1
|
Bhakat A, Dey U, Chattopadhyay A. Room-Temperature Persistent Phosphorescence of Aggregated Gold Nanoclusters under Molecular Crystal Confinements. J Phys Chem Lett 2024; 15:8151-8160. [PMID: 39092964 DOI: 10.1021/acs.jpclett.4c01352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
We report color-tunable and solvent-processable persistent fluorescence to phosphorescence switching at room temperature by doping gold nanoclusters (AuNCs) inside molecular crystals. This provides a significant insight into the tunability of the photoluminescence property of the dopant depending on the crystal environment and compactness of confinement, with the possibility of energy transfer from crystal to aggregated AuNCs. For test cases, we have doped histidine-stabilized AuNCs (HIS-AuNCs) inside histidine (HIS-AuNCs-HIS) and isophthalic acid (HIS-AuNCs-IPA) crystals, respectively, and glutathione-stabilized AuNCs (GSH-AuNCs) inside histidine crystals (GSH-AuNCs-HIS). The maximal phosphorescence decay time recorded for crystal doped aggregated AuNCs was 9.38 ms, and the photoluminescence quantum yield value was measured as 25%. The possible energy states and potential interactions between aggregated NCs and host crystals were accounted for through density functional theory calculations and docking techniques, respectively. This finding opens new possibilities for designing and producing color-tunable persistent AuNC-based luminous crystals for multilayer information encryption, display, and biological applications.
Collapse
Affiliation(s)
- Arin Bhakat
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Ujjala Dey
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Arun Chattopadhyay
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| |
Collapse
|
2
|
Ivancevic MR, Wisch JA, Burlingame QC, Rand BP, Loo YL. A General Approach to Activate Second-Scale Room Temperature Photoluminescence in Organic Small Molecules. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402478. [PMID: 38970534 DOI: 10.1002/adma.202402478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 06/14/2024] [Indexed: 07/08/2024]
Abstract
Organic small molecules that exhibit second-scale phosphorescence at room temperature are of interest for potential applications in sensing, anticounterfeiting, and bioimaging. However, such materials systems are uncommon-requiring millisecond to second-scale triplet lifetimes, efficient intersystem crossing, and slow rates of nonradiative recombination. Here, a simple and scalable approach is demonstrated to activate long-lived phosphorescence in a wide variety of molecules by suspending them in rigid polymer hosts and annealing them above the polymer's glass transition temperature. This process produces submicron aggregates of the chromophore, which suppresses intramolecular motion that leads to nonradiative recombination and minimizes triplet-triplet annihilation that quenches phosphorescence in larger aggregates. In some cases, evidence of excimer-mediated intersystem crossing that enhances triplet generation in aggregated chromophores is found. In short, this approach circumvents the current design rules for long-lived phosphors, which will streamline their discovery and development.
Collapse
Affiliation(s)
- Marko R Ivancevic
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, 08544, USA
| | - Jesse A Wisch
- Department of Electrical and Computer Engineering, Princeton University, Princeton, NJ, 08544, USA
| | - Quinn C Burlingame
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, 08544, USA
| | - Barry P Rand
- Department of Electrical and Computer Engineering, Princeton University, Princeton, NJ, 08544, USA
- Andlinger Center for Energy and the Environment, Princeton University, Princeton, NJ, 08544, USA
| | - Yueh-Lin Loo
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, 08544, USA
| |
Collapse
|
3
|
Thomas H, Achenbach T, Hodgkinson IM, Spoerer Y, Kuehnert I, Dornack C, Schellhammer KS, Reineke S. Room Temperature Phosphorescence from Natural, Organic Emitters and Their Application in Industrially Compostable Programmable Luminescent Tags. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310674. [PMID: 38581239 DOI: 10.1002/adma.202310674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 03/21/2024] [Indexed: 04/08/2024]
Abstract
Organic semiconductors provide the potential of biodegradable technologies, but prototypes do only rarely exist. Transparent, ultrathin programmable luminescent tags (PLTs) are presented for minimalistic yet efficient information storage that are fully made from biodegradable or at least industrially compostable, ready-to-use materials (bioPLTs). As natural emitters, the quinoline alkaloids show sufficient room temperature phosphorescence when being embedded in polymer matrices with cinchonine exhibiting superior performance. Polylactic acid provides a solution for both the matrix material and the flexible substrate. Room temperature phosphorescence can be locally controlled by the oxygen concentration in the film by using Exceval as additional oxygen blocking layers. These bioPLTs exhibit all function-defining characteristics also found in their regular nonenvironmentally degradable analogs and, additionally, provide a simplified, high-contrast readout under continuous-wave illumination as a consequence of the unique luminescence properties of the natural emitter cinchonine. Limitations for flexible devices arise from limited thermal stability of the polylactic acid foil used as substrate allowing only for one writing cycle and preventing an annealing step during fabrication. Few-cycle reprogramming is possible when using the architecture of the bioPLTs on regular quartz substrates. This work realizes the versatile platform of PLTs with less harmful materials offering more sustainable use in future.
Collapse
Affiliation(s)
- Heidi Thomas
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP), Technische Universität Dresden, Hermann-Krone-Bau, Nöthnitzer Str. 61, 01187, Dresden, Germany
| | - Tim Achenbach
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP), Technische Universität Dresden, Hermann-Krone-Bau, Nöthnitzer Str. 61, 01187, Dresden, Germany
| | - Isla Marie Hodgkinson
- Chair of Waste Management and Circular Economy, Technische Universität Dresden, Pratzschwitzer Str. 15, 01796, Pirna, Germany
| | - Yvonne Spoerer
- Department Processing Technology, Institute of Polymer Materials, Leibniz-Institut fuer Polymerforschung Dresden e.V., Hohe Straße 6, 01069, Dresden, Germany
| | - Ines Kuehnert
- Department Processing Technology, Institute of Polymer Materials, Leibniz-Institut fuer Polymerforschung Dresden e.V., Hohe Straße 6, 01069, Dresden, Germany
| | - Christina Dornack
- Chair of Waste Management and Circular Economy, Technische Universität Dresden, Pratzschwitzer Str. 15, 01796, Pirna, Germany
| | - Karl Sebastian Schellhammer
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP), Technische Universität Dresden, Hermann-Krone-Bau, Nöthnitzer Str. 61, 01187, Dresden, Germany
| | - Sebastian Reineke
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP), Technische Universität Dresden, Hermann-Krone-Bau, Nöthnitzer Str. 61, 01187, Dresden, Germany
| |
Collapse
|
4
|
Lee S, Karkee R, Ben-Akacha A, Luong D, Vellore Winfred JSR, Lin X, Strubbe DA, Ma B. One-dimensional organic metal halide nanoribbons with dual emission. Chem Commun (Camb) 2023; 59:3711-3714. [PMID: 36896804 DOI: 10.1039/d3cc00044c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Organic metal halide hybrids with low-dimensional structures at the molecular level have received great attention recently for their exceptional structural tunability and unique photophysical properties. Here we report for the first time the synthesis and characterization of a one-dimensional (1D) organic metal halide hybrid, which contains metal halide nanoribbons with a width of three octahedral units. It is found that this material with a chemical formula C8H28N5Pb3Cl11 shows a dual emission with a photoluminescence quantum efficiency (PLQE) of around 25%. Photophysical studies and density functional theory (DFT) calculations suggest the coexisting of delocalized free excitons and localized self-trapped excitons in metal halide nanoribbons leading to the dual emission.
Collapse
Affiliation(s)
- Sujin Lee
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida, 32306, USA.
| | - Rijan Karkee
- Department of Physics, University of California, Merced, Merced, CA, 95343, USA.
| | - Azza Ben-Akacha
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida, 32306, USA.
| | - Derek Luong
- Department of Biology Science, Florida State University, Tallahassee, Florida, 32306, USA
| | - J S Raaj Vellore Winfred
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida, 32306, USA.
| | - Xinsong Lin
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida, 32306, USA.
| | - David A Strubbe
- Department of Physics, University of California, Merced, Merced, CA, 95343, USA.
| | - Biwu Ma
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida, 32306, USA.
| |
Collapse
|
5
|
Willeford K. The Luminescence Hypothesis of Olfaction. SENSORS (BASEL, SWITZERLAND) 2023; 23:1333. [PMID: 36772376 PMCID: PMC9919928 DOI: 10.3390/s23031333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/12/2023] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
A new hypothesis for the mechanism of olfaction is presented. It begins with an odorant molecule binding to an olfactory receptor. This is followed by the quantum biology event of inelastic electron tunneling as has been suggested with both the vibration and swipe card theories. It is novel in that it is not concerned with the possible effects of the tunneled electrons as has been discussed with the previous theories. Instead, the high energy state of the odorant molecule in the receptor following inelastic electron tunneling is considered. The hypothesis is that, as the high energy state decays, there is fluorescence luminescence with radiative emission of multiple photons. These photons pass through the supporting sustentacular cells and activate a set of olfactory neurons in near-simultaneous timing, which provides the temporal basis for the brain to interpret the required complex combinatorial coding as an odor. The Luminescence Hypothesis of Olfaction is the first to present the necessity of or mechanism for a 1:3 correspondence of odorant molecule to olfactory nerve activations. The mechanism provides for a consistent and reproducible time-based activation of sets of olfactory nerves correlated to an odor. The hypothesis has a biological precedent: an energy feasibility assessment is included, explaining the anosmia seen with COVID-19, and can be confirmed with existing laboratory techniques.
Collapse
Affiliation(s)
- Kenneth Willeford
- Coastal Carolinas Integrated Medicine, 10 Doctors Circle, STE 2, Supply, NC 28462, USA
| |
Collapse
|
6
|
Behera SK, Park SY, Gierschner J. Duale Emission: Klassen, Mechanismen und Bedingungen. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202009789] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Santosh Kumar Behera
- Madrid Institute for Advanced Studies IMDEA Nanociencia Ciudad Universitaria de Cantoblanco C/ Faraday 9 28049 Madrid Spanien
| | - Soo Young Park
- Laboratory of Supramolecular Optoelectronic Materials and Research Institute of Advanced Materials (RIAM) Department of Materials Science and Engineering Seoul National University ENG 445 Seoul 08826 Korea
| | - Johannes Gierschner
- Madrid Institute for Advanced Studies IMDEA Nanociencia Ciudad Universitaria de Cantoblanco C/ Faraday 9 28049 Madrid Spanien
| |
Collapse
|
7
|
Abstract
Two-photon Phosphorescence Lifetime Microscopy (2PLM) is an emerging nonlinear optical technique that has great potential to improve our understanding of the basic biology underlying human health and disease. Although analogous to 2-photon Fluorescence Lifetime Imaging Microscopy (2P-FLIM), the contrast in 2PLM is fundamentally different from various intensity-based forms of imaging since it is based on the lifetime of an excited state and can be regarded as a "functional imaging" technique. 2PLM signal originates from the deactivation of the excited triplet state (phosphorescence) [1, 2]. Typically, this triplet state is a much longer-lived excited state than the singlet excited state resulting in phosphorescence emission times of microseconds to milliseconds at room temperature as opposed to nanoseconds for fluorescence emission [3]. The long-lived nature of the triplet state makes it highly sensitive to quenching molecules in the surrounding environment such as biomolecular oxygen (O2). Therefore, 2PLM can provide not only information on the distribution pattern of the probe in the sample (via intensity) but also determine the local oxygen tension (via phosphorescence lifetime quenching) [1]. The ability to create three-dimensional optical sections in the plane of focus within a thick biological specimen while maintaining relatively low phototoxicity due to the use of near-infrared wavelengths for two-photon excitation gives 2PLM powerful advantages over other techniques for longitudinal imaging and monitoring of oxygen within living organisms [4]. In this chapter, we will provide background on the development of 2PLM, discuss the most common oxygen sensing measurement methods and concepts, and explain the general principles and optical configuration of a 2PLM system. We also discuss the key characteristics and strategies for improvement of the technique. Finally, we will present an overview of the current primary scientific literature of how 2PLM has been used for oxygen sensing in biological applications and how this technique is improving our understanding of the basic biology underlying several areas of human health.
Collapse
|
8
|
Thomas H, Fries F, Gmelch M, Bärschneider T, Kroll M, Vavaleskou T, Reineke S. Purely Organic Microparticles Showing Ultralong Room Temperature Phosphorescence. ACS OMEGA 2021; 6:13087-13093. [PMID: 34056458 PMCID: PMC8158833 DOI: 10.1021/acsomega.1c00785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/09/2021] [Indexed: 06/12/2023]
Abstract
Currently, organic phosphorescent particles are heavily used in sensing and imaging. Up to now, most of these particles contain poisonous and/or expensive metal complexes. Environmentally friendly systems are therefore highly desired. A purely amorphous system consisting of poly(methyl methacrylate) particles with incorporated N,N,N',N'-tetrakis(4-carboxyphenyl)benzidine emitter molecules is presented in this work. Single particles with sizes between 400 and 840 nm show-depending on the environment-bright fluorescence and phosphorescence. The latter is observed when oxygen is not in the proximity of the emitting dye molecules. These particles can scavenge singlet oxygen, which is produced during the photoexcitation process, by incorporating it into the polymer matrix. This renders their use to be unharmful for the surrounding matter with possible application in marking schemes for living bodies.
Collapse
Affiliation(s)
- Heidi Thomas
- Technische
Universität Dresden, Dresden Integrated Center for Applied
Physics and Photonic Materials (IAPP), Nöthnitzer Str. 61, 01187 Dresden, Germany
| | - Felix Fries
- Technische
Universität Dresden, Dresden Integrated Center for Applied
Physics and Photonic Materials (IAPP), Nöthnitzer Str. 61, 01187 Dresden, Germany
| | - Max Gmelch
- Technische
Universität Dresden, Dresden Integrated Center for Applied
Physics and Photonic Materials (IAPP), Nöthnitzer Str. 61, 01187 Dresden, Germany
| | - Toni Bärschneider
- Technische
Universität Dresden, Dresden Integrated Center for Applied
Physics and Photonic Materials (IAPP), Nöthnitzer Str. 61, 01187 Dresden, Germany
| | - Martin Kroll
- Technische
Universität Dresden, Dresden Integrated Center for Applied
Physics and Photonic Materials (IAPP), Nöthnitzer Str. 61, 01187 Dresden, Germany
| | - Thaleia Vavaleskou
- Johann
Wolfgang Goethe-Universität Frankfurt am Main, Institut für
Anorganische und Analytische Chemie, Max-von-Laue-Straße 7, 60438 Frankfurt am Main, Germany
| | - Sebastian Reineke
- Technische
Universität Dresden, Dresden Integrated Center for Applied
Physics and Photonic Materials (IAPP), Nöthnitzer Str. 61, 01187 Dresden, Germany
| |
Collapse
|
9
|
Cui X, Shi W, Lu C. Control of Multicolor and White Emission by Triplet Energy Transfer. J Phys Chem A 2021; 125:4209-4215. [PMID: 33977714 DOI: 10.1021/acs.jpca.1c00569] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A new strategy by manipulating the progress of triplet energy transfer (TET) is developed to realize adjustable multicolor and pure white emission. Donor phosphorescent molecules emits light when encapsulated into polyvinyl alcohol (PVA) through hydrogen bond interactions, and acceptor fluorescent molecules emits light when doped into PVA through cation-π interactions and hydrogen bond interactions. In addition, the triplet to singlet energy transfer process and mechanism are proved using the energy diagram and lifetime. The broadband emission color of the obtained composite film can be easily modulated by simply adjusting the amount and component of dyes, especially the white emission with CIE coordinates of (0.339, 0.337). This work provides a facile and versatile method for the development of multicolor and pure white-light-emitting diodes, which uses the interactions to light up luminescence properties, and can further aid in the wide development of applications for TET in various other fields.
Collapse
Affiliation(s)
- Xingyu Cui
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Wenying Shi
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chao Lu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
10
|
Shimizu M, Sakurai T. Metal-Free Organic Luminophores that Exhibit Dual Fluorescence and Phosphorescence Emission at Room Temperature. Chempluschem 2021; 86:446-459. [PMID: 33689234 DOI: 10.1002/cplu.202000783] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/02/2021] [Indexed: 01/24/2023]
Abstract
Dual-fluorescent-phosphorescent compounds have attracted increasing attention in various fields, such as bio-imaging, data protection/encryption, ratiometric luminescence sensing, and white-light emission. Conventional dual-emissive compounds contain a phosphorescent organometallic complex of a precious metal, such as iridium or platinum. However, the use of precious metals in organic materials has several drawbacks. This Minireview focuses on precious-metal-free organic light-emitting materials that exhibit dual fluorescence and phosphorescence emission in the solid state at room temperature to produce bimodal steady-state emission spectra. The dual emitters presented herein are categorized into the following six compound classes: (1) difluoroboron diaroylmethanes, (2) diarylketones, (3) diarylsulfones, (4) triazines and pyrimidines, (5) fused phenazines, and (6) N-arylcarbazoles.
Collapse
Affiliation(s)
- Masaki Shimizu
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, 1 Hashikami-cho, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Tsuneaki Sakurai
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, 1 Hashikami-cho, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| |
Collapse
|
11
|
Fattal H, Creason TD, Delzer CJ, Yangui A, Hayward JP, Ross BJ, Du MH, Glatzhofer DT, Saparov B. Zero-Dimensional Hybrid Organic-Inorganic Indium Bromide with Blue Emission. Inorg Chem 2021; 60:1045-1054. [PMID: 33397099 DOI: 10.1021/acs.inorgchem.0c03164] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Low-dimensional hybrid organic-inorganic metal halides have received increased attention because of their outstanding optical and electronic properties. However, the most studied hybrid compounds contain lead and have long-term stability issues, which must be addressed for their use in practical applications. Here, we report a new zero-dimensional hybrid organic-inorganic halide, RInBr4, featuring photoemissive trimethyl(4-stilbenyl)methylammonium (R+) cations and nonemissive InBr4- tetrahedral anions. The crystal structure of RInBr4 is composed of alternating layers of inorganic anions and organic cations along the crystallographic a axis. The resultant hybrid demonstrates bright-blue emission with Commission Internationale de l'Eclairage color coordinates of (0.19, 0.20) and a high photoluminescence quantum yield (PLQY) of 16.36% at room temperature, a 2-fold increase compared to the PLQY of 8.15% measured for the precursor organic salt RBr. On the basis of our optical spectroscopy and computational work, the organic component is responsible for the observed blue emission of the hybrid material. In addition to the enhanced light emission efficiency, the novel hybrid indium bromide demonstrates significantly improved environmental stability. These findings may pave the way for the consideration of hybrid organic In(III) halides for light emission applications.
Collapse
Affiliation(s)
- Hadiah Fattal
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Tielyr D Creason
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Cordell J Delzer
- Department of Nuclear Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Aymen Yangui
- Chemical Physics and NanoLund, Lund University, P.O. Box 124, Lund 22100, Sweden
| | - Jason P Hayward
- Department of Nuclear Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Bradley J Ross
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Mao-Hua Du
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Daniel T Glatzhofer
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Bayrammurad Saparov
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| |
Collapse
|
12
|
Behera SK, Park SY, Gierschner J. Dual Emission: Classes, Mechanisms, and Conditions. Angew Chem Int Ed Engl 2020; 60:22624-22638. [PMID: 32783293 DOI: 10.1002/anie.202009789] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/10/2020] [Indexed: 12/28/2022]
Abstract
There has been much interest in dual-emission materials in the past few years for materials and life science applications; however, a systematic overview of the underlying processes is so-far missing. We resolve this issue herein by classifying dual-emission (DE) phenomena as relying on one emitter with two emitting states (DE1), two independent emitters (DE2), or two correlated emitters (DE3). Relevant DE mechanisms for materials science are then briefly described together with the electronic and/or geometrical conditions under which they occur. For further reading, references are given that offer detailed insight into the complex mechanistic aspects of the various DE processes or provide overviews on materials families or their applications. By avoiding ambiguities and misinterpretations, this systematic, insightful Review might inspire future targeted designs of DE materials.
Collapse
Affiliation(s)
- Santosh Kumar Behera
- Madrid Institute for Advanced Studies, IMDEA Nanociencia, Ciudad Universitaria de Cantoblanco, C/ Faraday 9, 28049, Madrid, Spain
| | - Soo Young Park
- Laboratory of Supramolecular Optoelectronic Materials and Research Institute of Advanced Materials (RIAM), Department of Materials Science and Engineering, Seoul National University, ENG 445, Seoul, 08826, Korea
| | - Johannes Gierschner
- Madrid Institute for Advanced Studies, IMDEA Nanociencia, Ciudad Universitaria de Cantoblanco, C/ Faraday 9, 28049, Madrid, Spain
| |
Collapse
|
13
|
Shimizu M, Nagano S, Kinoshita T. Dual Emission from Precious Metal‐Free Luminophores Consisting of C, H, O, Si, and S/P at Room Temperature. Chemistry 2020; 26:5162-5167. [DOI: 10.1002/chem.201905820] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 01/15/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Masaki Shimizu
- Faculty of Molecular Chemistry and EngineeringKyoto Institute of Technology 1 Hashikami-cho, Matsugasaki, Sakyo-ku Kyoto 606-8585 Japan
| | - Sho Nagano
- Faculty of Molecular Chemistry and EngineeringKyoto Institute of Technology 1 Hashikami-cho, Matsugasaki, Sakyo-ku Kyoto 606-8585 Japan
| | - Takumi Kinoshita
- Faculty of Molecular Chemistry and EngineeringKyoto Institute of Technology 1 Hashikami-cho, Matsugasaki, Sakyo-ku Kyoto 606-8585 Japan
| |
Collapse
|
14
|
Yang S, Zhou B, Huang Q, Wang S, Zhen H, Yan D, Lin Z, Ling Q. Highly Efficient Organic Afterglow from a 2D Layered Lead-Free Metal Halide in Both Crystals and Thin Films under an Air Atmosphere. ACS APPLIED MATERIALS & INTERFACES 2020; 12:1419-1426. [PMID: 31833758 DOI: 10.1021/acsami.9b20502] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Organic afterglow materials (OAMs) with a lifetime longer than 0.1 s have recently received much attention for their fascinating properties meeting the critical requirements of applications in newly emerged technologies. However, the development of OAMs lags behind for their low luminescence efficiency. Usually, enhancing the phosphorescence efficiency of organic materials causes a short lifetime. Here, we report two kinds of OAMs, two-dimensional (2D) layered organic-inorganic hybrid zinc bromides (PEZB-NTA and PEZB-BPA), obtained in an environmentally friendly ethanol solvent by a low-temperature solution method. They display highly efficient and persistent luminescence in air in both crystals and thin films with phosphorescence quantum yields up to 42% in crystals and 27% in films. For OAMs, the two quantum yields are the highest values ever reported for crystals and films. Due to the excellent crystalline and film-forming ability, PEZB-NTA and PEZB-BPA in ethanol can be used as inks to construct patterns on various rigid and flexible substrates, including paper, iron, plastic, marble, tin foil, and cloth. Consequently, the novel OAMs show great application prospects in the fields of anti-counterfeiting and information storage because of their economic synthesis, solution processing, and easy operation.
Collapse
Affiliation(s)
- Shuming Yang
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science , Fujian Normal University , Fuzhou 350007 , China
| | - Bo Zhou
- College of Chemistry , Beijing Normal University , Beijing 100875 , China
| | - Qiuqin Huang
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science , Fujian Normal University , Fuzhou 350007 , China
| | - Shuaiqi Wang
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science , Fujian Normal University , Fuzhou 350007 , China
| | - Hongyu Zhen
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science , Fujian Normal University , Fuzhou 350007 , China
| | - Dongpeng Yan
- College of Chemistry , Beijing Normal University , Beijing 100875 , China
| | - Zhenghuan Lin
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science , Fujian Normal University , Fuzhou 350007 , China
| | - Qidan Ling
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science , Fujian Normal University , Fuzhou 350007 , China
| |
Collapse
|
15
|
Fries F, Louis M, Scholz R, Gmelch M, Thomas H, Haft A, Reineke S. Dissecting Tetra-N-phenylbenzidine: Biphenyl as the Origin of Room Temperature Phosphorescence. J Phys Chem A 2020; 124:479-485. [DOI: 10.1021/acs.jpca.9b09148] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Felix Fries
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP), Technische Universität Dresden, Nöthnitzer Strasse 61, 01187 Dresden, Germany
| | - Marine Louis
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP), Technische Universität Dresden, Nöthnitzer Strasse 61, 01187 Dresden, Germany
| | - Reinhard Scholz
- Leibniz-Institut für Polymerforschung Dresden e.V, 01005 Dresden, Germany
| | - Max Gmelch
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP), Technische Universität Dresden, Nöthnitzer Strasse 61, 01187 Dresden, Germany
| | - Heidi Thomas
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP), Technische Universität Dresden, Nöthnitzer Strasse 61, 01187 Dresden, Germany
| | - Anna Haft
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP), Technische Universität Dresden, Nöthnitzer Strasse 61, 01187 Dresden, Germany
| | - Sebastian Reineke
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP), Technische Universität Dresden, Nöthnitzer Strasse 61, 01187 Dresden, Germany
| |
Collapse
|
16
|
Louis M, Thomas H, Gmelch M, Haft A, Fries F, Reineke S. Blue-Light-Absorbing Thin Films Showing Ultralong Room-Temperature Phosphorescence. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1807887. [PMID: 30721550 DOI: 10.1002/adma.201807887] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/17/2019] [Indexed: 05/05/2023]
Abstract
The development of organic materials displaying ultralong room-temperature phosphorescence (URTP) is a material design-rich research field with growing interest recently, as the luminescence characteristics have started to become interesting for applications. However, the development of systems performing under aerated conditions remains a formidable challenge. Furthermore, in the vast majority of molecular examples, the respective absorption bands of the compounds are in the near ultraviolet (UV) range, which makes UV excitation sources necessary. Herein, the synthesis and detailed analysis of new luminescent organic metal-free materials displaying, in addition to conventional fluorescence, phosphorescence with lifetimes up to 700 ms and tailored redshifted absorption bands, allowing for deep blue excitation, are reported. For the most promising targets, their application is demonstrated in the form of organic programmable tags that have been recently developed. These tags make use of reversible activation and deactivation of the URTP by toggling between the presence and absence of molecular oxygen. In this case, the activation can be achieved with visible light excitation, which greatly increases the use case scenarios by making UV sources obsolete.
Collapse
Affiliation(s)
- Marine Louis
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP), Technische Universität Dresden, Hermann-Krone-Bau, Nöthnitzer Str. 61, 01187, Dresden, Germany
| | - Heidi Thomas
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP), Technische Universität Dresden, Hermann-Krone-Bau, Nöthnitzer Str. 61, 01187, Dresden, Germany
| | - Max Gmelch
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP), Technische Universität Dresden, Hermann-Krone-Bau, Nöthnitzer Str. 61, 01187, Dresden, Germany
| | - Anna Haft
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP), Technische Universität Dresden, Hermann-Krone-Bau, Nöthnitzer Str. 61, 01187, Dresden, Germany
| | - Felix Fries
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP), Technische Universität Dresden, Hermann-Krone-Bau, Nöthnitzer Str. 61, 01187, Dresden, Germany
| | - Sebastian Reineke
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP), Technische Universität Dresden, Hermann-Krone-Bau, Nöthnitzer Str. 61, 01187, Dresden, Germany
| |
Collapse
|
17
|
Gmelch M, Thomas H, Fries F, Reineke S. Programmable transparent organic luminescent tags. SCIENCE ADVANCES 2019; 5:eaau7310. [PMID: 30746488 PMCID: PMC6358313 DOI: 10.1126/sciadv.aau7310] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 12/13/2018] [Indexed: 05/22/2023]
Abstract
A milestone in the field of organic luminescent labeling is reached, as fast and multiple (>40 cycles) printing of information onto any substrate in any size for very low costs is shown, resulting in rewritable high-resolution (>700 dpi) and high-contrast images. By making use of a simple device structure containing nothing but highly available materials, an ultrathin, flexible, and fully transparent layer stack was realized. Using light alone, any luminescent image can be printed into and erased from this layer contactless and without the need of any ink. Compared to existing approaches, the demonstrated concept represents a promising method for production of luminescent on-demand tags with the potential to supersede conventional labeling techniques in many ways.
Collapse
Affiliation(s)
- Max Gmelch
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute for Applied Physics, Technische Universität Dresden, 01187 Dresden, Germany
| | - Heidi Thomas
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute for Applied Physics, Technische Universität Dresden, 01187 Dresden, Germany
| | - Felix Fries
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute for Applied Physics, Technische Universität Dresden, 01187 Dresden, Germany
| | | |
Collapse
|
18
|
Gogoi G, Sahoo SR, Rajbongshi BK, Sahu S, Sarma NS, Sharma S. New types of organic semiconductors based on diketopyrrolopyrroles and 2,1,3-benzochalcogenadiazoles: a computational study. J Mol Model 2019; 25:42. [DOI: 10.1007/s00894-019-3922-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 01/03/2019] [Indexed: 12/18/2022]
|
19
|
Kirch A, Gmelch M, Reineke S. Simultaneous Singlet-Singlet and Triplet-Singlet Förster Resonance Energy Transfer from a Single Donor Material. J Phys Chem Lett 2019; 10:310-315. [PMID: 30605341 PMCID: PMC6601631 DOI: 10.1021/acs.jpclett.8b03668] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 01/03/2019] [Indexed: 05/05/2023]
Abstract
For almost 70 years, Förster resonance energy transfer (FRET) has been investigated, implemented into nowadays experimental nanoscience techniques, and considered in a manifold of optics, photonics, and optoelectronics applications. Here, we demonstrate for the first time simultaneous and efficient energy transfer from both donating singlet and triplet states of a single photoluminescent molecular species. Using a biluminescent donor that can emit with high yield from both excited states at room temperature allows application of the FRET framework to such a bimodal system. It serves as an exclusive model system where the spatial origin of energy transfer is exactly the same for both donating spin states involved. Of paramount significance are the facts that both transfers can easily be observed by eye and that Förster theory is successfully applied to state lifetimes spanning over 8 orders of magnitude.
Collapse
Affiliation(s)
- Anton Kirch
- Dresden
Integrated Center for Applied Physics and Photonic Materials (IAPP)
and Institute of Applied Physics, Technische
Universität Dresden, 01069 Dresden, Germany
| | - Max Gmelch
- Dresden
Integrated Center for Applied Physics and Photonic Materials (IAPP)
and Institute of Applied Physics, Technische
Universität Dresden, 01069 Dresden, Germany
| | - Sebastian Reineke
- Dresden
Integrated Center for Applied Physics and Photonic Materials (IAPP)
and Institute of Applied Physics, Technische
Universität Dresden, 01069 Dresden, Germany
- Center
for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, 01069 Dresden, Germany
| |
Collapse
|
20
|
Chen X, He Z, Kausar F, Chen G, Zhang Y, Yuan WZ. Aggregation-Induced Dual Emission and Unusual Luminescence beyond Excimer Emission of Poly(ethylene terephthalate). Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01743] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Xiaohong Chen
- School of Chemistry and Chemical Engineering, Shanghai Key Lab of Electrical Insulation and Thermal Aging, Shanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Minhang
District, Shanghai 200240, China
| | - Zihan He
- School of Chemistry and Chemical Engineering, Shanghai Key Lab of Electrical Insulation and Thermal Aging, Shanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Minhang
District, Shanghai 200240, China
| | - Fahmeeda Kausar
- School of Chemistry and Chemical Engineering, Shanghai Key Lab of Electrical Insulation and Thermal Aging, Shanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Minhang
District, Shanghai 200240, China
| | - Gan Chen
- School of Chemistry and Chemical Engineering, Shanghai Key Lab of Electrical Insulation and Thermal Aging, Shanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Minhang
District, Shanghai 200240, China
| | - Yongming Zhang
- School of Chemistry and Chemical Engineering, Shanghai Key Lab of Electrical Insulation and Thermal Aging, Shanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Minhang
District, Shanghai 200240, China
| | - Wang Zhang Yuan
- School of Chemistry and Chemical Engineering, Shanghai Key Lab of Electrical Insulation and Thermal Aging, Shanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Minhang
District, Shanghai 200240, China
| |
Collapse
|
21
|
Bhatia H, Bhattacharjee I, Ray D. Biluminescence via Fluorescence and Persistent Phosphorescence in Amorphous Organic Donor(D 4)-Acceptor(A) Conjugates and Application in Data Security Protection. J Phys Chem Lett 2018; 9:3808-3813. [PMID: 29939749 DOI: 10.1021/acs.jpclett.8b01551] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Purely organic biluminescent materials are of great interest due to the involvement of both singlet and long-lived triplet emissions, which have been rarely reported in bioimaging and organic light-emitting diodes. We show two molecules 3,4,5,6-tetraphenyloxy-phthalonitrile (POP) and 3,4,5,6-tetrakis- p-tolyloxy-phthalonitrile (TOP), in which POP was found to exhibit fluorescence and persistent room-temperature green phosphorescence (pRTGP) in the amorphous powder and crystal states. Both POP and TOP show aggregation-induced emission in a tetrahydrofuran-water mixture. We found in single-crystal X-ray analysis that intra- and intermolecular lp(O)···π interactions along with π(C = C)···π(C≡N), hydrogen bond (H-B), and C-H···π interactions induce a head-to-tail slipped-stack arrangement in POP. In addition, the X-ray structure of TOP with a slipped-stack arrangement induced by only π(C═C)···π(C≡N) and H-B interactions shows dim afterglow only in crystals. These indicate that more noncovalent interactions found in POP may reinforce relatively efficient intersystem crossing that leads to pRTGP. Given the unique green afterglow feature in amorphous powder of POP, document security protection application is achievable.
Collapse
Affiliation(s)
- Harsh Bhatia
- Department of Chemistry , Shiv Nadar University , NH-91, Tehsil Dadri , District Gautam Buddha Nagar, Uttar Pradesh 201314 , India
| | - Indranil Bhattacharjee
- Department of Chemistry , Shiv Nadar University , NH-91, Tehsil Dadri , District Gautam Buddha Nagar, Uttar Pradesh 201314 , India
| | - Debdas Ray
- Department of Chemistry , Shiv Nadar University , NH-91, Tehsil Dadri , District Gautam Buddha Nagar, Uttar Pradesh 201314 , India
| |
Collapse
|
22
|
Joshi G, Teferi MY, Miller R, Jamali S, Baird D, van Tol J, Malissa H, Lupton JM, Boehme C. Isotropic Effective Spin-Orbit Coupling in a Conjugated Polymer. J Am Chem Soc 2018; 140:6758-6762. [DOI: 10.1021/jacs.8b03069] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Gajadhar Joshi
- Department of Physics and Astronomy, University of Utah, 115 S, 1400 E, Salt Lake City, Utah 84112, United States
| | - Mandefro Y. Teferi
- Department of Physics and Astronomy, University of Utah, 115 S, 1400 E, Salt Lake City, Utah 84112, United States
| | - Richards Miller
- Department of Physics and Astronomy, University of Utah, 115 S, 1400 E, Salt Lake City, Utah 84112, United States
| | - Shirin Jamali
- Department of Physics and Astronomy, University of Utah, 115 S, 1400 E, Salt Lake City, Utah 84112, United States
| | - Douglas Baird
- Department of Physics and Astronomy, University of Utah, 115 S, 1400 E, Salt Lake City, Utah 84112, United States
| | - Johan van Tol
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
| | - Hans Malissa
- Department of Physics and Astronomy, University of Utah, 115 S, 1400 E, Salt Lake City, Utah 84112, United States
| | - John M. Lupton
- Department of Physics and Astronomy, University of Utah, 115 S, 1400 E, Salt Lake City, Utah 84112, United States
- Institut für Experimentelle und Angewandte Physik, Universität Regensburg, Universitätsstrasse 31, 93040 Regensburg, Germany
| | - Christoph Boehme
- Department of Physics and Astronomy, University of Utah, 115 S, 1400 E, Salt Lake City, Utah 84112, United States
| |
Collapse
|