1
|
Lin KT, Muneer G, Huang PR, Chen CS, Chen YJ. Mass Spectrometry-Based Proteomics for Next-Generation Precision Oncology. MASS SPECTROMETRY REVIEWS 2025. [PMID: 40269546 DOI: 10.1002/mas.21932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 03/29/2025] [Accepted: 04/01/2025] [Indexed: 04/25/2025]
Abstract
Cancer is the leading cause of death worldwide characterized by patient heterogeneity and complex tumor microenvironment. While the genomics-based testing has transformed modern medicine, the challenge of diverse clinical outcomes highlights unmet needs for precision oncology. As functional molecules regulating cellular processes, proteins hold great promise as biomarkers and drug targets. Mass spectrometry (MS)-based clinical proteomics has illuminated the molecular features of cancers and facilitated discovery of biomarkers or therapeutic targets, paving the way for innovative strategies that enhance the precision of personalized treatment. In this article, we introduced the tools and current achievements of MS-based proteomics, choice of discovery and targeted MS from discovery to validation phases, profiling sensitivity from bulk samples to single-cell level and tissue to liquid biopsy specimens, current regulatory landscape of MS-based protein laboratory-developed tests (LDTs). The challenges, success and future perspectives in translating research MS assay into clinical applications are also discussed. With well-designed validation studies to demonstrate clinical benefits and meet the regulatory requirements for both analytical and clinical performance, the future of MS-based assays is promising with numerous opportunities to improve cancer diagnosis, treatment, and monitoring.
Collapse
Affiliation(s)
- Kuen-Tyng Lin
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Gul Muneer
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | | | - Ciao-Syuan Chen
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Yu-Ju Chen
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
2
|
Gorman BL, Shafer CC, Ragi N, Sharma K, Neumann EK, Anderton CR. Imaging and spatially resolved mass spectrometry applications in nephrology. Nat Rev Nephrol 2025:10.1038/s41581-025-00946-1. [PMID: 40148534 DOI: 10.1038/s41581-025-00946-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2025] [Indexed: 03/29/2025]
Abstract
The application of spatially resolved mass spectrometry (MS) and MS imaging approaches for studying biomolecular processes in the kidney is rapidly growing. These powerful methods, which enable label-free and multiplexed detection of many molecular classes across omics domains (including metabolites, drugs, proteins and protein post-translational modifications), are beginning to reveal new molecular insights related to kidney health and disease. The complexity of the kidney often necessitates multiple scales of analysis for interrogating biofluids, whole organs, functional tissue units, single cells and subcellular compartments. Various MS methods can generate omics data across these spatial domains and facilitate both basic science and pathological assessment of the kidney. Optimal processes related to sample preparation and handling for different MS applications are rapidly evolving. Emerging technology and methods, improvement of spatial resolution, broader molecular characterization, multimodal and multiomics approaches and the use of machine learning and artificial intelligence approaches promise to make these applications even more valuable in the field of nephology. Overall, spatially resolved MS and MS imaging methods have the potential to fill much of the omics gap in systems biology analysis of the kidney and provide functional outputs that cannot be obtained using genomics and transcriptomic methods.
Collapse
Affiliation(s)
- Brittney L Gorman
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Catelynn C Shafer
- Department of Chemistry, University of California, Davis, Davis, CA, 95695, USA
| | - Nagarjunachary Ragi
- Center for Precision Medicine, The University of Texas Health San Antonio, San Antonio, TX, USA
| | - Kumar Sharma
- Center for Precision Medicine, The University of Texas Health San Antonio, San Antonio, TX, USA
- Division of Nephrology, Department of Medicine, The University of Texas Health San Antonio, San Antonio, TX, USA
| | - Elizabeth K Neumann
- Department of Chemistry, University of California, Davis, Davis, CA, 95695, USA
| | - Christopher R Anderton
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA.
| |
Collapse
|
3
|
Sanchez-Avila X, de Oliveira RM, Huang S, Wang C, Kelly RT. Trends in Mass Spectrometry-Based Single-Cell Proteomics. Anal Chem 2025; 97:5893-5907. [PMID: 40091206 PMCID: PMC12003028 DOI: 10.1021/acs.analchem.5c00661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Affiliation(s)
- Ximena Sanchez-Avila
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Raphaela M de Oliveira
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Siqi Huang
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Chao Wang
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Ryan T Kelly
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| |
Collapse
|
4
|
Humphries EM, Hains PG, Robinson PJ. Overlap of Formalin-Fixed Paraffin-Embedded and Fresh-Frozen Matched Tissues for Proteomics and Phosphoproteomics. ACS OMEGA 2025; 10:6891-6900. [PMID: 40028131 PMCID: PMC11865994 DOI: 10.1021/acsomega.4c09289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/08/2025] [Accepted: 01/15/2025] [Indexed: 03/05/2025]
Abstract
Many liquid chromatography-mass spectrometry (LC-MS) studies have compared formalin-fixed paraffin-embedded (FFPE) tissues with matched fresh-frozen (FF) tissues to examine the effect of preservation techniques on the proteome; however, few studies have included the phosphoproteome. A high degree of overlap and correlation between the two preservation techniques would demonstrate the importance of FFPE tissues as a valuable biomedical resource. Our aim was to quantitatively compare the proteome and phosphoproteome of matched FFPE and FF tissues using data-independent acquisition LC-MS. Four organs from three rats were cut in half to produce matched FFPE and FF tissue pairs. Excellent overlaps of 85-97% for the proteome and 82-98% for the phosphoproteome were observed, depending on the organ type, between the two preservation techniques. Most of the unique identifications were found in FF with less than 0.3% being unique to FFPE tissues. Strong agreement between FFPE and FF matched tissue pairs was observed with Pearson correlation coefficients of 0.93-0.97 and 0.79-0.87 for the proteome and phosphoproteome, respectively. Digestion efficiency was slightly higher in FFPE (92-94%) than in FF tissues (86-89%), and a search of a data subset for formaldehyde induced chemical modifications revealed that only 0.05% of precursors were unique to FFPE tissues. This suggests that with quality sample preparation methods it is not necessary to include formaldehyde induced chemical modifications when analyzing FFPE tissues. We attribute the lower number of identifications in FFPE tissues to inaccurate peptide quantitation, which resulted in a lower MS peptide load and tryptic peptide enrichment load. Our results demonstrate that both proteomic and phosphoproteomic analyses of FFPE and FF tissues are highly comparable and highlight the suitability of FFPE tissues for both proteomic and phosphoproteomic analysis.
Collapse
Affiliation(s)
- Erin M. Humphries
- ProCan, Children’s
Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
| | - Peter G. Hains
- ProCan, Children’s
Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
| | - Phillip J. Robinson
- ProCan, Children’s
Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
| |
Collapse
|
5
|
Monette A, Aguilar-Mahecha A, Altinmakas E, Angelos MG, Assad N, Batist G, Bommareddy PK, Bonilla DL, Borchers CH, Church SE, Ciliberto G, Cogdill AP, Fattore L, Hacohen N, Haris M, Lacasse V, Lie WR, Mehta A, Ruella M, Sater HA, Spatz A, Taouli B, Tarhoni I, Gonzalez-Kozlova E, Tirosh I, Wang X, Gnjatic S. The Society for Immunotherapy of Cancer Perspective on Tissue-Based Technologies for Immuno-Oncology Biomarker Discovery and Application. Clin Cancer Res 2025; 31:439-456. [PMID: 39625818 DOI: 10.1158/1078-0432.ccr-24-2469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/27/2024] [Accepted: 11/12/2024] [Indexed: 02/04/2025]
Abstract
With immuno-oncology becoming the standard of care for a variety of cancers, identifying biomarkers that reliably classify patient response, resistance, or toxicity becomes the next critical barrier toward improving care. Multiparametric, multi-omics, and computational platforms generating an unprecedented depth of data are poised to usher in the discovery of increasingly robust biomarkers for enhanced patient selection and personalized treatment approaches. Deciding which developing technologies to implement in clinical settings ultimately, applied either alone or in combination, relies on weighing pros and cons, from minimizing patient sampling to maximizing data outputs, and assessing the reproducibility and representativeness of findings, while lessening data fragmentation toward harmonization. These factors are all assessed while taking into consideration the shortest turnaround time. The Society for Immunotherapy of Cancer Biomarkers Committee convened to identify important advances in biomarker technologies and to address advances in biomarker discovery using multiplexed IHC and immunofluorescence, their coupling to single-cell transcriptomics, along with mass spectrometry-based quantitative and spatially resolved proteomics imaging technologies. We summarize key metrics obtained, ease of interpretation, limitations and dependencies, technical improvements, and outward comparisons of these technologies. By highlighting the most interesting recent data contributed by these technologies and by providing ways to improve their outputs, we hope to guide correlative research directions and assist in their evolution toward becoming clinically useful in immuno-oncology.
Collapse
Affiliation(s)
- Anne Monette
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Adriana Aguilar-Mahecha
- Lady Davis Institute for Medical Research, The Segal Cancer Center, Jewish General Hospital, Montreal, Quebec, Canada
| | - Emre Altinmakas
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Radiology, Koç University School of Medicine, Istanbul, Turkey
| | - Mathew G Angelos
- Division of Hematology and Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Nima Assad
- Icahn School of Medicine at Mount Sinai, New York, New York
| | - Gerald Batist
- McGill Centre for Translational Research, Jewish General Hospital, Montreal, Quebec, Canada
| | | | | | - Christoph H Borchers
- Gerald Bronfman Department of Oncology, Segal Cancer Proteomics Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
- Division of Experimental Medicine, Department of Pathology, McGill University, Montreal, Quebec, Canada
| | | | - Gennaro Ciliberto
- Scientific Direction, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | | | - Luigi Fattore
- SAFU Laboratory, Department of Research, Advanced Diagnostics and Technological Innovation, Translational Research Area, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Nir Hacohen
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts
| | - Mohammad Haris
- Department of Radiology, Center for Advanced Metabolic Imaging in Precision Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Laboratory Animal Research Center, Qatar University, Doha, Qatar
| | - Vincent Lacasse
- Segal Cancer Proteomics Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| | | | - Arnav Mehta
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts
| | - Marco Ruella
- Division of Hematology-Oncology, Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | - Alan Spatz
- Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, McGill University Health Center, Montreal, Quebec, Canada
| | - Bachir Taouli
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Imad Tarhoni
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, Illinois
| | | | - Itay Tirosh
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Xiaodong Wang
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Sacha Gnjatic
- Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
6
|
Kitata RB, Velickovic M, Xu Z, Zhao R, Scholten D, Chu RK, Orton DJ, Chrisler WB, Zhang T, Mathews JV, Bumgarner BM, Gursel DB, Moore RJ, Piehowski PD, Liu T, Smith RD, Liu H, Wasserfall CH, Tsai CF, Shi T. Robust collection and processing for label-free single voxel proteomics. Nat Commun 2025; 16:547. [PMID: 39805815 PMCID: PMC11730317 DOI: 10.1038/s41467-024-54643-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/18/2024] [Indexed: 01/16/2025] Open
Abstract
With advanced mass spectrometry (MS)-based proteomics, genome-scale proteome coverage can be achieved from bulk tissues. However, such bulk measurement lacks spatial resolution and obscures tissue heterogeneity, precluding proteome mapping of tissue microenvironment. Here we report an integrated wet collection of single microscale tissue voxels and Surfactant-assisted One-Pot voxel processing method termed wcSOP for robust label-free single voxel proteomics. wcSOP capitalizes on buffer droplet-assisted wet collection of single voxels dissected by LCM to the tube cap and SOP voxel processing in the same collection cap. This method enables reproducible, label-free quantification of approximately 900 and 4600 proteins for single voxels at 20 µm × 20 µm × 10 µm (~1 cell region) and 200 µm × 200 µm × 10 µm (~100 cell region) from fresh frozen human spleen tissue, respectively. It can reveal spatially resolved protein signatures and region-specific signaling pathways. Furthermore, wcSOP-MS is demonstrated to be broadly applicable for OCT-embedded and FFPE human archived tissues as well as for small-scale 2D proteome mapping of tissues at high spatial resolutions. wcSOP-MS may pave the way for routine robust single voxel proteomics and spatial proteomics.
Collapse
Affiliation(s)
- Reta Birhanu Kitata
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Marija Velickovic
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Zhangyang Xu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Rui Zhao
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - David Scholten
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Rosalie K Chu
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Daniel J Orton
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - William B Chrisler
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Tong Zhang
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Jeremy V Mathews
- Pathology Core Facility, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Benjamin M Bumgarner
- Department of Pathology, Immunology, and Laboratory Medicine, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Demirkan B Gursel
- Pathology Core Facility, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Ronald J Moore
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Paul D Piehowski
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Tao Liu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Richard D Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Huiping Liu
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Clive H Wasserfall
- Department of Pathology, Immunology, and Laboratory Medicine, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Chia-Feng Tsai
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Tujin Shi
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA.
| |
Collapse
|
7
|
Sun F, Li H, Sun D, Fu S, Gu L, Shao X, Wang Q, Dong X, Duan B, Xing F, Wu J, Xiao M, Zhao F, Han JDJ, Liu Q, Fan X, Li C, Wang C, Shi T. Single-cell omics: experimental workflow, data analyses and applications. SCIENCE CHINA. LIFE SCIENCES 2025; 68:5-102. [PMID: 39060615 DOI: 10.1007/s11427-023-2561-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/18/2024] [Indexed: 07/28/2024]
Abstract
Cells are the fundamental units of biological systems and exhibit unique development trajectories and molecular features. Our exploration of how the genomes orchestrate the formation and maintenance of each cell, and control the cellular phenotypes of various organismsis, is both captivating and intricate. Since the inception of the first single-cell RNA technology, technologies related to single-cell sequencing have experienced rapid advancements in recent years. These technologies have expanded horizontally to include single-cell genome, epigenome, proteome, and metabolome, while vertically, they have progressed to integrate multiple omics data and incorporate additional information such as spatial scRNA-seq and CRISPR screening. Single-cell omics represent a groundbreaking advancement in the biomedical field, offering profound insights into the understanding of complex diseases, including cancers. Here, we comprehensively summarize recent advances in single-cell omics technologies, with a specific focus on the methodology section. This overview aims to guide researchers in selecting appropriate methods for single-cell sequencing and related data analysis.
Collapse
Affiliation(s)
- Fengying Sun
- Department of Clinical Laboratory, the Affiliated Wuhu Hospital of East China Normal University (The Second People's Hospital of Wuhu City), Wuhu, 241000, China
| | - Haoyan Li
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Dongqing Sun
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Orthopaedic Department, Tongji Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China
- Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Shaliu Fu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Orthopaedic Department, Tongji Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China
- Research Institute of Intelligent Computing, Zhejiang Lab, Hangzhou, 311121, China
- Shanghai Research Institute for Intelligent Autonomous Systems, Shanghai, 201210, China
| | - Lei Gu
- Center for Single-cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xin Shao
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314103, China
| | - Qinqin Wang
- Center for Single-cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xin Dong
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Orthopaedic Department, Tongji Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China
- Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Bin Duan
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Orthopaedic Department, Tongji Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China
- Research Institute of Intelligent Computing, Zhejiang Lab, Hangzhou, 311121, China
- Shanghai Research Institute for Intelligent Autonomous Systems, Shanghai, 201210, China
| | - Feiyang Xing
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Orthopaedic Department, Tongji Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China
- Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Jun Wu
- Center for Bioinformatics and Computational Biology, Shanghai Key Laboratory of Regulatory Biology, the Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Minmin Xiao
- Department of Clinical Laboratory, the Affiliated Wuhu Hospital of East China Normal University (The Second People's Hospital of Wuhu City), Wuhu, 241000, China.
| | - Fangqing Zhao
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Jing-Dong J Han
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, 100871, China.
| | - Qi Liu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Orthopaedic Department, Tongji Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China.
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China.
- Research Institute of Intelligent Computing, Zhejiang Lab, Hangzhou, 311121, China.
- Shanghai Research Institute for Intelligent Autonomous Systems, Shanghai, 201210, China.
| | - Xiaohui Fan
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314103, China.
- Zhejiang Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China.
| | - Chen Li
- Center for Single-cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Chenfei Wang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Orthopaedic Department, Tongji Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai, 200082, China.
- Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| | - Tieliu Shi
- Department of Clinical Laboratory, the Affiliated Wuhu Hospital of East China Normal University (The Second People's Hospital of Wuhu City), Wuhu, 241000, China.
- Center for Bioinformatics and Computational Biology, Shanghai Key Laboratory of Regulatory Biology, the Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
- Key Laboratory of Advanced Theory and Application in Statistics and Data Science-MOE, School of Statistics, East China Normal University, Shanghai, 200062, China.
| |
Collapse
|
8
|
Lin HJL, Webber KGI, Nwosu AJ, Kelly RT. Review and Practical Guide for Getting Started With Single-Cell Proteomics. Proteomics 2025; 25:e202400021. [PMID: 39548896 PMCID: PMC11994847 DOI: 10.1002/pmic.202400021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 11/18/2024]
Abstract
Single-cell proteomics (SCP) has advanced significantly in recent years, with new tools specifically designed for the preparation and analysis of single cells now commercially available to researchers. The field is sufficiently mature to be broadly accessible to any lab capable of isolating single cells and performing bulk-scale proteomic analyses. In this review, we highlight recent work in the SCP field that has significantly lowered the barrier to entry, thus providing a practical guide for those who are newly entering the SCP field. We outline the fundamental principles and report multiple paths to accomplish the key steps of a successful SCP experiment including sample preparation, separation, and mass spectrometry data acquisition and analysis. We recommend that researchers start with a label-free SCP workflow, as achieving high-quality and quantitatively accurate results is more straightforward than label-based multiplexed strategies. By leveraging these accessible means, researchers can confidently perform SCP experiments and make meaningful discoveries at the single-cell level.
Collapse
Affiliation(s)
- Hsien-Jung L Lin
- Department of Chemistry & Biochemistry, Brigham Young University, Provo, Utah, USA
| | - Kei G I Webber
- Department of Chemistry & Biochemistry, Brigham Young University, Provo, Utah, USA
| | - Andikan J Nwosu
- Department of Chemistry & Biochemistry, Brigham Young University, Provo, Utah, USA
| | - Ryan T Kelly
- Department of Chemistry & Biochemistry, Brigham Young University, Provo, Utah, USA
| |
Collapse
|
9
|
Nordmann TM, Mund A, Mann M. A new understanding of tissue biology from MS-based proteomics at single-cell resolution. Nat Methods 2024; 21:2220-2222. [PMID: 39643675 DOI: 10.1038/s41592-024-02541-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
Affiliation(s)
- Thierry M Nordmann
- Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany.
| | - Andreas Mund
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
- OmicVision Biosciences, BioInnovation Institute, Copenhagen, Denmark.
| | - Matthias Mann
- Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany.
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
10
|
Egbejiogu BC, Donnarumma F, Murray KK. Infrared Laser Ablation and Capture of Formalin-Fixed Paraffin-Embedded Tissue. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024. [PMID: 39494617 DOI: 10.1021/jasms.4c00299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Formalin-fixed paraffin-embedded (FFPE) tissue is a ubiquitous and invaluable resource for biomedical research and clinical applications. However, FFPE tissue proteomics is challenging due to protein cross-linking and chemical modification. Laser ablation sampling allows precise removal of material from tissue sections with high spatial control and reproducibility for offline proteomics by liquid chromatography coupled with tandem mass spectrometry. In this work, we used a pulsed mid-infrared laser for microsampling of rat liver tissue for subsequent identification and quantification of proteins. It was found that more proteins were identified by FFPE tissue laser ablation sampling compared to fresh frozen (FF) tissue laser ablation sampling and that more proteins were identified by laser ablation than by manual dissection of FFPE tissue. In contrast to previous studies, no loss of hydrophilic proteins due to residual cross-linking was observed. The efficient capture of proteins by laser ablation microsampling is attributed to efficient laser breakup of the tissue which facilitates downstream processing of the proteins.
Collapse
Affiliation(s)
- Blessing C Egbejiogu
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Fabrizio Donnarumma
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Kermit K Murray
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
11
|
Humphries EM, Loudon C, Craft GE, Hains PG, Robinson PJ. Quantitative Comparison of Deparaffinization, Rehydration, and Extraction Methods for FFPE Tissue Proteomics and Phosphoproteomics. Anal Chem 2024; 96:13358-13370. [PMID: 39102789 DOI: 10.1021/acs.analchem.3c04479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Formalin-fixed paraffin-embedded (FFPE) tissues are suitable for proteomic and phosphoproteomic biomarker studies by data-independent acquisition mass spectrometry. The choice of the sample preparation method influences the number, intensity, and reproducibility of identifications. By comparing four deparaffinization and rehydration methods, including heptane, histolene, SubX, and xylene, we found that heptane and methanol produced the lowest coefficients of variation (CVs). Using this, five extraction methods from the literature were modified and evaluated for their performance using kidney, leg muscle, lung, and testicular rat organs. All methods performed well, except for SP3 due to insufficient tissue lysis. Heat n' Beat was the fastest and most reproducible method with the highest digestion efficiency and lowest CVs. S-Trap produced the highest peptide yield, while TFE produced the best phosphopeptide enrichment efficiency. The quantitation of FFPE-derived peptides remains an ongoing challenge with bias in UV and fluorescence assays across methods, most notably in SPEED. Functional enrichment analysis demonstrated that each method favored extracting some gene ontology cellular components over others including chromosome, cytoplasmic, cytoskeleton, endoplasmic reticulum, membrane, mitochondrion, and nucleoplasm protein groups. The outcome is a set of recommendations for choosing the most appropriate method for different settings.
Collapse
Affiliation(s)
- Erin M Humphries
- ProCan, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales 2145, Australia
| | - Clare Loudon
- ProCan, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales 2145, Australia
| | - George E Craft
- ProCan, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales 2145, Australia
| | - Peter G Hains
- ProCan, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales 2145, Australia
| | - Phillip J Robinson
- ProCan, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales 2145, Australia
| |
Collapse
|
12
|
Xie X, Truong T, Huang S, Johnston SM, Hovanski S, Robinson A, Webber KGI, Lin HJL, Mun DG, Pandey A, Kelly RT. Multicolumn Nanoflow Liquid Chromatography with Accelerated Offline Gradient Generation for Robust and Sensitive Single-Cell Proteome Profiling. Anal Chem 2024; 96:10534-10542. [PMID: 38915247 PMCID: PMC11482043 DOI: 10.1021/acs.analchem.4c00878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Peptide separations that combine high sensitivity, robustness, peak capacity, and throughput are essential for extending bottom-up proteomics to smaller samples including single cells. To this end, we have developed a multicolumn nanoLC system with offline gradient generation. One binary pump generates gradients in an accelerated fashion to support multiple analytical columns, and a single trap column interfaces with all analytical columns to reduce required maintenance and simplify troubleshooting. A high degree of parallelization is possible, as one sample undergoes separation while the next sample plus its corresponding mobile phase gradient are transferred into the storage loop and a third sample is loaded into a sample loop. Selective offline elution from the trap column into the sample loop prevents salts and hydrophobic species from entering the analytical column, thus greatly enhancing column lifetime and system robustness. With this design, samples can be analyzed as fast as every 20 min at a flow rate of just 40 nL/min with close to 100% MS utilization time and continuously for as long as several months without column replacement. We utilized the system to analyze the proteomes of single cells from a multiple myeloma cell line upon treatment with the immunomodulatory imide drug lenalidomide.
Collapse
Affiliation(s)
- Xiaofeng Xie
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
- MicrOmics Technologies, LLC, Spanish Fork, Utah 84660, United States
| | - Thy Truong
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
- MicrOmics Technologies, LLC, Spanish Fork, Utah 84660, United States
| | - Siqi Huang
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - S Madisyn Johnston
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Simon Hovanski
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Abigail Robinson
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Kei G I Webber
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Hsien-Jung L Lin
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Dong-Gi Mun
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Akhilesh Pandey
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota 55905, United States
- Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Ryan T Kelly
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
- MicrOmics Technologies, LLC, Spanish Fork, Utah 84660, United States
| |
Collapse
|
13
|
Kobayashi G, Ito R, Taga M, Koyama K, Yano S, Endo T, Kai T, Yamamoto T, Hiratsuka T, Tsuruyama T. Proteomic profiling of FFPE specimens: Discovery of HNRNPA2/B1 and STT3B as biomarkers for determining formalin fixation durations. J Proteomics 2024; 301:105196. [PMID: 38723849 DOI: 10.1016/j.jprot.2024.105196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/28/2024] [Accepted: 05/06/2024] [Indexed: 05/18/2024]
Abstract
Recent advancements in proteomics technologies using formalin-fixed paraffin-embedded (FFPE) samples have significantly advanced biomarker discovery. Yet, the effects of varying sample preparation protocols on proteomic analyses remain poorly understood. We analyzed mouse liver FFPE samples that varied in fixatives, fixation duration, and storage temperature using LC/MS. We found that variations in fixation duration significantly affected the abundance of specific proteins, showing that HNRNPA2/B1 demonstrated a significant decrease in abundance in samples fixed for long periods, whereas STT3B exhibited a significant increase in abundance in samples fixed for long durations. These findings were supported by immunohistochemical analysis across liver, spleen, and lung tissues, demonstrating a significant decrease in the nuclear staining of HNRNPA2/B1 in long-duration acid formalin(AF)-fixed FFPE samples, and an increase in cytoplasmic staining of STT3B in long-duration neutral buffered formalin-fixed liver and lung tissues and granular staining in all long-duration AF-fixed FFPE tissue types. Similar trends were observed in the long-duration fixed HeLa cells. These results demonstrate that fixation duration critically affects the proteomic integrity of FFPE samples, emphasizing the urgent need for standardized fixation protocols to ensure consistent and reliable proteomic data. SIGNIFICANCE: The quality of FFPE samples is primarily influenced by the fixation and storage conditions. However, previous studies have mainly focused on their impact on nucleic acids and the extent to which different fixation conditions affect changes in proteins has not been evaluated. In addition, to our knowledge, proteomic research focusing on differences in formalin fixation conditions has not yet been conducted. Here, we analyzed FFPE samples with different formalin fixation and storage conditions using LC/MS and evaluated the impact of different fixation conditions on protein variations. Our study unequivocally established formalin fixation duration as a critical determinant of protein variation in FFPE specimens and successfully identified HNRNPA2/B1 and STT3B as potential biomarkers for predicting formalin fixation duration for the first time. The study findings open new avenues for quality assessment in biomedical research and diagnostics.
Collapse
Affiliation(s)
- Go Kobayashi
- Laboratory of Molecular Pathology, Department of Molecular Biosciences, Radiation Effects Research Foundation, Hiroshima, Japan
| | - Reiko Ito
- Laboratory of Molecular Pathology, Department of Molecular Biosciences, Radiation Effects Research Foundation, Hiroshima, Japan; Department of Functions of Biological-defense Genome, Hiroshima University Graduate School, Hiroshima, Japan
| | - Masataka Taga
- Laboratory of Molecular Pathology, Department of Molecular Biosciences, Radiation Effects Research Foundation, Hiroshima, Japan
| | - Kazuaki Koyama
- Laboratory of Molecular Pathology, Department of Molecular Biosciences, Radiation Effects Research Foundation, Hiroshima, Japan
| | - Shiho Yano
- Laboratory of Molecular Pathology, Department of Molecular Biosciences, Radiation Effects Research Foundation, Hiroshima, Japan
| | - Tatsuya Endo
- Department of Physics, Graduate school of Science, Tohoku University, Miyagi, Japan
| | | | - Takushi Yamamoto
- Kyoto Applications Development Center, Analytical and Measuring Instruments Division, Shimadzu Corporation, Kyoto, Japan
| | - Takuya Hiratsuka
- Department of Drug Discovery Medicine, Pathology Division, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tatsuaki Tsuruyama
- Laboratory of Molecular Pathology, Department of Molecular Biosciences, Radiation Effects Research Foundation, Hiroshima, Japan; Department of Functions of Biological-defense Genome, Hiroshima University Graduate School, Hiroshima, Japan; Department of Physics, Graduate school of Science, Tohoku University, Miyagi, Japan; Department of Drug Discovery Medicine, Pathology Division, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| |
Collapse
|
14
|
Faktor J, Kote S, Bienkowski M, Hupp TR, Marek-Trzonkowska N. Novel FFPE proteomics method suggests prolactin induced protein as hormone induced cytoskeleton remodeling spatial biomarker. Commun Biol 2024; 7:708. [PMID: 38851810 PMCID: PMC11162451 DOI: 10.1038/s42003-024-06354-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/20/2024] [Indexed: 06/10/2024] Open
Abstract
Robotically assisted proteomics provides insights into the regulation of multiple proteins achieving excellent spatial resolution. However, developing an effective method for spatially resolved quantitative proteomics of formalin fixed paraffin embedded tissue (FFPE) in an accessible and economical manner remains challenging. We introduce non-robotic In-insert FFPE proteomics approach, combining glass insert FFPE tissue processing with spatial quantitative data-independent mass spectrometry (DIA). In-insert approach identifies 450 proteins from a 5 µm thick breast FFPE tissue voxel with 50 µm lateral dimensions covering several tens of cells. Furthermore, In-insert approach associated a keratin series and moesin (MOES) with prolactin-induced protein (PIP) indicating their prolactin and/or estrogen regulation. Our data suggest that PIP is a spatial biomarker for hormonally triggered cytoskeletal remodeling, potentially useful for screening hormonally affected hotspots in breast tissue. In-insert proteomics represents an alternative FFPE processing method, requiring minimal laboratory equipment and skills to generate spatial proteotype repositories from FFPE tissue.
Collapse
Affiliation(s)
- Jakub Faktor
- International Centre for Cancer Vaccine Science, University of Gdansk, Kladki 24, 80-822, Gdansk, Poland.
| | - Sachin Kote
- International Centre for Cancer Vaccine Science, University of Gdansk, Kladki 24, 80-822, Gdansk, Poland.
| | - Michal Bienkowski
- Medical University of Gdansk, University of Gdansk, Mariana Smoluchowskiego 17, 80-214, Gdansk, Poland
| | - Ted R Hupp
- International Centre for Cancer Vaccine Science, University of Gdansk, Kladki 24, 80-822, Gdansk, Poland
| | - Natalia Marek-Trzonkowska
- International Centre for Cancer Vaccine Science, University of Gdansk, Kladki 24, 80-822, Gdansk, Poland
| |
Collapse
|
15
|
Kelly PA, McHugo GP, Scaife C, Peters S, Stevenson ML, McKay JS, MacHugh DE, Saez IL, Breathnach R. Unveiling the Role of Endoplasmic Reticulum Stress Pathways in Canine Demodicosis. Parasite Immunol 2024; 46:e13033. [PMID: 38607285 DOI: 10.1111/pim.13033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 02/29/2024] [Accepted: 03/08/2024] [Indexed: 04/13/2024]
Abstract
Canine demodicosis is a prevalent skin disease caused by overpopulation of a commensal species of Demodex mite, yet its precise cause remains unknown. Research suggests that T-cell exhaustion, increased immunosuppressive cytokines, induction of regulatory T cells and increased expression of immune checkpoint inhibitors may contribute to its pathogenesis. This study aimed to gain a deeper understanding of the molecular changes occurring in canine demodicosis using mass spectrometry and pathway enrichment analysis. The results indicate that endoplasmic reticulum stress promotes canine demodicosis through regulation of three linked signalling pathways: eIF2, mTOR, and eIF4 and p70S6K. These pathways are involved in the modulation of Toll-like receptors, most notably TLR2, and have been shown to play a role in the pathogenesis of skin diseases in both dogs and humans. Moreover, these pathways are also implicated in the promotion of immunosuppressive M2 phenotype macrophages. Immunohistochemical analysis, utilising common markers of dendritic cells and macrophages, verified the presence of M2 macrophages in canine demodicosis. The proteomic analysis also identified immunological disease, organismal injury and abnormalities and inflammatory response as the most significant underlying diseases and disorders associated with canine demodicosis. This study demonstrates that Demodex mites, through ER stress, unfolded protein response and M2 macrophages contribute to an immunosuppressive microenvironment, thereby assisting in their proliferation.
Collapse
Affiliation(s)
- Pamela A Kelly
- UCD School of Veterinary Medicine, University College Dublin, Dublin, 4, Ireland
| | - Gillian P McHugo
- UCD School of Agriculture and Food Science, University College Dublin, Dublin, 4, Ireland
| | - Caitriona Scaife
- Proteomics Core, Mass Spectrometry Resource, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, 4, Ireland
| | - Susan Peters
- UCD School of Veterinary Medicine, University College Dublin, Dublin, 4, Ireland
| | - M Lynn Stevenson
- School of Biodiversity, One Health and Veterinary Medicine, Bearsden, University of Glasgow, Glasgow, UK
| | | | - David E MacHugh
- UCD School of Agriculture and Food Science, University College Dublin, Dublin, 4, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, 4, Ireland
| | - Irene Lara Saez
- UCD Charles Institute of Dermatology, University College Dublin, Dublin, 4, Ireland
| | - Rory Breathnach
- UCD School of Veterinary Medicine, University College Dublin, Dublin, 4, Ireland
| |
Collapse
|
16
|
Duncan KD, Pětrošová H, Lum JJ, Goodlett DR. Mass spectrometry imaging methods for visualizing tumor heterogeneity. Curr Opin Biotechnol 2024; 86:103068. [PMID: 38310648 PMCID: PMC11520788 DOI: 10.1016/j.copbio.2024.103068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/09/2024] [Accepted: 01/09/2024] [Indexed: 02/06/2024]
Abstract
Profiling spatial distributions of lipids, metabolites, and proteins in tumors can reveal unique cellular microenvironments and provide molecular evidence for cancer cell dysfunction and proliferation. Mass spectrometry imaging (MSI) is a label-free technique that can be used to map biomolecules in tumors in situ. Here, we discuss current progress in applying MSI to uncover molecular heterogeneity in tumors. First, the analytical strategies to profile small molecules and proteins are outlined, and current methods for multimodal imaging to maximize biological information are highlighted. Second, we present and summarize biological insights obtained by MSI of tumor tissue. Finally, we discuss important considerations for designing MSI experiments and several current analytical challenges.
Collapse
Affiliation(s)
- Kyle D Duncan
- Department of Chemistry, Vancouver Island University, Nanaimo, British Columbia, Canada; Department of Chemistry, University of Victoria, Victoria, British Columbia, Canada.
| | - Helena Pětrošová
- University of Victoria Genome British Columbia Proteomics Center, University of Victoria, Victoria, British Columbia, Canada; Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada.
| | - Julian J Lum
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada; Trev and Joyce Deeley Research Centre, BC Cancer, Victoria, British Columbia, Canada
| | - David R Goodlett
- University of Victoria Genome British Columbia Proteomics Center, University of Victoria, Victoria, British Columbia, Canada; Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| |
Collapse
|
17
|
Truong T, Kelly RT. What's new in single-cell proteomics. Curr Opin Biotechnol 2024; 86:103077. [PMID: 38359605 PMCID: PMC11068367 DOI: 10.1016/j.copbio.2024.103077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/19/2024] [Indexed: 02/17/2024]
Abstract
In recent years, single-cell proteomics (SCP) has advanced significantly, enabling the analysis of thousands of proteins within single mammalian cells. This progress is driven by advances in experimental design, with maturing label-free and multiplexed methods, optimized sample preparation, and innovations in separation techniques, including ultra-low-flow nanoLC. These factors collectively contribute to improved sensitivity, throughput, and reproducibility. Cutting-edge mass spectrometry platforms and data acquisition approaches continue to play a critical role in enhancing data quality. Furthermore, the exploration of spatial proteomics with single-cell resolution offers significant promise for understanding cellular interactions, giving rise to various phenotypes. SCP has far-reaching applications in cancer research, biomarker discovery, and developmental biology. Here, we provide a critical review of recent advances in the field of SCP.
Collapse
Affiliation(s)
- Thy Truong
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, United States
| | - Ryan T Kelly
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, United States.
| |
Collapse
|
18
|
Truong T, Sanchez-Avila X, Webber KGI, Johnston SM, Kelly RT. Efficient and Sensitive Sample Preparation, Separations, and Data Acquisition for Label-Free Single-Cell Proteomics. Methods Mol Biol 2024; 2817:67-84. [PMID: 38907148 DOI: 10.1007/978-1-0716-3934-4_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
We describe a sensitive and efficient workflow for label-free single-cell proteomics that spans sample preparation, liquid chromatography separations, and mass spectrometry data acquisition. The Tecan Uno Single Cell Dispenser provides rapid cell isolation and nanoliter-volume reagent dispensing within 384-well PCR plates. A newly developed sample processing workflow achieves cell lysis, protein denaturation, and digestion in 1 h with a single reagent dispensing step. Low-flow liquid chromatography coupled with wide-window data-dependent acquisition results in the quantification of nearly 3000 proteins per cell using an Orbitrap Exploris 480 mass spectrometer. This approach greatly broadens accessibility to sensitive single-cell proteome profiling for nonspecialist laboratories.
Collapse
Affiliation(s)
- Thy Truong
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Ximena Sanchez-Avila
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Kei G I Webber
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - S Madisyn Johnston
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Ryan T Kelly
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA.
| |
Collapse
|
19
|
Darville LNF, Lockhart JH, Putty Reddy S, Fang B, Izumi V, Boyle TA, Haura EB, Flores ER, Koomen JM. A Fast-Tracking Sample Preparation Protocol for Proteomics of Formalin-Fixed Paraffin-Embedded Tumor Tissues. Methods Mol Biol 2024; 2823:193-223. [PMID: 39052222 PMCID: PMC11648944 DOI: 10.1007/978-1-0716-3922-1_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Archived tumor specimens are routinely preserved by formalin fixation and paraffin embedding. Despite the conventional wisdom that proteomics might be ineffective due to the cross-linking and pre-analytical variables, these samples have utility for both discovery and targeted proteomics. Building on this capability, proteomics approaches can be used to maximize our understanding of cancer biology and clinical relevance by studying preserved tumor tissues annotated with the patients' medical histories. Proteomics of formalin-fixed paraffin-embedded (FFPE) tissues also integrates with histological evaluation and molecular pathology strategies, so that additional collection of research biopsies or resected tumor aliquots is not needed. The acquisition of data from the same tumor sample also overcomes concerns about biological variation between samples due to intratumoral heterogeneity. However, the protein extraction and proteomics sample preparation from FFPE samples can be onerous, particularly for small (i.e., limited or precious) samples. Therefore, we provide a protocol for a recently introduced kit-based EasyPep method with benchmarking against a modified version of the well-established filter-aided sample preparation strategy using laser-capture microdissected lung adenocarcinoma tissues from a genetically engineered mouse model. This model system allows control over the tumor preparation and pre-analytical variables while also supporting the development of methods for spatial proteomics to examine intratumoral heterogeneity. Data are posted in ProteomeXchange (PXD045879).
Collapse
Affiliation(s)
| | | | | | - Bin Fang
- H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | | | | | | | | | - John M Koomen
- H. Lee Moffitt Cancer Center, Tampa, FL, USA.
- Molecular Oncology/Pathology, Moffitt Cancer Center, Tampa, FL, USA.
| |
Collapse
|
20
|
Egbejiogu BC, Donnarumma F, Dong C, Murray KK. Infrared Laser Ablation and Capture of Biological Tissue. Methods Mol Biol 2024; 2817:9-18. [PMID: 38907143 DOI: 10.1007/978-1-0716-3934-4_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
Sampling thin tissue sections with cellular precision can be accomplished using laser ablation microsampling for mass spectrometry analysis. In this work, the use of a pulsed mid-infrared (IR) laser for selecting small regions of interest (ROI) in tissue sections for offline liquid chromatography-tandem mass spectrometry (LC-MS/MS) is described. The laser is focused onto the tissue section, which is rastered as the laser is fired. The ablated tissue is captured in a microwell array and processed in situ through reduction, alkylation, and digestion with a low liquid volume workflow. The resulting peptides from areas as small as 0.01 mm2 containing 5 ng of protein are analyzed for protein identification and quantification using offline LC-MS/MS.
Collapse
Affiliation(s)
| | | | - Chao Dong
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, USA
| | - Kermit K Murray
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, USA.
| |
Collapse
|
21
|
Makhmut A, Qin D, Fritzsche S, Nimo J, König J, Coscia F. A framework for ultra-low-input spatial tissue proteomics. Cell Syst 2023; 14:1002-1014.e5. [PMID: 37909047 DOI: 10.1016/j.cels.2023.10.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/03/2023] [Accepted: 10/06/2023] [Indexed: 11/02/2023]
Abstract
Spatial proteomics combining microscopy-based cell phenotyping with ultrasensitive mass-spectrometry-based proteomics is an emerging and powerful concept to study cell function and heterogeneity in (patho)physiology. However, optimized workflows that preserve morphological information for phenotype discovery and maximize proteome coverage of few or even single cells from laser microdissected tissue are currently lacking. Here, we report a robust and scalable workflow for the proteomic analysis of ultra-low-input archival material. Benchmarking in murine liver resulted in up to 2,000 quantified proteins from single hepatocyte contours and nearly 5,000 proteins from 50-cell regions. Applied to human tonsil, we profiled 146 microregions including T and B lymphocyte niches and quantified cell-type-specific markers, cytokines, and transcription factors. These data also highlighted proteome dynamics within activated germinal centers, illuminating sites undergoing B cell proliferation and somatic hypermutation. This approach has broad implications in biomedicine, including early disease profiling and drug target and biomarker discovery. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
Affiliation(s)
- Anuar Makhmut
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Spatial Proteomics Group, Berlin, Germany
| | - Di Qin
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Spatial Proteomics Group, Berlin, Germany
| | - Sonja Fritzsche
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Spatial Proteomics Group, Berlin, Germany
| | - Jose Nimo
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Spatial Proteomics Group, Berlin, Germany
| | - Janett König
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Spatial Proteomics Group, Berlin, Germany
| | - Fabian Coscia
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Spatial Proteomics Group, Berlin, Germany.
| |
Collapse
|
22
|
Chen H, Zhang Y, Zhou H, Chen W, Peng J, Feng Y, Fan L, Li J, Zi J, Ren Y, Li Q, Liu S. Routine Workflow of Spatial Proteomics on Micro-formalin-Fixed Paraffin-Embedded Tissues. Anal Chem 2023; 95:16733-16743. [PMID: 37922386 DOI: 10.1021/acs.analchem.3c03848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2023]
Abstract
In the era of single-cell biology, spatial proteomics has emerged as an important frontier. However, it still faces several challenges in technology. Formalin-fixed paraffin-embedded (FFPE) tissues are an important material in spatial proteomics, in which fixed tissues are excised using laser capture microdissection (LCM), followed by protein identification with mass spectrometry. For a satisfied spatial proteomics upon FFPE tissues, the excision area is expected to be as small as possible, and the identified proteins are countered upon as much as possible. For a general laboratory for spatial proteomics, a routine workflow is required, not relying on any special device, and is easily operating. In view of these challenges in technology, we initiated a technology evaluation throughout the entire procedure of proteomic analysis with micro-FFPE tissues. In contrast to the protocols reported previously, several innovations in technology were proposed and conducted, such as removal of destaining, decross-linking with "hang-down", solution simplification for peptide generation and balancing to excision area, and capture rate of micro-FFPE tissues. After optimization of all the necessary steps, a routine workflow was established, in which the minimized area for protein identification was 0.002 mm2, while the excision area for a consistent proteomic analysis was 0.05 mm2. Using the developed workflow and collecting the micro-FFPE tissues continuously, for the first time, a spatial proteomic atlas of mouse brain was preliminarily constructed, which exhibited the typical characteristics of spatial-dependent protein abundance and functional enrichment.
Collapse
Affiliation(s)
- Hao Chen
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- BGI-Shenzhen, Shenzhen, Guangdong 518083, China
- Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Yuefei Zhang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- BGI-Shenzhen, Shenzhen, Guangdong 518083, China
- Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Haichao Zhou
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- BGI-Shenzhen, Shenzhen, Guangdong 518083, China
- Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Weiran Chen
- Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- College of Pharmaceutical Science, Zhejiang University of Technology, Gongda Road 1, Huzhou 313200, China
| | - Jiayi Peng
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- BGI-Shenzhen, Shenzhen, Guangdong 518083, China
- Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Yang Feng
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- BGI-Shenzhen, Shenzhen, Guangdong 518083, China
- Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Linyuan Fan
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- BGI-Shenzhen, Shenzhen, Guangdong 518083, China
- Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Jun Li
- Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- College of Pharmaceutical Science, Zhejiang University of Technology, Gongda Road 1, Huzhou 313200, China
| | - Jin Zi
- BGI-Shenzhen, Shenzhen, Guangdong 518083, China
| | - Yan Ren
- Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Shanghai University of Traditional Chinese Medicine, Shanghai 200120, China
| | - Qidan Li
- BGI-Shenzhen, Shenzhen, Guangdong 518083, China
| | - Siqi Liu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- BGI-Shenzhen, Shenzhen, Guangdong 518083, China
- Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| |
Collapse
|
23
|
Sanchez-Avila X, Truong T, Xie X, Webber KGI, Johnston SM, Lin HJL, Axtell NB, Puig-Sanvicens V, Kelly RT. Easy and Accessible Workflow for Label-Free Single-Cell Proteomics. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:2374-2380. [PMID: 37594399 PMCID: PMC11002963 DOI: 10.1021/jasms.3c00240] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Single-cell proteomics (SCP) can provide information that is unattainable through either bulk-scale protein measurements or single-cell profiling of other omes. Maximizing proteome coverage often requires custom instrumentation, consumables, and reagents for sample processing and separations, which has limited the accessibility of SCP to a small number of specialized laboratories. Commercial platforms have become available for SCP cell isolation and sample preparation, but the high cost of these platforms and the technical expertise required for their operation place them out of reach of many interested laboratories. Here, we assessed the new HP D100 Single Cell Dispenser for label-free SCP. The low-cost instrument proved highly accurate and reproducible for dispensing reagents in the range from 200 nL to 2 μL. We used the HP D100 to isolate and prepare single cells for SCP within 384-well PCR plates. When the well plates were immediately centrifuged following cell dispensing and again after reagent dispensing, we found that ∼97% of wells that were identified in the instrument software as containing a single cell indeed provided the proteome coverage expected of a single cell. This commercial dispenser combined with one-step sample processing provides a very rapid and easy-to-use workflow for SCP with no reduction in proteome coverage relative to a nanowell-based workflow, and the commercial well plates also facilitate autosampling with unmodified instrumentation. Single-cell samples were analyzed using home-packed 30 μm i.d. nanoLC columns as well as commercially available 50 μm i.d. columns. The commercial columns resulted in ∼35% fewer identified proteins. However, combined with the well plate-based preparation platform, the presented workflow provides a fully commercial and relatively low-cost alternative for SCP sample preparation and separation, which should greatly broaden the accessibility of SCP to other laboratories.
Collapse
Affiliation(s)
- Ximena Sanchez-Avila
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Thy Truong
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Xiaofeng Xie
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Kei G I Webber
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - S Madisyn Johnston
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Hsien-Jung L Lin
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Nathaniel B Axtell
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | | | - Ryan T Kelly
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| |
Collapse
|
24
|
Johnston SM, Webber KGI, Xie X, Truong T, Nydegger A, Lin HJL, Nwosu A, Zhu Y, Kelly RT. Rapid, One-Step Sample Processing for Label-Free Single-Cell Proteomics. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:1701-1707. [PMID: 37410391 PMCID: PMC11017373 DOI: 10.1021/jasms.3c00159] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
Sample preparation for single-cell proteomics is generally performed in a one-pot workflow with multiple dispensing and incubation steps. These hours-long processes can be labor intensive and lead to long sample-to-answer times. Here we report a sample preparation method that achieves cell lysis, protein denaturation, and digestion in 1 h using commercially available high-temperature-stabilized proteases with a single reagent dispensing step. Four different one-step reagent compositions were evaluated, and the mixture providing the highest proteome coverage was compared to the previously employed multistep workflow. The one-step preparation increases proteome coverage relative to the previous multistep workflow while minimizing labor input and the possibility of human error. We also compared sample recovery between previously used microfabricated glass nanowell chips and injection-molded polypropylene chips and found the polypropylene provided improved proteome coverage. Combined, the one-step sample preparation and the polypropylene substrates enabled the identification of an average of nearly 2400 proteins per cell using a standard data-dependent workflow with Orbitrap mass spectrometers. These advances greatly simplify sample preparation for single-cell proteomics and broaden accessibility with no compromise in terms of proteome coverage.
Collapse
Affiliation(s)
- S Madisyn Johnston
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Kei G I Webber
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Xiaofeng Xie
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Thy Truong
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Alissia Nydegger
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Hsien-Jung L Lin
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Andikan Nwosu
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Ying Zhu
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Ryan T Kelly
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| |
Collapse
|
25
|
Kim JH, Afridi R, Lee WH, Suk K. Analyzing the glial proteome in Alzheimer's disease. Expert Rev Proteomics 2023; 20:197-209. [PMID: 37724426 DOI: 10.1080/14789450.2023.2260955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/18/2023] [Indexed: 09/20/2023]
Abstract
INTRODUCTION Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive cognitive decline, memory loss, and changes in behavior. Accumulating evidence indicates that dysfunction of glial cells, including astrocytes, microglia, and oligodendrocytes, may contribute to the development and progression of AD. Large-scale analysis of glial proteins sheds light on their roles in cellular processes and diseases. In AD, glial proteomics has been utilized to understand glia-based pathophysiology and identify potential biomarkers and therapeutic targets. AREA COVERED In this review, we provide an updated overview of proteomic analysis of glia in the context of AD. Additionally, we discuss current challenges in the field, involving glial complexity and heterogeneity, and describe some cutting-edge proteomic technologies to address them. EXPERT OPINION Unbiased comprehensive analysis of glial proteomes aids our understanding of the molecular and cellular mechanisms of AD pathogenesis. These investigations highlight the crucial role of glial cells and provide novel insights into the mechanisms of AD pathology. A deeper understanding of the AD-related glial proteome could offer a repertoire of potential biomarkers and therapeutics. Further technical advancement of glial proteomics will enable us to identify proteins within individual cells and specific cell types, thus significantly enhancing our comprehension of AD pathogenesis.
Collapse
Affiliation(s)
- Jong-Heon Kim
- Brain Science & Engineering Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Ruqayya Afridi
- Department of Pharmacology, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Won-Ha Lee
- Brain Science & Engineering Institute, Kyungpook National University, Daegu, Republic of Korea
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
| | - Kyoungho Suk
- Brain Science & Engineering Institute, Kyungpook National University, Daegu, Republic of Korea
- Department of Pharmacology, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
26
|
Lee DK, Rubakhin SS, Sweedler JV. Chemical Decrosslinking-Based Peptide Characterization of Formaldehyde-Fixed Rat Pancreas Using Fluorescence-Guided Single-Cell Mass Spectrometry. Anal Chem 2023; 95:6732-6739. [PMID: 37040477 DOI: 10.1021/acs.analchem.3c00612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Approaches for the characterization of proteins/peptides in single cells of formaldehyde-fixed (FF) tissues via mass spectrometry (MS) are still under development. The lack of a general method for selectively eliminating formaldehyde-induced crosslinking is a major challenge. A workflow is shown for the high-throughput peptide profiling of single cells isolated from FF tissues, here the rodent pancreas, which possesses multiple peptide hormones from the islets of Langerhans. The heat treatment is enhanced by a collagen-selective multistep thermal process assisting efficient isolation of islets from the FF pancreas and, subsequently, their dissociation into single islet cells. Hydroxylamine-based chemical decrosslinking helped restore intact peptide signals from individual isolated cells. Subsequently, an acetone/glycerol-assisted cell dispersion was optimized for spatially resolved cell deposition onto glass slides, while a glycerol solution maintained the hydrated state of the cells. This sample preparation procedure allowed peptide profiling in FF single cells by fluorescence-guided matrix-assisted laser desorption ionization MS. Here, 2594 single islet cells were analyzed and 28 peptides were detected, including insulin C-peptides and glucagon. T-distributed stochastic neighbor embedding (t-SNE) data visualization demonstrated that cells cluster based on cell-specific pancreatic peptide hormones. This workflow expands the sample availability for single-cell MS characterization to a wide range of formaldehyde-treated tissue specimens stored in biobanks.
Collapse
Affiliation(s)
- Dong-Kyu Lee
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Stanislav S Rubakhin
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Jonathan V Sweedler
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|