1
|
Rajupet S, Weber AZ, Radke CJ. PFSA-Ionomer Adsorption to C and Pt/C Particles in Fuel-Cell Inks. ACS APPLIED MATERIALS & INTERFACES 2025; 17:27366-27377. [PMID: 40296447 DOI: 10.1021/acsami.5c00211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Catalyst inks used to make fuel-cell electrodes consist of Pt/C catalyst particles and a perfluorosulfonic acid (PFSA) ionomer dispersed in water/alcohol solvent mixtures. PFSA ionomer in the ink adsorbs to the surface of the catalyst particles, dictating the dispersion colloid properties. Following adsorption, the subsequent distribution of excess nonadsorbed ionomer in the ink then governs the final structure of the electrode. Here, we characterize the adsorption of the PFSA ionomer onto Pt/C catalyst particles. PFSA adsorption is largely irreversible. Adsorbed sulfonic-acid moieties impart a negative charge on the catalyst surface, causing electrostatic repulsion between the free ionomer in solution and the ionomer-covered Pt/C particle surface. The amount of adsorption is limited by the resulting electrostatic charge that grows as more ionomer adsorbs, and the catalyst surface becomes more negatively charged. Attenuating electrostatic repulsion by increasing the ink ionic strength promotes ionomer adsorption. Electrostatically limited adsorption is observed, irrespective of the solvent water/n-propanol ratio or the catalyst particle porosity and Pt loading. Experimentally measured ionomer adsorption isotherms are well predicted by a Smoluchowski-based kinetic adsorption model, in which the electrostatic energy barrier for adsorption is predicted from DLVO theory. These findings help to unravel the complex phenomena within these colloidal dispersions, allowing for subsequent tailoring of inks to optimize fuel-cell electrode structure and performance.
Collapse
Affiliation(s)
- Siddharth Rajupet
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
- Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Adam Z Weber
- Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Clayton J Radke
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| |
Collapse
|
2
|
Li H, Yuan S, You J, Zhao C, Cheng X, Luo L, Yan X, Shen S, Zhang J. Revealing the Oxygen Transport Challenges in Catalyst Layers in Proton Exchange Membrane Fuel Cells and Water Electrolysis. NANO-MICRO LETTERS 2025; 17:225. [PMID: 40257747 PMCID: PMC12011709 DOI: 10.1007/s40820-025-01719-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 03/04/2025] [Indexed: 04/22/2025]
Abstract
Urgent requirements of the renewable energy boost the development of stable and clean hydrogen, which could effectively displace fossil fuels in mitigating climate changes. The efficient interconversion of hydrogen and electronic is highly based on polymer electrolyte membrane fuel cells (PEMFCs) and water electrolysis (PEMWEs). However, the high cost continues to impede large-scale commercialization of both PEMFC and PEMWE technologies, with the expense primarily attributed to noble catalysts serving as a major bottleneck. The reduction of Pt loading in PEMFCs is essential but limited by the oxygen transport resistance in the cathode catalyst layers (CCLs), while the oxygen transport in anode catalyst layers (ACLs) in PEMWEs also being focused as the Ir/IrOx catalyst reduced. The pore structure and the catalyst-ionomer agglomerates play important roles in the oxygen transport process of both PEMFCs and PEMWEs due to the similarity of membrane electrode assembly (MEA). Herein, the oxygen transport mechanism of PEMFCs in pore structure and ionomer thin films in CCLs is systematically reviewed, while state-of-the-art strategies are presented for enhancing oxygen transport and performance through materials and structural design. The deeply research opens avenues for exploring similar key scientific problems in oxygen transport process of PEMWEs and their further development.
Collapse
Affiliation(s)
- Huiyuan Li
- Institute of Fuel Cells, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Shu Yuan
- Institute of Fuel Cells, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Jiabin You
- Institute of Fuel Cells, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Congfan Zhao
- Institute of Fuel Cells, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Xiaojing Cheng
- Institute of Fuel Cells, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Liuxuan Luo
- Institute of Fuel Cells, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Xiaohui Yan
- Institute of Fuel Cells, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Shuiyun Shen
- Institute of Fuel Cells, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
- MOE Key Laboratory of Power & Machinery Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
| | - Junliang Zhang
- Institute of Fuel Cells, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
- MOE Key Laboratory of Power & Machinery Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
| |
Collapse
|
3
|
Fang L, Huo J, Chen Y, Lin H, Li B, Cui Z, Du L. Polymer-Scaffold Induced Extensive Hydrogen-Bond Network: Enabling High Transport of Proton and Oxygen in Cathode Catalyst/Ionomer Interfaces. ACS APPLIED MATERIALS & INTERFACES 2025; 17:15910-15920. [PMID: 40021480 DOI: 10.1021/acsami.4c19171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2025]
Abstract
Uneven ionomer coverage in the cathode catalyst layer of proton exchange membrane fuel cells (PEMFCs) impedes proton conduction and oxygen diffusion, particularly at low platinum loadings. Here, a functionalized polymer-scaffold is designed and constructed by using hydroxy-pyridine polybenzimidazole (PyOHPBI) with abundant hydrogen-bond sites, thereby proposing a hydrogen-bond synergistic strategy to address the challenges of optimizing ionomer distribution and enhancing the transport of protons and gas through the catalyst layer. By integrating molecular dynamics simulations, in situ and ex-situ characterization methods, the design achieves 144.4% of the peak power density compared to commercial Pt/C catalysts, alongside an exceptionally low local oxygen transport resistance of only 7.81 s·m-1 in membrane electrode assemblies (MEAs). This study highlights how surface chemical modifications of carbon supports leverage hydrogen bonds to optimize ionomer coverage, significantly enhancing PEMFC performance and offering insights for developing more efficient and sustainable fuel cell technologies.
Collapse
Affiliation(s)
- Lin Fang
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory of Fuel Cell Technology, South China University of Technology, Guangzhou 510641, China
| | - Junlang Huo
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory of Fuel Cell Technology, South China University of Technology, Guangzhou 510641, China
| | - Yangyang Chen
- School of Automotive Engineering, Hubei University of Automotive Technology, Shiyan 442002, China
| | - Hao Lin
- National Institute of Guangdong Advanced Energy Storage Co., Ltd., Guangzhou 510080, China
| | - BaoTao Li
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory of Fuel Cell Technology, South China University of Technology, Guangzhou 510641, China
| | - Zhiming Cui
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory of Fuel Cell Technology, South China University of Technology, Guangzhou 510641, China
| | - Li Du
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory of Fuel Cell Technology, South China University of Technology, Guangzhou 510641, China
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China
| |
Collapse
|
4
|
Khandavalli S, Park JH, Rice R, Zhang DY, Berlinger SA, Bender G, Myers DJ, Ulsh M, Mauger SA. Aging iridium oxide catalyst inks: a formulation strategy to enhance ink processability for polymer electrolyte membrane water electrolyzers. SOFT MATTER 2024; 20:9028-9049. [PMID: 39499102 DOI: 10.1039/d4sm00987h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Iridium oxide (IrO2) is recognized as a state-of-art catalyst for anodes of low-temperature polymer-electrolyte membrane water electrolyzers (PEMWE), one of the promising clean energy technologies to produce hydrogen, a critical energy carrier for decarbonization. However, typical IrO2 ink formulations are challenging to process in liquid-film coating processes because of their poor stability against gravitational settling and low viscosities. Here we report on time evolution of the microstructure of concentrated IrO2 inks in a water-rich dispersion medium, probed using a combination of rheology and X-ray scattering for up to four days. The inks progressively evolve from a predominantly liquid-like to a gel-like material with increasing aging time that can be leveraged as a formulation strategy to enhance their stability against sedimentation, and processability during electrode fabrication. We also elucidate the aging behavior by investigating the effects of ink formulation composition - ionomer concentration and solvent composition - and using the extended-DLVO theory. The implications of aging on electrode fabrication, including via direct coating onto membranes and porous transport layers, and membrane-electrode-assembly performance has also been examined. Our findings offer not only a facile but also an environmentally benign formulation strategy to enhance ink processibility, expand practical fabrication approaches, and advance PEMWE manufacturing.
Collapse
Affiliation(s)
- Sunilkumar Khandavalli
- Chemistry and Nanoscience Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, USA.
| | - Jae Hyung Park
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - Robin Rice
- Chemistry and Nanoscience Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, USA.
| | - Diana Y Zhang
- Chemistry and Nanoscience Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, USA.
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Sarah A Berlinger
- Energy Conversion Group, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Guido Bender
- Chemistry and Nanoscience Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, USA.
| | - Deborah J Myers
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - Michael Ulsh
- Chemistry and Nanoscience Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, USA.
| | - Scott A Mauger
- Chemistry and Nanoscience Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, USA.
| |
Collapse
|
5
|
Srivastav H, Weber AZ, Radke CJ. Colloidal Stability of PFSA-Ionomer Dispersions. Part I. Single-Ion Electrostatic Interaction Potential Energies. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:6654-6665. [PMID: 38457278 DOI: 10.1021/acs.langmuir.3c03903] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
Charged colloidal particles neutralized by a single counterion are increasingly important for many emerging technologies. Attention here is paid specifically to hydrogen fuel cells and water electrolyzers whose catalyst layers are manufactured from a perfluorinated sulfonic acid polymer (PFSA) suspended in aqueous/alcohol solutions. Partially dissolved PFSA aggregates, known collectively as ionomers, are stabilized by the electrostatic repulsion of overlapping diffuse double layers consisting of only protons dissociated from the suspended polymer. We denote such double layers containing no added electrolyte as "single ion". Size-distribution predictions build upon interparticle interaction potential energies from the Derjaguin-Landau-Verwey-Overbeek (DLVO) formalism. However, when only a single counterion is present in solution, classical DLVO electrostatic potential energies no longer apply. Accordingly, here a new formulation is proposed to describe how single-counterion diffuse double layers interact in colloidal suspensions. Part II (Srivastav, H.; Weber, A. Z.; Radke, C. J. Langmuir 2024 DOI: 10.1021/acs.langmuir.3c03904) of this contribution uses the new single-ion interaction energies to predict aggregated size distributions and the resulting solution pH of PFSA in mixtures of n-propanol and water. A single-counterion diffuse layer cannot reach an electrically neutral concentration far from a charged particle. Consequently, nowhere in the dispersion is the solvent neutral, and the diffuse layer emanating from one particle always experiences the presence of other particles (or walls). Thus, in addition to an intervening interparticle repulsive force, a backside osmotic force is always present. With this new construction, we establish that single-ion repulsive pair interaction energies are much larger than those of classical DLVO electrostatic potentials. The proposed single-ion electrostatic pair potential governs dramatic new dispersion behavior, including dispersions that are stable at a low volume fraction but unstable at a high volume fraction and finite volume-fraction dispersions that are unstable with fine particles but stable with coarse particles. The proposed single-counterion electrostatic pair potential provides a general expression for predicting colloidal behavior for any charged particle dispersion in ionizing solvents with no added electrolyte.
Collapse
Affiliation(s)
- Harsh Srivastav
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, 201 Gilman, South Drive, Berkeley, California 94720, United States
- Energy Technologies Area, Lawrence Berkeley National Laboratory, Building 30, Cyclotron Road, Berkeley, California 94720, United States
| | - Adam Z Weber
- Energy Technologies Area, Lawrence Berkeley National Laboratory, Building 30, Cyclotron Road, Berkeley, California 94720, United States
| | - Clayton J Radke
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, 201 Gilman, South Drive, Berkeley, California 94720, United States
| |
Collapse
|
6
|
Srivastav H, Weber AZ, Radke CJ. Colloidal Stability of PFSA-Ionomer Dispersions Part II: Determination of Suspension pH Using Single-Ion Potential Energies. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:6666-6674. [PMID: 38498907 DOI: 10.1021/acs.langmuir.3c03904] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Perfluorosulfonic acid (PFSA) ionomers serve a vital role in the performance and stability of fuel-cell catalyst layers. These properties, in turn, depend on the colloidal processing of precursor inks. To understand the colloidal structure of fuel-cell catalyst layers, we explore the aggregation of PFSA ionomers dissolved in water/alcohol solutions and relate the predicted aggregation to experimental measurements of solution pH. Not all side chains contribute to measured pH because of burying inside particle aggregates. To account for the measured degree of dissociation, a new description is developed for how PFSA aggregates interact with each other. The developed single-counterion electrostatic repulsive pair potential from Part I is incorporated into the Smoluchowski collision-based kinetics of interacting aggregates with buried side chains. We demonstrate that the surrounding solvent mixture affects the degree of aggregation as well as the pH of the system primarily through the solution dielectric permittivity, which drives the strength of the interparticle repulsive energies. Successful pH prediction of Nafion ionomer dispersions in water/n-propanol solutions validates the numerical calculations. Nafion-dispersion pH measurements serve as a surrogate for Nafion particle-size distributions. The model and framework can be leveraged to explore different ink formulations.
Collapse
Affiliation(s)
- Harsh Srivastav
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, 201 Gilman South Drive, Berkeley, California 94720, United States
- Energy Technologies Area, Lawrence Berkeley National Laboratory, Building 30, Cyclotron Road, Berkeley, California 94720, United States
| | - Adam Z Weber
- Energy Technologies Area, Lawrence Berkeley National Laboratory, Building 30, Cyclotron Road, Berkeley, California 94720, United States
| | - Clayton J Radke
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, 201 Gilman South Drive, Berkeley, California 94720, United States
| |
Collapse
|
7
|
Kim YS. Hydrocarbon Ionomeric Binders for Fuel Cells and Electrolyzers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303914. [PMID: 37814366 DOI: 10.1002/advs.202303914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/08/2023] [Indexed: 10/11/2023]
Abstract
Ionomeric binders in catalyst layers, abbreviated as ionomers, play an essential role in the performance of polymer-electrolyte membrane fuel cells and electrolyzers. Due to environmental issues associated with perfluoroalkyl substances, alternative hydrocarbon ionomers have drawn substantial attention over the past few years. This review surveys literature to discuss ionomer requirements for the electrodes of fuel cells and electrolyzers, highlighting design principles of hydrocarbon ionomers to guide the development of advanced hydrocarbon ionomers.
Collapse
Affiliation(s)
- Yu Seung Kim
- MPA-11: Materials Synthesis and Integrated Devices, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| |
Collapse
|
8
|
Idros MN, Wu Y, Duignan T, Li M, Cartmill H, Maglaya I, Burdyny T, Wang G, Rufford TE. Effect of Dispersing Solvents for an Ionomer on the Performance of Copper Catalyst Layers for CO 2 Electrolysis to Multicarbon Products. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37931009 DOI: 10.1021/acsami.3c11096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
To explore the effects of solvent-ionomer interactions in catalyst inks on the structure and performance of Cu catalyst layers (CLs) for CO2 electrolysis, we used a "like for like" rationale to select acetone and methanol as dispersion solvents with a distinct affinity for the ionomer backbone or sulfonated ionic heads, respectively, of the perfluorinated sulfonic acid (PFSA) ionomer Aquivion. First, we characterized the morphology and wettability of Aquivion films drop-cast from acetone- and methanol-based inks on flat Cu foils and glassy carbons. On a flat surface, the ionomer films cast from the Aquivion and acetone mixture were more continuous and hydrophobic than films cast from methanol-based inks. Our study's second stage compared the performance of Cu nanoparticle CLs prepared with acetone and methanol on gas diffusion electrodes (GDEs) in a flow cell electrolyzer. The effects of the ionomer-solvent interaction led to a more uniform and flooding-tolerant GDE when acetone was the dispersion solvent (acetone-CL) than when we used methanol (methanol-CL). As a result, acetone-CL yielded a higher selectivity for CO2 electrolysis to C2+ products at high current density, up to 25% greater than methanol-CL at 500 mA cm-2. Ethylene was the primary product for both CLs, with a Faradaic efficiency for ethylene of 47.4 ± 4.0% on the acetone-CL and that of 37.6 ± 5.5% on the methanol-CL at a current density of 300 mA cm-2. We attribute the enhanced C2+ selectivity of the acetone-CL to this electrode's better resistance to electrolyte flooding, with zero seepage observed at tested current densities. Our findings reveal the critical role of solvent-ionomer interaction in determining the film structure and hydrophobicity, providing new insights into the CL design for enhanced multicarbon production in high current densities in CO2 electrolysis processes.
Collapse
Affiliation(s)
- Mohamed Nazmi Idros
- School of Chemical Engineering, The University of Queensland, St Lucia 4072, Australia
| | - Yuming Wu
- School of Chemical Engineering, The University of Queensland, St Lucia 4072, Australia
| | - Timothy Duignan
- School of Chemical Engineering, The University of Queensland, St Lucia 4072, Australia
| | - Mengran Li
- Materials for Energy Conversion and Storage (MECS), Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Hayden Cartmill
- School of Chemical Engineering, The University of Queensland, St Lucia 4072, Australia
| | - Irving Maglaya
- School of Chemical Engineering, The University of Queensland, St Lucia 4072, Australia
| | - Thomas Burdyny
- Materials for Energy Conversion and Storage (MECS), Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Geoff Wang
- School of Chemical Engineering, The University of Queensland, St Lucia 4072, Australia
| | - Thomas E Rufford
- School of Chemical Engineering, The University of Queensland, St Lucia 4072, Australia
| |
Collapse
|
9
|
Ding P, An H, Zellner P, Guan T, Gao J, Müller-Buschbaum P, Weckhuysen BM, van der Stam W, Sharp ID. Elucidating the Roles of Nafion/Solvent Formulations in Copper-Catalyzed CO 2 Electrolysis. ACS Catal 2023; 13:5336-5347. [PMID: 37123601 PMCID: PMC10127206 DOI: 10.1021/acscatal.2c05235] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 03/14/2023] [Indexed: 04/08/2023]
Abstract
Nafion ionomer, composed of hydrophobic perfluorocarbon backbones and hydrophilic sulfonic acid side chains, is the most widely used additive for preparing catalyst layers (CLs) for electrochemical CO2 reduction, but its impact on the performance of CO2 electrolysis remains poorly understood. Here, we systematically investigate the role of the catalyst ink formulation on CO2 electrolysis using commercial CuO nanoparticles as the model pre-catalyst. We find that the presence of Nafion is essential for achieving stable product distributions due to its ability to stabilize the catalyst morphology under reaction conditions. Moreover, the Nafion content and solvent composition (water/alcohol fraction) regulate the internal structure of Nafion coatings, as well as the catalyst morphology, thereby significantly impacting CO2 electrolysis performance, resulting in variations of C2+ product Faradaic efficiency (FE) by >3×, with C2+ FE ranging from 17 to 54% on carbon paper substrates. Using a combination of ellipsometry and in situ Raman spectroscopy during CO2 reduction, we find that such selectivity differences stem from changes to the local reaction microenvironment. In particular, the combination of high water/alcohol ratios and low Nafion fractions in the catalyst ink results in stable and favorable microenvironments, increasing the local CO2/H2O concentration ratio and promoting high CO surface coverage to facilitate C2+ production in long-term CO2 electrolysis. Therefore, this work provides insights into the critical role of Nafion binders and underlines the importance of optimizing Nafion/solvent formulations as a means of enhancing the performance of electrochemical CO2 reduction systems.
Collapse
Affiliation(s)
- Pan Ding
- Walter Schottky Institute and Physics Department, Technical University of Munich, Am Coulombwall 4, 85748 Garching, Germany
| | - Hongyu An
- Inorganic Chemistry and Catalysis, Department of Chemistry, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Philipp Zellner
- Walter Schottky Institute and Physics Department, Technical University of Munich, Am Coulombwall 4, 85748 Garching, Germany
| | - Tianfu Guan
- Chair for Functional Materials, TUM School of Natural Sciences, Technical University of Munich, James-Franck-Str. 1, 85748 Garching, Germany
| | - Jianyong Gao
- Walter Schottky Institute and Physics Department, Technical University of Munich, Am Coulombwall 4, 85748 Garching, Germany
| | - Peter Müller-Buschbaum
- Chair for Functional Materials, TUM School of Natural Sciences, Technical University of Munich, James-Franck-Str. 1, 85748 Garching, Germany
- Heinz Maier-Leibnitz-Zentrum, Technical University of Munich, 85748 Garching, Germany
| | - Bert M. Weckhuysen
- Inorganic Chemistry and Catalysis, Department of Chemistry, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Ward van der Stam
- Inorganic Chemistry and Catalysis, Department of Chemistry, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Ian D. Sharp
- Walter Schottky Institute and Physics Department, Technical University of Munich, Am Coulombwall 4, 85748 Garching, Germany
| |
Collapse
|
10
|
Paul Shylendra S, Wajrak M, Alameh K. Fabrication and Optimization of Nafion as a Protective Membrane for TiN-Based pH Sensors. SENSORS (BASEL, SWITZERLAND) 2023; 23:2331. [PMID: 36850929 PMCID: PMC9965570 DOI: 10.3390/s23042331] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
In this study, a solid-state modified pH sensor with RF magnetron sputtering technology was developed. The sensor consists of an active electrode consisting of a titanium nitride (TiN) film with a protective membrane of Nafion and a reference glass electrode of Ag/AgCl. The sensitivity of the pH sensor was investigated. Results show a sensor with excellent characteristics: sensitivity of 58.6 mV/pH for pH values from 2 to 12, very short response time of approximately 12 s in neutral pH solutions, and stability of less than 0.9 mV in 10 min duration. Further improvement in the performance of the TiN sensor was studied by application of a Nafion protective membrane. Nafion improves the sensor sensitivity close to Nernstian by maintaining a linear response. This paves the way to implement TiN with Nafion protection to block any interference species during real time applications in biosensing and medical diagnostic pH sensors.
Collapse
|
11
|
Safronova EY, Voropaeva DY, Safronov DV, Stretton N, Parshina AV, Yaroslavtsev AB. Correlation between Nafion Morphology in Various Dispersion Liquids and Properties of the Cast Membranes. MEMBRANES 2022; 13:13. [PMID: 36676820 PMCID: PMC9862164 DOI: 10.3390/membranes13010013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/11/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Nafion is a perfluorosulfonic acid polymer that is most commonly used in proton-exchange membrane fuel cells. The processes of pretreatment and formation of such membranes strongly affect their properties. In this work, dispersions of Nafion in various ionic forms and dispersing liquids (ethylene glycol, N,N-dimethylformamide, N-methyl-2-pyrrolidone and isopropyl alcohol-water mixtures in different ratios) were obtained and studied. Membranes fabricated by casting of the various dispersions were also studied. The effect of the nature of the dispersing liquid and the counterion on the properties of Nafion dispersions, the morphology of the polymer in the dispersions and the characteristics of the membranes obtained from them has been shown. Based on the overall results, it can be concluded that the use of perfluorosulfonic acid dispersions in aprotic polar solvents is advisable for obtaining membranes by the casting procedure. This is because it provides optimal polymer morphology in the dispersion, which leads to the formation of films with good selectivity, mechanical and transport properties. The performed investigations show the relationship between the composition of dispersions, the morphology of the polymer and the properties of the membranes formed from them by the casting procedure.
Collapse
Affiliation(s)
- Ekaterina Yu. Safronova
- N. S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Daria Yu. Voropaeva
- N. S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Dmitry V. Safronov
- N. S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Nastasia Stretton
- N. S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Anna V. Parshina
- Department of Analytical Chemistry, Voronezh State University, 394018 Voronezh, Russia
| | - Andrey B. Yaroslavtsev
- N. S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
12
|
Signorini V, Giacinti Baschetti M, Pizzi D, Merlo L. Permeation of Ternary Mixture Containing H 2S, CO 2 and CH 4 in Aquivion ® Perfluorosulfonic Acid (PFSA) Ionomer Membranes. MEMBRANES 2022; 12:1034. [PMID: 36363589 PMCID: PMC9693064 DOI: 10.3390/membranes12111034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Aquivion® E87-12S Perfluorosulfonated acid ionomer material (PFSA) has been studied as a membrane technology for natural gas sweetening from CO2, H2S due to its interesting chemical and mechanical stability and good separation performance for polar compounds in humid environments. In the present work, permeation of the H2S/CO2/CH4 ternary mixture in this short-side PFSA chain was investigated at pressures up to 10 bar, temperatures up to 50 °C, and in a range of relative humidity (RH) from 20% to 90%. The results obtained confirm the strong dependence of Aquivion® on water activity and temperature, and its ability to separate gases based on their water solubility without substantial differences between pure and mixed gas experiments. Indeed, even when tested in ternary mixture, the permeation behavior remains similar to that observed for pure components and binary mixtures. In particular, the permeability of H2S is higher than that of CO2 and methane CH4, reaching values of 500 Barrer at 50 °C and 80% RH, against 450 and 23 Barrer for the other two gases respectively. Additionally, when tested at higher pressures of up to 10 bar under humid conditions, the membrane properties remained largely unchanged, thus confirming the overall stability and durability of Aquivion® E87-12S in acid environments.
Collapse
Affiliation(s)
- Virginia Signorini
- Department of Civil, Chemical, Environmental and Material Engineering (DICAM), Alma Mater Studiorum, University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Marco Giacinti Baschetti
- Department of Civil, Chemical, Environmental and Material Engineering (DICAM), Alma Mater Studiorum, University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Diego Pizzi
- Renco S.p.A., V.le Venezia 53, 61122 Pesaro, Italy
| | - Luca Merlo
- Solvay Specialty Polymers Italy S.p.A., V.la Lombardia 20, 20021 Bollate, Italy
| |
Collapse
|
13
|
Artner C, Bohrer B, Pasquini L, Mazurenko I, Lahrach N, Byrne D, de Poulpiquet A, Lojou E. Effects of interactions between SPEEK or Nafion ionomers and bilirubin oxidase on O2 enzymatic reduction. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Berlinger SA, Chowdhury A, Van Cleve T, He A, Dagan N, Neyerlin KC, McCloskey BD, Radke CJ, Weber AZ. Impact of Platinum Primary Particle Loading on Fuel Cell Performance: Insights from Catalyst/Ionomer Ink Interactions. ACS APPLIED MATERIALS & INTERFACES 2022; 14:36731-36740. [PMID: 35916522 DOI: 10.1021/acsami.2c10499] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A variety of electrochemical energy conversion technologies, including fuel cells, rely on solution-processing techniques (via inks) to form their catalyst layers (CLs). The CLs are heterogeneous structures, often with uneven ion-conducting polymer (ionomer) coverage and underutilized catalysts. Various platinum-supported-on-carbon colloidal catalyst particles are used, but little is known about how or why changing the primary particle loading (PPL, or the weight fraction of platinum of the carbon-platinum catalyst particles) impacts performance. By investigating the CL gas-transport resistance and zeta (ζ)-potentials of the corresponding inks as a function of PPL, a direct correlation between the CL high current density performance and ink ζ-potential is observed. This correlation stems from likely changes in ionomer distributions and catalyst-particle agglomeration as a function of PPL, as revealed by pH, ζ-potential, and impedance measurements. These findings are critical to unraveling the ionomer distribution heterogeneity in ink-based CLs and enabling enhanced Pt utilization and improved device performance for fuel cells and related electrochemical devices.
Collapse
Affiliation(s)
- Sarah A Berlinger
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720 United States
- Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley, California 94720 United States
| | - Anamika Chowdhury
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720 United States
- Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley, California 94720 United States
| | - Tim Van Cleve
- Chemistry and Nanoscience Center, National Renewable Energy Laboratory, Golden, Colorado 80401 United States
| | - Aaron He
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720 United States
- Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley, California 94720 United States
| | - Nicholas Dagan
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720 United States
- Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley, California 94720 United States
| | - Kenneth C Neyerlin
- Chemistry and Nanoscience Center, National Renewable Energy Laboratory, Golden, Colorado 80401 United States
| | - Bryan D McCloskey
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720 United States
- Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley, California 94720 United States
| | - Clayton J Radke
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720 United States
| | - Adam Z Weber
- Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley, California 94720 United States
| |
Collapse
|
15
|
Effect of Catalyst Ink and Formation Process on the Multiscale Structure of Catalyst Layers in PEM Fuel Cells. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12083776] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The structure of a catalyst layer (CL) significantly impacts the performance, durability, and cost of proton exchange membrane (PEM) fuel cells and is influenced by the catalyst ink and the CL formation process. However, the relationship between the composition, formulation, and preparation of catalyst ink and the CL formation process and the CL structure is still not completely understood. This review, therefore, focuses on the effect of the composition, formulation, and preparation of catalyst ink and the CL formation process on the CL structure. The CL structure depends on the microstructure and macroscopic properties of catalyst ink, which are decided by catalyst, ionomer, or solvent(s) and their ratios, addition order, and dispersion. To form a well-defined CL, the catalyst ink, substrate, coating process, and drying process need to be well understood and optimized and match each other. To understand this relationship, promote the continuous and scalable production of membrane electrode assemblies, and guarantee the consistency of the CLs produced, further efforts need to be devoted to investigating the microstructure of catalyst ink (especially the catalyst ink with high solid content), the reversibility of the aged ink, and the drying process. Furthermore, except for the certain variables studied, the other manufacturing processes and conditions also require attention to avoid inconsistent conclusions.
Collapse
|
16
|
Yang D, Zhu S, Guo Y, Tang H, Yang D, Zhang C, Ming P, Li B. Control of Cluster Structures in Catalyst Inks by a Dispersion Medium. ACS OMEGA 2021; 6:32960-32969. [PMID: 34901647 PMCID: PMC8655915 DOI: 10.1021/acsomega.1c05026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 11/10/2021] [Indexed: 06/14/2023]
Abstract
The cluster structure in the catalyst ink of a proton exchange membrane fuel cell determines its performance. The interaction among solvent, ionomer, and catalyst in ink determines the cluster structure and affects the microstructure and surface morphology of the catalyst layer, which is of great significance to improve the conductivity of the catalyst layer to protons, electrons, and water. First, the dissolved state of the main chain and the side chain of the ionomer in solvent was characterized. The results of relative viscosity, ζ-potential, effective proton fraction, and nuclear magnetic resonance (NMR) showed that the alcohol aqueous solution promoted the stretching electrolysis of the main chain and the side chain of the ionomer more than the pure aqueous solvent, making the ionomer clusters smaller. The rheological test of the ink shows that the pure water solvent ink has the largest cluster and the strongest network structure. Under the test conditions, the clusters in the ink can be reconstructed quickly after breakage through viscous shearing. The addition of alcohols will make the clusters in the ink smaller and the network structure brittle. After the clusters and the network structure are damaged, they will slowly recombine and the viscosity in the ink will gradually recover. Ethanol will minimize the clusters in the ink, and the network structure in the ink is the weakest. The effect of the network strength on the cluster structure is weakened by reducing the solid content in the ink. The amplitude scanning test shows that the network structure in the slurry is almost eliminated after reducing the solid content, the storage modulus of ink with water, 50 wt % isopropyl alcohol (IPA), 50 wt % n-propanol (NPA), and 50 wt % ethanol (ET) decreases in turn, as well as the liquid viscosity behavior increases and the cluster particle size in the ink decreases. In conclusion, more dispersed ionomers and alcohol molecules with smaller molecular structures are more conducive to the dispersion of clusters in the ink.
Collapse
Affiliation(s)
- Daozeng Yang
- School
of Materials Science and Engineering, Dalian
Jiaotong University, 794 Yellow River Road, Dalian 116021, China
| | - Shaomin Zhu
- School
of Materials Science and Engineering, Dalian
Jiaotong University, 794 Yellow River Road, Dalian 116021, China
| | - Yuqing Guo
- School
of Automotive Studies, Tongji University
(Jiading Campus), 4800 Cao’an Road, Shanghai 201804, China
- Clean
Energy Automotive Engineering Center, Tongji
University (Jiading Campus), 4800 Cao’an Road, Shanghai 201804, China
| | - Haifeng Tang
- Great
Wall Motor Co., Ltd., No. 2199 Chaoyang South Street, Baoding 071000, Hebei, China
| | - Daijun Yang
- School
of Automotive Studies, Tongji University
(Jiading Campus), 4800 Cao’an Road, Shanghai 201804, China
- Clean
Energy Automotive Engineering Center, Tongji
University (Jiading Campus), 4800 Cao’an Road, Shanghai 201804, China
| | - Cunman Zhang
- School
of Automotive Studies, Tongji University
(Jiading Campus), 4800 Cao’an Road, Shanghai 201804, China
- Clean
Energy Automotive Engineering Center, Tongji
University (Jiading Campus), 4800 Cao’an Road, Shanghai 201804, China
| | - Pingwen Ming
- School
of Automotive Studies, Tongji University
(Jiading Campus), 4800 Cao’an Road, Shanghai 201804, China
- Clean
Energy Automotive Engineering Center, Tongji
University (Jiading Campus), 4800 Cao’an Road, Shanghai 201804, China
| | - Bing Li
- School
of Automotive Studies, Tongji University
(Jiading Campus), 4800 Cao’an Road, Shanghai 201804, China
- Clean
Energy Automotive Engineering Center, Tongji
University (Jiading Campus), 4800 Cao’an Road, Shanghai 201804, China
| |
Collapse
|
17
|
Bapat S, Giehl C, Kohsakowski S, Peinecke V, Schäffler M, Segets D. On the state and stability of fuel cell catalyst inks. ADV POWDER TECHNOL 2021. [DOI: 10.1016/j.apt.2021.08.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
18
|
Eslamibidgoli MJ, Tipp FP, Jitsev J, Jankovic J, Eikerling MH, Malek K. Convolutional neural networks for high throughput screening of catalyst layer inks for polymer electrolyte fuel cells. RSC Adv 2021; 11:32126-32134. [PMID: 35495497 PMCID: PMC9041760 DOI: 10.1039/d1ra05324h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 09/21/2021] [Indexed: 11/21/2022] Open
Abstract
The performance of polymer electrolyte fuel cells decisively depends on the structure and processes in membrane electrode assemblies and their components, particularly the catalyst layers. The structural building blocks of catalyst layers are formed during the processing and application of catalyst inks. Accelerating the structural characterization at the ink stage is thus crucial to expedite further advances in catalyst layer design and fabrication. In this context, deep learning algorithms based on deep convolutional neural networks (ConvNets) can automate the processing of the complex and multi-scale structural features of ink imaging data. This article presents the first application of ConvNets for the high throughput screening of transmission electron microscopy images at the ink stage. Results indicate the importance of model pre-training and data augmentation that works on multiple scales in training robust and accurate classification pipelines.
Collapse
Affiliation(s)
- Mohammad J Eslamibidgoli
- Theory and Computation of Energy Materials (IEK-13), Institute of Energy and Climate Research, Forschungszentrum Jülich GmbH 52425 Jülich Germany
| | - Fabian P Tipp
- Department of Chemistry, University of Cologne Greinstr. 4-6 50939 Cologne Germany
| | - Jenia Jitsev
- Julich Supercomputing Center, Forschungszentrum Jülich 52425 Jülich Germany
| | - Jasna Jankovic
- Department of Materials Science and Engineering, University of Connecticut 97 North Eagleville Road, Unit 3136 Storrs CT 06269-3136 USA
| | - Michael H Eikerling
- Theory and Computation of Energy Materials (IEK-13), Institute of Energy and Climate Research, Forschungszentrum Jülich GmbH 52425 Jülich Germany
- Chair of Theory and Computation of Energy Materials, Faculty of Georesources and Materials Engineering, RWTH Aachen University Aachen 52062 Germany
| | - Kourosh Malek
- Theory and Computation of Energy Materials (IEK-13), Institute of Energy and Climate Research, Forschungszentrum Jülich GmbH 52425 Jülich Germany
| |
Collapse
|
19
|
Chowdhury A, Bird A, Liu J, Zenyuk IV, Kusoglu A, Radke CJ, Weber AZ. Linking Perfluorosulfonic Acid Ionomer Chemistry and High-Current Density Performance in Fuel-Cell Electrodes. ACS APPLIED MATERIALS & INTERFACES 2021; 13:42579-42589. [PMID: 34490780 DOI: 10.1021/acsami.1c07611] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Transport phenomena are key in controlling the performance of electrochemical energy-conversion technologies and can be highly complex, involving multiple length scales and materials/phases. Material designs optimized for one reactant species transport however may inhibit other transport processes. We explore such trade-offs in the context of polymer-electrolyte fuel-cell electrodes, where ionomer thin films provide the necessary proton conductivity but retard oxygen transport to the Pt reaction site and cause interfacial resistance due to sulfonate/Pt interactions. We examine the electrode overall gas-transport resistance and its components as a function of ionomer content and chemistry. Low-equivalent-weight ionomers allow better dissolved-gas and proton transport due to greater water uptake and low crystallinity but also cause significant interfacial resistance due to the high density of sulfonic acid groups. These effects of equivalent weight are also observed via in situ ionic conductivity and CO displacement measurements. Of critical importance, the results are supported by ex situ ellipsometry and X-ray scattering of model thin-film systems, thereby providing direct linkages and applicability of model studies to probe complex heterogeneous structures. Structural and resultant performance changes in the electrode are shown to occur above a threshold sulfonic-group loading, highlighting the significance of ink-based interactions. Our findings and methodologies are applicable to a variety of solid-state energy-conversion devices and material designs.
Collapse
Affiliation(s)
- Anamika Chowdhury
- Energy Conversion Group, Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, California 94720, United States
| | - Ashley Bird
- Energy Conversion Group, Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, California 94720, United States
| | - Jiangjin Liu
- Energy Conversion Group, Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Iryna V Zenyuk
- Department of Chemical and Biomolecular Engineering, University of California Irvine, Irvine, California 92697, United States
| | - Ahmet Kusoglu
- Energy Conversion Group, Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Clayton J Radke
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, California 94720, United States
| | - Adam Z Weber
- Energy Conversion Group, Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
20
|
Gong Q, Li C, Liu Y, Ilavsky J, Guo F, Cheng X, Xie J. Effects of Ink Formulation on Construction of Catalyst Layers for High-Performance Polymer Electrolyte Membrane Fuel Cells. ACS APPLIED MATERIALS & INTERFACES 2021; 13:37004-37013. [PMID: 34323080 DOI: 10.1021/acsami.1c06711] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Rational design of catalyst layers in a membrane electrode assembly (MEA) is crucial for achieving high-performance polymer electrolyte membrane fuel cells. Establishing a clear understanding of the property (catalyst ink)-structure (catalyst layer)-performance (MEA) relationship lays the foundation for this rational design. In this work, a synergistic approach was taken to correlate the ink formulation, the microstructure of catalyst layers, and the resulting MEA performance to establish such a property-structure-performance relationship. The solvent composition (n-PA/H2O mixtures) demonstrated a strong influence on the performance of the MEA fabricated with an 830-EW (Aquivion) ionomer, especially polarization losses of cell activation and mass transport. The performance differences were studied in terms of how the solvent composition affects the catalyst/ionomer interface, ionomer network, and pore structure of the resulting catalyst layers. The ionomer aggregates mainly covered the surface of catalyst aggregates acting as oxygen reduction reaction active sites, and the aggregate sizes of the ionomer and catalyst (revealed by ultrasmall angle X-ray scattering and cryo-transmission electron microscopy) were dictated by tuning the solvent composition, which in turn determined the catalyst/ionomer interface (available active sites). In n-PA/H2O mixtures with 50∼90 wt % H2O, the catalyst agglomerates could be effectively broken up into small aggregates, leading to enhanced kinetic activities. The boiling point of the mixed solvents determined the pore structure of ultimate catalyst layers, as evidenced by mercury porosimetry and scanning electron microscopy. For mixed solvents with a higher boiling point, the catalyst-ionomer aggregates in the ink tend to agglomerate during the solvent evaporation process and finally form larger catalyst-ionomer aggregates in the ultimate catalyst layer, resulting in more secondary pores and thus lower mass transport resistance. Both the enlarged catalyst/ionomer interface and appropriate pore structure were achieved with the catalyst layer fabricated from an n-PA/H2O mixture with 90 wt % H2O, leading to the best MEA performance.
Collapse
Affiliation(s)
- Qing Gong
- Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen, Fujian 361005, China
- Department of Mechanical & Energy Engineering, Purdue School of Engineering and Technology, Indiana University-Purdue University, Indianapolis, Indiana 46202, United States
| | - Chenzhao Li
- Department of Mechanical & Energy Engineering, Purdue School of Engineering and Technology, Indiana University-Purdue University, Indianapolis, Indiana 46202, United States
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47906, United States
| | - Yadong Liu
- Department of Mechanical & Energy Engineering, Purdue School of Engineering and Technology, Indiana University-Purdue University, Indianapolis, Indiana 46202, United States
| | - Jan Ilavsky
- X-Ray Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Fei Guo
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, California 95616-8665, United States
| | - Xuan Cheng
- Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen, Fujian 361005, China
| | - Jian Xie
- Department of Mechanical & Energy Engineering, Purdue School of Engineering and Technology, Indiana University-Purdue University, Indianapolis, Indiana 46202, United States
| |
Collapse
|
21
|
Guo Y, Yang D, Li B, Yang D, Ming P, Zhang C. Effect of Dispersion Solvents and Ionomers on the Rheology of Catalyst Inks and Catalyst Layer Structure for Proton Exchange Membrane Fuel Cells. ACS APPLIED MATERIALS & INTERFACES 2021; 13:27119-27128. [PMID: 34086430 DOI: 10.1021/acsami.1c07070] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This study investigated the effects of the dielectric constant (ε) of a dispersion solvent and ionomer content on the rheology of graphitized carbon (GC)-supported Pt catalyst ink and the structure of catalyst layers (CLs). The ionomer dispersions and catalyst inks were tested using rheological techniques, zeta (ξ) potential, and dynamic light scattering measurements. Results showed that increases in the solvent ε or ionomer content increased the ξ-potential of catalyst particles in the ink, which reduced the catalyst agglomerate size. Steady-state and oscillation scans showed that the Pt/GC catalyst ink had shear-thinning properties and gel-like behavior. The ink with a solvent ε of 40 tended to be more Newtonian fluid, with low yield stress (σy). The ionomer content altered the rheology of the ink by changing the internal interaction of inks. Solvents with ε of 70 and 55 enhanced the adsorption of ionomers onto catalysts, thereby increasing the adhesion between ink particles and reducing the risk of CL cracking. As the ionomer content increased, the catalyst absorbed more ionomers in inks, increasing the fracture toughness of CLs, which reduced the crack width.
Collapse
Affiliation(s)
- Yuqing Guo
- School of Automotive Studies, Tongji University, Jiading Campus, 4800 Cao'an Road, Shanghai 201804, China
- Clean Energy Automotive Engineering Center, Tongji University, Jiading Campus, 4800 Cao'an Road, Shanghai 201804, China
| | - Daozeng Yang
- School of Automotive Studies, Tongji University, Jiading Campus, 4800 Cao'an Road, Shanghai 201804, China
- Clean Energy Automotive Engineering Center, Tongji University, Jiading Campus, 4800 Cao'an Road, Shanghai 201804, China
| | - Bing Li
- School of Automotive Studies, Tongji University, Jiading Campus, 4800 Cao'an Road, Shanghai 201804, China
- Clean Energy Automotive Engineering Center, Tongji University, Jiading Campus, 4800 Cao'an Road, Shanghai 201804, China
| | - Daijun Yang
- School of Automotive Studies, Tongji University, Jiading Campus, 4800 Cao'an Road, Shanghai 201804, China
- Clean Energy Automotive Engineering Center, Tongji University, Jiading Campus, 4800 Cao'an Road, Shanghai 201804, China
| | - Pingwen Ming
- School of Automotive Studies, Tongji University, Jiading Campus, 4800 Cao'an Road, Shanghai 201804, China
- Clean Energy Automotive Engineering Center, Tongji University, Jiading Campus, 4800 Cao'an Road, Shanghai 201804, China
| | - Cunman Zhang
- School of Automotive Studies, Tongji University, Jiading Campus, 4800 Cao'an Road, Shanghai 201804, China
- Clean Energy Automotive Engineering Center, Tongji University, Jiading Campus, 4800 Cao'an Road, Shanghai 201804, China
| |
Collapse
|
22
|
Gao X, Yamamoto K, Hirai T, Ohta N, Uchiyama T, Watanabe T, Imai H, Sugawara S, Shinohara K, Uchimoto Y. Impact of the Composition of Alcohol/Water Dispersion on the Proton Transport and Morphology of Cast Perfluorinated Sulfonic Acid Ionomer Thin Films. ACS OMEGA 2021; 6:14130-14137. [PMID: 34124435 PMCID: PMC8190810 DOI: 10.1021/acsomega.1c00607] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/13/2021] [Indexed: 06/12/2023]
Abstract
The dispersion of perfluorinated sulfonic acid ionomers in catalyst inks is an important factor that controls the performance of catalyst layers in membrane electrode assemblies of polymer electrolyte fuel cells. Herein, the effects of water/alcohol compositions on the morphological properties and proton transport are examined by grazing incidence small-angle X-ray scattering, grazing incidence wide-angle X-ray scattering, and electrochemical impedance spectroscopy. The thin films cast by a high water/alcohol ratio Nafion dispersion have high proton conductivity and well-defined hydrophilic/hydrophobic phase separation, which indicates that the proton conductivity and morphology of the Nafion thin films are strongly influenced by the state of dispersion. This finding is expected to further understand the morphology and proton transport properties of Nafion thin films with different water/alcohol ratios, which has implications for the performance of the Pt/Nafion interface.
Collapse
Affiliation(s)
- Xiao Gao
- Graduate
School of Human and Environmental Studies, Kyoto University, Yoshida nihonmatsu-cho, Sakyo-ku, Kyoto 606-8316, Japan
| | - Kentaro Yamamoto
- Graduate
School of Human and Environmental Studies, Kyoto University, Yoshida nihonmatsu-cho, Sakyo-ku, Kyoto 606-8316, Japan
| | - Tomoyasu Hirai
- Department
of Applied Chemistry, Osaka Institute of
Technology, 5-16-1 Ohmiya, Asahi-ku, Osaka 535-8585, Japan
| | - Noboru Ohta
- Japan
Synchrotron Radiation Research Institute (JASRI), Sayo-gun, Hyogo 679-5198, Japan
| | - Tomoki Uchiyama
- Graduate
School of Human and Environmental Studies, Kyoto University, Yoshida nihonmatsu-cho, Sakyo-ku, Kyoto 606-8316, Japan
| | - Toshiki Watanabe
- Graduate
School of Human and Environmental Studies, Kyoto University, Yoshida nihonmatsu-cho, Sakyo-ku, Kyoto 606-8316, Japan
| | - Hideto Imai
- Nissan
Analysis and Research Center, 1, Natsushima-cho, Yokosuka-shi, Kanagawa 237-8523, Japan
| | - Seiho Sugawara
- Fuel
Cell Cutting-Edge Research Center Technology Research Association, 2-3-26, Aomi, Koto-ku, Tokyo 135-0064, Japan
| | - Kazuhiko Shinohara
- Fuel
Cell Cutting-Edge Research Center Technology Research Association, 2-3-26, Aomi, Koto-ku, Tokyo 135-0064, Japan
| | - Yoshiharu Uchimoto
- Graduate
School of Human and Environmental Studies, Kyoto University, Yoshida nihonmatsu-cho, Sakyo-ku, Kyoto 606-8316, Japan
| |
Collapse
|
23
|
Kuo AT, Urata S, Nakabayashi K, Watabe H, Honmura S. Coarse-Grained Molecular Dynamics Simulation of Perfluorosulfonic Acid Polymer in Water–Ethanol Mixtures. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02364] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- An-Tsung Kuo
- Innovative Technology Laboratories, AGC Inc., Yokohama 230-0045, Japan
| | - Shingo Urata
- Innovative Technology Laboratories, AGC Inc., Yokohama 230-0045, Japan
| | | | - Hiroyuki Watabe
- Materials Integration Laboratories, AGC Inc., Yokohama 230-0045, Japan
| | - Satoru Honmura
- Materials Integration Laboratories, AGC Inc., Yokohama 230-0045, Japan
| |
Collapse
|
24
|
Giricheva NI, Ivanov SN, Ignatova AV, Fedorov MS, Girichev GV. The Effect of Intramolecular Hydrogen Bond Type on the Gas-Phase Deprotonation of ortho-Substituted Benzenesulfonic Acids. A Density Functional Theory Study. Molecules 2020; 25:E5806. [PMID: 33316963 PMCID: PMC7764180 DOI: 10.3390/molecules25245806] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/30/2020] [Accepted: 12/07/2020] [Indexed: 12/01/2022] Open
Abstract
Structural factors have been identified that determine the gas-phase acidity of ortho-substituted benzenesulfonic acid, 2-XC6H4-SO3H, (X = -SO3H, -COOH, -NO2, -SO2F, -C≡N, -NH2, -CH3, -OCH3, -N(CH3)2, -OH). The DFT/B3LYP/cc-pVTZ method was used to perform conformational analysis and study the structural features of the molecular and deprotonated forms of these compounds. It has been shown that many of the conformers may contain anintramolecular hydrogen bond (IHB) between the sulfonic group and the substituent, and the sulfonic group can be an IHB donor or an acceptor. The Gibbs energies of gas-phase deprotonation ΔrG0298 (kJ mol-1) were calculated for all compounds. It has been set that in ortho-substituted benzenesulfonic acids, the formation of various types of IHB is possible, having a significant effect on the ΔrG0298 values of gas-phase deprotonation. If the -SO3H group is the IHB donor, then an ion without an IHB is formed upon deprotonation, and the deprotonation energy increases. If this group is an IHB acceptor, then a significant decrease in ΔrG0298 of gas-phase deprotonation is observed due to an increase in IHB strength and the A- anion additional stabilization. A proton donor ability comparative characteristic of the -SO3H group in the studied ortho-substituted benzenesulfonic acids is given, and the ΔrG0298 energies are compared with the corresponding values of ortho-substituted benzoic acids.
Collapse
Affiliation(s)
- Nina I. Giricheva
- Department of Fundamental and Applied Chemistry, Ivanovo State University, 153025 Ivanovo, Russia; (S.N.I.); (A.V.I.); (M.S.F.)
| | - Sergey N. Ivanov
- Department of Fundamental and Applied Chemistry, Ivanovo State University, 153025 Ivanovo, Russia; (S.N.I.); (A.V.I.); (M.S.F.)
| | - Anastasiya V. Ignatova
- Department of Fundamental and Applied Chemistry, Ivanovo State University, 153025 Ivanovo, Russia; (S.N.I.); (A.V.I.); (M.S.F.)
| | - Mikhail S. Fedorov
- Department of Fundamental and Applied Chemistry, Ivanovo State University, 153025 Ivanovo, Russia; (S.N.I.); (A.V.I.); (M.S.F.)
| | - Georgiy V. Girichev
- Department of Physics, Ivanovo State University of Chemistry and Technology, 153000 Ivanovo, Russia;
| |
Collapse
|
25
|
Bui JC, Digdaya I, Xiang C, Bell AT, Weber AZ. Understanding Multi-Ion Transport Mechanisms in Bipolar Membranes. ACS APPLIED MATERIALS & INTERFACES 2020; 12:52509-52526. [PMID: 33169965 DOI: 10.1021/acsami.0c12686] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Bipolar membranes (BPMs) have the potential to become critical components in electrochemical devices for a variety of electrolysis and electrosynthesis applications. Because they can operate under large pH gradients, BPMs enable favorable environments for electrocatalysis at the individual electrodes. Critical to the implementation of BPMs in these devices is understanding the kinetics of water dissociation that occurs within the BPM as well as the co- and counter-ion crossover through the BPM, which both present significant obstacles to developing efficient and stable BPM-electrolyzers. In this study, a continuum model of multi-ion transport in a BPM is developed and fit to experimental data. Specifically, concentration profiles are determined for all ionic species, and the importance of a water-dissociation catalyst is demonstrated. The model describes internal concentration polarization and co- and counter-ion crossover in BPMs, determining the mode of transport for ions within the BPM and revealing the significance of salt-ion crossover when operated with pH gradients relevant to electrolysis and electrosynthesis. Finally, a sensitivity analysis reveals that the performance and lifetime of BPMs can be improved substantially by using of thinner dissociation catalysts, managing water transport, modulating the thickness of the individual layers in the BPM to control salt-ion crossover, and increasing the ion-exchange capacity of the ion-exchange layers in order to amplify the water-dissociation kinetics at the interface.
Collapse
Affiliation(s)
- Justin C Bui
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, California 94720, United States
- Joint Center for Artificial Photosynthesis, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Ibadillah Digdaya
- Joint Center for Artificial Photosynthesis, California Institute of Technology, Pasadena, California 91125, United States
| | - Chengxiang Xiang
- Joint Center for Artificial Photosynthesis, California Institute of Technology, Pasadena, California 91125, United States
| | - Alexis T Bell
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, California 94720, United States
- Joint Center for Artificial Photosynthesis, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Adam Z Weber
- Joint Center for Artificial Photosynthesis, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
26
|
Guo Y, Pan F, Chen W, Ding Z, Yang D, Li B, Ming P, Zhang C. The Controllable Design of Catalyst Inks to Enhance PEMFC Performance: A Review. ELECTROCHEM ENERGY R 2020. [DOI: 10.1007/s41918-020-00083-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
27
|
Khandavalli S, Iyer R, Park JH, Myers DJ, Neyerlin KC, Ulsh M, Mauger SA. Effect of Dispersion Medium Composition and Ionomer Concentration on the Microstructure and Rheology of Fe-N-C Platinum Group Metal-free Catalyst Inks for Polymer Electrolyte Membrane Fuel Cells. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:12247-12260. [PMID: 32970944 DOI: 10.1021/acs.langmuir.0c02015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We present an investigation of the microstructure and rheological behavior of catalyst inks consisting of Fe-N-C platinum group metal-free catalysts and a perfluorosulfonic acid ionomer in a dispersion medium (DM) of water and 1-propanol (nPA). The effects of the ionomer-to-catalyst (I/C) ratio and weight percentage of water (H2O %) in the DM on the ink microstructure were studied. Steady-shear and dynamic-oscillatory-shear rheology, in combination with synchrotron X-ray scattering, was utilized to understand interparticle interactions and the level of agglomeration of the inks. In the absence of the ionomer, the inks were significantly agglomerated, approaching a gel-like microstructure for catalyst concentrations as low as 2 wt %. The effect of H2O % in the DM on particle agglomeration was found to vary with particle concentration. In concentrated inks (≥2 wt % catalyst), increasing H2O % was found to increase agglomeration because of the hydrophobic nature of the catalysts. In dilute inks (<1 wt % catalyst), the trend was reversed with increasing H2O %, suggesting that electrostatic interactions are dominating the behavior. In inks with 5 wt % catalyst, the addition of an ionomer was found to significantly stabilize the catalyst against agglomeration. Maximum stability was observed at 0.35 I/C for all DM H2O % studied. At high ionomer concentrations (I/C > 0.35), interesting differences were observed between nPA-rich inks (H2O % ≤ 50%) and H2O-rich (82% H2O) inks. The nPA-rich inks remained predominantly stable-ink viscosity only weakly increased with I/C and the Newtonian behavior was maintained for I/C up to 0.9. In contrast, the H2O-rich inks exhibited a significant increase in viscoelasticity with increasing I/C, suggesting flocculation of the catalyst by the ionomer. These differences suggest that the nature of the interactions between the ionomer and catalyst is highly dependent on the H2O % in the DM.
Collapse
Affiliation(s)
- Sunilkumar Khandavalli
- Chemistry and Nanoscience Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Radhika Iyer
- Chemistry and Nanoscience Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Jae Hyung Park
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Deborah J Myers
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - K C Neyerlin
- Chemistry and Nanoscience Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Michael Ulsh
- Chemistry and Nanoscience Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Scott A Mauger
- Chemistry and Nanoscience Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| |
Collapse
|
28
|
Mabuchi T, Huang S, Tokumasu T. Nafion Ionomer Dispersion in Mixtures of 1‐Propanol and Water Based on the Martini Coarse‐Grained Model. JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1002/pol.20190101] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Takuya Mabuchi
- Frontier Research Institute for Interdisciplinary SciencesTohoku University 2‐1‐1 Katahira Aoba‐ku, Sendai Miyagi 980‐8577 Japan
- Institute of Fluid ScienceTohoku University 2‐1‐1 Katahira Aoba‐ku, Sendai Miyagi 980‐8577 Japan
| | - Sheng‐Feng Huang
- Institute of Fluid ScienceTohoku University 2‐1‐1 Katahira Aoba‐ku, Sendai Miyagi 980‐8577 Japan
| | - Takashi Tokumasu
- Institute of Fluid ScienceTohoku University 2‐1‐1 Katahira Aoba‐ku, Sendai Miyagi 980‐8577 Japan
| |
Collapse
|
29
|
Sun S, Chen Q, Song Q. Formation and phase evolution of calcium phosphates modulated by ion exchange ionomer Nafion. CrystEngComm 2020. [DOI: 10.1039/d0ce01108h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The phase transition of calcium phosphates regulated by Nafion with the inherent acidity and ion exchange features.
Collapse
Affiliation(s)
- Shuquan Sun
- International Research Center for Photoresponsive Molecules and Materials
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi
- P.R.China
| | - Qixuan Chen
- International Research Center for Photoresponsive Molecules and Materials
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi
- P.R.China
| | - Qijun Song
- International Research Center for Photoresponsive Molecules and Materials
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi
- P.R.China
| |
Collapse
|
30
|
Tarokh A, Karan K, Ponnurangam S. Atomistic MD Study of Nafion Dispersions: Role of Solvent and Counterion in the Aggregate Structure, Ionic Clustering, and Acid Dissociation. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01663] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Atefeh Tarokh
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Kunal Karan
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Sathish Ponnurangam
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
31
|
Van Cleve T, Khandavalli S, Chowdhury A, Medina S, Pylypenko S, Wang M, More KL, Kariuki N, Myers DJ, Weber AZ, Mauger SA, Ulsh M, Neyerlin KC. Dictating Pt-Based Electrocatalyst Performance in Polymer Electrolyte Fuel Cells, from Formulation to Application. ACS APPLIED MATERIALS & INTERFACES 2019; 11:46953-46964. [PMID: 31742376 DOI: 10.1021/acsami.9b17614] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In situ electrochemical diagnostics designed to probe ionomer interactions with platinum and carbon were applied to relate ionomer coverage and conformation, gleaned from anion adsorption data, with O2 transport resistance for low-loaded (0.05 mgPt cm-2) platinum-supported Vulcan carbon (Pt/Vu)-based electrodes in a polymer electrolyte fuel cell. Coupling the in situ diagnostic data with ex situ characterization of catalyst inks and electrode structures, the effect of ink composition is explained by both ink-level interactions that dictate the electrode microstructure during fabrication and the resulting local ionomer distribution near catalyst sites. Electrochemical techniques (CO displacement and ac impedance) show that catalyst inks with higher water content increase ionomer (sulfonate) interactions with Pt sites without significantly affecting ionomer coverage on the carbon support. Surprisingly, the higher anion adsorption is shown to have a minor impact on specific activity, while exhibiting a complex relationship with oxygen transport. Ex situ characterization of ionomer suspensions and catalyst/ionomer inks indicates that the lower ionomer coverage can be correlated with the formation of large ionomer aggregates and weaker ionomer/catalyst interactions in low-water content inks. These larger ionomer aggregates resulted in increased local oxygen transport resistance, namely, through the ionomer film, and reduced performance at high current density. In the water-rich inks, the ionomer aggregate size decreases, while stronger ionomer/Pt interactions are observed. The reduced ionomer aggregation improves transport resistance through the ionomer film, while the increased adsorption leads to the emergence of resistance at the ionomer/Pt interface. Overall, the high current density performance is shown to be a nonmonotonic function of ink water content, scaling with the local gas (H2, O2) transport resistance resulting from pore, thin film, and interfacial phenomena.
Collapse
Affiliation(s)
- Tim Van Cleve
- Chemistry and Nanoscience Center , National Renewable Energy Laboratory , Golden , Colorado 80401 , United States
| | - Sunilkumar Khandavalli
- Chemistry and Nanoscience Center , National Renewable Energy Laboratory , Golden , Colorado 80401 , United States
| | - Anamika Chowdhury
- Energy Conversion Group, Energy Technologies Area , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
- Department of Chemical and Biomolecular Engineering , University of California , Berkeley , California 94720 , United States
| | - Samantha Medina
- Colorado School of Mines , Golden , Colorado 80401 , United States
| | - Svitlana Pylypenko
- Chemistry and Nanoscience Center , National Renewable Energy Laboratory , Golden , Colorado 80401 , United States
- Colorado School of Mines , Golden , Colorado 80401 , United States
| | - Min Wang
- Chemistry and Nanoscience Center , National Renewable Energy Laboratory , Golden , Colorado 80401 , United States
| | - Karren L More
- Oak Ridge National Laboratory , Oak Ridge , Tennessee 37830 , United States
| | - Nancy Kariuki
- Argonne National Laboratory , Lemont , Illinois 60439 , United States
| | - Deborah J Myers
- Argonne National Laboratory , Lemont , Illinois 60439 , United States
| | - Adam Z Weber
- Energy Conversion Group, Energy Technologies Area , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Scott A Mauger
- Chemistry and Nanoscience Center , National Renewable Energy Laboratory , Golden , Colorado 80401 , United States
| | - Michael Ulsh
- Chemistry and Nanoscience Center , National Renewable Energy Laboratory , Golden , Colorado 80401 , United States
| | - K C Neyerlin
- Chemistry and Nanoscience Center , National Renewable Energy Laboratory , Golden , Colorado 80401 , United States
| |
Collapse
|
32
|
Khandavalli S, Park JH, Kariuki NN, Zaccarine SF, Pylypenko S, Myers DJ, Ulsh M, Mauger SA. Investigation of the Microstructure and Rheology of Iridium Oxide Catalyst Inks for Low-Temperature Polymer Electrolyte Membrane Water Electrolyzers. ACS APPLIED MATERIALS & INTERFACES 2019; 11:45068-45079. [PMID: 31697470 DOI: 10.1021/acsami.9b14415] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We present an investigation of the structure and rheological behavior of catalyst inks for low-temperature polymer electrolyte membrane water electrolyzers. The ink consists of iridium oxide (IrO2) catalyst particles and a Nafion ionomer dispersed in a mixture of 1-propanol and water. The effects of ionomer concentration and catalyst concentration on the microstructure of the catalyst ink were studied. Studies on dilute inks (0.1 wt % IrO2) using zeta potential and dynamic light scattering measurements indicated a strong adsorption of the ionomer onto the catalyst particles which resulted in an increase in the ζ-potential and the z-average diameter. Steady-shear and dynamic-oscillatory-shear rheological measurements of concentrated IrO2 dispersions (35 wt % IrO2) indicated that the particles are strongly agglomerated in the absence of the ionomer. The addition of even a small amount of the ionomer (2.4 wt % with respect to total solids) caused the rheology to transition from shear thinning to Newtonian because of the reduction in agglomerated structure due to stabilization of the aggregates by the ionomer, consistent with the behavior of dilute inks. At intermediate ionomer loadings, between 2.4 and 9 wt %, the viscosity increased with increasing ionomer wt %, though remained Newtonian, predominantly due to the increasing ionomer volume fraction in the ink. For ionomer loadings greater than 9 wt %, the particles were found to be flocculated, likely induced by a dispersed ionomer. The flocculated inks exhibited strong shear-thinning and gel-like behaviors in steady-shear and oscillatory-shear rheology. The onset of flocculation was found to be sensitive to the catalyst concentration, where below 35 wt % of IrO2, flocculation was not observed. The rheological observations were further verified by ultra-small-angle X-ray scattering.
Collapse
Affiliation(s)
- Sunilkumar Khandavalli
- Chemistry and Nanoscience Center , National Renewable Energy Laboratory , Golden , Colorado 80401 , United States
| | - Jae Hyung Park
- Chemical Sciences and Engineering Division , Argonne National Laboratory , Lemont , Illinois 60439 , United States
| | - Nancy N Kariuki
- Chemical Sciences and Engineering Division , Argonne National Laboratory , Lemont , Illinois 60439 , United States
| | - Sarah F Zaccarine
- Department of Chemistry , Colorado School of Mines , Golden , Colorado 80401 , United States
| | - Svitlana Pylypenko
- Department of Chemistry , Colorado School of Mines , Golden , Colorado 80401 , United States
| | - Deborah J Myers
- Chemical Sciences and Engineering Division , Argonne National Laboratory , Lemont , Illinois 60439 , United States
| | - Michael Ulsh
- Chemistry and Nanoscience Center , National Renewable Energy Laboratory , Golden , Colorado 80401 , United States
| | - Scott A Mauger
- Chemistry and Nanoscience Center , National Renewable Energy Laboratory , Golden , Colorado 80401 , United States
| |
Collapse
|
33
|
Pramounmat N, Loney CN, Kim C, Wiles L, Ayers KE, Kusoglu A, Renner JN. Controlling the Distribution of Perfluorinated Sulfonic Acid Ionomer with Elastin-like Polypeptide. ACS APPLIED MATERIALS & INTERFACES 2019; 11:43649-43658. [PMID: 31644259 DOI: 10.1021/acsami.9b11160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Proton-exchange-membrane (PEM)-based devices are promising technologies for hydrogen production and electricity generation. Currently, the amount of expensive platinum catalyst used in these devices must be reduced to be cost-competitive with other technologies. These devices typically contain Nafion ionomer thin films in the catalyst layers, which are responsible for transporting protons and gaseous species to and from electrochemically active sites. The morphology of the Nafion ionomer thin films in the catalyst layers with reduced platinum loading is impacted by interactions with the catalyst and the confinement to nanometer thicknesses, which leads to performance losses in PEM-based devices. In this study, an elastin-like polypeptide (ELP) is designed to modulate the morphology of Nafion ionomer on platinum surfaces. The ELP shows an ability to assemble into a monolayer on platinum and change the ionomer interaction with platinum, thereby modifying its thin-film structure and improving the Nafion ionomer coverage. As a proof of concept, an ELP-modified catalyst ink was prepared and morphological differences were observed. Overall, we discovered an engineered ELP that can modulate the ionomer-catalyst interface in the electrodes of PEM-based devices.
Collapse
Affiliation(s)
- Nuttanit Pramounmat
- Department of Chemical and Biomolecular Engineering , Case Western Reserve University , Cleveland , Ohio 44106 , United States
| | - Charles N Loney
- Department of Chemical and Biomolecular Engineering , Case Western Reserve University , Cleveland , Ohio 44106 , United States
| | - ChulOong Kim
- Department of Chemical and Biomolecular Engineering , Case Western Reserve University , Cleveland , Ohio 44106 , United States
| | - Luke Wiles
- Nel Hydrogen Inc. , 10 Technology Drive , Wallingford , Connecticut 06492 , United States
| | - Katherine E Ayers
- Nel Hydrogen Inc. , 10 Technology Drive , Wallingford , Connecticut 06492 , United States
| | - Ahmet Kusoglu
- Energy Conversion Group, Energy Technologies Area , Lawrence Berkeley National Laboratory , 1 Cyclotron Road, MS70-108B , Berkeley , California 94720 , United States
| | - Julie N Renner
- Department of Chemical and Biomolecular Engineering , Case Western Reserve University , Cleveland , Ohio 44106 , United States
| |
Collapse
|
34
|
Dudenas PJ, Kusoglu A. Evolution of Ionomer Morphology from Dispersion to Film: An in Situ X-ray Study. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01024] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Peter J. Dudenas
- Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, California 94720, United States
- Energy Conversion Group, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Ahmet Kusoglu
- Energy Conversion Group, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
35
|
Abstract
It has been well-established that effects such as cracking are observable when wet layers are dried. In particular, the layer thickness, as well as the surface tension of the liquid, is responsible for this behavior. The layer formation of polymer electrolyte fuel cells and electrolyzer electrodes, however, has not yet been analyzed in relation to these issues, even though the effect of cracks on cell performance and durability has been frequently discussed. In this paper, water propanol polymer-containing carbon-black dispersions are analyzed in situ with regard to their composition during drying. We demonstrate that crack behavior can be steered by slight variations in the initial dispersion when the solvent mixture is near the dynamic azeotropic point. This minor adjustment may strongly affect the drying behavior, leading to either propanol or water-enriched liquid phases at the end of the drying process. If the evaporation of the solvent results in propanol enrichment, the critical layer thickness at which cracks occur will be increased by about 30% due to a decrease in the capillary pressure. Microscopic images indicate that the crack area ratio and width depend on the wet layer thickness and initial liquid phase composition. These results are of much value for future electrode fabrication, as cracks affect electrode properties.
Collapse
|