1
|
Iqbal N, Brittin DO, Daluwathumullagamage PJ, Alam MS, Senanayake IM, Gafar AT, Siraj Z, Petrilla A, Pugh M, Tonazzi B, Ragunathan S, Poorman ME, Sacolick L, Theis T, Rosen MS, Chekmenev EY, Goodson BM. Toward Next-Generation Molecular Imaging with a Clinical Low-Field (0.064 T) Point-of-Care MRI Scanner. Anal Chem 2024; 96:10348-10355. [PMID: 38857182 DOI: 10.1021/acs.analchem.4c01299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Low-field (LF) MRI promises soft-tissue imaging without the expensive, immobile magnets of clinical scanners but generally suffers from limited detection sensitivity and contrast. The sensitivity boost provided by hyperpolarization can thus be highly synergistic with LF MRI. Initial efforts to integrate a continuous-bubbling SABRE (signal amplification by reversible exchange) hyperpolarization setup with a portable, point-of-care 64 mT clinical MRI scanner are reported. Results from 1H SABRE MRI of pyrazine and nicotinamide are compared with those of benchtop NMR spectroscopy. Comparison with MRI signals from samples with known H2O/D2O ratios allowed quantification of the SABRE enhancements of imaged samples with various substrate concentrations (down to 3 mM). Respective limits of detection and quantification of 3.3 and 10.1 mM were determined with pyrazine 1H polarization (PH) enhancements of ∼1900 (PH ∼0.04%), supporting ongoing and envisioned efforts to realize SABRE-enabled MRI-based molecular imaging.
Collapse
Affiliation(s)
- Nadiya Iqbal
- School of Chemical and Biomolecular Sciences, Southern Illinois University, Carbondale, Illinois 62901, United States
| | - Drew O Brittin
- School of Chemical and Biomolecular Sciences, Southern Illinois University, Carbondale, Illinois 62901, United States
| | | | - Md Shahabuddin Alam
- School of Chemical and Biomolecular Sciences, Southern Illinois University, Carbondale, Illinois 62901, United States
| | - Ishani M Senanayake
- School of Chemical and Biomolecular Sciences, Southern Illinois University, Carbondale, Illinois 62901, United States
| | - A Tobi Gafar
- School of Chemical and Biomolecular Sciences, Southern Illinois University, Carbondale, Illinois 62901, United States
| | - Zahid Siraj
- School of Chemical and Biomolecular Sciences, Southern Illinois University, Carbondale, Illinois 62901, United States
| | - Anthony Petrilla
- School of Chemical and Biomolecular Sciences, Southern Illinois University, Carbondale, Illinois 62901, United States
| | - Margaret Pugh
- School of Chemical and Biomolecular Sciences, Southern Illinois University, Carbondale, Illinois 62901, United States
| | - Brockton Tonazzi
- School of Medicine, Southern Illinois University, Carbondale, Illinois 62901, United States
| | | | | | - Laura Sacolick
- Hyperfine Inc., Guilford, Connecticut 06437, United States
| | - Thomas Theis
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Matthew S Rosen
- A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02129, United States
| | - Eduard Y Chekmenev
- Department of Chemistry, Integrative Biosciences (IBio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan 48202, United States
| | - Boyd M Goodson
- School of Chemical and Biomolecular Sciences, Southern Illinois University, Carbondale, Illinois 62901, United States
| |
Collapse
|
2
|
Eills J, Budker D, Cavagnero S, Chekmenev EY, Elliott SJ, Jannin S, Lesage A, Matysik J, Meersmann T, Prisner T, Reimer JA, Yang H, Koptyug IV. Spin Hyperpolarization in Modern Magnetic Resonance. Chem Rev 2023; 123:1417-1551. [PMID: 36701528 PMCID: PMC9951229 DOI: 10.1021/acs.chemrev.2c00534] [Citation(s) in RCA: 113] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Indexed: 01/27/2023]
Abstract
Magnetic resonance techniques are successfully utilized in a broad range of scientific disciplines and in various practical applications, with medical magnetic resonance imaging being the most widely known example. Currently, both fundamental and applied magnetic resonance are enjoying a major boost owing to the rapidly developing field of spin hyperpolarization. Hyperpolarization techniques are able to enhance signal intensities in magnetic resonance by several orders of magnitude, and thus to largely overcome its major disadvantage of relatively low sensitivity. This provides new impetus for existing applications of magnetic resonance and opens the gates to exciting new possibilities. In this review, we provide a unified picture of the many methods and techniques that fall under the umbrella term "hyperpolarization" but are currently seldom perceived as integral parts of the same field. Specifically, before delving into the individual techniques, we provide a detailed analysis of the underlying principles of spin hyperpolarization. We attempt to uncover and classify the origins of hyperpolarization, to establish its sources and the specific mechanisms that enable the flow of polarization from a source to the target spins. We then give a more detailed analysis of individual hyperpolarization techniques: the mechanisms by which they work, fundamental and technical requirements, characteristic applications, unresolved issues, and possible future directions. We are seeing a continuous growth of activity in the field of spin hyperpolarization, and we expect the field to flourish as new and improved hyperpolarization techniques are implemented. Some key areas for development are in prolonging polarization lifetimes, making hyperpolarization techniques more generally applicable to chemical/biological systems, reducing the technical and equipment requirements, and creating more efficient excitation and detection schemes. We hope this review will facilitate the sharing of knowledge between subfields within the broad topic of hyperpolarization, to help overcome existing challenges in magnetic resonance and enable novel applications.
Collapse
Affiliation(s)
- James Eills
- Institute
for Bioengineering of Catalonia, Barcelona
Institute of Science and Technology, 08028Barcelona, Spain
| | - Dmitry Budker
- Johannes
Gutenberg-Universität Mainz, 55128Mainz, Germany
- Helmholtz-Institut,
GSI Helmholtzzentrum für Schwerionenforschung, 55128Mainz, Germany
- Department
of Physics, UC Berkeley, Berkeley, California94720, United States
| | - Silvia Cavagnero
- Department
of Chemistry, University of Wisconsin, Madison, Madison, Wisconsin53706, United States
| | - Eduard Y. Chekmenev
- Department
of Chemistry, Integrative Biosciences (IBio), Karmanos Cancer Institute
(KCI), Wayne State University, Detroit, Michigan48202, United States
- Russian
Academy of Sciences, Moscow119991, Russia
| | - Stuart J. Elliott
- Molecular
Sciences Research Hub, Imperial College
London, LondonW12 0BZ, United Kingdom
| | - Sami Jannin
- Centre
de RMN à Hauts Champs de Lyon, Université
de Lyon, CNRS, ENS Lyon, Université Lyon 1, 69100Villeurbanne, France
| | - Anne Lesage
- Centre
de RMN à Hauts Champs de Lyon, Université
de Lyon, CNRS, ENS Lyon, Université Lyon 1, 69100Villeurbanne, France
| | - Jörg Matysik
- Institut
für Analytische Chemie, Universität
Leipzig, Linnéstr. 3, 04103Leipzig, Germany
| | - Thomas Meersmann
- Sir
Peter Mansfield Imaging Centre, University Park, School of Medicine, University of Nottingham, NottinghamNG7 2RD, United Kingdom
| | - Thomas Prisner
- Institute
of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic
Resonance, Goethe University Frankfurt, , 60438Frankfurt
am Main, Germany
| | - Jeffrey A. Reimer
- Department
of Chemical and Biomolecular Engineering, UC Berkeley, and Materials Science Division, Lawrence Berkeley National
Laboratory, Berkeley, California94720, United States
| | - Hanming Yang
- Department
of Chemistry, University of Wisconsin, Madison, Madison, Wisconsin53706, United States
| | - Igor V. Koptyug
- International Tomography Center, Siberian
Branch of the Russian Academy
of Sciences, 630090Novosibirsk, Russia
| |
Collapse
|
3
|
New aspects of parahydrogen-induced polarization for C2—C3 hydrocarbons using metal complexes. Russ Chem Bull 2022. [DOI: 10.1007/s11172-021-3357-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
4
|
Kiryutin AS, Yurkovskaya AV, Petrov PA, Ivanov KL. Simultaneous 15 N polarization of several biocompatible substrates in ethanol-water mixtures by signal amplification by reversible exchange (SABRE) method. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2021; 59:1216-1224. [PMID: 34085303 DOI: 10.1002/mrc.5184] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 05/27/2021] [Accepted: 06/01/2021] [Indexed: 06/12/2023]
Abstract
Signal amplification by reversible exchange (SABRE) is a popular method for generating strong signal enhancements in nuclear magnetic resonance (NMR). In SABRE experiments, the source of polarization is provided by the nonthermal spin order of parahydrogen (pH2 , the H2 molecule in its nuclear singlet spin state). Polarization formation requires that both pH2 and a substrate molecule bind to an Ir-based complex where polarization transfer occurs. Subsequently, the complex dissociates and free polarized substrate molecules are formed. In this work, we present approaches towards biocompatible SABRE, meaning that several small biomolecules are simultaneously polarized by using the SABRE method in water-ethanol solutions at room temperature. We are able to demonstrate significant 15 N-NMR signal enhancements in water-ethanol solutions for biomolecules like nicotinamide, metronidazole, adenosine-5'-monophosphate, and 4-methylimidazole and found that the first three substrates are polarized at the same level as a well-known pyridine. We show that simultaneous polarization of several molecules is indeed feasible when the reactions are carried out at an ultralow field of about 400-500 nT. The achieved enhancements are between 100-fold and 15,000-fold. The resulting 15 N polarization (maximal value about 4% achieved for metronidazole and pyridine at 45°C) strongly depends on the sample temperature, pH2 bubbling pressure, and pH2 flow. One more parameter, which is important for optimizing the enhancement, is the solvent pH. Hence, this study presents a step in developing biocompatible SABRE polarization and gives a clue on how such SABRE experiments should be optimized to achieve the highest NMR signal enhancement.
Collapse
Affiliation(s)
- Alexey S Kiryutin
- International Tomography Center, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Alexandra V Yurkovskaya
- International Tomography Center, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Pavel A Petrov
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Konstantin L Ivanov
- International Tomography Center, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
5
|
Mandal R, Pham P, Hilty C. Characterization of protein-ligand interactions by SABRE. Chem Sci 2021; 12:12950-12958. [PMID: 34745525 PMCID: PMC8515190 DOI: 10.1039/d1sc03404a] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/18/2021] [Indexed: 12/11/2022] Open
Abstract
Nuclear spin hyperpolarization through signal amplification by reversible exchange (SABRE), the non-hydrogenative version of para-hydrogen induced polarization, is demonstrated to enhance sensitivity for the detection of biomacromolecular interactions. A target ligand for the enzyme trypsin includes the binding motif for the protein, and at a distant location a heterocyclic nitrogen atom for interacting with a SABRE polarization transfer catalyst. This molecule, 4-amidinopyridine, is hyperpolarized with 50% para-hydrogen to yield enhancement values ranging from −87 and −34 in the ortho and meta positions of the heterocyclic nitrogen, to −230 and −110, for different solution conditions. Ligand binding is identified by flow-NMR, in a two-step process that separately optimizes the polarization transfer in methanol while detecting the interaction in a predominantly aqueous medium. A single scan Carr–Purcell–Meiboom–Gill (CPMG) experiment identifies binding by the change in R2 relaxation rate. The SABRE hyperpolarization technique provides a cost effective means to enhance NMR of biological systems, for the identification of protein–ligand interactions and other applications. Protein–ligand binding interactions are characterized by the para-H2 based hyperpolarization technique SABRE and flow-NMR. Binding to the protein is identified by R2 change of a ligand first interacting with the Ir polarization transfer catalyst.![]()
Collapse
Affiliation(s)
- Ratnamala Mandal
- Department of Chemistry, Texas A&M University 3255 TAMU College Station TX 77843 USA
| | - Pierce Pham
- Department of Chemistry, Texas A&M University 3255 TAMU College Station TX 77843 USA
| | - Christian Hilty
- Department of Chemistry, Texas A&M University 3255 TAMU College Station TX 77843 USA
| |
Collapse
|
6
|
Chukanov NV, Salnikov OG, Trofimov IA, Kabir MSH, Kovtunov KV, Koptyug IV, Chekmenev EY. Synthesis and 15 N NMR Signal Amplification by Reversible Exchange of [ 15 N]Dalfampridine at Microtesla Magnetic Fields. Chemphyschem 2021; 22:960-967. [PMID: 33738893 DOI: 10.1002/cphc.202100109] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/18/2021] [Indexed: 01/10/2023]
Abstract
Signal Amplification by Reversible Exchange (SABRE) technique enables nuclear spin hyperpolarization of wide range of compounds using parahydrogen. Here we present the synthetic approach to prepare 15 N-labeled [15 N]dalfampridine (4-amino[15 N]pyridine) utilized as a drug to reduce the symptoms of multiple sclerosis. The synthesized compound was hyperpolarized using SABRE at microtesla magnetic fields (SABRE-SHEATH technique) with up to 2.0 % 15 N polarization. The 7-hour-long activation of SABRE pre-catalyst [Ir(IMes)(COD)Cl] in the presence of [15 N]dalfampridine can be remedied by the use of pyridine co-ligand for catalyst activation while retaining the 15 N polarization levels of [15 N]dalfampridine. The effects of experimental conditions such as polarization transfer magnetic field, temperature, concentration, parahydrogen flow rate and pressure on 15 N polarization levels of free and equatorial catalyst-bound [15 N]dalfampridine were investigated. Moreover, we studied 15 N polarization build-up and decay at magnetic field of less than 0.04 μT as well as 15 N polarization decay at the Earth's magnetic field and at 1.4 T.
Collapse
Affiliation(s)
- Nikita V Chukanov
- International Tomography Center SB RAS, 3A Institutskaya St., 630090, Novosibirsk, Russia.,Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia
| | - Oleg G Salnikov
- International Tomography Center SB RAS, 3A Institutskaya St., 630090, Novosibirsk, Russia.,Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia.,Boreskov Institute of Catalysis SB RAS, 5 Acad. Lavrentiev Pr., 630090, Novosibirsk, Russia
| | - Ivan A Trofimov
- International Tomography Center SB RAS, 3A Institutskaya St., 630090, Novosibirsk, Russia.,Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia
| | - Mohammad S H Kabir
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan 48202, United States
| | - Kirill V Kovtunov
- International Tomography Center SB RAS, 3A Institutskaya St., 630090, Novosibirsk, Russia.,Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia
| | - Igor V Koptyug
- International Tomography Center SB RAS, 3A Institutskaya St., 630090, Novosibirsk, Russia
| | - Eduard Y Chekmenev
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan 48202, United States.,Russian Academy of Sciences, 14 Leninskiy Prospekt, 119991, Moscow, Russia
| |
Collapse
|
7
|
Nantogma S, Joalland B, Wilkens K, Chekmenev EY. Clinical-Scale Production of Nearly Pure (>98.5%) Parahydrogen and Quantification by Benchtop NMR Spectroscopy. Anal Chem 2021; 93:3594-3601. [PMID: 33539068 PMCID: PMC8011325 DOI: 10.1021/acs.analchem.0c05129] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Because of the extensive chemical, physical, and biomedical applications of parahydrogen, the need exists for the development of highly enriched parahydrogen in a robust and efficient manner. Herein, we present a parahydrogen enrichment equipment which substantially improves upon the previous generators with its ability to enrich parahydrogen to >98.5% and a production rate of up to 4 standard liters per minute with the added advantage of real-time quantification. Our generator employs a pulsed injection system with a 3/16 in. outside diameter copper spiral tubing filled with iron-oxide catalyst. This tubing is mated to a custom-made copper attachment to provide efficient thermal coupling to the cold head. This device allows for robust operation at high pressures up to 34 atm. Real-time quantification by benchtop NMR spectroscopy is made possible by direct coupling of the p-H2 outlet from the generator to a 1.4 T NMR spectrometer using a regular 5 mm NMR tube that is continuously refilled with the exiting parahydrogen gas at ∼8 atm pressure. The use of high hydrogen gas pressure offers two critical NMR signal detection benefits: increased concentration and line narrowing. Our work presents a comprehensive description of the apparatus for a convenient and robust parahydrogen production, distribution, and quantification system, especially for parahydrogen-based hyperpolarization NMR research.
Collapse
Affiliation(s)
- Shiraz Nantogma
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Detroit, Michigan, 48202, United States
| | - Baptiste Joalland
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Detroit, Michigan, 48202, United States
| | - Ken Wilkens
- Department of Radiology and Radiological Sciences, Vanderbilt University Institute of Imaging Science (VUIIS), Nashville, Tennessee 37232-2310, United States
| | - Eduard Y. Chekmenev
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Detroit, Michigan, 48202, United States
- Russian Academy of Sciences, Leninskiy Prospekt 14, Moscow, 119991, Russia
| |
Collapse
|
8
|
Tennant T, Hulme MC, Robertson TBR, Sutcliffe OB, Mewis RE. Benchtop NMR analysis of piperazine-based drugs hyperpolarised by SABRE. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2020; 58:1151-1159. [PMID: 31945193 DOI: 10.1002/mrc.4999] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/09/2020] [Accepted: 01/14/2020] [Indexed: 06/10/2023]
Abstract
Piperazine-based drugs, such as N-benzylpiperazine (BZP), became attractive in the 2000s due to possessing effects similar to amphetamines. Herein, BZP, in addition to its pyridyl analogues, 2-, 3-, and 4-pyridylmethylpiperidine (2-PMP, 3-PMP, and 4-PMP respectively) was subjected to the hyperpolarisation technique Signal Amplification By Reversible Exchange (SABRE) in order to demonstrate the use of this technique to detect these piperazine-based drugs. Although BZP was not hyperpolarised via SABRE, 2-PMP, 3-PMP, and 4-PMP were, with the ortho- and meta-pyridyl protons of 4-PMP showing the largest enhancement of 313-fold and 267-fold, respectively, in a 1.4-T detection field, following polarisation transfer at Earth's magnetic field. In addition to the freebase, 4-PMP.3HCl was also appraised by SABRE and was found not to polarise, however, the addition of increasing equivalents of triethylamine (TEA) produced the freebase, with a maximum enhancement observed upon the addition of 3 equivalents of TEA. Further addition of TEA led to a reduction in the observed enhancement. SABRE was also employed to polarise 4-PMP.3HCl (~20% w/w) in a simulated tablet to demonstrate the forensic application of the technique (138-fold enhancement for the ortho-pyridyl protons). The amount of 4-PMP.3HCl present in the simulated tablet was quantified via NMR using D2 O as a solvent and compared well to complimentary gas chromatography-mass spectrometry data. Exchanging D2 O for CD3 OD as the solvent utilised for analysis resulted in a significantly lower amount of 4-PMP.3HCl being determined, thus highlighting safeguarding issues linked to drug abuse in relation to determining the amount of active pharmaceutical ingredient present.
Collapse
Affiliation(s)
- Thomas Tennant
- Department of Natural Sciences, Manchester Metropolitan University, Manchester, UK
- MANchester DRug Analysis and Knowledge Exchange, Manchester Metropolitan University, Manchester, UK
| | - Matthew C Hulme
- Department of Natural Sciences, Manchester Metropolitan University, Manchester, UK
- MANchester DRug Analysis and Knowledge Exchange, Manchester Metropolitan University, Manchester, UK
| | - Thomas B R Robertson
- Department of Natural Sciences, Manchester Metropolitan University, Manchester, UK
| | - Oliver B Sutcliffe
- Department of Natural Sciences, Manchester Metropolitan University, Manchester, UK
- MANchester DRug Analysis and Knowledge Exchange, Manchester Metropolitan University, Manchester, UK
| | - Ryan E Mewis
- Department of Natural Sciences, Manchester Metropolitan University, Manchester, UK
| |
Collapse
|
9
|
Knecht S, Barskiy DA, Buntkowsky G, Ivanov KL. Theoretical description of hyperpolarization formation in the SABRE-relay method. J Chem Phys 2020; 153:164106. [PMID: 33138423 DOI: 10.1063/5.0023308] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
SABRE (Signal Amplification By Reversible Exchange) has become a widely used method for hyper-polarizing nuclear spins, thereby enhancing their Nuclear Magnetic Resonance (NMR) signals by orders of magnitude. In SABRE experiments, the non-equilibrium spin order is transferred from parahydrogen to a substrate in a transient organometallic complex. The applicability of SABRE is expanded by the methodology of SABRE-relay in which polarization can be relayed to a second substrate either by direct chemical exchange of hyperpolarized nuclei or by polarization transfer between two substrates in a second organometallic complex. To understand the mechanism of the polarization transfer and study the transfer efficiency, we propose a theoretical approach to SABRE-relay, which can treat both spin dynamics and chemical kinetics as well as the interplay between them. The approach is based on a set of equations for the spin density matrices of the spin systems involved (i.e., SABRE substrates and complexes), which can be solved numerically. Using this method, we perform a detailed study of polarization formation and analyze in detail the dependence of the attainable polarization level on various chemical kinetic and spin dynamic parameters. We foresee the applications of the present approach for optimizing SABRE-relay experiments with the ultimate goal of achieving maximal NMR signal enhancements for substrates of interest.
Collapse
Affiliation(s)
- Stephan Knecht
- Eduard-Zintl Institute for Inorganic and Physical Chemistry, TU Darmstadt, Darmstadt 64287, Germany
| | - Danila A Barskiy
- University of California at Berkeley, College of Chemistry and QB3, Berkeley, California 94720, USA
| | - Gerd Buntkowsky
- Eduard-Zintl Institute for Inorganic and Physical Chemistry, TU Darmstadt, Darmstadt 64287, Germany
| | - Konstantin L Ivanov
- International Tomography Center, Siberian Branch of the Russian Academy of Sciences, and Novosibirsk State University, Novosibirsk 630090, Russia
| |
Collapse
|
10
|
Buckenmaier K, Scheffler K, Plaumann M, Fehling P, Bernarding J, Rudolph M, Back C, Koelle D, Kleiner R, Hövener J, Pravdivtsev AN. Multiple Quantum Coherences Hyperpolarized at Ultra-Low Fields. Chemphyschem 2019; 20:2823-2829. [PMID: 31536665 PMCID: PMC6900040 DOI: 10.1002/cphc.201900757] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 09/17/2019] [Indexed: 11/26/2022]
Abstract
The development of hyperpolarization technologies enabled several yet exotic NMR applications at low and ultra-low fields (ULF), where without hyperpolarization even the detection of a signal from analytes is a challenge. Herein, we present a method for the simultaneous excitation and observation of homo- and heteronuclear multiple quantum coherences (from zero up to the third-order), which give an additional degree of freedom for ULF NMR experiments, where the chemical shift variation is negligible. The approach is based on heteronuclear correlated spectroscopy (COSY); its combination with a phase-cycling scheme allows the selective observation of multiple quantum coherences of different orders. The nonequilibrium spin state and multiple spin orders are generated by signal amplification by reversible exchange (SABRE) and detected at ULF with a superconducting quantum interference device (SQUID)-based NMR system.
Collapse
Affiliation(s)
- Kai Buckenmaier
- High-Field Magnetic Resonance CenterMax Planck Institute for Biological CyberneticsMax-Planck-Ring 1172076TübingenGermany
| | - Klaus Scheffler
- High-Field Magnetic Resonance CenterMax Planck Institute for Biological CyberneticsMax-Planck-Ring 1172076TübingenGermany
- Department for Biomedical Magnetic ResonanceUniversity of TübingenHoppe-Seyler-Str. 372076TübingenGermany
| | - Markus Plaumann
- Institute for Biometrics and Medical InformaticsOtto-von-Guericke University Building 02Leipziger Str. 4439120MagdeburgGermany
| | - Paul Fehling
- High-Field Magnetic Resonance CenterMax Planck Institute for Biological CyberneticsMax-Planck-Ring 1172076TübingenGermany
| | - Johannes Bernarding
- Institute for Biometrics and Medical InformaticsOtto-von-Guericke University Building 02Leipziger Str. 4439120MagdeburgGermany
| | - Matthias Rudolph
- High-Field Magnetic Resonance CenterMax Planck Institute for Biological CyberneticsMax-Planck-Ring 1172076TübingenGermany
- Physikalisches Institut and Center for Quantum Science (CQ) in LISAUniversity of TübingenAuf der Morgenstelle 1472076TübingenGermany
| | - Christoph Back
- Physikalisches Institut and Center for Quantum Science (CQ) in LISAUniversity of TübingenAuf der Morgenstelle 1472076TübingenGermany
| | - Dieter Koelle
- Physikalisches Institut and Center for Quantum Science (CQ) in LISAUniversity of TübingenAuf der Morgenstelle 1472076TübingenGermany
| | - Reinhold Kleiner
- Physikalisches Institut and Center for Quantum Science (CQ) in LISAUniversity of TübingenAuf der Morgenstelle 1472076TübingenGermany
| | - Jan‐Bernd Hövener
- Section Biomedical Imaging Molecular Imaging North Competence Center (MOIN CC) Department of Radiology and Neuroradiology University Medical Center KielKiel UniversityAm Botanischen Garten 1424114KielGermany
| | - Andrey N. Pravdivtsev
- Section Biomedical Imaging Molecular Imaging North Competence Center (MOIN CC) Department of Radiology and Neuroradiology University Medical Center KielKiel UniversityAm Botanischen Garten 1424114KielGermany
| |
Collapse
|
11
|
Barskiy DA, Knecht S, Yurkovskaya AV, Ivanov KL. SABRE: Chemical kinetics and spin dynamics of the formation of hyperpolarization. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2019; 114-115:33-70. [PMID: 31779885 DOI: 10.1016/j.pnmrs.2019.05.005] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 05/16/2019] [Indexed: 05/22/2023]
Abstract
In this review, we present the physical principles of the SABRE (Signal Amplification By Reversible Exchange) method. SABRE is a promising hyperpolarization technique that enhances NMR signals by transferring spin order from parahydrogen (an isomer of the H2 molecule that is in a singlet nuclear spin state) to a substrate that is to be polarized. Spin order transfer takes place in a transient organometallic complex which binds both parahydrogen and substrate molecules; after dissociation of the SABRE complex, free hyperpolarized substrate molecules are accumulated in solution. An advantage of this method is that the substrate is not modified chemically, and its polarization can be regenerated multiple times by bubbling fresh parahydrogen through the solution. Thus, SABRE requires two key ingredients: (i) polarization transfer and (ii) chemical exchange of both parahydrogen and substrate. While there are several excellent reviews on applications of SABRE, the background of the method is discussed less frequently. In this review we aim to explain in detail how SABRE hyperpolarization is formed, focusing on key aspects of both spin dynamics and chemical kinetics, as well as on the interplay between them. Hence, we first cover the known spin order transfer methods applicable to SABRE - cross-relaxation, coherent spin mixing at avoided level crossings, and coherence transfer - and discuss their practical implementation for obtaining SABRE polarization in the most efficient way. Second, we introduce and explain the principle of SABRE hyperpolarization techniques that operate at ultralow (<1 μT), at low (1μT to 0.1 T) and at high (>0.1 T) magnetic fields. Finally, chemical aspects of SABRE are discussed in detail, including chemical systems that are amenable to SABRE and the exchange processes that are required for polarization formation. A theoretical treatment of the spin dynamics and their interplay with chemical kinetics is also presented. This review outlines known aspects of SABRE and provides guidelines for the design of new SABRE experiments, with the goal of solving practical problems of enhancing weak NMR signals.
Collapse
Affiliation(s)
- Danila A Barskiy
- Department of Chemistry, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Stephan Knecht
- Eduard-Zintl Institute for Inorganic and Physical Chemistry, TU Darmstadt, Darmstadt 64287, Germany; Department of Radiology, Medical Physics, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Alexandra V Yurkovskaya
- International Tomography Center, Siberian Branch of the Russian Academy of Science, Novosibirsk 630090, Russia; Novosibirsk State University, Novosibirsk 630090, Russia
| | - Konstantin L Ivanov
- International Tomography Center, Siberian Branch of the Russian Academy of Science, Novosibirsk 630090, Russia; Novosibirsk State University, Novosibirsk 630090, Russia.
| |
Collapse
|
12
|
Skovpin IV, Svyatova A, Chukanov N, Chekmenev EY, Kovtunov KV, Koptyug IV. 15 N Hyperpolarization of Dalfampridine at Natural Abundance for Magnetic Resonance Imaging. Chemistry 2019; 25:12694-12697. [PMID: 31338889 PMCID: PMC6790219 DOI: 10.1002/chem.201902724] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/03/2019] [Indexed: 11/10/2022]
Abstract
Signal Amplification by Reversible Exchange (SABRE) is a promising method for NMR signal enhancement and production of hyperpolarized molecules. As nuclear spin relaxation times of heteronuclei are usually much longer than those of protons, SABRE-based hyperpolarization of heteronuclei in molecules is highly important in the context of biomedical applications. In this work, we demonstrate that the SLIC-SABRE technique can be successfully used to hyperpolarize 15 N nuclei in dalfampridine. The high polarization level of ca. 8 % achieved in this work made it possible to acquire 15 N MR images at natural abundance of the 15 N nuclei for the first time.
Collapse
Affiliation(s)
- Ivan V Skovpin
- International Tomography Center, SB RAS, 3A Institutskaya st., Novosibirsk, 630090, Russia
- Novosibirsk State University, 2 Pirogova st., Novosibirsk, 630090, Russia
| | - Alexandra Svyatova
- International Tomography Center, SB RAS, 3A Institutskaya st., Novosibirsk, 630090, Russia
- Novosibirsk State University, 2 Pirogova st., Novosibirsk, 630090, Russia
| | - Nikita Chukanov
- International Tomography Center, SB RAS, 3A Institutskaya st., Novosibirsk, 630090, Russia
- Novosibirsk State University, 2 Pirogova st., Novosibirsk, 630090, Russia
| | - Eduard Y Chekmenev
- Department of Chemistry, Karmanos Cancer Institute (KCI), Integrative Biosciences (Ibio), Wayne State University, Detroit, MI, USA
- Russian Academy of Sciences (RAS), 14 Leninskiy Prospekt, Moscow, 119991, Russia
| | - Kirill V Kovtunov
- International Tomography Center, SB RAS, 3A Institutskaya st., Novosibirsk, 630090, Russia
- Novosibirsk State University, 2 Pirogova st., Novosibirsk, 630090, Russia
| | - Igor V Koptyug
- International Tomography Center, SB RAS, 3A Institutskaya st., Novosibirsk, 630090, Russia
- Novosibirsk State University, 2 Pirogova st., Novosibirsk, 630090, Russia
| |
Collapse
|
13
|
Svyatova A, Skovpin IV, Chukanov NV, Kovtunov KV, Chekmenev EY, Pravdivtsev AN, Hövener JB, Koptyug IV. 15 N MRI of SLIC-SABRE Hyperpolarized 15 N-Labelled Pyridine and Nicotinamide. Chemistry 2019; 25:8465-8470. [PMID: 30950529 PMCID: PMC6679352 DOI: 10.1002/chem.201900430] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Indexed: 01/10/2023]
Abstract
Magnetic Resonance Imaging (MRI) is a powerful non-invasive diagnostic method extensively used in biomedical studies. A significant limitation of MRI is its relatively low signal-to-noise ratio, which can be increased by hyperpolarizing nuclear spins. One promising method is Signal Amplification By Reversible Exchange (SABRE), which employs parahydrogen as a source of hyperpolarization. Recent studies demonstrated the feasibility to improve MRI sensitivity with this hyperpolarization technique. Hyperpolarized 15 N nuclei in biomolecules can potentially retain their spin alignment for tens of minutes, providing an extended time window for the utilization of the hyperpolarized compounds. In this work, we demonstrate for the first time that radio-frequency-based SABRE hyperpolarization techniques can be used to obtain 15 N MRI of biomolecule 1-15 N-nicotinamide. Two image acquisition strategies were utilized and compared: Single Point Imaging (SPI) and Fast Low Angle SHot (FLASH). These methods demonstrated opportunities of high-field SABRE for biomedical applications.
Collapse
Affiliation(s)
- Alexandra Svyatova
- International Tomography Center, SB RAS, 3A Institutskaya st., Novosibirsk, 630090, Russia
- Novosibirsk State University, 2 Pirogova st., Novosibirsk, 630090, Russia
| | - Ivan V Skovpin
- International Tomography Center, SB RAS, 3A Institutskaya st., Novosibirsk, 630090, Russia
- Novosibirsk State University, 2 Pirogova st., Novosibirsk, 630090, Russia
| | - Nikita V Chukanov
- International Tomography Center, SB RAS, 3A Institutskaya st., Novosibirsk, 630090, Russia
- Novosibirsk State University, 2 Pirogova st., Novosibirsk, 630090, Russia
| | - Kirill V Kovtunov
- International Tomography Center, SB RAS, 3A Institutskaya st., Novosibirsk, 630090, Russia
- Novosibirsk State University, 2 Pirogova st., Novosibirsk, 630090, Russia
| | - Eduard Y Chekmenev
- Department of Chemistry, Wayne State University, Karmanos Cancer Institute (KCI), Integrative Biosciences (Ibio), Detroit, MI 48202, USA
- Russian Academy of Sciences (RAS), 14 Leninskiy Prospekt, Moscow, 119991, Russia
| | - Andrey N Pravdivtsev
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology University Medical Center Schleswig-Holstein (UKSH), Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany
| | - Jan-Bernd Hövener
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology University Medical Center Schleswig-Holstein (UKSH), Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany
| | - Igor V Koptyug
- International Tomography Center, SB RAS, 3A Institutskaya st., Novosibirsk, 630090, Russia
- Novosibirsk State University, 2 Pirogova st., Novosibirsk, 630090, Russia
| |
Collapse
|
14
|
Pravdivtsev AN, Hövener JB. Simulating Non-linear Chemical and Physical (CAP) Dynamics of Signal Amplification By Reversible Exchange (SABRE). Chemistry 2019; 25:7659-7668. [PMID: 30689237 DOI: 10.1002/chem.201806133] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/18/2019] [Indexed: 01/30/2023]
Abstract
The hyperpolarization of nuclear spins by using parahydrogen (pH2 ) is a fascinating technique that allows spin polarization and thus the magnetic resonance signal to be increased by several orders of magnitude. Entirely new applications have become available. Signal amplification by reversible exchange (SABRE) is a relatively new method that is based on the reversible exchange of a substrate, catalyst and parahydrogen. SABRE is particularly interesting for in vivo medical and industrial applications, such as fast and low-cost trace analysis or continuous signal enhancement. Ever since its discovery, many attempts have been made to model and understand SABRE, with various degrees of simplifications. In this work, we reduced the simplifications further, taking into account non-linear chemical and physical (CAP) dynamics of several multi-spin systems. A master equation was derived and realized using the MOIN open-source software. The effects of different parameters (exchange rates, concentrations, spin-spin couplings) on relaxation and the polarization level have been evaluated and the results provide interesting insights into the mechanism of SABRE.
Collapse
Affiliation(s)
- Andrey N Pravdivtsev
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein (UKSH), Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany
| | - Jan-Bernd Hövener
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein (UKSH), Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany
| |
Collapse
|
15
|
Štěpánek P, Sanchez-Perez C, Telkki VV, Zhivonitko VV, Kantola AM. High-throughput continuous-flow system for SABRE hyperpolarization. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 300:8-17. [PMID: 30684826 DOI: 10.1016/j.jmr.2019.01.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/09/2019] [Accepted: 01/10/2019] [Indexed: 05/22/2023]
Abstract
Signal Amplification By Reversible Exchange (SABRE) is a versatile method for hyperpolarizing small organic molecules that helps to overcome the inherent low signal-to-noise ratio of nuclear magnetic resonance (NMR) measurements. It offers orders of magnitude enhanced signal strength, but the obtained nuclear polarization usually rapidly relaxes, requiring a quick transport of the sample to the spectrometer. Here we report a new design of a polarizing system, which can be used to prepare a continuous flow of SABRE-hyperpolarized sample with a considerable throughput of several millilitres per second and a rapid delivery into an NMR instrument. The polarizer performance under different conditions such as flow rate of the hydrogen or liquid sample is tested by measuring a series of NMR spectra and magnetic resonance images (MRI) of hyperpolarized pyridine in methanol. Results show a capability to continuously produce sample with dramatically enhanced signal over two orders of magnitude. The constant supply of hyperpolarized sample can be exploited, e.g., in experiments requiring multiple repetitions, such as 2D- and 3D-NMR or MRI measurements, and also naturally allows measurements of flow maps, including systems with high flow rates, for which the level of achievable thermal polarization might not be usable any more. In addition, the experiments can be viably carried out in a non-deuterated solvent, due to the effective suppression of the thermal polarization by the fast sample flow. The presented system opens the possibilities for SABRE experiments requiring a long-term, stable and high level of nuclear polarization.
Collapse
Affiliation(s)
- Petr Štěpánek
- NMR Research Unit, Faculty of Science, University of Oulu, P.O. Box 3000, FI-90014, Finland.
| | - Clara Sanchez-Perez
- Environmental and Chemical Engineering, Faculty of Technology, University of Oulu, FI-90014, Finland.
| | - Ville-Veikko Telkki
- NMR Research Unit, Faculty of Science, University of Oulu, P.O. Box 3000, FI-90014, Finland.
| | - Vladimir V Zhivonitko
- NMR Research Unit, Faculty of Science, University of Oulu, P.O. Box 3000, FI-90014, Finland.
| | - Anu M Kantola
- NMR Research Unit, Faculty of Science, University of Oulu, P.O. Box 3000, FI-90014, Finland.
| |
Collapse
|
16
|
Skinner JG, Menichetti L, Flori A, Dost A, Schmidt AB, Plaumann M, Gallagher FA, Hövener JB. Metabolic and Molecular Imaging with Hyperpolarised Tracers. Mol Imaging Biol 2018; 20:902-918. [PMID: 30120644 DOI: 10.1007/s11307-018-1265-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Since reaching the clinic, magnetic resonance imaging (MRI) has become an irreplaceable radiological tool because of the macroscopic information it provides across almost all organs and soft tissues within the human body, all without the need for ionising radiation. The sensitivity of MR, however, is too low to take full advantage of the rich chemical information contained in the MR signal. Hyperpolarisation techniques have recently emerged as methods to overcome the sensitivity limitations by enhancing the MR signal by many orders of magnitude compared to the thermal equilibrium, enabling a new class of metabolic and molecular X-nuclei based MR tracers capable of reporting on metabolic processes at the cellular level. These hyperpolarised (HP) tracers have the potential to elucidate the complex metabolic processes of many organs and pathologies, with studies so far focusing on the fields of oncology and cardiology. This review presents an overview of hyperpolarisation techniques that appear most promising for clinical use today, such as dissolution dynamic nuclear polarisation (d-DNP), parahydrogen-induced hyperpolarisation (PHIP), Brute force hyperpolarisation and spin-exchange optical pumping (SEOP), before discussing methods for tracer detection, emerging metabolic tracers and applications and progress in preclinical and clinical application.
Collapse
Affiliation(s)
- Jason Graham Skinner
- Department of Radiology, Medical Physics, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Luca Menichetti
- Institute of Clinical Physiology, National Research Council (CNR), Pisa, Italy
- Fondazione CNR/Regione Toscana G. Monasterio, Pisa, Italy
| | - Alessandra Flori
- Fondazione CNR/Regione Toscana G. Monasterio, Pisa, Italy
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Anna Dost
- Department of Radiology, Medical Physics, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Andreas Benjamin Schmidt
- Department of Radiology, Medical Physics, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Section Biomedical Imaging and MOIN CC, University Medical Center Schleswig Holstein, Kiel University, Kiel, Germany
| | - Markus Plaumann
- Institute of Biometrics and Medical Informatics, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | | | - Jan-Bernd Hövener
- Section Biomedical Imaging and MOIN CC, University Medical Center Schleswig Holstein, Kiel University, Kiel, Germany.
| |
Collapse
|
17
|
Pravdivtsev AN, Kozinenko VP, Hövener JB. Only Para-Hydrogen Spectroscopy (OPSY) Revisited: In-Phase Spectra for Chemical Analysis and Imaging. J Phys Chem A 2018; 122:8948-8956. [PMID: 30293421 DOI: 10.1021/acs.jpca.8b07459] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We revisited only para-hydrogen spectroscopy (OPSY) for the analysis of para-hydrogen-enhanced NMR spectra at high magnetic fields. We found that the sign of the gradients and interpulse delays are pivotal for the performance of the sequence: the variant of double-quantum filter OPSY, where the second time interval is twice as long as the first one (OPSYd-12) converts the antiphase spectrum to in-phase and efficiently suppresses the background signal in a single scan better than the other variants. OPSYd-12 strongly facilitates the analysis of para-hydrogen-derived NMR spectra in homogeneous and inhomogeneous magnetic fields. Furthermore, the net magnetization produced is essential for subsequent applications such as imaging, e.g., in a reaction chamber or in vivo.
Collapse
Affiliation(s)
- Andrey N Pravdivtsev
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein (UKSH) , Kiel University , Am Botanischen Garten 18 , 24118 , Kiel , Germany
| | - Vitaly P Kozinenko
- Novosibirsk State University , Pirogova str. 2 , 630090 , Novosibirsk , Russia.,International Tomography Center SB RAS , Institutskaya str. 3a , 630090 , Novosibirsk , Russia
| | - Jan-Bernd Hövener
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein (UKSH) , Kiel University , Am Botanischen Garten 18 , 24118 , Kiel , Germany
| |
Collapse
|
18
|
Theis T, Ariyasingha NM, Shchepin RV, Lindale J, Warren WS, Chekmenev EY. Quasi-Resonance Signal Amplification by Reversible Exchange. J Phys Chem Lett 2018; 9:6136-6142. [PMID: 30284835 PMCID: PMC6247415 DOI: 10.1021/acs.jpclett.8b02669] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Here we present the feasibility of NMR signal amplification by reversible exchange (SABRE) using radio frequency irradiation at low magnetic field (0.05 T) in the regime where the chemical shifts of free and catalyst-bound species are similar. In SABRE, the 15N-containing substrate and parahydrogen perform simultaneous chemical exchange on an iridium hexacoordinate complex. A shaped spin-lock induced crossing (SLIC) radio frequency pulse sequence followed by a delay is applied at quasi-resonance (QUASR) conditions of 15N spins of a 15N-enriched substrate. As a result of this pulse sequence application, 15N z-magnetization is created from the spin order of parahydrogen-derived hyperpolarized hydrides. The repetition of the pulse sequence block consisting of a shaped radio frequency pulse and the delay leads to the buildup of 15N magnetization. The modulation of this effect by the irradiation frequency, pulse duration and amplitude, delay duration, and number of pumping cycles was demonstrated. Pyridine-15N, acetonitrile-15N, and metronidazole-15N2-13C2 substrates were studied representing three classes of compounds (five- and six-membered heterocycles and nitrile), showing the wide applicability of the technique. Metronidazole-15N2-13C2 is an FDA-approved antibiotic that can be injected in large quantities, promising noninvasive and accurate hypoxia sensing. The 15N hyperpolarization levels attained with QUASR-SABRE on metronidazole-15N2-13C2 were more than 2-fold greater than those with SABRE-SHEATH (SABRE in shield enables alignment transfer to heteronuclei), demonstrating that QUASR-SABRE can deliver significantly more efficient means of SABRE hyperpolarization.
Collapse
Affiliation(s)
- Thomas Theis
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina, 27695-8204, United States
- Department of Chemistry, Duke University, Durham, North Carolina, 27708, United States
| | - Nuwandi M. Ariyasingha
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan, 48202, United States
| | - Roman V. Shchepin
- Vanderbilt University Institute of Imaging Science (VUIIS), Department of Radiology and Radiological Sciences, Nashville, Tennessee, 37232-2310, United States
| | - Jacob Lindale
- Department of Chemistry, Duke University, Durham, North Carolina, 27708, United States
| | - Warren S. Warren
- Department of Chemistry, Duke University, Durham, North Carolina, 27708, United States
| | - Eduard Y. Chekmenev
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan, 48202, United States
- Russian Academy of Sciences, Leninskiy Prospekt 14, Moscow, 119991, Russia
| |
Collapse
|
19
|
Chukanov NV, Salnikov OG, Shchepin RV, Svyatova A, Kovtunov KV, Koptyug IV, Chekmenev EY. 19F Hyperpolarization of 15N-3- 19F-Pyridine Via Signal Amplification by Reversible Exchange. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2018; 122:23002-23010. [PMID: 31435456 PMCID: PMC6703844 DOI: 10.1021/acs.jpcc.8b06654] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We report synthesis of 15N-3-19F-pyridine via Zincke salt formation with the overall 35% yield and 84% 15N isotopic purity. Hyperpolarization studies of Signal Amplification by Reversible Exchange (SABRE) and SABRE in SHield Enables Alignment Transfer to Heteronuclei (SABRE-SHEATH) were performed to investigate the mechanism of polarization transfer from parahydrogen-derived hydride protons to 19F nucleus in milli-Tesla and micro-Tesla magnetic field regimes in 15N-3-19F-pyridine and 14N-3-19F-pyridine. We found the mismatch between 15N and 19F magnetic field hyperpolarization profiles in the micro-Tesla regime indicating that the spontaneous hyperpolarization process likely happens directly from parahydrogen-derived hydride protons to 19F nucleus without spin-relaying via 15N site. In case of SABRE magnetic field regime (milli-Tesla magnetic field range), we found that magnetic field profiles for 1H and 19F hyperpolarization are very similar, and 19F polarization levels are significantly lower than 1H SABRE polarization levels and lower than 19F SABRE-SHEATH (i.e. obtained at micro-Tesla magnetic field) polarization levels. Our findings support the hypothesis that in milli-Tesla magnetic field regime, the process of 19F nuclei hyperpolarization is relayed via protons of substrate, and therefore is very inefficient. These findings are important in the context of improvement of the hyperpolarization hardware and rational design of the hyperpolarized molecular probes.
Collapse
Affiliation(s)
- Nikita V. Chukanov
- International Tomography Center, 3A Institutskaya St., Novosibirsk 630090, Russia
- Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090, Russia
| | - Oleg G. Salnikov
- International Tomography Center, 3A Institutskaya St., Novosibirsk 630090, Russia
- Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090, Russia
| | - Roman V. Shchepin
- Vanderbilt University Institute of Imaging Science (VUIIS), Department of Radiology, Department of Biomedical Engineering, and Vanderbilt-Ingram Cancer Center (VICC), Vanderbilt University, Nashville, Tennessee 37232-2310, United States
| | - Alexandra Svyatova
- International Tomography Center, 3A Institutskaya St., Novosibirsk 630090, Russia
- Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090, Russia
| | - Kirill V. Kovtunov
- International Tomography Center, 3A Institutskaya St., Novosibirsk 630090, Russia
- Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090, Russia
| | - Igor V. Koptyug
- International Tomography Center, 3A Institutskaya St., Novosibirsk 630090, Russia
- Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090, Russia
| | - Eduard Y. Chekmenev
- Vanderbilt University Institute of Imaging Science (VUIIS), Department of Radiology, Department of Biomedical Engineering, and Vanderbilt-Ingram Cancer Center (VICC), Vanderbilt University, Nashville, Tennessee 37232-2310, United States
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan 48202, United States
- Russian Academy of Sciences, Leninskiy Prospekt 14, Moscow 119991, Russia
- Corresponding Author
| |
Collapse
|
20
|
Kidd BE, Mashni JA, Limbach MN, Shi F, Chekmenev EY, Hou Y, Goodson BM. Toward Cleavable Metabolic/pH Sensing "Double Agents" Hyperpolarized by NMR Signal Amplification by Reversible Exchange. Chemistry 2018; 24:10641-10645. [PMID: 29800491 PMCID: PMC6097920 DOI: 10.1002/chem.201802622] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Indexed: 11/05/2022]
Abstract
We show the simultaneous generation of hyperpolarized 13 C-labeled acetate and 15 N-labeled imidazole following spin-relay of hyperpolarization and hydrolysis of the acetyl moiety on 1-13 C-15 N2 -acetylimidazole. Using SABRE-SHEATH (Signal Amplification by Reversible Exchange in SHield Enables Alignment Transfer to Heteronuclei), transfer of spin order occurs from parahydrogen to acetylimidazole 15 N atoms and the acetyl 13 C site (≈263-fold enhancement), giving rise to relatively long hyperpolarization lifetimes at 0.3 T (T1 ≈52 s and ≈149 s for 13 C and 15 N, respectively). Immediately following polarization transfer, the 13 C-labeled acetyl group is hydrolytically cleaved to produce hyperpolarized 13 C-acetate/acetic acid (≈140-fold enhancement) and 15 N-imidazole (≈180-fold enhancement), the former with a 13 C T1 of ≈14 s at 0.3 T. Straightforward synthetic routes, efficient spin-relay of SABRE hyperpolarization, and facile bond cleavage open a door to the cheap and rapid generation of long-lived hyperpolarized states within a wide range of molecular targets, including biologically relevant carboxylic acid derivatives, for metabolic and pH imaging.
Collapse
Affiliation(s)
- Bryce E Kidd
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Jamil A Mashni
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Miranda N Limbach
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Fan Shi
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Eduard Y Chekmenev
- Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, MI, 48202, USA
- Russian Academy of Sciences, Leninskiy Prospekt 14, 119991, Moscow, Russia
| | - Yuqing Hou
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Boyd M Goodson
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, IL, 62901, USA
| |
Collapse
|
21
|
Kovtunov KV, Pokochueva EV, Salnikov OG, Cousin S, Kurzbach D, Vuichoud B, Jannin S, Chekmenev EY, Goodson BM, Barskiy DA, Koptyug IV. Hyperpolarized NMR Spectroscopy: d-DNP, PHIP, and SABRE Techniques. Chem Asian J 2018; 13:10.1002/asia.201800551. [PMID: 29790649 PMCID: PMC6251772 DOI: 10.1002/asia.201800551] [Citation(s) in RCA: 175] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Indexed: 11/10/2022]
Abstract
The intensity of NMR signals can be enhanced by several orders of magnitude by using various techniques for the hyperpolarization of different molecules. Such approaches can overcome the main sensitivity challenges facing modern NMR/magnetic resonance imaging (MRI) techniques, whilst hyperpolarized fluids can also be used in a variety of applications in material science and biomedicine. This Focus Review considers the fundamentals of the preparation of hyperpolarized liquids and gases by using dissolution dynamic nuclear polarization (d-DNP) and parahydrogen-based techniques, such as signal amplification by reversible exchange (SABRE) and parahydrogen-induced polarization (PHIP), in both heterogeneous and homogeneous processes. The various new aspects in the formation and utilization of hyperpolarized fluids, along with the possibility of observing NMR signal enhancement, are described.
Collapse
Affiliation(s)
- Kirill V. Kovtunov
- Laboratory of Magnetic Resonance Microimaging, International Tomography Center, SB RAS, 3A Institutskaya St., Novosibirsk 630090 (Russia)
- Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090 (Russia)
| | - Ekaterina V. Pokochueva
- Laboratory of Magnetic Resonance Microimaging, International Tomography Center, SB RAS, 3A Institutskaya St., Novosibirsk 630090 (Russia)
- Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090 (Russia)
| | - Oleg G. Salnikov
- Laboratory of Magnetic Resonance Microimaging, International Tomography Center, SB RAS, 3A Institutskaya St., Novosibirsk 630090 (Russia)
- Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090 (Russia)
| | - Samuel Cousin
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, ENS de Lyon, Institut des Sciences Analytiques, UMR 5280, 5 rue de la Doua, 69100 Villeurbanne, France
| | - Dennis Kurzbach
- Laboratoire des biomolécules, LBM, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Basile Vuichoud
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, ENS de Lyon, Institut des Sciences Analytiques, UMR 5280, 5 rue de la Doua, 69100 Villeurbanne, France
| | - Sami Jannin
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, ENS de Lyon, Institut des Sciences Analytiques, UMR 5280, 5 rue de la Doua, 69100 Villeurbanne, France
| | - Eduard Y. Chekmenev
- Department of Chemistry & Karmanos Cancer Center, Wayne State University, Detroit, 48202, MI, United States
- Russian Academy of Sciences, Moscow, 119991, Russia
| | - Boyd M. Goodson
- Southern Illinois University, Carbondale, IL 62901, United States
| | - Danila A. Barskiy
- Department of Chemistry, University of California at Berkeley, Berkeley, California 94720-3220, United States
| | - Igor V. Koptyug
- Laboratory of Magnetic Resonance Microimaging, International Tomography Center, SB RAS, 3A Institutskaya St., Novosibirsk 630090 (Russia)
- Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090 (Russia)
| |
Collapse
|
22
|
Shchepin RV, Jaigirdar L, Chekmenev EY. Spin-Lattice Relaxation of Hyperpolarized Metronidazole in Signal Amplification by Reversible Exchange in Micro-Tesla Fields. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2018; 122:4984-4996. [PMID: 29955244 PMCID: PMC6017983 DOI: 10.1021/acs.jpcc.8b00283] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Simultaneous reversible chemical exchange of parahydrogen and to-be-hyperpolarized substrate on metal centers enables spontaneous transfer of spin order from parahydrogen singlet to nuclear spins of the substrate. When performed at sub-micro-Tesla magnetic field, this technique of NMR Signal Amplification by Reversible Exchange in SHield Enables Alignment Transfer to Heteronuclei (SABRE-SHEATH). SABRE-SHEATH has been shown to hyperpolarize nitrogen-15 sites of a wide range of biologically interesting molecules to a high polarization level (P > 20%) in one minute. Here, we report on a systematic study of 1H, 13C and 15N spin-lattice relaxation (T1) of metronidazole-13C2-15N2 in SABRE-SHEATH hyperpolarization process. In micro-Tesla range, we find that all 1H, 13C and 15N spins studied share approximately the same T1 values (ca. 4 s at the conditions studied) due to mixing of their Zeeman levels, which is consistent with the model of relayed SABRE-SHEATH effect. These T1 values are significantly lower than those at higher magnetic (i.e. the Earth's magnetic field and above), which exceed 3 minutes in some cases. Moreover, these relatively short T1 values observed below 1 micro-Tesla limit the polarization build-up process of SABRE-SHEATH- thereby, limiting maximum attainable 15N polarization. The relatively short nature of T1 values observed below 1 micro-Tesla is primarily caused by intermolecular interactions with quadrupolar iridium centers or dihydride protons of the employed polarization transfer catalyst, whereas intramolecular spin-spin interactions with 14N quadrupolar centers have significantly smaller contribution. The presented experimental results and their analysis will be beneficial for more rational design of SABRE-SHEATH (i) polarization transfer catalyst, and (ii) hyperpolarized molecular probes in the context of biomedical imaging and other applications.
Collapse
Affiliation(s)
- Roman V. Shchepin
- Vanderbilt University Institute of Imaging Science (VUIIS), Department of Radiology, Vanderbilt University Medical Center (VUMC), Nashville, Tennessee 37232-2310 United States
| | - Lamya Jaigirdar
- Vanderbilt University Institute of Imaging Science (VUIIS), Department of Radiology, Vanderbilt University Medical Center (VUMC), Nashville, Tennessee 37232-2310 United States
- Vanderbilt University, School of Engineering, Nashville, Tennessee 37232 United States
| | - Eduard Y. Chekmenev
- Vanderbilt University Institute of Imaging Science (VUIIS), Department of Radiology, Vanderbilt University Medical Center (VUMC), Nashville, Tennessee 37232-2310 United States
- Department of Biomedical Engineering, Vanderbilt University, Vanderbilt-Ingram Cancer Center (VICC), Nashville, Tennessee 37232-2310, United States
- Russian Academy of Sciences, Leninskiy Prospekt 14, Moscow, 119991, Russia
| |
Collapse
|
23
|
Sorochkina K, Zhivonitko VV, Chernichenko K, Telkki VV, Repo T, Koptyug IV. Spontaneous 15N Nuclear Spin Hyperpolarization in Metal-Free Activation of Parahydrogen by Molecular Tweezers. J Phys Chem Lett 2018; 9:903-907. [PMID: 29401399 PMCID: PMC5862329 DOI: 10.1021/acs.jpclett.7b03433] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 02/05/2018] [Indexed: 06/07/2023]
Abstract
The ability of frustrated Lewis pairs (FLPs) to activate H2 is of significant interest for metal-free catalysis. The activation of H2 is also the key element of parahydrogen-induced polarization (PHIP), one of the nuclear spin hyperpolarization techniques. It is demonstrated that o-phenylene-based ansa-aminoboranes (AABs) can produce 1H nuclear spin hyperpolarization through a reversible interaction with parahydrogen at ambient temperatures. Heteronuclei are useful in NMR and MRI as well because they have a broad chemical shift range and long relaxation times and may act as background-free labels. We report spontaneous formation of 15N hyperpolarization of the N-H site for a family of AABs. The process is efficient at the high magnetic field of an NMR magnet (7 T), and it provides up to 350-fold 15N signal enhancements. Different hyperpolarization effects are observed with various AAB structures and in a broad temperature range. Spontaneous hyperpolarization, albeit an order of magnitude weaker than that for 15N, was also observed for 11B nuclei.
Collapse
Affiliation(s)
- Kristina Sorochkina
- Department
of Chemistry, University of Helsinki, A. I. Virtasen aukio 1, 00014 Helsinki, Finland
| | - Vladimir V. Zhivonitko
- NMR
Research Unit, University of Oulu, P.O. Box 3000, 90014 Oulu, Finland
- Laboratory
of Magnetic Resonance Microimaging, International
Tomography Center SB RAS, Institutskaya Street 3A, 630090 Novosibirsk, Russia
- Department
of Natural Sciences, Novosibirsk State University, Pirogova Street 2, 630090 Novosibirsk, Russia
| | - Konstantin Chernichenko
- Department
of Chemistry, University of Helsinki, A. I. Virtasen aukio 1, 00014 Helsinki, Finland
| | | | - Timo Repo
- Department
of Chemistry, University of Helsinki, A. I. Virtasen aukio 1, 00014 Helsinki, Finland
| | - Igor V. Koptyug
- Laboratory
of Magnetic Resonance Microimaging, International
Tomography Center SB RAS, Institutskaya Street 3A, 630090 Novosibirsk, Russia
- Department
of Natural Sciences, Novosibirsk State University, Pirogova Street 2, 630090 Novosibirsk, Russia
| |
Collapse
|
24
|
Shchepin RV, Jaigirdar L, Theis T, Warren WS, Goodson BM, Chekmenev EY. Spin Relays Enable Efficient Long-Range Heteronuclear Signal Amplification By Reversible Exchange. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2017; 121:28425-28434. [PMID: 29955243 PMCID: PMC6017995 DOI: 10.1021/acs.jpcc.7b11485] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
A systematic experimental study is reported on the polarization transfer to distant spins, which do not directly bind to the polarization transfer complexes employed in Signal Amplification By Reversible Exchange (SABRE) experiments. Both, long-range transfer to protons and long-range transfer to heteronuclei i.e. 13C and 15N are examined. Selective destruction of hyperpolarization on 1H, 13C, and 15N sites is employed, followed by their re-hyperpolarization from neighboring spins within the molecules of interest (pyridine for 1H studies and metronidazole-15N2-13C2 for 13C and 15N studies). We conclude that long-range sites can be efficiently hyperpolarized when a network of spin-½ nuclei enables relayed polarization transfer (i.e. via short-range interactions between sites). In case of proton SABRE in the milli-Tesla regime, a relay network consisting of protons only is sufficient. However, in case 13C and 15N are targeted (i.e. via SABRE in SHield Enables Alignment Transfer to Heteronuclei or SABRE-SHEATH experiment), the presence of a heteronuclear network (e.g. consisting of 15N) enables a relay mechanism that is significantly more efficient than the direct transfer of spin order from para-H2-derived hydrides.
Collapse
Affiliation(s)
- Roman V. Shchepin
- Vanderbilt University Institute of Imaging Science (VUIIS), Department of Radiology, Vanderbilt University Medical Center (VUMC), Nashville, Tennessee 37232-2310 United States
| | - Lamya Jaigirdar
- Vanderbilt University Institute of Imaging Science (VUIIS), Department of Radiology, Vanderbilt University Medical Center (VUMC), Nashville, Tennessee 37232-2310 United States
- Vanderbilt University, School of Engineering, Nashville, Tennessee 37232 United States
| | - Thomas Theis
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Warren S. Warren
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Boyd M. Goodson
- Department of Chemistry and Biochemistry and Materials Technology Center, Southern Illinois University, Carbondale, Illinois 62901, United States
| | - Eduard Y. Chekmenev
- Vanderbilt University Institute of Imaging Science (VUIIS), Department of Radiology, Vanderbilt University Medical Center (VUMC), Nashville, Tennessee 37232-2310 United States
- Department of Biomedical Engineering, Vanderbilt University, Vanderbilt-Ingram Cancer Center (VICC), Nashville, Tennessee 37232-2310, United States
- Russian Academy of Sciences, Leninskiy Prospekt 14, Moscow, 119991, Russia
| |
Collapse
|