanasi 221005, UP, India
| | - Peter Laux
- Department of Chemical and Product Safety, German Federal Institute of Risk Assessment (BfR) Maxdohrnstrasse 8-10, 10589 Berlin, Germany
| | - Andreas Luch
- Department of Chemical and Product Safety, German Federal Institute of Risk Assessment (BfR) Maxdohrnstrasse 8-10, 10589 Berlin, Germany
| | - Ajay Vikram Singh
- Department of Chemical and Product Safety, German Federal Institute of Risk Assessment (BfR) Maxdohrnstrasse 8-10, 10589 Berlin, Germany
| |
Collapse
|
9
|
Kholina E, Kovalenko I, Rubin A, Strakhovskaya M. Insights into the Formation of Intermolecular Complexes of Fluorescent Probe 10- N-Nonyl Acridine Orange with Cardiolipin and Phosphatidylglycerol in Bacterial Plasma Membrane by Molecular Modeling. Molecules 2023; 28:molecules28041929. [PMID: 36838917 PMCID: PMC9961436 DOI: 10.3390/molecules28041929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 02/09/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
In this article, we used molecular dynamics (MD), one of the most common methods for simulations of membranes, to study the interaction of fluorescent membranotropic biological probe 10-N-nonyl acridine orange (NAO) with the bilayer, mimicking a plasma membrane of Gram-negative bacteria. Fluorescent probes serve as an effective tool to study the localization of different components in biological membranes. Revealing the molecular details of their interaction with membrane phospholipids is important both for the interpretation of experimental results and future design of lipid-specific stains. By means of coarse-grained (CG) MD, we studied the interactions of NAO with a model membrane, imitating the plasma membrane of Gram-negative bacteria. In our simulations, we detected different NAO forms: monomers, dimers, and stacks. NAO dimers had the central cardiolipin (CL) molecule in a sandwich-like structure. The stacks were formed by NAO molecules interlayered with anionic lipids, predominantly CL. Use of the CG approach allowed to confirm the ability of NAO to bind to both major negatively charged phospholipids, phosphatidylglycerol (PG) and CL, and to shed light on the exact structure of previously proposed NAO-lipid complexes. Thus, CG modeling can be useful for the development of new effective and highly specific molecular probes.
Collapse
|
10
|
Colloidal complexed nanocarriers: A modulated aspect in fabrication and characterization for streptozotocin-induced diabetic rats. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Fedorov V, Kholina E, Khruschev S, Kovalenko I, Rubin A, Strakhovskaya M. Electrostatic Map of the SARS-CoV-2 Virion Specifies Binding Sites of the Antiviral Cationic Photosensitizer. Int J Mol Sci 2022; 23:7304. [PMID: 35806316 PMCID: PMC9266743 DOI: 10.3390/ijms23137304] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 06/26/2022] [Accepted: 06/28/2022] [Indexed: 02/04/2023] Open
Abstract
Electrostatics is an important part of virus life. Understanding the detailed distribution of charges over the surface of a virus is important to predict its interactions with host cells, antibodies, drugs, and different materials. Using a coarse-grained model of the entire viral envelope developed by D. Korkin and S.-J. Marrink's scientific groups, we created an electrostatic map of the external surface of SARS-CoV-2 and found a highly heterogeneous distribution of the electrostatic potential field of the viral envelope. Numerous negative patches originate mainly from negatively charged lipid domains in the viral membrane and negatively charged areas on the "stalks" of the spike (S) proteins. Membrane (M) and envelope (E) proteins with the total positive charge tend to colocalize with the negatively charged lipids. In the E protein pentamer exposed to the outer surface, negatively charged glutamate residues and surrounding lipids form a negative electrostatic potential ring around the channel entrance. We simulated the interaction of the antiviral octacationic photosensitizer octakis(cholinyl)zinc phthalocyanine with the surface structures of the entire model virion using the Brownian dynamics computational method implemented in ProKSim software (version r661). All mentioned negatively charged envelope components attracted the photosensitizer molecules and are thus potential targets for reactive oxygen generated in photosensitized reactions.
Collapse
Affiliation(s)
- Vladimir Fedorov
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (E.K.); (S.K.); (I.K.); (A.R.); (M.S.)
| | - Ekaterina Kholina
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (E.K.); (S.K.); (I.K.); (A.R.); (M.S.)
| | - Sergei Khruschev
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (E.K.); (S.K.); (I.K.); (A.R.); (M.S.)
| | - Ilya Kovalenko
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (E.K.); (S.K.); (I.K.); (A.R.); (M.S.)
- Federal Scientific and Clinical Center of Specialized Types of Medical Care and Medical Technologies, Federal Medical and Biological Agency of Russia, 115682 Moscow, Russia
| | - Andrew Rubin
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (E.K.); (S.K.); (I.K.); (A.R.); (M.S.)
| | - Marina Strakhovskaya
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (E.K.); (S.K.); (I.K.); (A.R.); (M.S.)
- Federal Scientific and Clinical Center of Specialized Types of Medical Care and Medical Technologies, Federal Medical and Biological Agency of Russia, 115682 Moscow, Russia
| |
Collapse
|
12
|
Carey AB, Ashenden A, Köper I. Model architectures for bacterial membranes. Biophys Rev 2022; 14:111-143. [PMID: 35340604 PMCID: PMC8921416 DOI: 10.1007/s12551-021-00913-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/14/2021] [Indexed: 02/06/2023] Open
Abstract
The complex composition of bacterial membranes has a significant impact on the understanding of pathogen function and their development towards antibiotic resistance. In addition to the inherent complexity and biosafety risks of studying biological pathogen membranes, the continual rise of antibiotic resistance and its significant economical and clinical consequences has motivated the development of numerous in vitro model membrane systems with tuneable compositions, geometries, and sizes. Approaches discussed in this review include liposomes, solid-supported bilayers, and computational simulations which have been used to explore various processes including drug-membrane interactions, lipid-protein interactions, host-pathogen interactions, and structure-induced bacterial pathogenesis. The advantages, limitations, and applicable analytical tools of all architectures are summarised with a perspective for future research efforts in architectural improvement and elucidation of resistance development strategies and membrane-targeting antibiotic mechanisms. Supplementary Information The online version contains supplementary material available at 10.1007/s12551-021-00913-7.
Collapse
Affiliation(s)
- Ashley B. Carey
- Institute for Nanoscale Science and Technology, College for Science and Engineering, Flinders University, Adelaide, SA 5042 Australia
| | - Alex Ashenden
- Institute for Nanoscale Science and Technology, College for Science and Engineering, Flinders University, Adelaide, SA 5042 Australia
| | - Ingo Köper
- Institute for Nanoscale Science and Technology, College for Science and Engineering, Flinders University, Adelaide, SA 5042 Australia
| |
Collapse
|
13
|
Maldonado-Carmona N, Ouk TS, Leroy-Lhez S. Latest trends on photodynamic disinfection of Gram-negative bacteria: photosensitizer's structure and delivery systems. Photochem Photobiol Sci 2021; 21:113-145. [PMID: 34784052 DOI: 10.1007/s43630-021-00128-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/26/2021] [Indexed: 02/01/2023]
Abstract
Antimicrobial resistance is threatening to overshadow last century's medical advances. Etiological agents of previously eradicated infectious diseases are now resurgent as multidrug-resistant strains, especially for Gram-negative strains. Finding new therapeutic solutions is a real challenge for our society. In this framework, Photodynamic Antimicrobial ChemoTherapy relies on the generation of toxic reactive oxygen species in the presence of light, oxygen, and a photosensitizer molecule. The use of reactive oxygen species is common for disinfection processes, using chemical agents, such as chlorine and hydrogen peroxide, and as they do not have a specific molecular target, it decreases the potential of tolerance to the antimicrobial treatment. However, light-driven generated reactive species result in an interesting alternative, as reactive species generation can be easily tuned with light irradiation and several PSs are known for their low environmental impact. Over the past few years, this topic has been thoroughly studied, exploring strategies based on single-molecule PSs (tetrapyrrolic compounds, dipyrrinate derivatives, metal complexes, etc.) or on conjunction with delivery systems. The present work describes some of the most relevant advances of the last 6 years, focusing on photosensitizers design, formulation, and potentiation, aiming for the disinfection of Gram-negative bacteria.
Collapse
Affiliation(s)
- Nidia Maldonado-Carmona
- PEIRENE Laboratory, Faculty of Sciences and Techniques, University of Limoges, 87060, Limoges, France.,Department of Chemistry, University of Coimbra, Coimbra Chemistry Center, University of Coimbra, 3004-535, Coimbra, Portugal
| | - Tan-Sothea Ouk
- PEIRENE Laboratory, Faculty of Sciences and Techniques, University of Limoges, 87060, Limoges, France
| | - Stéphanie Leroy-Lhez
- PEIRENE Laboratory, Faculty of Sciences and Techniques, University of Limoges, 87060, Limoges, France.
| |
Collapse
|
14
|
What Binds Cationic Photosensitizers Better: Brownian Dynamics Reveals Key Interaction Sites on Spike Proteins of SARS-CoV, MERS-CoV, and SARS-CoV-2. Viruses 2021; 13:v13081615. [PMID: 34452480 PMCID: PMC8402653 DOI: 10.3390/v13081615] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 12/17/2022] Open
Abstract
We compared the electrostatic properties of the spike proteins (S-proteins) of three coronaviruses, SARS-CoV, MERS-CoV, and SARS-CoV-2, and their interactions with photosensitizers (PSs), octacationic octakis(cholinyl)zinc phthalocyanine (Zn-PcChol8+) and monocationic methylene blue (MB). We found a major common PS binding site at the connection of the S-protein stalk and head. The molecules of Zn-PcChol8+ and MB also form electrostatic encounter complexes with large area of negative electrostatic potential at the head of the S-protein of SARS-CoV-2, between fusion protein and heptad repeat 1 domain. The top of the SARS-CoV spike head demonstrates a notable area of electrostatic contacts with Zn-PcChol8+ and MB that corresponds to the N-terminal domain. The S-protein protomers of SARS-CoV-2 in “open” and “closed” conformations demonstrate different ability to attract PS molecules. In contrast with Zn-PcChol8+, MB possesses the ability to penetrate inside the pocket formed as a result of SARS-CoV-2 receptor binding domain transition into the “open” state. The existence of binding site for cationic PSs common to the S-proteins of SARS-CoV, SARS-CoV-2, and MERS-CoV creates prospects for the wide use of this type of PSs to combat the spread of coronaviruses.
Collapse
|
15
|
Bozdaganyan ME, Orekhov PS. Synergistic Effect of Chemical Penetration Enhancers on Lidocaine Permeability Revealed by Coarse-Grained Molecular Dynamics Simulations. MEMBRANES 2021; 11:410. [PMID: 34072597 PMCID: PMC8227207 DOI: 10.3390/membranes11060410] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 12/14/2022]
Abstract
The search for new formulations for transdermal drug delivery (TDD) is an important field in medicine and cosmetology. Molecules with specific physicochemical properties which can increase the permeability of active ingredients across the stratum corneum (SC) are called chemical penetration enhancers (CPEs), and it was shown that some CPEs can act synergistically. In this study, we performed coarse-grained (CG) molecular dynamics (MD) simulations of the lidocaine delivery facilitated by two CPEs-linoleic acid (LA) and ethanol-through the SC model membrane containing cholesterol, N-Stearoylsphingosine (DCPE), and behenic acid. In our simulations, we probed the effects of individual CPEs as well as their combination on various properties of the SC membrane and the lidocaine penetration across it. We demonstrated that the addition of both CPEs decreases the membrane thickness and the order parameters of the DPCE hydrocarbon chains. Moreover, LA also enhances diffusion of the SC membrane components, especially cholesterol. The estimated potential of mean force (PMF) profiles for the lidocaine translocation across SC in the presence/absence of two individual CPEs and their combination demonstrated that while ethanol lowers the free energy barrier for lidocaine to enter SC, LA decreases the depth of the free energy minima for lidocaine inside SC. These two effects supposedly result in synergistic penetration enhancement of drugs. Altogether, the present simulations provide a detailed molecular picture of CPEs' action and their synergistic effect on the penetration of small molecular weight therapeutics that can be beneficial for the design of novel drug and cosmetics formulations.
Collapse
Affiliation(s)
- Marine E. Bozdaganyan
- School of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia;
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Philipp S. Orekhov
- School of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia;
- Institute of Personalized Medicine, Sechenov University, 119991 Moscow, Russia
- Research Center of Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| |
Collapse
|
16
|
Sharshov K, Solomatina M, Kurskaya O, Kovalenko I, Kholina E, Fedorov V, Meerovich G, Rubin A, Strakhovskaya M. The Photosensitizer Octakis(cholinyl)zinc Phthalocyanine with Ability to Bind to a Model Spike Protein Leads to a Loss of SARS-CoV-2 Infectivity In Vitro When Exposed to Far-Red LED. Viruses 2021; 13:643. [PMID: 33918615 PMCID: PMC8068984 DOI: 10.3390/v13040643] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/02/2021] [Accepted: 04/05/2021] [Indexed: 12/17/2022] Open
Abstract
Photodynamic inactivation of pathogenic microorganisms can be successfully used to eradicate pathogens in localized lesions, infected liquid media, and on various surfaces. This technique utilizes the photosensitizer (PS), light, and molecular oxygen to produce reactive oxygen species that kill pathogens. Here, we used the PS, water soluble octakis(cholinyl)zinc phthalocyanine (Zn-PcChol8+), to inactivate an initial 4.75-5.00 IgTCID50/mL titer of SARS-CoV-2, thereby preventing viral infection when tested in Vero E6 cell cultures. Zn-PcChol8+ in a minimally studied concentration, 1 µM and LED 3.75 J/cm2, completely destroyed the infectivity of SARS-CoV-2. To detect possible PS binding sites on the envelope of SARS-CoV-2, we analyzed electrostatic potential and simulated binding of Zn-PcChol8+ to the spike protein of this coronavirus by means of Brownian dynamics software, ProKSim (Protein Kinetics Simulator). Most of the Zn-PcChol8+ molecules formed clusters at the upper half of the stalk within a vast area of negative electrostatic potential. Positioning of the PS on the surface of the spike protein at a distance of no more than 10 nm from the viral membrane may be favorable for the oxidative damage. The high sensitivity of SARS-CoV-2 to photodynamic inactivation by Zn-PcChol8+ is discussed with respect to the application of this PS to control the spread of COVID-19.
Collapse
Affiliation(s)
- Kirill Sharshov
- Federal Research Center of Fundamental and Translational Medicine (CFTM), 630117 Novosibirsk, Russia; (K.S.); (M.S.); (O.K.)
| | - Mariya Solomatina
- Federal Research Center of Fundamental and Translational Medicine (CFTM), 630117 Novosibirsk, Russia; (K.S.); (M.S.); (O.K.)
| | - Olga Kurskaya
- Federal Research Center of Fundamental and Translational Medicine (CFTM), 630117 Novosibirsk, Russia; (K.S.); (M.S.); (O.K.)
| | - Ilya Kovalenko
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (I.K.); (E.K.); (V.F.); (A.R.)
- Federal Scientific and Clinical Center of Specialized Types of Medical Care and Medical Technologies of the Federal Medical and Biological Agency of Russia, 115682 Moscow, Russia
| | - Ekaterina Kholina
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (I.K.); (E.K.); (V.F.); (A.R.)
| | - Vladimir Fedorov
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (I.K.); (E.K.); (V.F.); (A.R.)
| | - Gennady Meerovich
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia;
- Institute of Physics and Engineering in Biomedicine, National Research Nuclear University “MEPHI”, 115409 Moscow, Russia
| | - Andrew Rubin
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (I.K.); (E.K.); (V.F.); (A.R.)
| | - Marina Strakhovskaya
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (I.K.); (E.K.); (V.F.); (A.R.)
- Federal Scientific and Clinical Center of Specialized Types of Medical Care and Medical Technologies of the Federal Medical and Biological Agency of Russia, 115682 Moscow, Russia
| |
Collapse
|
17
|
Maldonado-Carmona N, Marchand G, Villandier N, Ouk TS, Pereira MM, Calvete MJF, Calliste CA, Żak A, Piksa M, Pawlik KJ, Matczyszyn K, Leroy-Lhez S. Porphyrin-Loaded Lignin Nanoparticles Against Bacteria: A Photodynamic Antimicrobial Chemotherapy Application. Front Microbiol 2020; 11:606185. [PMID: 33281805 PMCID: PMC7705181 DOI: 10.3389/fmicb.2020.606185] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 10/20/2020] [Indexed: 01/29/2023] Open
Abstract
The need for alternative strategies to fight bacteria is evident from the emergence of antimicrobial resistance. To that respect, photodynamic antimicrobial chemotherapy steadily rises in bacterial eradication by using light, a photosensitizer and oxygen, which generates reactive oxygen species that may kill bacteria. Herein, we report the encapsulation of 5,10,15,20-tetrakis(4-hydroxyphenyl)-21H,23H-porphyrin into acetylated lignin water-dispersible nanoparticles (THPP@AcLi), with characterization of those systems by standard spectroscopic and microscopic techniques. We observed that THPP@AcLi retained porphyrin's photophysical/photochemical properties, including singlet oxygen generation and fluorescence. Besides, the nanoparticles demonstrated enhanced stability on storage and light bleaching. THPP@AcLi were evaluated as photosensitizers against two Gram-negative bacteria, Escherichia coli and Pseudomonas aeruginosa, and against three Gram-positive bacteria, Staphylococcus aureus, Staphylococcus epidermidis, and Enterococcus faecalis. THPP@AcLi were able to diminish Gram-positive bacterial survival to 0.1% when exposed to low white LED light doses (4.16 J/cm2), requiring concentrations below 5 μM. Nevertheless, the obtained nanoparticles were unable to diminish the survival of Gram-negative bacteria. Through transmission electron microscopy observations, we could demonstrate that nanoparticles did not penetrate inside the bacterial cell, exerting their destructive effect on the bacterial wall; also, a high affinity between acetylated lignin nanoparticles and bacteria was observed, leading to bacterial flocculation. Altogether, these findings allow to establish a photodynamic antimicrobial chemotherapy alternative that can be used effectively against Gram-positive topic infections using the widely available natural polymeric lignin as a drug carrier. Further research, aimed to inhibit the growth and survival of Gram-negative bacteria, is likely to enhance the wideness of acetylated lignin nanoparticle applications.
Collapse
Affiliation(s)
- Nidia Maldonado-Carmona
- PEIRENE Laboratory, Faculty of Sciences and Techniques, University of Limoges, Limoges, France
- Laboratory of Catalysis and Fine Chemistry, Department of Chemistry, University of Coimbra, Coimbra, Portugal
| | - Guillaume Marchand
- PEIRENE Laboratory, Faculty of Pharmacy, University of Limoges, Limoges, France
| | - Nicolas Villandier
- PEIRENE Laboratory, Faculty of Sciences and Techniques, University of Limoges, Limoges, France
| | - Tan-Sothea Ouk
- PEIRENE Laboratory, Faculty of Sciences and Techniques, University of Limoges, Limoges, France
| | - Mariette M. Pereira
- Laboratory of Catalysis and Fine Chemistry, Department of Chemistry, University of Coimbra, Coimbra, Portugal
| | - Mário J. F. Calvete
- Laboratory of Catalysis and Fine Chemistry, Department of Chemistry, University of Coimbra, Coimbra, Portugal
| | | | - Andrzej Żak
- Electron Microscopy Laboratory, Wrocław University of Science and Technology, Wrocław, Poland
- Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Marta Piksa
- Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Krzysztof J. Pawlik
- Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Katarzyna Matczyszyn
- Advanced Materials Engineering and Modelling Group, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| | - Stéphanie Leroy-Lhez
- PEIRENE Laboratory, Faculty of Sciences and Techniques, University of Limoges, Limoges, France
| |
Collapse
|
18
|
Tiganova IG, Zhizhimova YS, Philipova NI, Tolordava ER, Alekseeva NV, Makarova EA, Lukyanets EA, Meerovich GA, Romanova YM, Gintsburg AL. Antibacterial Properties of Synthetic Cationic Bacteriochlorin Derivatives as Photosensitizers. MOLECULAR GENETICS, MICROBIOLOGY AND VIROLOGY 2020. [DOI: 10.3103/s0891416820040096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Kholina EG, Kovalenko IB, Bozdaganyan ME, Strakhovskaya MG, Orekhov PS. Cationic Antiseptics Facilitate Pore Formation in Model Bacterial Membranes. J Phys Chem B 2020; 124:8593-8600. [PMID: 32896131 DOI: 10.1021/acs.jpcb.0c07212] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Antiseptics are an essential line of defense against bacterial and viral infections in modern medical practice. Many of them are supposed to act on microbial membranes. However, the detailed mechanisms of their action are still elusive. Here, we utilized coarse-grained molecular dynamics simulations to investigate interactions of different types of cationic antiseptics (CAs) with a model bacterial membrane. The simulations revealed qualitatively distinct patterns of dynamic and structural alterations of membrane induced by different types of antiseptics although none of them caused disintegration or solubilization of the bilayer even at the highest explored concentration. At the same time, the adsorption of antiseptics rendered membranes more vulnerable to poration under exposure to the external electric field. We further discuss the possible relation of the enhanced pore formation induced by CAs to their cytotoxic action.
Collapse
Affiliation(s)
- E G Kholina
- Department of Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| | - I B Kovalenko
- Department of Biology, Lomonosov Moscow State University, Moscow 119234, Russia.,Sechenov University, Moscow 119991, Russia.,Astrakhan State University, Astrakhan 414056, Russia.,Peoples' Friendship University of Russia (RUDN University), Moscow 117198, Russia
| | - M E Bozdaganyan
- Department of Biology, Lomonosov Moscow State University, Moscow 119234, Russia.,N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow 119991, Russia.,Moscow Polytechnic University, Moscow 107023, Russia
| | - M G Strakhovskaya
- Department of Biology, Lomonosov Moscow State University, Moscow 119234, Russia.,Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies, Federal Medical and Biological Agency of Russia, Moscow 115682, Russia
| | - P S Orekhov
- Department of Biology, Lomonosov Moscow State University, Moscow 119234, Russia.,Sechenov University, Moscow 119991, Russia.,Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russia
| |
Collapse
|
20
|
Colbasevici A, Voskoboynikova N, Orekhov PS, Bozdaganyan ME, Karlova MG, Sokolova OS, Klare JP, Mulkidjanian AY, Shaitan KV, Steinhoff HJ. Lipid dynamics in nanoparticles formed by maleic acid-containing copolymers: EPR spectroscopy and molecular dynamics simulations. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183207. [PMID: 31987867 DOI: 10.1016/j.bbamem.2020.183207] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/22/2020] [Accepted: 01/23/2020] [Indexed: 12/11/2022]
Abstract
Amphiphilic maleic acid-containing copolymers account for a recent methodical breakthrough in the study of membrane proteins. Their application enables a detergent-free extraction of membrane proteins from lipid bilayers, yielding stable water-soluble, discoidal lipid bilayer particles with incorporated proteins, which are wrapped with copolymers. Although many studies confirm the potential of this approach for membrane protein research, the interactions between the maleic acid-containing copolymers and extracted lipids, as well as possible effects of the copolymers on lipid-embedded proteins deserve further scrutinization. Here, we combine electron paramagnetic resonance spectroscopy and coarse-grain molecular dynamics simulations to compare the distribution and dynamics of lipids in lipid particles of phospholipid bilayers encased either by an aliphatic diisobutylene/maleic acid copolymer (DIBMALPs) or by an aromatic styrene/maleic acid copolymer (SMALPs). Nitroxides located at the 5th, 12th or 16th carbon atom positions in phosphatidylcholine-based spin labels experience restrictions of their reorientational motion depending on the type of encasing copolymer. The dynamics of the lipids was less constrained in DIBMALPs than in SMALPs with the affinity of spin labeled lipids to the polymeric rim being more pronounced in SMALPs.
Collapse
Affiliation(s)
| | | | - Philipp S Orekhov
- Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia; Sechenov University, Moscow 119146, Russia; Department of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Marine E Bozdaganyan
- Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia; Department of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow 119991, Russia
| | - Maria G Karlova
- Department of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Olga S Sokolova
- Department of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Johann P Klare
- Department of Physics, Osnabrueck University, 49069 Osnabrueck, Germany
| | - Armen Y Mulkidjanian
- Department of Physics, Osnabrueck University, 49069 Osnabrueck, Germany; A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia; Department of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Konstantin V Shaitan
- Department of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow 119991, Russia
| | | |
Collapse
|
21
|
Kholina EG, Nesterenko AM, Galochkina TV, Gvozdev DA, Polyakova IV, Kovalenko IB, Strakhovskaya MG, Pisarev OA. Explicit measurement of the endotoxin adsorption efficiency detects non-Langmuir behavior at low concentrations. Anal Biochem 2019; 587:113445. [PMID: 31542342 DOI: 10.1016/j.ab.2019.113445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 08/31/2019] [Accepted: 09/18/2019] [Indexed: 11/18/2022]
Abstract
Lipopolysaccharides (LPS) are the Gram-negative bacteria cell wall components capable to induce the system inflammatory response even at picomolar concentrations. LPS detection at these concentrations is necessary to develop new sorbents for the efficient purification of the biological fluids. LAL-test widely used for LPS concentration estimation is based on the LPS biological activity measurement and thus may depend on the LPS concentration in a non-linear way. Here we propose a new explicit method for the LPS concentration measurement based on fluorescently labeled LPS and direct photon counting and develop the new protocol for LPS adsorption efficiency measurement. Following the suggested protocol in the experiments on novel sorbents, we demonstrate that LPS adsorption at small biologically relevant concentrations is non-Langmuir.
Collapse
Affiliation(s)
- Ekaterina G Kholina
- M.V.Lomonosov Moscow State University, Biology Faculty, Leninskie Gory 1/12, Moscow, 119234, Russia
| | - Alexey M Nesterenko
- A.N.Belozersky Institute of Physico-Chemical Biology, MSU, Leninskie Gory 1/40, Moscow, 119991, Russia; M.V.Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, Miklukho-Maklaya str. 16/10, Moscow, 117997, Russia.
| | - Tatiana V Galochkina
- Université de Paris, UMR_S1134, BIGR, Inserm, Institut National de Transfusion Sanguine, DSIMB, 6 rue Alexandre Cabanel, 75739, Paris, France
| | - Danil A Gvozdev
- M.V.Lomonosov Moscow State University, Biology Faculty, Leninskie Gory 1/12, Moscow, 119234, Russia
| | - Irina V Polyakova
- Institute of Macromolecular Compounds, Russian Academy of Science, Bolshoi pr. 31, Saint-Petersburg, 199004, Russia
| | - Ilya B Kovalenko
- M.V.Lomonosov Moscow State University, Biology Faculty, Leninskie Gory 1/12, Moscow, 119234, Russia; Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies, Federal Medical and Biological Agency of Russia, Orekhovy bld. 28, Moscow, 115682, Russia; Astrakhan State University, Tatischeva str. 20a, Astrakhan, 414056, Russia; Scientific and Technological Center of Unique Instrumentation of the Russian Academy of Sciences, Butlerova str. 15, Moscow, 117342, Russia
| | - Marina G Strakhovskaya
- M.V.Lomonosov Moscow State University, Biology Faculty, Leninskie Gory 1/12, Moscow, 119234, Russia; Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies, Federal Medical and Biological Agency of Russia, Orekhovy bld. 28, Moscow, 115682, Russia
| | - Oleg A Pisarev
- Institute of Macromolecular Compounds, Russian Academy of Science, Bolshoi pr. 31, Saint-Petersburg, 199004, Russia; Peter the Great St. Petersburg Polytechnic University, 195251, Polytechnicheskaya 29, St. Petersburg, Russia
| |
Collapse
|
22
|
Jia Q, Song Q, Li P, Huang W. Rejuvenated Photodynamic Therapy for Bacterial Infections. Adv Healthc Mater 2019; 8:e1900608. [PMID: 31240867 DOI: 10.1002/adhm.201900608] [Citation(s) in RCA: 234] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/13/2019] [Indexed: 12/31/2022]
Abstract
The emergence of multidrug resistant bacterial strains has hastened the exploration of advanced microbicides and antibacterial techniques. Photodynamic antibacterial therapy (PDAT), an old-fashioned technique, has been rejuvenated to combat "superbugs" and biofilm-associated infections owing to its excellent characteristics of noninvasiveness and broad antibacterial spectrum. More importantly, bacteria are less likely to produce drug resistance to PDAT because it does not require specific targeting interaction between photosensitizers (PSs) and bacteria. This review mainly focuses on recent developments and future prospects of PDAT. The mechanisms of PDAT against bacteria and biofilms are briefly introduced. In addition to classical macrocyclic PSs, several innovative PSs, including non-self-quenching PSs, conjugated polymer-based PSs, and nano-PSs, are summarized in detail. Numerous multifunctional PDAT systems such as in situ light-activated PDAT, stimuli-responsive PDAT, oxygen self-enriching enhanced PDAT, and PDAT-based multimodal therapy are highlighted to overcome the inherent defects of PDAT in vivo (e.g., limited penetration depth of light and hypoxic environment of infectious sites).
Collapse
Affiliation(s)
- Qingyan Jia
- Xi'an Institute of Flexible Electronics (IFE)Xi'an Institute of Biomedical Materials and Engineering (IBME)Northwestern Polytechnical University (NPU) 127 West Youyi Road Xi'an 710072 China
| | - Qing Song
- Xi'an Institute of Flexible Electronics (IFE)Xi'an Institute of Biomedical Materials and Engineering (IBME)Northwestern Polytechnical University (NPU) 127 West Youyi Road Xi'an 710072 China
| | - Peng Li
- Xi'an Institute of Flexible Electronics (IFE)Xi'an Institute of Biomedical Materials and Engineering (IBME)Northwestern Polytechnical University (NPU) 127 West Youyi Road Xi'an 710072 China
| | - Wei Huang
- Xi'an Institute of Flexible Electronics (IFE)Xi'an Institute of Biomedical Materials and Engineering (IBME)Northwestern Polytechnical University (NPU) 127 West Youyi Road Xi'an 710072 China
| |
Collapse
|
23
|
Marrink SJ, Corradi V, Souza PC, Ingólfsson HI, Tieleman DP, Sansom MS. Computational Modeling of Realistic Cell Membranes. Chem Rev 2019; 119:6184-6226. [PMID: 30623647 PMCID: PMC6509646 DOI: 10.1021/acs.chemrev.8b00460] [Citation(s) in RCA: 470] [Impact Index Per Article: 78.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Indexed: 12/15/2022]
Abstract
Cell membranes contain a large variety of lipid types and are crowded with proteins, endowing them with the plasticity needed to fulfill their key roles in cell functioning. The compositional complexity of cellular membranes gives rise to a heterogeneous lateral organization, which is still poorly understood. Computational models, in particular molecular dynamics simulations and related techniques, have provided important insight into the organizational principles of cell membranes over the past decades. Now, we are witnessing a transition from simulations of simpler membrane models to multicomponent systems, culminating in realistic models of an increasing variety of cell types and organelles. Here, we review the state of the art in the field of realistic membrane simulations and discuss the current limitations and challenges ahead.
Collapse
Affiliation(s)
- Siewert J. Marrink
- Groningen
Biomolecular Sciences and Biotechnology Institute & Zernike Institute
for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Valentina Corradi
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Paulo C.T. Souza
- Groningen
Biomolecular Sciences and Biotechnology Institute & Zernike Institute
for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Helgi I. Ingólfsson
- Biosciences
and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, United States
| | - D. Peter Tieleman
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Mark S.P. Sansom
- Department
of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K.
| |
Collapse
|
24
|
Orekhov PS, Bozdaganyan ME, Voskoboynikova N, Mulkidjanian AY, Steinhoff HJ, Shaitan KV. Styrene/Maleic Acid Copolymers Form SMALPs by Pulling Lipid Patches out of the Lipid Bilayer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:3748-3758. [PMID: 30773011 DOI: 10.1021/acs.langmuir.8b03978] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Amphiphilic copolymers composed of styrene and maleic acid (SMA) monomers caused a major methodical breakthrough in the study of membrane proteins. They were found to directly release phospholipids and membrane proteins both from artificial and natural lipid bilayers, yielding stable water-soluble discoidal SMA/lipid particles (SMALPs) of uniform size. Although many empirical studies indicate the great potency of SMALPs for membrane protein research, the mechanisms of their formation remain obscure. It is unknown which factors account for the very assembly of SMALPs and govern their uniform size. We have developed a coarse-grained (CG) molecular model of SMA copolymers based on the MARTINI CG force field and used it to probe the behavior of SMA copolymers with varying composition/charge/concentration in solution as well as their interaction with lipid membranes. First, we found that SMA copolymers tend to aggregate in solution into clusters, which could account for the uniform size of SMALPs. Next, molecular dynamics (MD) simulations showed that periodic SMA copolymers with styrene/maleic acid ratios of 2:1 ([SSM] n) and 3:1 ([SSSM] n) differently interacted with lipid bilayers. While clusters of 2:1 SMA copolymers induced membrane poration, the clusters of 3:1 SMA copolymers extracted lipid patches from the membrane yielding SMALP-like structures. Extraction of lipid patches was also observed when we simulated the behavior of 3:1 copolymers with varying lengths and statistical distribution of styrene and MA units. Analysis of MD simulation trajectories and comparison with experimental data indicate that the formation of SMALPs requires copolymer molecules with a sufficient number of units made of more than two sequential styrene monomers.
Collapse
Affiliation(s)
- Philipp S Orekhov
- Department of Biology , Lomonosov Moscow State University , Moscow 119991 , Russia
- Sechenov University , Moscow 119146 , Russia
- Moscow Institute of Physics and Technology , Dolgoprudny 141701 , Russia
| | - Marine E Bozdaganyan
- Department of Biology , Lomonosov Moscow State University , Moscow 119991 , Russia
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies , Federal Medical and Biological Agency of Russia , Moscow 123182 , Russia
| | | | | | | | - Konstantin V Shaitan
- Department of Biology , Lomonosov Moscow State University , Moscow 119991 , Russia
| |
Collapse
|
25
|
Lourenço LMO, Rocha DMGC, Ramos CIV, Gomes MC, Almeida A, Faustino MAF, Almeida Paz FA, Neves MGPMS, Cunha Â, Tomé JPC. Photoinactivation of Planktonic and Biofilm Forms of
Escherichia coli
through the Action of Cationic Zinc(II) Phthalocyanines. CHEMPHOTOCHEM 2019. [DOI: 10.1002/cptc.201900020] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Leandro M. O. Lourenço
- QOPNA-LAQV-REQUINTE and Department of Chemistry University of Aveiro Campus Universitário de Santiago 3810-193 Aveiro Portugal
| | - Deisy M. G. C. Rocha
- QOPNA-LAQV-REQUINTE and Department of Chemistry University of Aveiro Campus Universitário de Santiago 3810-193 Aveiro Portugal
- CESAM and Department of Biology University of Aveiro Campus Universitário de Santiago 3810-193 Aveiro Portugal
| | - Catarina I. V. Ramos
- Mass Spectrometry Laboratory and Department of Chemistry University of Aveiro Campus Universitário de Santiago 3810-193 Aveiro Portugal
| | - Maria C. Gomes
- QOPNA-LAQV-REQUINTE and Department of Chemistry University of Aveiro Campus Universitário de Santiago 3810-193 Aveiro Portugal
- CESAM and Department of Biology University of Aveiro Campus Universitário de Santiago 3810-193 Aveiro Portugal
| | - Adelaide Almeida
- CESAM and Department of Biology University of Aveiro Campus Universitário de Santiago 3810-193 Aveiro Portugal
| | - Maria A. F. Faustino
- QOPNA-LAQV-REQUINTE and Department of Chemistry University of Aveiro Campus Universitário de Santiago 3810-193 Aveiro Portugal
| | - Filipe A. Almeida Paz
- CICECO-Aveiro Institute of Materials and Department of Chemistry University of Aveiro Campus Universitário de Santiago 3810-193 Aveiro Portugal
| | - Maria G. P. M. S. Neves
- QOPNA-LAQV-REQUINTE and Department of Chemistry University of Aveiro Campus Universitário de Santiago 3810-193 Aveiro Portugal
| | - Ângela Cunha
- CESAM and Department of Biology University of Aveiro Campus Universitário de Santiago 3810-193 Aveiro Portugal
| | - João P. C. Tomé
- CQE and Departamento de Engenharia Química Instituto Superior Técnico, Universidade de Lisboa Av. Rovisco Pais, n°1 1049-001 Lisboa Portugal
| |
Collapse
|
26
|
Hamblin MR, Abrahamse H. Can light-based approaches overcome antimicrobial resistance? Drug Dev Res 2019; 80:48-67. [PMID: 30070718 PMCID: PMC6359990 DOI: 10.1002/ddr.21453] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/06/2018] [Accepted: 07/07/2018] [Indexed: 01/10/2023]
Abstract
The relentless rise of antibiotic resistance is considered one of the most serious problems facing mankind. This mini-review will cover three cutting-edge approaches that use light-based techniques to kill antibiotic-resistant microbial species, and treat localized infections. First, we will discuss antimicrobial photodynamic inactivation using rationally designed photosensitizes combined with visible light, with the added possibility of strong potentiation by inorganic salts such as potassium iodide. Second, the use of blue and violet light alone that activates endogenous photoactive porphyrins within the microbial cells. Third, it is used for "safe UVC" at wavelengths between 200 nm and 230 nm that can kill microbial cells without damaging host mammalian cells. We have gained evidence that all these approaches can kill multidrug resistant bacteria in vitro, and they do not induce themselves any resistance, and moreover can treat animal models of localized infections caused by resistant species that can be monitored by noninvasive bioluminescence imaging. Light-based antimicrobial approaches are becoming a growing translational part of anti-infective treatments in the current age of resistance.
Collapse
Affiliation(s)
- Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts
- Department of Dermatology, Harvard Medical School, Boston, Massachusetts
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, South Africa
| |
Collapse
|
27
|
Brilkina AA, Dubasova LV, Sergeeva EA, Pospelov AJ, Shilyagina NY, Shakhova NM, Balalaeva IV. Photobiological properties of phthalocyanine photosensitizers Photosens, Holosens and Phthalosens: A comparative in vitro analysis. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 191:128-134. [PMID: 30616037 DOI: 10.1016/j.jphotobiol.2018.12.020] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/19/2018] [Accepted: 12/26/2018] [Indexed: 11/19/2022]
Abstract
Photobiological properties of phthalocyanine photosensitizers, namely, clinically approved Photosens and new compounds Holosens and Phthalosens were analyzed on transitional cell carcinoma of the urinary bladder (T24) and human hepatic adenocarcinoma (SK-HEP-1). Photosens is a sulfated aluminum phthalocyanine with the number of sulfo groups 3.4, which is characterized by a high degree of hydrophilicity, slow cellular uptake, localization in lysosomes and the lowest photodynamic activity. Holosens is an octacholine zinc phthalocyanine, a cationic compound with significant charge. Holosens more efficiently enters the cells; it is localized in Golgi apparatus in addition to lysosomes and exhibits a significant inhibitory effect on cell viability upon irradiation. The highest photodynamic activity was demostrated by Phthalosens. Phthalosens is a metal-free analog of Photosens with a number of sulfo groups 2.5, which determines its amphiphilicity. Phthalosens is characterized by the highest rate of cellular uptake through the outer cell membrane, localization in cell membrane as well as in lysosomes and Golgi apparatus, and the highest activity upon irradiation among the photosensitizers studied. In general, changes in the physicochemical properties of Holosens and Phthalosens ensured an increase in their efficiency in vitro compared to Photosens. The features of accumulation, intracellular distribution and their interrelation with photodynamic activity, revealed in this work, indicate the prospects of Phthalosens and Holosens for clinical practice.
Collapse
Affiliation(s)
- Anna A Brilkina
- Lobachevsky State University of Nizhny Novgorod, 23 Gagarin ave., Nizhny Novgorod 603950, Russia
| | - Lubov V Dubasova
- Lobachevsky State University of Nizhny Novgorod, 23 Gagarin ave., Nizhny Novgorod 603950, Russia
| | - Ekaterina A Sergeeva
- Institute of Applied Physics of the Russian Academy of Sciences, 46 Ulyanova st, Nizhny Novgorod 603950, Russia
| | - Anton J Pospelov
- Lobachevsky State University of Nizhny Novgorod, 23 Gagarin ave., Nizhny Novgorod 603950, Russia
| | - Natalia Y Shilyagina
- Lobachevsky State University of Nizhny Novgorod, 23 Gagarin ave., Nizhny Novgorod 603950, Russia
| | - Natalia M Shakhova
- Institute of Applied Physics of the Russian Academy of Sciences, 46 Ulyanova st, Nizhny Novgorod 603950, Russia
| | - Irina V Balalaeva
- Lobachevsky State University of Nizhny Novgorod, 23 Gagarin ave., Nizhny Novgorod 603950, Russia; I.M. Sechenov First Moscow State Medical University, 8-2 Trubetskaya str., Moscow 119991, Russia.
| |
Collapse
|
28
|
Galstyan A, Dobrindt U. Breaching the wall: morphological control of efficacy of phthalocyanine-based photoantimicrobials. J Mater Chem B 2018; 6:4630-4637. [DOI: 10.1039/c8tb01357h] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In this paper, photophysical, theoretical and biological studies are combined, highlighting the importance of different characteristics for designing new and more effective PSs.
Collapse
Affiliation(s)
- Anzhela Galstyan
- Center for Soft Nanoscience
- Westfälische Wilhelms-Universität Münster
- D-48149 Münster
- Germany
| | - Ulrich Dobrindt
- Institute of Hygiene
- Westfälische Wilhelms-Universität Münster
- D-48149 Münster
- Germany
| |
Collapse
|