1
|
Younossi ZM, Estep MJ, Felix S, Lam B, Mukherjee S, Swift B, Casillas L, de Souza AR, Hunnicutt J, McLaughlin MM, Racila A, Nader F, Stepanova M. Serum Bile Acid Elevation is an Independently Associated With Pruritus in Patients With At-risk Metabolic Dysfunction-associated Steatotic Liver Disease. J Clin Exp Hepatol 2025; 15:102549. [PMID: 40256443 PMCID: PMC12008524 DOI: 10.1016/j.jceh.2025.102549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 03/13/2025] [Indexed: 04/22/2025] Open
Abstract
Background and aims Elevated serum bile acids are associated with pruritus in cholestatic liver diseases. We assessed the association of serum bile acids and other putative biomarkers of cholestatic pruritus (autotaxin and interleukin-31 (IL-31) with pruritus in patients with metabolic dysfunction-associated steatotic liver disease (MASLD). Methods We used serum from patients with MASLD and metabolic dysfunction-associated steatohepatitis (MASH), viral hepatitis B, viral hepatitis C, and healthy blood donors to measure the levels of bile acids, autotaxin, and IL-31. Clinically significant pruritus was defined from the Chronic Liver Disease Questionnaire. Results Six hundred fifty-one subjects were included [MASLD (N = 497, 88 MASH), viral hepatitis B and C (VH, N = 98), healthy controls (N = 56)]. Post hoc definitions of high biomarker levels associated with the presence of clinically significant pruritus were as follows: high bile acids ≥5.9 μmol/L, high autotaxin ≥220 ng/mL, and high IL-31 ≥ 25 pg/mL. The VH patients had the highest bile acids levels and lowest levels were in healthy controls (P < 0.0001). The highest autotaxin levels were seen in hepatitis C, while the highest IL-31 levels in MASH. MASH patients had higher levels of all three biomarkers than non-MASH-MASLD. Also, at-risk MASLD or MASLD with advanced fibrosis (AF) had higher bile acids and autotaxin (all P < 0.01) but not IL-31 (P > 0.05). MASLD patients with high bile acids had more pruritus (all MASLD: 25% vs. 17%; MASH 30% vs. 13%; at-risk MASLD: 33% vs. 12%; AF: 41% vs. 8%). In multivariable logistic regressions, having high bile acids was an independent predictor of pruritus in at-risk MASLD [odds ratio (OR) (95% CI) = 4.4 (1.6-12.1)] and MASLD with advanced fibrosis [OR = 7.5 (2.0-29.0)]; but not autotaxin or IL-31 (all P > 0.05). Conclusions High serum bile acid level is independently associated with pruritus in at-risk MASLD.
Collapse
Affiliation(s)
- Zobair M. Younossi
- The Global NASH Council, Washington DC, USA
- Beatty Liver and Obesity Research Program, Inova Health System, Falls Church, VA, USA
| | - Michael J. Estep
- The Global NASH Council, Washington DC, USA
- Beatty Liver and Obesity Research Program, Inova Health System, Falls Church, VA, USA
| | - Sean Felix
- Beatty Liver and Obesity Research Program, Inova Health System, Falls Church, VA, USA
| | - Brian Lam
- The Global NASH Council, Washington DC, USA
- Beatty Liver and Obesity Research Program, Inova Health System, Falls Church, VA, USA
| | | | | | | | | | | | | | - Andrei Racila
- The Global NASH Council, Washington DC, USA
- Beatty Liver and Obesity Research Program, Inova Health System, Falls Church, VA, USA
| | - Fatema Nader
- The Global NASH Council, Washington DC, USA
- Beatty Liver and Obesity Research Program, Inova Health System, Falls Church, VA, USA
- Center for Outcomes Research in Liver Diseases, Washington DC, USA
| | - Maria Stepanova
- The Global NASH Council, Washington DC, USA
- Beatty Liver and Obesity Research Program, Inova Health System, Falls Church, VA, USA
- Center for Outcomes Research in Liver Diseases, Washington DC, USA
| |
Collapse
|
2
|
Siguencia F, Matsuda M, Pandyarajan V, Tanaka S, Smith SM, Bresee C, Seki E, Rosser CJ, Furuya H. Diagnostic performance of Liver FibraChek Dx ©, a blood-based test for the non-invasive detection of liver cirrhosis and cancer. World J Hepatol 2025; 17:106481. [DOI: 10.4254/wjh.v17.i6.106481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/24/2025] [Accepted: 05/29/2025] [Indexed: 06/25/2025] Open
Abstract
BACKGROUND Metabolic dysfunction-associated steatotic liver disease (MASLD), hepatic fibrosis, and cirrhosis are major risk factors for hepatocellular carcinoma (HCC), yet current blood-based diagnostic assays lack sufficient accuracy for routine clinical use. Identifying a non-invasive molecular signature that accurately detects liver disease could improve early diagnosis and monitoring. We hypothesized that the Liver FibraChek Dx© serum assay could discriminate MASLD and HCC from healthy controls using a multiplex biomarker-based algorithm.
AIM To evaluate the diagnostic performance of the Liver FibraChek Dx© assay for detecting MASLD and HCC.
METHODS This was a prospective, single-center study conducted in a United States tertiary care setting. Serum samples were collected from 45 participants (14 MASLD, 19 HCC, 12 healthy controls) with liver histology confirmed by biopsy. The Liver FibraChek Dx© algorithm integrates weighted values of aspartate aminotransferase, alanine aminotransferase, taurocholic acid, L-tyrosine, platelet count, and patient age to generate a risk score. Wilcoxon rank sum tests were used to assess associations with histologic diagnosis, and receiver operating characteristic (ROC) curves quantified diagnostic performance.
RESULTS Liver FibraChek Dx© risk scores were significantly elevated in MASLD and HCC compared to controls (median: 6.92 ± 3.86 vs 3.61 ± 1.67, P < 0.001). The area under the ROC curve was 0.890 (95%CI: 0.776–1.000) for distinguishing diseased from healthy individuals. Sensitivity was 93.9%, specificity 75.0%, positive predictive value 91.1%, negative predictive value 81.8%, and overall accuracy 88.9%.
CONCLUSION The Liver FibraChek Dx© assay accurately detects liver disease and shows promise as a non-invasive tool for diagnosing and monitoring MASLD and HCC.
Collapse
Affiliation(s)
- Fernando Siguencia
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States
| | - Michitaka Matsuda
- Division of Digestive and Liver Diseases, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States
| | - Vijay Pandyarajan
- Division of Digestive and Liver Diseases, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States
| | - Sunao Tanaka
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States
| | - Steven M Smith
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States
| | - Catherine Bresee
- Department of Biostatistics Shared Resources, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States
| | - Ekihiro Seki
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States
| | - Charles J Rosser
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States
| | - Hideki Furuya
- Department of Biomedical Science, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States
| |
Collapse
|
3
|
Wen Y, Hu Z, Tian W, Yan H, Huo F, Yin C. A dual-cascade-activatable molecular probe with microenvironment-adapted performance for accurate differentiation of hepatopathy. Biomaterials 2025; 322:123382. [PMID: 40324315 DOI: 10.1016/j.biomaterials.2025.123382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/29/2025] [Accepted: 04/30/2025] [Indexed: 05/07/2025]
Abstract
Fluorescence imaging utilizing biomarker-activatable fluorescent probes has emerged as a powerful tool for the precise and early diagnosis of hepatopathy. However, the development of effective molecular probes remains challenging due to limitations, such as single-stimulus responsiveness and incompatible with microenvironment characteristic of hepatopathy. These limitations often result in a lower signal-to-noise ratio, false positives and ultimately reduced diagnostic accuracy. In this study, we developed a novel dual-lock-controlled fluorescent probe (Hdual) based on basic blue 3 dye. This probe was designed to be sequentially activated by two potential hepatopathy biomarkers, leucine aminopeptidase (LAP) and monoamine oxidase (MAO), through a cascade mechanism. Moreover, after addition LAP and MAO, Hdual exhibited a linear fluorescence change within a pH range of 6.2-6.8, ensuring high compatibility with the weakly acidic microenvironment characteristic of hepatopathy. The dual-cascade-activatable design, combined with the probe's microenvironment-adapted property, enabled Hdual to achieve a significantly higher target-to-noise ratio (T/N) of 2.40 in in vivo imaging for drug-induced liver injury, compared to "single-locked" probe (T/N < 0.79). Notably, Hdual demonstrated the ability to differentiate between cirrhotic and hepatitis B samples by analyzing patient blood samples through both fluorescent imaging and a distinct colorimetric change, observable either visually or via smartphone-based color analysis. These findings highlight Hdual's high specificity and accuracy in fluorescence imaging-based detection, underscoring its potential to improve the early diagnosis of hepatopathy.
Collapse
Affiliation(s)
- Ying Wen
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Institute of Molecular Science, Shanxi University, Taiyuan, 030006, China
| | - Zefeng Hu
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Institute of Molecular Science, Shanxi University, Taiyuan, 030006, China
| | - Wenhao Tian
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Institute of Molecular Science, Shanxi University, Taiyuan, 030006, China
| | - Huming Yan
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Institute of Molecular Science, Shanxi University, Taiyuan, 030006, China
| | - Fangjun Huo
- Research Institute of Applied Chemistry, Shanxi University, Taiyuan, 030006, China
| | - Caixia Yin
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Institute of Molecular Science, Shanxi University, Taiyuan, 030006, China.
| |
Collapse
|
4
|
Zhai X, He X, Huang A, Liu Z, Chen S, Chang B, Zhu Y, Xie H, Bai Z, Xiao X, Sun Y, Wang J, Lu Y, Zou Z. Analysis of Immunometabolic Profiles in Patients With Chronic Drug-Induced Liver Injury and Validation in Mice to Reveal Potential Mechanisms. J Gastroenterol Hepatol 2025; 40:987-1003. [PMID: 39797719 DOI: 10.1111/jgh.16876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 12/09/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025]
Abstract
BACKGROUND The mechanism underlying chronic drug-induced liver injury (DILI) remains unclear. Immune activation is a common feature of DILI progression and is closely associated with metabolism. We explored the immunometabolic profile of chronic DILI and the potential mechanism of chronic DILI progression. METHODS Plasma and peripheral blood mononuclear cells from patients with chronic DILI were analyzed using multiplex immunoassays and untargeted metabolomics to reveal their immunometabolic profile. The effects and potential mechanisms of chronic DILI-related metabolite on acute or chronic liver injury induced by LPS or CCl4 in mice were investigated. RESULTS Patients with chronic DILI exhibited elevated plasma IL-6, IL-12p70, IL-15 and reduced IL-10 levels. The percentage of IL-12+ monocytes was higher, while that of CD206+ monocytes, IL-10+ monocytes, Th2, Treg, and IL-10+ CD4+ T cells were lower in patients with chronic DILI compared to those with acute DILI. We identified the most significantly increased metabolite in patients with chronic DILI was cis-aconitic acid (CAA). Administration of CAA can attenuate liver injury in mice with acute liver injury induced by LPS or CCl4 and promote the spontaneous resolution of liver fibrosis in mice with chronic live injury induced by CCl4. The protective mechanism of CAA against liver injury is associated with the inhibition of hepatic macrophage infiltration and polarization, which is achieved by inhibiting the secretion of neutrophil-derived IL-33 and subsequent phosphorylation of GATA3. CONCLUSIONS CAA, which is elevated in patients with chronic DILI, protects against liver injury by inhibiting hepatic macrophage infiltration and polarization through the suppression of the IL-33/GATA3 pathway, suggesting that CAA may serve as a potential target for regulating tissue repair in liver injury.
Collapse
Affiliation(s)
- Xingran Zhai
- Peking University 302 Clinical Medical School, Beijing, China
| | - Xian He
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Ang Huang
- Department of Gastroenterology and Hepatology, the First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Zherui Liu
- Peking University 302 Clinical Medical School, Beijing, China
| | - Shaoting Chen
- Senior Department of Hepatology, the Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Binxia Chang
- Senior Department of Hepatology, the Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Yun Zhu
- Senior Department of Hepatology, the Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Huan Xie
- Senior Department of Hepatology, the Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Zhaofang Bai
- Senior Department of Hepatology, the Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Xiaohe Xiao
- Senior Department of Hepatology, the Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Ying Sun
- Senior Department of Hepatology, the Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Jiabo Wang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Yawen Lu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Zhengsheng Zou
- Peking University 302 Clinical Medical School, Beijing, China
- Senior Department of Hepatology, the Fifth Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
5
|
Grimmler M, Frömel T, Masetto A, Müller H, Leber T, Peter C. Performance evaluation of enzymatic total bile acid (TBA) routine assays: systematic comparison of five fifth-generation TBA cycling methods and their individual bile acid recovery from HPLC-MS/MS reference. Clin Chem Lab Med 2025; 63:753-763. [PMID: 39607980 DOI: 10.1515/cclm-2024-1029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 11/15/2024] [Indexed: 11/30/2024]
Abstract
OBJECTIVES Serum total bile acid (TBA) levels are frequently assessed in clinical routine for the early detection of hepatobiliary dysfunction. However, the comparability of current 5th-generation TBA cycle assays based on 3α-hydroxysteroid dehydrogenase (3α-HSD) and their ability to quantify individual bile acids has not been systematically addressed. METHODS Patient serum samples (n=60) across the diagnostically relevant TBA range (1-200 μmol/L) were analyzed using five TBA routine assays from Abbott, DiaSys, Diazyme, Beijing Strong (BSBE) and Randox on the same analyzer (BioMajesty® JCA-BM6010/C). The assays were compared using Passing-Bablok regression and the recovery of 11 individual BAs was evaluated against RP-HPLC-MS/MS as non-enzymatic reference method. RESULTS Despite excellent correlation (Spearman r ≥0.99), the assays showed proportional differences (slope) ranging from 0.99 (BSBE/Randox) to 1.24 (Abbott/DiaSys). The assays showed considerable deviation in the recovery of competitor's calibrators and controls, and large heterogeneity in the recovery of individual BAs, with mean deviations from reference value between 13 % (DiaSys) and 42 % (Abbott). CA and TCA were measured most accurately and consistently, whereas GCA, CDCA, DCA, UDCA, and conjugates were over- or undermeasured to varying degrees. CONCLUSIONS The linear relationship and constant proportional bias between all five routine assays enable the harmonization of TBA measurements up to 60 μmol/L. However, for patient samples with high TBA levels and disease-specific overrepresentation of individual BAs, harmonization will require: i) optimized reaction conditions to equalize substrate specificity, and ii) calibration to a common, commutable reference material with well-defined BA composition instead of internal standards spiked with different BAs.
Collapse
Affiliation(s)
- Matthias Grimmler
- Institute for Biomolecular Research, Hochschulen Fresenius gemeinnützige Trägergesellschaft mbH, University of Applied Sciences, Idstein, Germany
- DiaSys Diagnostic Systems GmbH, Holzheim, Germany
| | - Tobias Frömel
- Institute for Analytical Research, Hochschulen Fresenius gemeinnützige Trägergesellschaft mbH, University of Applied Sciences, Idstein, Germany
| | - Angelique Masetto
- Institute for Biomolecular Research, Hochschulen Fresenius gemeinnützige Trägergesellschaft mbH, University of Applied Sciences, Idstein, Germany
- DiaSys Diagnostic Systems GmbH, Holzheim, Germany
| | | | - Tina Leber
- DiaSys Diagnostic Systems GmbH, Holzheim, Germany
| | - Christoph Peter
- Institute of Molecular Medicine I, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
6
|
Saxena A, Minal, Pahwa P, Maras JS, Siddiqui H, Sevak JK, Mala YM, Tyagi S, Sarin SK, Trehanpati N. Immune-metabolic shifts in acute liver failure caused by HEV infection during pregnancy and their association with obstetric outcomes. Hepatol Commun 2025; 9:e0608. [PMID: 40209115 DOI: 10.1097/hc9.0000000000000608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/08/2024] [Indexed: 04/12/2025] Open
Abstract
BACKGROUND Hepatitis-E virus (HEV)-induced liver failure during pregnancy leads to maternal and fetal complications. This study investigates the HEV-associated metabolomic and immunological changes to elucidate the worsening of obstetric outcomes in patients with acute liver failure (ALF) due to HEV. METHODS Pregnant women with (i) acute viral hepatitis, IgM HEV positive (AVH-E, n = 31, Gr.I), (ii) acute liver failure (ALF-E, n = 15, Gr.II), (iii) acute hepatitis but negative for viral infections (non-HEV, n = 30, Gr.III), and healthy (HC, n = 21, Gr.IV) were evaluated at delivery for plasma untargeted metabolomics, cytokine, and immune profiling. RESULTS AVH-E and ALF-E (Gr.I, II) showed elevated TNF-α, IL-1β, IL-9, IL-22, and IL-33 compared to HC. In addition, in ALF-E, IFN-γ and IL-12p70 were decreased, but MIP-1α, fractalkine, SDF-1α, IL-22, and IL-33 were increased compared to AVH-E. Both AVH-E and ALF-E had decreased choline, sn-glycero-3-phosphocholine, O-palmitoyl-r-carnitine, and increased taurocholic acid. However, patients with ALF-E had a 2-5-fold decline in these metabolites with raised taurochenodeoxycholic acid. ALF-E showed increased naive T/B cells, decreased CD4, CD8 Tcm, Tem, and plasmablasts, compared to AVH-E contributing to higher failed inductions, preterm births, maternal complications like eclampsia, disseminated intravascular coagulation, preterm premature rupture of membranes, small-for-gestational-age infants, higher rates of intrauterine death, abortion, and mortality. CONCLUSIONS HEV infection reduces choline, phosphocholine, and palmitoyl carnitine, enhancing inflammation in ALF-E, while increasing taurocholic and taurochenodeoxycholic acids impairs the immune response. These factors together likely contribute to severe obstetric complications, including higher failed inductions, intrauterine death, and maternal and fetal mortality in ALF-E.
Collapse
Affiliation(s)
- Anoushka Saxena
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Minal
- Department of Obstetrics and Gynaecology, Maulana Azad Medical College, New Delhi, India
| | - Prabhjyoti Pahwa
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Jaswinder Singh Maras
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Hamda Siddiqui
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Jayesh Kumar Sevak
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Yedla Manikya Mala
- Department of Obstetrics and Gynaecology, Maulana Azad Medical College, New Delhi, India
| | - Shakun Tyagi
- Department of Obstetrics and Gynaecology, Maulana Azad Medical College, New Delhi, India
| | - Shiv K Sarin
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Nirupama Trehanpati
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| |
Collapse
|
7
|
Hirata Y, Sakuma Y, Ogiso H, Nagai R, Aizawa K. Targeted Plasma Bile Acid Metabolomic Analysis in Metabolic Dysfunction-Associated Steatohepatitis and Alcoholic Hepatitis. Biomedicines 2024; 13:78. [PMID: 39857662 PMCID: PMC11762544 DOI: 10.3390/biomedicines13010078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/27/2024] [Accepted: 12/30/2024] [Indexed: 01/27/2025] Open
Abstract
Background: Even though many metabolic liver diseases can now be diagnosed using blood tests and diagnostic imaging, early diagnosis remains difficult. Understanding mechanisms contributing to the progression from Metabolic Dysfunction-Associated Steatohepatitis (MASH) and Alcoholic Hepatitis (AH) to cirrhosis is critical to reduce the burden of end-stage liver disease. Monitoring individual bile acids has been proposed as a way to distinguish various liver disorders. Methods: This study explored bile acid profiles in patients with MASH and AH. Plasma samples from patients with MASH, AH, and a control group were analyzed using liquid chromatography-tandem mass spectrometry (LC-MS/MS) to quantify bile acid concentrations. Targeted metabolomic analysis was performed to compare bile acid levels between the hepatitis and control groups. Results: Concentrations of ursodeoxycholic acid (UDCA), chenodeoxycholic acid (CDCA), taurocholic acid (TCA), tauroursodeoxycholic acid (TUDCA), taurochenodeoxycholic acid (TCDCA), glycoursodeoxycholic acid (GUDCA), glycochenodeoxycholic acid (GCDCA), and glycocholic acid (GCA) were significantly elevated in the hepatitis group. Correlation analysis revealed strong positive relationships between the total and direct bilirubin levels and TUDCA and GCDCA. Aspartate aminotransferase (AST) showed strong positive correlations with TCDCA and GCDCA. Child-Pugh score, Fibrosis-4 index, and non-alcoholic fatty liver disease fibrosis score were positively correlated with GCA, whereas the aspartate aminotransferase-to-platelet ratio correlated with TCA, TCDCA, and GCA. The model for end-stage liver disease (MELD) score showed a strong positive correlation with GCDCA. Implications: GCDCA may serve as a predictive biomarker for liver damage, potentially enabling early diagnosis and targeted intervention in patients with MASH and AH.
Collapse
Affiliation(s)
- Yuta Hirata
- Division of Gastroenterological, Department of Surgery, General and Transplant Surgery, Jichi Medical University, Shimotsuke 329-0498, Tochigi, Japan
| | - Yasunaru Sakuma
- Division of Gastroenterological, Department of Surgery, General and Transplant Surgery, Jichi Medical University, Shimotsuke 329-0498, Tochigi, Japan
| | - Hideo Ogiso
- Division of Clinical Pharmacology, Department of Pharmacology, Jichi Medical University, Shimotsuke 329-0498, Tochigi, Japan
| | - Ryozo Nagai
- Jichi Medical University, Shimotsuke 329-0498, Tochigi, Japan
| | - Kenichi Aizawa
- Division of Clinical Pharmacology, Department of Pharmacology, Jichi Medical University, Shimotsuke 329-0498, Tochigi, Japan
- Clinical Pharmacology Center, Jichi Medical University Hospital, Shimotsuke 329-0498, Tochigi, Japan
- Division of Translational Research, Clinical Research Center, Jichi Medical University Hospital, Shimotsuke 329-0498, Tochigi, Japan
| |
Collapse
|
8
|
Li L, Qiu Z, Qiao Y, Bai X, Zhu W, Li Z, Zheng Z. Immunomodulatory effects of inulin-type fructans from Arctium lappa L. by targeting gut microbiota and their metabolites. Food Chem 2024; 467:142308. [PMID: 39672040 DOI: 10.1016/j.foodchem.2024.142308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/08/2024] [Accepted: 11/29/2024] [Indexed: 12/15/2024]
Abstract
This study aimed to examine the in vitro digestion properties and immunomodulatory effects of inulin-type fructans (ALP-1) from Arctium lappa L. on immunosuppressive mice and to explore the underlying mechanisms. The simulated gastrointestinal digestion showed that ALP-1 underwent slight degradation during gastric and intestinal fluid digestion, with most of it reaching the gut as long-chain structures. The administration of ALP-1 effectively improved overall health and regulated immune function according to the spleen index, thymus index, splenic T-lymphocyte subsets, and other immune-related cytokines. Besides, 16S rDNA sequencing, ultra-high-performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry, and matrix-assisted laser desorption/ionization mass spectrometry imaging technique revealed fructan-induced changes in gut microbiota composition, metabolic processes, and spatial information of key metabolites. These changes likely contributed to the immunomodulatory effects of ALP-1 in immunosuppressive mice. Therefore, ALP-1 shows promise as an immunomodulator for use in functional foods and nutraceuticals.
Collapse
Affiliation(s)
- Lingyu Li
- Key Laboratory of Food Nutrition and Healthy in Universities of Shandong, College of Food Science and Engineering, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong 271018, PR China
| | - Zhichang Qiu
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, United States
| | - Yiteng Qiao
- Key Laboratory of Food Nutrition and Healthy in Universities of Shandong, College of Food Science and Engineering, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong 271018, PR China
| | - Xinyan Bai
- Key Laboratory of Food Nutrition and Healthy in Universities of Shandong, College of Food Science and Engineering, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong 271018, PR China; Laboratory of Chemistry of Natural Molecules, Gembloux Agro-Bio Tech, University of Liége, Passage des déportés 2, B-5030, Gembloux, Belgium
| | - Wenqing Zhu
- Key Laboratory of Food Nutrition and Healthy in Universities of Shandong, College of Food Science and Engineering, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong 271018, PR China; Laboratory of Chemistry of Natural Molecules, Gembloux Agro-Bio Tech, University of Liége, Passage des déportés 2, B-5030, Gembloux, Belgium
| | - Zhibo Li
- Key Laboratory of Food Nutrition and Healthy in Universities of Shandong, College of Food Science and Engineering, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong 271018, PR China
| | - Zhenjia Zheng
- Key Laboratory of Food Nutrition and Healthy in Universities of Shandong, College of Food Science and Engineering, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong 271018, PR China.
| |
Collapse
|
9
|
Yang H, Yang T, Ding J, Wang X, Chen X, Liu J, Shu T, Wu Z, Sun L, Huang X, Jiang Z, Zhang L. Taurocholic acid represents an earlier and more sensitive biomarker and promotes cholestatic hepatotoxicity in ANIT-treated rats. J Appl Toxicol 2024; 44:1742-1760. [PMID: 39030796 DOI: 10.1002/jat.4669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/09/2024] [Accepted: 06/24/2024] [Indexed: 07/22/2024]
Abstract
Bile acid homeostasis is crucial for the normal physiological functioning of the liver. Disruptions in bile acid profiles are closely linked to the occurrence of cholestatic liver injury. As part of our diagnostic and therapeutic approach, we aimed to investigate the disturbance in bile acid profiles during cholestasis and its correlation with cholestatic liver injury. Before the occurrence of liver injury, alterations in bile acid profiles were detected in both plasma and liver between 8 and 16 h, persisting up to 96 h. TCA, TCDCA, and TUDCA in the plasma, as well as TCA, TUDCA, TCDCA, TDCA, TLCA, and THDCA in the liver, emerged as early sensitive and potential markers for diagnosing ANIT-induced cholestasis at 8-16 h. The distinguishing features of ANIT-induced liver injury were as follows: T-BAs exceeding G-BAs and serum biochemical indicators surpassing free bile acids. Notably, plasma T-BAs, particularly TCA, exhibited higher sensitivity to cholestatic hepatotoxicity compared with serum enzyme activity and liver histopathology. Further investigation revealed that TCA exacerbated ANIT-induced liver injury by elevating liver function enzyme activity, inflammation, and bile duct proliferation and promoting the migration of bile duct epithelial cell. Nevertheless, no morphological changes or alterations in transaminase activity indicative of liver damage were observed in the rats treated with TCA alone. Additionally, there were no changes in bile acid profiles or inflammatory responses under physiological conditions with maintained bile acid homeostasis. In summary, our findings suggest that taurine-conjugated bile acids in both plasma and liver, particularly TCA, can serve as early and sensitive markers for predicting intrahepatic cholestatic drugs and can act as potent exacerbators of cholestatic liver injury progression. However, exogenous TCA does not induce liver injury under physiological conditions where bile acid homeostasis is maintained.
Collapse
Affiliation(s)
- Hang Yang
- New Drug Screening and Pharmacodynamics Evaluation Center, China Pharmaceutical University, Nanjing, China
| | - Tingting Yang
- New Drug Screening and Pharmacodynamics Evaluation Center, China Pharmaceutical University, Nanjing, China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Jiaxin Ding
- New Drug Screening and Pharmacodynamics Evaluation Center, China Pharmaceutical University, Nanjing, China
| | - Xue Wang
- New Drug Screening and Pharmacodynamics Evaluation Center, China Pharmaceutical University, Nanjing, China
| | - Xi Chen
- New Drug Screening and Pharmacodynamics Evaluation Center, China Pharmaceutical University, Nanjing, China
| | - Jia Liu
- New Drug Screening and Pharmacodynamics Evaluation Center, China Pharmaceutical University, Nanjing, China
| | - Ting Shu
- New Drug Screening and Pharmacodynamics Evaluation Center, China Pharmaceutical University, Nanjing, China
| | - Ziteng Wu
- New Drug Screening and Pharmacodynamics Evaluation Center, China Pharmaceutical University, Nanjing, China
| | - Lixin Sun
- New Drug Screening and Pharmacodynamics Evaluation Center, China Pharmaceutical University, Nanjing, China
| | - Xin Huang
- New Drug Screening and Pharmacodynamics Evaluation Center, China Pharmaceutical University, Nanjing, China
| | - Zhenzhou Jiang
- New Drug Screening and Pharmacodynamics Evaluation Center, China Pharmaceutical University, Nanjing, China
| | - Luyong Zhang
- New Drug Screening and Pharmacodynamics Evaluation Center, China Pharmaceutical University, Nanjing, China
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
10
|
Xu X, Liu J, Li X, Feng Q, Su Y. Integrated network pharmacology and metabolomics to study the potential mechanism of Jiawei Yinchenhao decoction in chronic hepatitis B. Heliyon 2024; 10:e36267. [PMID: 39224343 PMCID: PMC11367511 DOI: 10.1016/j.heliyon.2024.e36267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 08/01/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
Chronic hepatitis B infection (CHB) is a major risk factor for the development of hepatocellular carcinoma (HCC) globally and continues to pose a significant global health challenge. Jiawei Yinchenhao decoction (JWYCH) is a modified version of Yinchenhao decoction (YCHD), which is widely used to treat liver diseases including icteric hepatitis, cholelithiasis, and hepatic ascites. However, the effectiveness and underlying mechanism of JWYCH on CHB are still unclear. This study aimed to investigate the impact of JWYCH on CHB and explore the underlying mechanism via network pharmacology and metabolomics. C57BL/6 mice were administered rAAV-HBV1.3 via hydrodynamic injection (HDI) to establish the CHB model. The infected mice were orally administered JWYCH for 4 weeks. HBsAg, HBeAg, HBV DNA, the serum liver function index, and histopathology were detected. In addition, network pharmacology was used to investigate potential targets, whereas untargeted metabolomics analysis was employed to explore the hepatic metabolic changes in JWYCH in CHB mice and identify relevant biomarkers and metabolic pathways. JWYCH was able to reduce HBeAg levels and improve liver pathological changes in mice with CHB. Additionally, metabolomics analysis indicated that JWYCH can influence 105 metabolites, including pipecolic acid, alpha-terpinene, adenosine, and L-phenylalanine, among others. Bile acid metabolism, arachidonic acid metabolism, and retinol metabolism are suggested to be potential targets of JWYCH in CHB. In conclusion, JWYCH demonstrated a hepatoprotective effect on a mouse model of CHB, suggesting a potential alternative therapeutic strategy for CHB. The effect of JWYCH is associated mainly with regulating the metabolism of bile acid, arachidonic acid, and retinol. These differentially abundant metabolites may serve as potential biomarkers and therapeutic targets for CHB.
Collapse
Affiliation(s)
- Xinyi Xu
- College of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jin Liu
- College of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xue Li
- College of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - QuanSheng Feng
- College of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yue Su
- College of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| |
Collapse
|
11
|
Li J, Jiang J, Zhu Y, Zhang Y, Zhu J, Ming Y. Metabolomics analysis of patients with Schistosoma japonicum infection based on UPLC-MS method. Parasit Vectors 2024; 17:350. [PMID: 39164750 PMCID: PMC11334362 DOI: 10.1186/s13071-024-06429-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/30/2024] [Indexed: 08/22/2024] Open
Abstract
BACKGROUND Schistosomiasis is still one of the most serious parasitic diseases. Evidence showed that the metabolite profile in serum can potentially act as a marker for parasitic disease diagnosis and evaluate disease progression and prognosis. However, the serum metabolome in patients with Schistosoma japonicum infection is not well defined. In this study, we investigated the metabolite profiles of patients with chronic and with advanced S. japonicum infection. METHODS The sera of 33 chronic S. japonicum patients, 15 patients with advanced schistosomiasis and 17 healthy volunteers were collected. Samples were extracted for metabolites and analyzed with ultra-performance liquid chromatography-mass spectrometry (UPLC-MS). RESULTS We observed significant differences in metabolite profiles in positive and negative ion modes between patients with advanced and chronic S. japonicum infection. In patients with chronic S. japonicum infection, 199 metabolites were significantly upregulated while 207 metabolites were downregulated in advanced infection. These differential metabolites were mainly concentrated in steroid hormone biosynthesis, cholesterol metabolism and bile secretion pathways. We also found that certain bile acid levels were significantly upregulated in the progression from chronic to advanced S. japonicum infection. In receiver operator characteristic (ROC) analysis, we identified three metabolites with area under the curve (AUC) > 0.8, including glycocholic (GCA), glycochenodeoxycholate (GCDCA) and taurochenodeoxycholic acid (TCDCA) concentrated in cholesterol metabolism, biliary secretion and primary bile acid biosynthesis. CONCLUSIONS This study provides evidence that GCA, GCDCA and TCDCA can potentially act as novel metabolite biomarkers to distinguish patients in different stages of S. japonicum infection. This study will contribute to the understanding of the metabolite mechanisms of the transition from chronic to advanced S. japonicum infection, although more studies are needed to validate this potential role and explore the underlying mechanisms.
Collapse
Affiliation(s)
- Junhui Li
- Center for Organ Transplantation, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
- Key Laboratory of Translational Research in Transplantion Medicine of National Health Commission, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
- Hunan Province Clinical Research Center for Infectious Diseases, Changsha, 410013, Hunan, China
| | - Jie Jiang
- Center for Organ Transplantation, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
- Key Laboratory of Translational Research in Transplantion Medicine of National Health Commission, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
- Hunan Province Clinical Research Center for Infectious Diseases, Changsha, 410013, Hunan, China
| | - Yi Zhu
- Center for Organ Transplantation, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
- Key Laboratory of Translational Research in Transplantion Medicine of National Health Commission, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
- Hunan Province Clinical Research Center for Infectious Diseases, Changsha, 410013, Hunan, China
| | - Yu Zhang
- Center for Organ Transplantation, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
- Key Laboratory of Translational Research in Transplantion Medicine of National Health Commission, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
- Hunan Province Clinical Research Center for Infectious Diseases, Changsha, 410013, Hunan, China
| | - Jiang Zhu
- Center for Organ Transplantation, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
- Key Laboratory of Translational Research in Transplantion Medicine of National Health Commission, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
- Hunan Province Clinical Research Center for Infectious Diseases, Changsha, 410013, Hunan, China
| | - Yingzi Ming
- Center for Organ Transplantation, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
- Key Laboratory of Translational Research in Transplantion Medicine of National Health Commission, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
- Hunan Province Clinical Research Center for Infectious Diseases, Changsha, 410013, Hunan, China.
| |
Collapse
|
12
|
Wang J, Xu H, Liu Z, Cao Y, Chen S, Hou R, Zhou Y, Wang Y. Bile acid-microbiota crosstalk in hepatitis B virus infection. J Gastroenterol Hepatol 2024; 39:1509-1516. [PMID: 38721685 DOI: 10.1111/jgh.16604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 04/11/2024] [Accepted: 04/24/2024] [Indexed: 08/10/2024]
Abstract
Hepatitis B virus (HBV) is a hepatotropic non-cytopathic virus characterized by liver-specific gene expression. HBV infection highjacks bile acid metabolism, notably impairing bile acid uptake via sodium taurocholate cotransporting polypeptide (NTCP), which is a functional receptor for HBV entry. Concurrently, HBV infection induces changes in bile acid synthesis and the size of the bile acid pool. Conversely, bile acid facilitates HBV replication and expression through the signaling molecule farnesoid X receptor (FXR), a nuclear receptor activated by bile acid. However, in HepaRG cells and primary hepatocytes, FXR agonists suppress HBV RNA expression and the synthesis and secretion of DNA. In the gut, the size and composition of the bile acid pool significantly influence the gut microbiota. In turn, the gut microbiota impacts bile acid metabolism and innate immunity, potentially promoting HBV clearance. Thus, the bile acid-gut microbiota axis represents a complex and evolving relationship in the context of HBV infection. This review explores the interplay between bile acid and gut microbiota in HBV infection and discusses the development of HBV entry inhibitors targeting NTCP.
Collapse
Affiliation(s)
- Jiaxin Wang
- Key Laboratory of Receptors-Mediated Gene Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Huimin Xu
- Key Laboratory of Receptors-Mediated Gene Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Zixin Liu
- Key Laboratory of Receptors-Mediated Gene Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Yutong Cao
- Key Laboratory of Receptors-Mediated Gene Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Siyu Chen
- Key Laboratory of Receptors-Mediated Gene Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Ruifang Hou
- Hebi Key Laboratory of Liver Disease, Department of Infectious Diseases, People's Hospital of Hebi, Henan University, Hebi, China
| | - Yun Zhou
- Key Laboratory of Receptors-Mediated Gene Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Yandong Wang
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
13
|
Luo L, Ye J, Zhuo S, Ma B, Mai W, Cao X, Liang L, Wang W, Feng S, Dong Z, Zhong B. Specific metabolic impairments indicate loss of sustained liver improvements in metabolic dysfunction-associated steatotic liver disease treatment. Hepatobiliary Surg Nutr 2024; 13:632-649. [PMID: 39175719 PMCID: PMC11336549 DOI: 10.21037/hbsn-23-393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/01/2023] [Indexed: 08/24/2024]
Abstract
Background High liver fat content (LFC) induces increased risks of both hepatic and extrahepatic progression in metabolic dysfunction-associated steatotic liver disease (MASLD), while maintaining a significant decline in magnetic resonance imaging-based proton density fat fraction (MRI-PDFF) (≥30% decline relative to baseline) without worsening fibrosis results in improved histological severity and prognosis. However, the factors associated with the loss of sustained responses to treatment remain unclear, and we aim to identify them. Methods Consecutive treatment-naïve MASLD patients between January 2015 and February 2022, with follow-up until April 2023, were included in this prospective cohort study. LFC quantified by MRI-PDFF and liver stiffness measurements (LSM) determined by two-dimensional shear wave elastography (2D-SWE) were evaluated at weeks 0, 24 and 48. MRI-PDFF response was defined as a ≥30% relative decline in PDFF values, and LSM response was defined as a ≥1 stage decline from baseline. Results A total of 602 MASLD patients were enrolled. Of the 303 patients with a 24-week MRI-PDFF response and complete follow-up of 48 weeks, the rate of loss of MRI-PDFF response was 29.4%, and multivariable logistic regression analyses showed that 24-week insulin resistance (IR), still regular exercise and caloric restriction after 24 weeks, and the relative decline in LFC were risk factors for loss of MRI-PDFF response. Loss of LSM response at 48 weeks occurred in 15.9% of patients, and multivariable analysis confirmed 24-week serum total bile acid (TBA) levels and the relative decline in TBA from baseline as independent predictors. No significant association was found at 48 weeks between loss of MRI-PDFF response and loss of LSM response. Conclusions MASLD patients with IR and high TBA levels are at higher risks of subsequent diminished sustained improvements of steatosis and fibrosis, respectively.
Collapse
Affiliation(s)
- Ling Luo
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Junzhao Ye
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shuyu Zhuo
- Department of Nutrition, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Bo Ma
- Department of Gastroenterology, The East Division of the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Weiyi Mai
- Department of Cardiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaopei Cao
- Department of Endocrinology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Liuqin Liang
- Department of Rheumatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wei Wang
- Department of Ultrasound, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shiting Feng
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhi Dong
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Bihui Zhong
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
14
|
Simbrunner B, Hofer BS, Schwabl P, Zinober K, Petrenko O, Fuchs C, Semmler G, Marculescu R, Mandorfer M, Datz C, Trauner M, Reiberger T. FXR-FGF19 signaling in the gut-liver axis is dysregulated in patients with cirrhosis and correlates with impaired intestinal defence. Hepatol Int 2024; 18:929-942. [PMID: 38332428 PMCID: PMC11126514 DOI: 10.1007/s12072-023-10636-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 12/22/2023] [Indexed: 02/10/2024]
Abstract
BACKGROUND AND AIMS Experimental studies linked dysfunctional Farnesoid X receptor (FXR)-fibroblast growth factor 19 (FGF19) signaling to liver disease. This study investigated key intersections of the FXR-FGF19 pathway along the gut-liver axis and their link to disease severity in patients with cirrhosis. METHODS Patients with cirrhosis undergoing hepatic venous pressure gradient measurement (cohort-I n = 107, including n = 53 with concomitant liver biopsy; n = 5 healthy controls) or colonoscopy with ileum biopsy (cohort-II n = 37; n = 6 controls) were included. Hepatic and intestinal gene expression reflecting FXR activation and intestinal barrier integrity was assessed. Systemic bile acid (BA) and FGF19 levels were measured. RESULTS Systemic BA and FGF19 levels correlated significantly (r = 0.461; p < 0.001) and increased with cirrhosis severity. Hepatic SHP expression decreased in patients with cirrhosis (vs. controls; p < 0.001), indicating reduced FXR activation in the liver. Systemic FGF19 (r = -0.512, p < 0.001) and BA (r = -0.487, p < 0.001) levels correlated negatively with hepatic CYP7A1, but not SHP or CYP8B1 expression, suggesting impaired feedback signaling in the liver. In the ileum, expression of FXR, SHP and FGF19 decreased in patients with cirrhosis, and interestingly, intestinal FGF19 expression was not linked to systemic FGF19 levels. Intestinal zonula occludens-1, occludin, and alpha-5-defensin expression in the ileum correlated with SHP and decreased in patients with decompensated cirrhosis as compared to controls. CONCLUSIONS FXR-FGF19 signaling is dysregulated at essential molecular intersections along the gut-liver axis in patients with cirrhosis. Decreased FXR activation in the ileum mucosa was linked to reduced expression of intestinal barrier proteins. These human data call for further mechanistic research on interventions targeting the FXR-FGF19 pathway in patients with cirrhosis. CLINICAL TRIAL NUMBER NCT03267615.
Collapse
Affiliation(s)
- Benedikt Simbrunner
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
- Vienna Hepatic Hemodynamic Laboratory, Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory for Portal Hypertension and Liver Fibrosis, Medical University of Vienna, Vienna, Austria
- CeMM Research Center for Molecular Medicine, Austrian Academy of Sciences, Vienna, Austria
| | - Benedikt S Hofer
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
- Vienna Hepatic Hemodynamic Laboratory, Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory for Portal Hypertension and Liver Fibrosis, Medical University of Vienna, Vienna, Austria
- CeMM Research Center for Molecular Medicine, Austrian Academy of Sciences, Vienna, Austria
| | - Philipp Schwabl
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
- Vienna Hepatic Hemodynamic Laboratory, Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory for Portal Hypertension and Liver Fibrosis, Medical University of Vienna, Vienna, Austria
- CeMM Research Center for Molecular Medicine, Austrian Academy of Sciences, Vienna, Austria
| | - Kerstin Zinober
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
- Vienna Hepatic Hemodynamic Laboratory, Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory for Portal Hypertension and Liver Fibrosis, Medical University of Vienna, Vienna, Austria
| | - Oleksandr Petrenko
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
- Vienna Hepatic Hemodynamic Laboratory, Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory for Portal Hypertension and Liver Fibrosis, Medical University of Vienna, Vienna, Austria
- CeMM Research Center for Molecular Medicine, Austrian Academy of Sciences, Vienna, Austria
| | - Claudia Fuchs
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Georg Semmler
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
- Vienna Hepatic Hemodynamic Laboratory, Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Rodrig Marculescu
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Mattias Mandorfer
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
- Vienna Hepatic Hemodynamic Laboratory, Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Christian Datz
- Department of Internal Medicine, General Hospital Oberndorf, Teaching Hospital, Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Thomas Reiberger
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria.
- Vienna Hepatic Hemodynamic Laboratory, Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria.
- Christian Doppler Laboratory for Portal Hypertension and Liver Fibrosis, Medical University of Vienna, Vienna, Austria.
- CeMM Research Center for Molecular Medicine, Austrian Academy of Sciences, Vienna, Austria.
| |
Collapse
|
15
|
Cao H, Chen L, Zeng Z, Wu X, Lei Y, Jia W, Yue G, Yi B, Li YJ, Shi Y. Reversal of cholestatic liver disease by the inhibition of sphingosine 1-phosphate receptor 2 signaling. PeerJ 2024; 12:e16744. [PMID: 38250717 PMCID: PMC10798156 DOI: 10.7717/peerj.16744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/11/2023] [Indexed: 01/23/2024] Open
Abstract
Aims The objective of this study is to examine the impact of inhibiting Sphingosine 1-phosphate receptor 2 (S1PR2) on liver inflammation, fibrogenesis, and changes of gut microbiome in the context of cholestasis-induced conditions. Methods The cholestatic liver injury model was developed by common bile duct ligation (CBDL). Sprague-Dawley rats were randomly allocated to three groups, sham operation, CBDL group and JTE-013 treated CBDL group. Biochemical and histological assessments were conducted to investigate the influence of S1PR2 on the modulation of fibrogenic factors and inflammatory infiltration. We conducted an analysis of the fecal microbiome by using 16S rRNA sequencing. Serum bile acid composition was evaluated through the utilization of liquid chromatography-mass spectrometry techniques. Results In the BDL rat model, the study findings revealed a significant increase in serum levels of conjugated bile acids, accompanied by an overexpression of S1PR2. Treatment with the specific inhibitor of S1PR2, known as JTE-013, resulted in a range of specific effects on the BDL rats. These effects included the improvement of liver function, reduction of liver inflammation, inhibition of hepatocyte apoptosis, and suppression of NETosis. These effects are likely mediated through the TCA/S1PR2/NOX2/NLRP3 pathway. Furthermore, the administration of JTE-013 resulted in an augmentation of the diversity of the bacterial community's diversity, facilitating the proliferation of advantageous species while concurrently inhibiting the prevalence of detrimental bacteria. Conclusions The results of our study suggest that the administration of JTE-013 may have a beneficial effect in alleviating cholestatic liver disease and restoring the balance of intestinal flora.
Collapse
Affiliation(s)
- Huiling Cao
- Department of Neonatology, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Childhood Nutrition and Health, Chongqing, China
| | - Lin Chen
- Southwest Hospital, Third Military Medical University, Chongqing, Chongqing, China
| | - Ziyang Zeng
- Southwest Hospital, Third Military Medical University, Chongqing, Chongqing, China
| | - Xianfeng Wu
- Southwest Hospital, Third Military Medical University, Chongqing, Chongqing, China
| | - Yuhao Lei
- Southwest Hospital, Third Military Medical University, Chongqing, Chongqing, China
| | - Wen Jia
- Department of Neonatology, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Childhood Nutrition and Health, Chongqing, China
| | - Guang Yue
- Department of Neonatology, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Childhood Nutrition and Health, Chongqing, China
| | - Bin Yi
- Southwest Hospital, Third Military Medical University, Chongqing, Chongqing, China
| | - Yu-jie Li
- Southwest Hospital, Third Military Medical University, Chongqing, Chongqing, China
| | - Yuan Shi
- Department of Neonatology, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Childhood Nutrition and Health, Chongqing, China
| |
Collapse
|
16
|
Wu K, Liu Y, Xia J, Liu J, Wang K, Liang H, Xu F, Liu D, Nie D, Tang X, Huang A, Chen C, Tang N. Loss of SLC27A5 Activates Hepatic Stellate Cells and Promotes Liver Fibrosis via Unconjugated Cholic Acid. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304408. [PMID: 37957540 PMCID: PMC10787101 DOI: 10.1002/advs.202304408] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 10/11/2023] [Indexed: 11/15/2023]
Abstract
Although the dysregulation of bile acid (BA) composition has been associated with fibrosis progression, its precise roles in liver fibrosis is poorly understood. This study demonstrates that solute carrier family 27 member 5 (SLC27A5), an enzyme involved in BAs metabolism, is substantially downregulated in the liver tissues of patients with cirrhosis and fibrosis mouse models. The downregulation of SLC27A5 depends on RUNX family transcription factor 2 (RUNX2), which serves as a transcriptional repressor. The findings reveal that experimental SLC27A5 knockout (Slc27a5-/- ) mice display spontaneous liver fibrosis after 24 months. The loss of SLC27A5 aggravates liver fibrosis induced by carbon tetrachloride (CCI4 ) and thioacetamide (TAA). Mechanistically, SLC27A5 deficiency results in the accumulation of unconjugated BA, particularly cholic acid (CA), in the liver. This accumulation leads to the activation of hepatic stellate cells (HSCs) by upregulated expression of early growth response protein 3 (EGR3). The re-expression of hepatic SLC27A5 by an adeno-associated virus or the reduction of CA levels in the liver using A4250, an apical sodium-dependent bile acid transporter (ASBT) inhibitor, ameliorates liver fibrosis in Slc27a5-/- mice. In conclusion, SLC27A5 deficiency in mice drives hepatic fibrosis through CA-induced activation of HSCs, highlighting its significant implications for liver fibrosis treatment.
Collapse
Affiliation(s)
- Kang Wu
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education)Institute for Viral HepatitisDepartment of Infectious DiseasesThe Second Affiliated HospitalChongqing Medical UniversityChongqing400010China
| | - Yi Liu
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education)Institute for Viral HepatitisDepartment of Infectious DiseasesThe Second Affiliated HospitalChongqing Medical UniversityChongqing400010China
| | - Jie Xia
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education)Institute for Viral HepatitisDepartment of Infectious DiseasesThe Second Affiliated HospitalChongqing Medical UniversityChongqing400010China
| | - Jiale Liu
- Institute of Life SciencesChongqing Medical UniversityChongqing400016China
| | - Kai Wang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education)Institute for Viral HepatitisDepartment of Infectious DiseasesThe Second Affiliated HospitalChongqing Medical UniversityChongqing400010China
| | - Huijun Liang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education)Institute for Viral HepatitisDepartment of Infectious DiseasesThe Second Affiliated HospitalChongqing Medical UniversityChongqing400010China
| | - Fengli Xu
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education)Institute for Viral HepatitisDepartment of Infectious DiseasesThe Second Affiliated HospitalChongqing Medical UniversityChongqing400010China
| | - Dina Liu
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education)Institute for Viral HepatitisDepartment of Infectious DiseasesThe Second Affiliated HospitalChongqing Medical UniversityChongqing400010China
| | - Dan Nie
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education)Institute for Viral HepatitisDepartment of Infectious DiseasesThe Second Affiliated HospitalChongqing Medical UniversityChongqing400010China
| | - Xin Tang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education)Institute for Viral HepatitisDepartment of Infectious DiseasesThe Second Affiliated HospitalChongqing Medical UniversityChongqing400010China
| | - Ailong Huang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education)Institute for Viral HepatitisDepartment of Infectious DiseasesThe Second Affiliated HospitalChongqing Medical UniversityChongqing400010China
| | - Chang Chen
- Institute of Life SciencesChongqing Medical UniversityChongqing400016China
| | - Ni Tang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education)Institute for Viral HepatitisDepartment of Infectious DiseasesThe Second Affiliated HospitalChongqing Medical UniversityChongqing400010China
| |
Collapse
|
17
|
Fan HN, Zhao ZM, Huang K, Wang XN, Dai YK, Liu CH. Serum metabolomics characteristics and fatty-acid-related mechanism of cirrhosis with histological response in chronic hepatitis B. Front Pharmacol 2023; 14:1329266. [PMID: 38178856 PMCID: PMC10764421 DOI: 10.3389/fphar.2023.1329266] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 12/06/2023] [Indexed: 01/06/2024] Open
Abstract
Background and aims: The serum metabolites changes in patients with hepatitis B virus (HBV)-related cirrhosis as progression. Peroxisome proliferator-activated receptor gamma (PPARγ) is closely related to lipid metabolism in cirrhotic liver. However, the relationship between fatty acids and the expression of hepatic PPARγ during cirrhosis regression remains unknown. In this study, we explored the serum metabolic characteristics and expression of PPARγ in patients with histological response to treatment with entecavir. Methods: Sixty patients with HBV-related cirrhosis were selected as the training cohort with thirty patients each in the regression (R) group and non-regression (NR) group based on their pathological changes after 48-week treatment with entecavir. Another 72 patients with HBV-related cirrhosis and treated with entecavir were collected as the validation cohort. All of the serum samples were tested using ultra-performance liquid chromatography coupled to tandem mass spectrometry. Data were processed through principal component analysis and orthogonal partial least square discriminant analysis. Hepatic PPARγ expression was observed using immunohistochemistry. The relationship between serum fatty acids and PPARγ was calculated using Pearson's or Spearman's correlation analysis. Results: A total of 189 metabolites were identified and 13 differential metabolites were screened. Compared to the non-regression group, the serum level of fatty acids was higher in the R group. At baseline, the expression of PPARγ in hepatic stellate cells was positively correlated with adrenic acid (r 2 = 0.451, p = 0.046). The expression of PPARγ in both groups increased after treatment, and the expression of PPARγ in the R group was restored in HSCs much more than that in the NR group (p = 0.042). The adrenic acid and arachidonic acid (AA) in the R group also upgraded more than the NR group after treatment (p = 0.037 and 0.014). Conclusion: Baseline serum differential metabolites, especially fatty acids, were identified in patients with HBV-related cirrhosis patients who achieved cirrhosis regression. Upregulation of adrenic acid and arachidonic acid in serum and re-expression of PPARγ in HSCs may play a crucial role in liver fibrosis improvement.
Collapse
Affiliation(s)
- Hai-Na Fan
- Institute of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhi-Min Zhao
- Institute of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital, Shanghai, China
| | - Kai Huang
- Institute of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital, Shanghai, China
| | - Xiao-Ning Wang
- Institute of Interdisciplinary Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yun-Kai Dai
- Institute of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Cheng-Hai Liu
- Institute of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital, Shanghai, China
| |
Collapse
|
18
|
Li SQ, Shen Y, Zhang J, Weng CZ, Wu SD, Jiang W. Immune modulation of gut microbiota and its metabolites in chronic hepatitis B. Front Microbiol 2023; 14:1285556. [PMID: 38094621 PMCID: PMC10716252 DOI: 10.3389/fmicb.2023.1285556] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/14/2023] [Indexed: 02/05/2025] Open
Abstract
The gut microbiota is a diverse ecosystem consisting of 100 trillion microbiomes. The interaction between the host's gut and distal organs profoundly impacts various functions such as metabolism, immunity, neurology, and nutrition within the human body. The liver, as the primary immune organ, plays a crucial role in maintaining immune homeostasis by receiving a significant influx of gut-derived components and toxins. Perturbations in gut microbiota homeostasis have been linked to a range of liver diseases. The advancements in sequencing technologies, such as 16S rRNA and metagenomics, have opened up new avenues for comprehending the intricate physiological interplay between the liver and the intestine. Metabolites produced by the gut microbiota function as signaling molecules and substrates, influencing both pathological and physiological processes. Establishing a comprehensive host-bacterium-metabolism axis holds tremendous potential for investigating the mechanisms underlying liver diseases. In this review, we have provided a summary of the detrimental effects of the gut-liver axis in chronic liver diseases, primarily focusing on hepatitis B virus-related chronic liver diseases. Moreover, we have explored the potential mechanisms through which the gut microbiota and its derivatives interact with liver immunity, with implications for future clinical therapies.
Collapse
Affiliation(s)
- Shi-Qin Li
- Department of Gastroenterology and Hepatology, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yue Shen
- Department of Gastroenterology and Hepatology, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Institute of Liver Diseases, Fudan University Shanghai Medical College, Shanghai, China
| | - Jun Zhang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Cheng-Zhao Weng
- Department of Gastroenterology and Hepatology, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Sheng-Di Wu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Institute of Liver Diseases, Fudan University Shanghai Medical College, Shanghai, China
| | - Wei Jiang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Institute of Liver Diseases, Fudan University Shanghai Medical College, Shanghai, China
| |
Collapse
|
19
|
Wang Z, Zhang A, Yin Y, Tian J, Wang X, Yue Z, Pei L, Qin L, Jia M, Wang H, Cao LL. Clinical prediction of HBV-associated cirrhosis using machine learning based on platelet and bile acids. Clin Chim Acta 2023; 551:117589. [PMID: 37821059 DOI: 10.1016/j.cca.2023.117589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/15/2023] [Accepted: 10/08/2023] [Indexed: 10/13/2023]
Abstract
OBJECTIVES The present study was conducted to evaluate the performance of serum bile acids in the prediction of cirrhosis in chronic hepatitis B (CHB) population. METHODS Dysregulated metabolites were explored using untargeted and targeted metabolomic analyses. A machine learning model based on platelet (PLT) and several bile acids was constructed using light gradient boosting machine (LightGBM), to differentiate HBV-associated cirrhosis (BAC) from CHB patients. RESULTS Serum bile acids were dysregulated in BAC compared to CHB patients. The LightGBM model consisted of PLT, TUDCA, UDCA, TLCA, LCA and CA. The model demonstrated a strong discrimination ability in the internal test subset of the training cohort to diagnose BAC from CHB patients (AUC = 0.97). The high diagnostic accuracy of the model was further validated in an independent validation cohort. In addition, the model had high predictive efficacy in discriminating compensated BAC from CHB patients (AUC = 0.89). The performance of the model was better than AST/ALT ratio and the gradient boosting (GB)-based model reported in previous studies. CONCLUSIONS Our study showed that this LightGBM model based on PLT and 5 bile acids has potential in clinical assessments of CHB progression and will be useful for early detection of cirrhosis in CHB patients.
Collapse
Affiliation(s)
- Zhenpeng Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Xizhimen South Street No. 11, Beijing 100044, China
| | - Aimin Zhang
- Department of Clinical Laboratory, Peking University People's Hospital, Xizhimen South Street No. 11, Beijing 100044, China
| | - Yue Yin
- Department of Clinical Laboratory, Peking University People's Hospital, Xizhimen South Street No. 11, Beijing 100044, China
| | - Jiashu Tian
- Department of Clinical Laboratory, Peking University People's Hospital, Xizhimen South Street No. 11, Beijing 100044, China
| | - Xialin Wang
- Beckman Coulter Commercial Enterprise Co. Ltd, No.518 Fuquan North Road, Shanghai, China
| | - Zhihong Yue
- Department of Clinical Laboratory, Peking University People's Hospital, Xizhimen South Street No. 11, Beijing 100044, China
| | - Lin Pei
- Department of Clinical Laboratory, Peking University People's Hospital, Xizhimen South Street No. 11, Beijing 100044, China
| | - Li Qin
- Department of Clinical Laboratory, Peking University People's Hospital, Xizhimen South Street No. 11, Beijing 100044, China
| | - Mei Jia
- Department of Clinical Laboratory, Peking University People's Hospital, Xizhimen South Street No. 11, Beijing 100044, China
| | - Hui Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Xizhimen South Street No. 11, Beijing 100044, China
| | - Lin-Lin Cao
- Department of Clinical Laboratory, Peking University People's Hospital, Xizhimen South Street No. 11, Beijing 100044, China.
| |
Collapse
|
20
|
Jose-Abrego A, Roman S, Laguna-Meraz S, Panduro A. Host and HBV Interactions and Their Potential Impact on Clinical Outcomes. Pathogens 2023; 12:1146. [PMID: 37764954 PMCID: PMC10535809 DOI: 10.3390/pathogens12091146] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/27/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Hepatitis B virus (HBV) is a challenge for global health services, affecting millions and leading thousands to end-stage liver disease each year. This comprehensive review explores the interactions between HBV and the host, examining their impact on clinical outcomes. HBV infection encompasses a spectrum of severity, ranging from acute hepatitis B to chronic hepatitis B, which can potentially progress to cirrhosis and hepatocellular carcinoma (HCC). Occult hepatitis B infection (OBI), characterized by low HBV DNA levels in hepatitis B surface antigen-negative individuals, can reactivate and cause acute hepatitis B. HBV genotyping has revealed unique geographical patterns and relationships with clinical outcomes. Moreover, single nucleotide polymorphisms (SNPs) within the human host genome have been linked to several clinical outcomes, including cirrhosis, HCC, OBI, hepatitis B reactivation, and spontaneous clearance. The immune response plays a key role in controlling HBV infection by eliminating infected cells and neutralizing HBV in the bloodstream. Furthermore, HBV can modulate host metabolic pathways involved in glucose and lipid metabolism and bile acid absorption, influencing disease progression. HBV clinical outcomes correlate with three levels of viral adaptation. In conclusion, the clinical outcomes of HBV infection could result from complex immune and metabolic interactions between the host and HBV. These outcomes can vary among populations and are influenced by HBV genotypes, host genetics, environmental factors, and lifestyle. Understanding the degrees of HBV adaptation is essential for developing region-specific control and prevention measures.
Collapse
Affiliation(s)
- Alexis Jose-Abrego
- Department of Genomic Medicine in Hepatology, Civil Hospital of Guadalajara, “Fray Antonio Alcalde”, Guadalajara 44280, Mexico; (A.J.-A.); (S.R.); (S.L.-M.)
- Health Sciences Center, University of Guadalajara, Guadalajara 44340, Mexico
| | - Sonia Roman
- Department of Genomic Medicine in Hepatology, Civil Hospital of Guadalajara, “Fray Antonio Alcalde”, Guadalajara 44280, Mexico; (A.J.-A.); (S.R.); (S.L.-M.)
- Health Sciences Center, University of Guadalajara, Guadalajara 44340, Mexico
| | - Saul Laguna-Meraz
- Department of Genomic Medicine in Hepatology, Civil Hospital of Guadalajara, “Fray Antonio Alcalde”, Guadalajara 44280, Mexico; (A.J.-A.); (S.R.); (S.L.-M.)
- Health Sciences Center, University of Guadalajara, Guadalajara 44340, Mexico
| | - Arturo Panduro
- Department of Genomic Medicine in Hepatology, Civil Hospital of Guadalajara, “Fray Antonio Alcalde”, Guadalajara 44280, Mexico; (A.J.-A.); (S.R.); (S.L.-M.)
- Health Sciences Center, University of Guadalajara, Guadalajara 44340, Mexico
| |
Collapse
|
21
|
Lai J, Luo L, Zhou T, Feng X, Ye J, Zhong B. Alterations in Circulating Bile Acids in Metabolic Dysfunction-Associated Steatotic Liver Disease: A Systematic Review and Meta-Analysis. Biomolecules 2023; 13:1356. [PMID: 37759756 PMCID: PMC10526305 DOI: 10.3390/biom13091356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
Background: Previous studies have suggested that bile acids (BAs) may participate in the development and/or progression of metabolic dysfunction-associated steatotic liver disease (MASLD). The present study aimed to define whether specific BA molecular species are selectively associated with MASLD development, disease severity, or geographic region. Methods: We comprehensively identified all eligible studies reporting circulating BAs in both MASLD patients and healthy controls through 30 July 2023. The pooled results were expressed as the standard mean difference (SMD) and 95% confidence interval (CI). Subgroup, sensitivity, and meta-regression analyses were performed to address heterogeneity. Results: Nineteen studies with 154,807 individuals were included. Meta-analysis results showed that total BA levels in MASLD patients were higher than those in healthy controls (SMD = 1.03, 95% CI: 0.63-1.42). When total BAs were divided into unconjugated and conjugated BAs or primary and secondary BAs, the pooled results were consistent with the overall estimates except for secondary BAs. Furthermore, we examined each individual BA and found that 9 of the 15 BAs were increased in MASLD patients, especially ursodeoxycholic acids (UDCA), taurococholic acid (TCA), chenodeoxycholic acids (CDCA), taurochenodeoxycholic acids (TCDCA), and glycocholic acids (GCA). Subgroup analysis revealed that different geographic regions or disease severities led to diverse BA profiles. Notably, TCA, taurodeoxycholic acid (TDCA), taurolithocholic acids (TLCA), and glycolithocholic acids (GLCA) showed a potential ability to differentiate metabolic dysfunction-associated steatohepatitis (MASH) (all p < 0.05). Conclusions: An altered profile of circulating BAs was shown in MASLD patients, providing potential targets for the diagnosis and treatment of MASLD.
Collapse
Affiliation(s)
| | | | | | | | - Junzhao Ye
- Department of Gastroenterology of the First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan II Road, Yuexiu District, Guangzhou 510080, China; (J.L.); (L.L.); (T.Z.); (X.F.)
| | - Bihui Zhong
- Department of Gastroenterology of the First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan II Road, Yuexiu District, Guangzhou 510080, China; (J.L.); (L.L.); (T.Z.); (X.F.)
| |
Collapse
|
22
|
Zhu JY, Ni XS, Han XY, Liu S, Ji YK, Yao J, Yan B. Metabolomic profiling of a neurodegenerative retina following optic nerve transection. Mol Med Rep 2023; 28:178. [PMID: 37539744 PMCID: PMC10433715 DOI: 10.3892/mmr.2023.13065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 07/19/2023] [Indexed: 08/05/2023] Open
Abstract
The degeneration of retinal ganglion cells (RGCs) often causes irreversible vision impairment. Prevention of RGC degeneration can prevent or delay the deterioration of visual function. The present study aimed to investigate retinal metabolic profiles following optic nerve transection (ONT) injury and identify the potential metabolic targets for the prevention of RGC degeneration. Retinal samples were dissected from ONT group and non‑ONT group. The untargeted metabolomics were carried out using liquid chromatography‑tandem mass spectrometry. The involved pathways and biomarkers were analyzed using Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis and MetaboAnalyst 5.0. In the ONT group, 689 disparate metabolites were detected, including lipids and lipid‑like molecules. A total of 122 metabolites were successfully annotated and enriched in 50 KEGG pathways. Among them, 'sphingolipid metabolism' and 'primary bile acid biosynthesis' were identified involved in RGC degeneration. A total of five metabolites were selected as the candidate biomarkers for detecting RGC degeneration with an AUC value of 1. The present study revealed that lipid‑related metabolism was involved in the pathogenesis of retinal neurodegeneration. Taurine, taurochenodesoxycholic acid, taurocholic acid (TCA), sphingosine, and galabiosylceramide are shown as the promising biomarkers for the diagnosis of RGC degeneration.
Collapse
Affiliation(s)
- Jun-Ya Zhu
- Department of Ophthalmology and Optometry, The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
- Eye Institute and Department of Ophthalmology, Eye and Ear, Nose and Throat Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200030, P.R. China
| | - Xi-Sen Ni
- Department of Ophthalmology and Optometry, The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
- Department of Ophthalmology and Optometry, The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Xiao-Yan Han
- Eye Institute and Department of Ophthalmology, Eye and Ear, Nose and Throat Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200030, P.R. China
| | - Sha Liu
- Department of Ophthalmology and Optometry, The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
- Department of Ophthalmology and Optometry, The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yu-Ke Ji
- Department of Ophthalmology and Optometry, The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
- Department of Ophthalmology and Optometry, The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Jin Yao
- Department of Ophthalmology and Optometry, The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
- Department of Ophthalmology and Optometry, The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Biao Yan
- Eye Institute and Department of Ophthalmology, Eye and Ear, Nose and Throat Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200030, P.R. China
- National Health Commission Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai 200030, P.R. China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai 200030, P.R. China
| |
Collapse
|
23
|
Li Y, Lu Y, Nian M, Sheng Q, Zhang C, Han C, Dou X, Ding Y. Therapeutic potential and mechanism of Chinese herbal medicines in treating fibrotic liver disease. Chin J Nat Med 2023; 21:643-657. [PMID: 37777315 DOI: 10.1016/s1875-5364(23)60443-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Indexed: 10/02/2023]
Abstract
Liver fibrosis is a pathological condition characterized by replacement of normal liver tissue with scar tissue, and also the leading cause of liver-related death worldwide. During the treatment of liver fibrosis, in addition to antiviral therapy or removal of inducers, there remains a lack of specific and effective treatment strategies. For thousands of years, Chinese herbal medicines (CHMs) have been widely used to treat liver fibrosis in clinical setting. CHMs are effective for liver fibrosis, though its mechanisms of action are unclear. In recent years, many studies have attempted to determine the possible mechanisms of action of CHMs in treating liver fibrosis. There have been substantial improvements in the experimental investigation of CHMs which have greatly promoted the understanding of anti-liver fibrosis mechanisms. In this review, the role of CHMs in the treatment of liver fibrosis is described, based on studies over the past decade, which has addressed the various mechanisms and signaling pathways that mediate therapeutic efficacy. Among them, inhibition of stellate cell activation is identified as the most common mechanism. This article provides insights into the research direction of CHMs, in order to expand its clinical application range and improve its effectiveness.
Collapse
Affiliation(s)
- Yanwei Li
- Department of Infectious Diseases, Shengjing Hospital of China Medical University, Shenyang 110000, China
| | - Yunrui Lu
- Liaoning University of Traditional Chinese Medicine, Shenyang 110000, China
| | - Mozuo Nian
- Department of Infectious Diseases, Shengjing Hospital of China Medical University, Shenyang 110000, China
| | - Qiuju Sheng
- Department of Infectious Diseases, Shengjing Hospital of China Medical University, Shenyang 110000, China
| | - Chong Zhang
- Department of Infectious Diseases, Shengjing Hospital of China Medical University, Shenyang 110000, China
| | - Chao Han
- Department of Infectious Diseases, Shengjing Hospital of China Medical University, Shenyang 110000, China
| | - Xiaoguang Dou
- Department of Infectious Diseases, Shengjing Hospital of China Medical University, Shenyang 110000, China
| | - Yang Ding
- Department of Infectious Diseases, Shengjing Hospital of China Medical University, Shenyang 110000, China.
| |
Collapse
|
24
|
Xun Z, Yao X, Ou Q. Emerging roles of bile acids in chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. Cell Mol Immunol 2023; 20:1087-1089. [PMID: 37095294 PMCID: PMC10125846 DOI: 10.1038/s41423-023-01026-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 04/13/2023] [Indexed: 04/26/2023] Open
Affiliation(s)
- Zhen Xun
- Department of Laboratory Medicine, Fujian Key Laboratory of Laboratory Medicine, Gene Diagnosis Research Center, Fujian Clinical Research Center for Clinical Immunology Laboratory Test, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Laboratory Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Xiaobao Yao
- Department of Laboratory Medicine, Fujian Key Laboratory of Laboratory Medicine, Gene Diagnosis Research Center, Fujian Clinical Research Center for Clinical Immunology Laboratory Test, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Qishui Ou
- Department of Laboratory Medicine, Fujian Key Laboratory of Laboratory Medicine, Gene Diagnosis Research Center, Fujian Clinical Research Center for Clinical Immunology Laboratory Test, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
- Department of Laboratory Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
25
|
Tveter KM, Mezhibovsky E, Wu Y, Roopchand DE. Bile acid metabolism and signaling: Emerging pharmacological targets of dietary polyphenols. Pharmacol Ther 2023; 248:108457. [PMID: 37268113 PMCID: PMC10528343 DOI: 10.1016/j.pharmthera.2023.108457] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/03/2023] [Accepted: 05/22/2023] [Indexed: 06/04/2023]
Abstract
Beyond their role as emulsifiers of lipophilic compounds, bile acids (BAs) are signaling endocrine molecules that show differential affinity and specificity for a variety of canonical and non-canonical BA receptors. Primary BAs (PBAs) are synthesized in the liver while secondary BAs (SBAs) are gut microbial metabolites of PBA species. PBAs and SBAs signal to BA receptors that regulate downstream pathways of inflammation and energy metabolism. Dysregulation of BA metabolism or signaling has emerged as a feature of chronic disease. Dietary polyphenols are non-nutritive plant-derived compounds associated with decreased risk of metabolic syndrome, type-2 diabetes, hepatobiliary and cardiovascular disease. Evidence suggests that the health promoting effects of dietary polyphenols are linked to their ability to alter the gut microbial community, the BA pool, and BA signaling. In this review we provide an overview of BA metabolism and summarize studies that link the cardiometabolic improvements of dietary polyphenols to their modulation of BA metabolism and signaling pathways, and the gut microbiota. Finally, we discuss approaches and challenges in deciphering cause-effect relationships between dietary polyphenols, BAs, and gut microbes.
Collapse
Affiliation(s)
- Kevin M Tveter
- Rutgers, The State University of New Jersey, Department of Food Science, Institute for Food Nutrition and Health [Center for Microbiome, Nutrition and Health & Rutgers Center for Lipid Research], 61 Dudley Road, New Brunswick, NJ 08901, USA
| | - Esther Mezhibovsky
- Rutgers, The State University of New Jersey, Department of Food Science, Institute for Food Nutrition and Health [Center for Microbiome, Nutrition and Health & Rutgers Center for Lipid Research], 61 Dudley Road, New Brunswick, NJ 08901, USA
| | - Yue Wu
- Rutgers, The State University of New Jersey, Department of Food Science, Institute for Food Nutrition and Health [Center for Microbiome, Nutrition and Health & Rutgers Center for Lipid Research], 61 Dudley Road, New Brunswick, NJ 08901, USA
| | - Diana E Roopchand
- Rutgers, The State University of New Jersey, Department of Food Science, Institute for Food Nutrition and Health [Center for Microbiome, Nutrition and Health & Rutgers Center for Lipid Research], 61 Dudley Road, New Brunswick, NJ 08901, USA.
| |
Collapse
|
26
|
Deterding K, Xu C, Port K, Dietz-Fricke C, Xun J, Maasoumy B, Cornberg M, Wedemeyer H. Bile acid increase during bulevirtide treatment of hepatitis D is not associated with a decline in HDV RNA. J Viral Hepat 2023; 30:597-606. [PMID: 36924318 DOI: 10.1111/jvh.13831] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/27/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023]
Abstract
Bulevirtide (BLV) is an entry inhibitor blocking entry of HBsAg into hepatocytes by interfering with the bile acid transporter Na+-taurocholate co-transporting polypeptide. We here investigated if bile acid levels before or during BLV treatment would correlate with HDV RNA declines. We studied 20 patients with compensated HDV infection receiving a daily dose of 2 mg bulevirtide subcutaneously qd for at least 24 weeks. ALT levels improved in all patients including 13/20 patients showing normal ALT values at treatment Week 24. An HDV RNA drop of at least 50% was evident in 20/20 patients at Week 24 including 10 patients showing a ≥ 2 log HDV RNA decline. Elevated bile acid levels were detected already before treatment in 10 patients and further increased during BLV administration with different kinetics. Baseline bile acids were associated with higher transient elastography values (p = .0029) and evidence of portal hypertension (p = .0004). Bile acid levels before treatment were associated with HDV RNA declines throughout therapy, but not at Week 24 (rho = -0.577; p = .0078; rho = -0.635, p = .0026; rho = -0.577, p = .0077; rho = -0.519, p = .0191; rho = -0.564, p = .0119 and rho = -0.393, p = .087 at treatment Weeks 2, 8, 12, 16, 20 and 24, respectively). However, bile acid increases during treatment were not associated with HDV RNA or ALT declines at any of the time points. BLV-induced increases in bile salts do not correlate with HDV RNA declines suggesting that the inhibitory effects of BLV on NTCP differ between blocking bile acid transport and hindering HBsAg entry. If baseline bile salt levels could be useful to predict virological response remains to be confirmed.
Collapse
Affiliation(s)
- Katja Deterding
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Chengjian Xu
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
- Center for Individualized Infection Medicine, CiiM, a joint venture between Hannover Medical School and the Helmholtz Center for Infection Research, Hannover, Germany
- TWINCORE, a joint venture between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
| | - Kerstin Port
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Christopher Dietz-Fricke
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Jiang Xun
- Center for Individualized Infection Medicine, CiiM, a joint venture between Hannover Medical School and the Helmholtz Center for Infection Research, Hannover, Germany
- TWINCORE, a joint venture between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
| | - Benjamin Maasoumy
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
- German Centre for Infection Research (DZIF), Hannover-Braunschweig, Germany
| | - Markus Cornberg
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
- Center for Individualized Infection Medicine, CiiM, a joint venture between Hannover Medical School and the Helmholtz Center for Infection Research, Hannover, Germany
- TWINCORE, a joint venture between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
- German Centre for Infection Research (DZIF), Hannover-Braunschweig, Germany
- D-SOLVE consortium, an EU Horizon Europe funded project (No 101057917)
| | - Heiner Wedemeyer
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
- TWINCORE, a joint venture between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
- D-SOLVE consortium, an EU Horizon Europe funded project (No 101057917)
- Excellence Cluster Resist, Hannover Medical School, Hannover, Germany
| |
Collapse
|
27
|
Du Z, Yin S, Liu B, Zhang W, Sun J, Fang M, Xu Y, Hua K, Tu P, Zhang G, Ma Y, Lu Y. Metabolomics and network analysis uncovered profound inflammation-associated alterations in hepatitis B virus-related cirrhosis patients with early hepatocellular carcinoma. Heliyon 2023; 9:e16083. [PMID: 37215837 PMCID: PMC10196855 DOI: 10.1016/j.heliyon.2023.e16083] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 04/29/2023] [Accepted: 05/04/2023] [Indexed: 05/24/2023] Open
Abstract
Patients with hepatitis B virus (HBV)-related liver cirrhosis (LC) are at high risk for hepatocellular carcinoma (HCC). Limitations in the early detection of HCC give rise to poor survival in this high-risk population. Here, we performed comprehensive metabolomics on health individuals and HBV-related LC patients with and without early HCC. Compared to non-HCC patients (N = 108) and health controls (N = 80), we found that patients with early HCC (N = 224) exhibited a specific plasma metabolome map dominated by lipid alterations, including lysophosphatidylcholines, lysophosphatidic acids and bile acids. Pathway and function network analyses indicated that these metabolite alterations were closely associated with inflammation responses. Using multivariate regression and machine learning approaches, we identified a five-metabolite combination that showed significant performances in differentiating early-HCC from non-HCC than α-fetoprotein (area under the curve values, 0.981 versus 0.613). At metabolomic levels, this work provides additional insights of metabolic dysfunction related to HCC progressions and demonstrates the plasma metabolites might be measured to identify early HCC in patients with HBV-related LC.
Collapse
Affiliation(s)
- Zhiyong Du
- Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, 100029, China
| | - Shengju Yin
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
- Shanghai Key Laboratory of Children's Environment Health, School of Public Health/Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shandong Jiaotong Hospital, Jinan, 250031, China
| | - Bing Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Wenxin Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Jiaxu Sun
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Meng Fang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Yisheng Xu
- Waters Technologies Ltd., Beijing, 102600, China
| | - Kun Hua
- Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, 100029, China
| | - Pengfei Tu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Guoliang Zhang
- School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Ying Ma
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yingyuan Lu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| |
Collapse
|
28
|
Banerjee P, Kumaravel S, Roy S, Gaddam N, Odeh J, Bayless KJ, Glaser S, Chakraborty S. Conjugated Bile Acids Promote Lymphangiogenesis by Modulation of the Reactive Oxygen Species-p90RSK-Vascular Endothelial Growth Factor Receptor 3 Pathway. Cells 2023; 12:526. [PMID: 36831193 PMCID: PMC9953922 DOI: 10.3390/cells12040526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 02/09/2023] Open
Abstract
Conjugated bile acids (BA) are significantly elevated in several liver pathologies and in the metastatic lymph node (LN). However, the effects of BAs on pathological lymphangiogenesis remains unknown. The current study explores the effects of BAs on lymphangiogenesis. BA levels were elevated in the LN and serum of Mdr2-/- mice (model of sclerosing cholangitis) compared to control mice. Liver and LN tissue sections showed a clear expansion of the lymphatic network in Mdr2-/- mice, indicating activated lymphangiogenic pathways. Human lymphatic endothelial cells (LECs) expressed BA receptors and a direct treatment with conjugated BAs enhanced invasion, migration, and tube formation. BAs also altered the LEC metabolism and upregulated key metabolic genes. Further, BAs induced the production of reactive oxygen species (ROS), that in turn phosphorylated the redox-sensitive kinase p90RSK, an essential regulator of endothelial cell dysfunction and oxidative stress. Activated p90RSK increased the SUMOylation of the Prox1 transcription factor and enhanced VEGFR3 expression and 3-D LEC invasion. BA-induced ROS in the LECs, which led to increased levels of Yes-associated protein (YAP), a lymphangiogenesis regulator. The suppression of cellular YAP inhibited BA-induced VEGFR3 upregulation and lymphangiogenic mechanism. Overall, our data shows the expansion of the lymphatic network in presclerotic liver disease and establishes a novel mechanism whereby BAs promote lymphangiogenesis.
Collapse
Affiliation(s)
- Priyanka Banerjee
- Department of Medical Physiology, Texas A&M Health Science Center, Bryan, TX 77807, USA
| | - Subhashree Kumaravel
- Department of Medical Physiology, Texas A&M Health Science Center, Bryan, TX 77807, USA
| | - Sukanya Roy
- Department of Medical Physiology, Texas A&M Health Science Center, Bryan, TX 77807, USA
| | - Niyanshi Gaddam
- Department of Medical Physiology, Texas A&M Health Science Center, Bryan, TX 77807, USA
| | - Johnny Odeh
- Department of Medical Physiology, Texas A&M Health Science Center, Bryan, TX 77807, USA
| | - Kayla J. Bayless
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Shannon Glaser
- Department of Medical Physiology, Texas A&M Health Science Center, Bryan, TX 77807, USA
| | - Sanjukta Chakraborty
- Department of Medical Physiology, Texas A&M Health Science Center, Bryan, TX 77807, USA
| |
Collapse
|
29
|
Bioenhancing effects of piperine and curcumin on triterpenoid pharmacokinetics and neurodegenerative metabolomes from Centella asiatica extract in beagle dogs. Sci Rep 2022; 12:20789. [PMID: 36456663 PMCID: PMC9715946 DOI: 10.1038/s41598-022-24935-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 11/22/2022] [Indexed: 12/02/2022] Open
Abstract
Centell-S is a water-soluble extract of Centella asiatica containing more than 80% w/w triterpenoid glycosides. Madecassoside and asiaticoside are two major components of the extract and can be converted into active metabolites, triterpenic acids in large mammal species. In this study, the pharmacokinetic profiles and metabolomic changes generated by the bioactive triterpenoids of Centell-S alone, and in combination with the bioenhancers piperine and curcumin, were investigated in beagle dogs. The test substances were orally administered over multiple doses for 7 consecutive days. At day 1 and 7 after receiving the test compounds, the level of major bioactive triterpenoids and related metabolites were measured using triple quadrupole and high-resolution accurate mass orbitrap models of LCMS to determine pharmacokinetic and metabolomic profiles, respectively. Centell-S was well tolerated, alone and in all combination groups. The combination of Centell-S and piperine significantly increased (p < 0.05) the systemic exposure of madecassoside on day 1 and asiatic acid on day 7, by approximately 1.5 to 3.0-fold of Cmax and AUC values as compared to the Centell-S alone, while the addition of curcumin did not provide a significant improvement. Several metabolomic changes were observed from pre-dose to 4 h post-dose, with some biomarkers of neurodegenerative diseases including L-glutamine, lysophosphatidylcholine (17:0), taurochenodeoxycholic acid, uric acid, stearic acid, palmitic acid, and lactic acid showing good correlation with the systemic exposure of the bioactive triterpenoids (asiatic acid). Thus, the combining of piperine to Centell-S exhibits the improvement of bioactive triterpenoids which are related to the biomarkers of neurodegenerative diseases. These promising results might be useful for the development of this standardised extract to become a more effective phytomedicine for neurodegenerative diseases.
Collapse
|
30
|
Zhang YL, Li ZJ, Gou HZ, Song XJ, Zhang L. The gut microbiota–bile acid axis: A potential therapeutic target for liver fibrosis. Front Cell Infect Microbiol 2022; 12:945368. [PMID: 36189347 PMCID: PMC9519863 DOI: 10.3389/fcimb.2022.945368] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 09/01/2022] [Indexed: 11/15/2022] Open
Abstract
Liver fibrosis involves the proliferation and deposition of extracellular matrix on liver tissues owing to various etiologies (including viral, alcohol, immune, and metabolic factors), ultimately leading to structural and functional abnormalities in the liver. If not effectively treated, liver fibrosis, a pivotal stage in the path to chronic liver disease, can progress to cirrhosis and eventually liver cancer; unfortunately, no specific clinical treatment for liver fibrosis has been established to date. In liver fibrosis cases, both the gut microbiota and bile acid metabolism are disrupted. As metabolites of the gut microbiota, bile acids have been linked to the progression of liver fibrosis via various pathways, thus implying that the gut microbiota–bile acid axis might play a critical role in the progression of liver fibrosis and could be a target for its reversal. Therefore, in this review, we examined the involvement of the gut microbiota–bile acid axis in liver fibrosis progression to the end of discovering new targets for the prevention, diagnosis, and therapy of chronic liver diseases, including liver fibrosis.
Collapse
Affiliation(s)
- Yu-Lin Zhang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Zhen-Jiao Li
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Hong-Zhong Gou
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Xiao-Jing Song
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Lei Zhang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
- *Correspondence: Lei Zhang,
| |
Collapse
|
31
|
Application of metabolomics in intrahepatic cholestasis of pregnancy: a systematic review. Eur J Med Res 2022; 27:178. [PMID: 36104763 PMCID: PMC9472355 DOI: 10.1186/s40001-022-00802-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 08/07/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Intrahepatic cholestasis of pregnancy (ICP) is a severe idiopathic disorder of bile metabolism; however, the etiology and pathogenesis of ICP remain unclear.
Aims
This study comprehensively reviewed metabolomics studies related to ICP, to help in identifying the pathophysiological changes of ICP and evaluating the potential application of metabolomics in its diagnosis.
Methods
Relevant articles were searched through 2 online databases (PubMed and Web of Science) from January 2000 to March 2022. The metabolites involved were systematically examined and compared. Pathway analysis was conducted through the online software MetaboAnalyst 5.0.
Results
A total of 14 papers reporting 212 metabolites were included in this study. There were several highly reported metabolites: bile acids, such as glycocholic acid, taurochenodeoxycholic acid, taurocholic acid, tauroursodeoxycholic acid, and glycochenodeoxycholic acid. Dysregulation of metabolic pathways involved bile acid metabolism and lipid metabolism. Metabolites related to lipid metabolism include phosphatidylcholine, phosphorylcholine, phosphatidylserine, sphingomyelin, and ceramide.
Conclusions
This study provides a systematic review of metabolomics of ICP and deepens our understanding of the etiology of ICP.
Collapse
|
32
|
Han X, Wang J, Gu H, Guo H, Cai Y, Liao X, Jiang M. Predictive value of serum bile acids as metabolite biomarkers for liver cirrhosis: a systematic review and meta-analysis. Metabolomics 2022; 18:43. [PMID: 35759044 DOI: 10.1007/s11306-022-01890-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 04/19/2022] [Indexed: 12/01/2022]
Abstract
INTRODUCTION A large number of studies have explored the potential biomarkers for detecting liver cirrhosis in an early stage, yet consistent conclusions are still warranted. OBJECTIVES To conduct a review and a meta-analysis of the existing studies that test the serum level of bile acids in cirrhosis as the potential biomarkers to predict cirrhosis. METHODS Six databases had been searched from inception date to April 12, 2021. Screening and selection of the records were based on the inclusion criteria. The risk of bias was assessed with the Newcastle-Ottawa quality assessment scale (NOS). Mean difference (MD) and confidence intervals 95% (95% CI) were calculated by using the random effect model for the concentrations of bile acids in the meta-analysis, and I2 statistic was used to measure studies heterogeneity. This study was registered on PROSPERO. RESULTS A total of 1583 records were identified and 31 studies with 2679 participants (1263 in the cirrhosis group, 1416 in the healthy control group) were included. The quality of included studies was generally high, with 25 studies (80.6%) rated over 7 stars. A total of 45 bile acids or their ratios in included studies were extracted. 36 increased in the cirrhosis group compared with those of the healthy controls by a qualitative summary, 5 decreased and 4 presented with mixing results. The result of meta-analysis among 12 studies showed that 13 bile acids increased, among which four primary conjugated bile acids showed the most significant elevation in the cirrhosis group: GCDCA (MD = 11.38 μmol/L, 95% CI 8.21-14.55, P < 0.0001), GCA (MD = 5.72 μmol/L, 95% CI 3.47-7.97, P < 0.0001), TCDCA (MD = 3.57 μmol/L, 95% CI 2.64-4.49, P < 0.0001) and TCA (MD = 2.14 μmol/L, 95% CI 1.56-2.72, P < 0.0001). No significant differences were found between the two groups in terms of DCA (MD = - 0.1 μmol/L, 95% CI - 0.18 to - 0.01, P < 0.0001) and LCA (MD = - 0.01 μmol/L, 95% CI - 0.01 to - 0.02, P < 0.0001), UDCA (MD = - 0.14 μmol/L, 95% CI - 0.04 to - 0.32, P < 0.0001), and TLCA (MD = 0 μmol/L, 95% CI 0-0.01, P < 0.0001). Subgroup analysis in patients with hepatitis B cirrhosis showed similar results. CONCLUSION Altered serum bile acids profile seems to be associated with cirrhosis. Some specific bile acids (GCA, GCDCA, TCA, and TCDCA) may increase with the development of cirrhosis, which possibly underlay their potential role as predictive biomarkers for cirrhosis. Yet this predictive value still needs further investigation and validation in larger prospective cohort studies.
Collapse
Affiliation(s)
- Xu Han
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimennei, Beijing, 100700, China
| | - Juan Wang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimennei, Beijing, 100700, China
| | - Hao Gu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimennei, Beijing, 100700, China
| | - Hongtao Guo
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Henan University of CM, Zhengzhou, China
| | - Yili Cai
- Ningbo First Hospital, Ningbo, China
| | - Xing Liao
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimennei, Beijing, 100700, China.
| | - Miao Jiang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimennei, Beijing, 100700, China.
| |
Collapse
|
33
|
Farhat Z, Freedman ND, Sampson JN, Falk RT, Koshiol J, Weinstein SJ, Albanes D, Sinha R, Loftfield E. A prospective investigation of serum bile acids with risk of liver cancer, fatal liver disease, and biliary tract cancer. Hepatol Commun 2022; 6:2391-2399. [PMID: 35678016 PMCID: PMC9426378 DOI: 10.1002/hep4.2003] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/01/2022] [Accepted: 04/25/2022] [Indexed: 11/07/2022] Open
Abstract
Bile acids (BAs), major regulators of the gut microbiota, may play an important role in hepatobiliary cancer etiology. However, few epidemiologic studies have comprehensively examined associations between BAs and liver or biliary tract cancer. In the Alpha-Tocopherol, Beta-Carotene Cancer Prevention (ATBC) study, we designed 1:1 matched, nested, case-control studies of primary liver cancer (n = 201 cases), fatal liver disease (n = 261 cases), and primary biliary tract cancer (n = 138 cases). Using baseline serum collected ≤30 years before diagnosis or death, we measured concentrations of 15 BAs with liquid chromatography-tandem mass spectrometry. We estimated odds ratios (ORs) and 95% confidence intervals (CIs) using multivariable conditional logistic regression models, adjusted for age, education, diabetes status, smoking, alcohol intake, and body mass index. We accounted for multiple comparisons using a false discovery rate (FDR) correction. Comparing the highest to the lowest quartile, seven BAs were positively associated with liver cancer risk, including taurocholic acid (TCA) (OR, 5.62; 95% CI, 2.74-11.52; Q trend < 0.0001), taurochenodeoxycholic acid (TCDCA) (OR, 4.77; 95% CI, 2.26-10.08; Q trend < 0.0001), and glycocholic acid (GCA) OR, 5.30; 95% CI, 2.41-11.66; Q trend < 0.0001), and 11 were positively associated with fatal liver disease risk, including TCDCA (OR, 9.65; 95% CI, 4.41-21.14; Q trend < 0.0001), TCA (OR, 7.45; 95% CI, 3.70-14.97; Q trend < 0.0001), and GCA (OR, 6.98; 95% CI, 3.32-14.68; Q trend < 0.0001). For biliary tract cancer, associations were generally >1 but not significant after FDR correction. Conjugated BAs were strongly associated with increased risk of liver cancer and fatal liver disease, suggesting mechanistic links between BA metabolism and liver cancer or death from liver disease.
Collapse
Affiliation(s)
- Zeinab Farhat
- Metabolic Epidemiology BranchDivision of Cancer Epidemiology and GeneticsNational Cancer InstituteNational Institutes of HealthRockvilleMarylandUSA
| | - Neal D. Freedman
- Metabolic Epidemiology BranchDivision of Cancer Epidemiology and GeneticsNational Cancer InstituteNational Institutes of HealthRockvilleMarylandUSA
| | - Joshua N. Sampson
- Biostatistics BranchDivision of Cancer Epidemiology and GeneticsNational Cancer InstituteNational Institutes of HealthRockvilleMarylandUSA
| | - Roni T. Falk
- Metabolic Epidemiology BranchDivision of Cancer Epidemiology and GeneticsNational Cancer InstituteNational Institutes of HealthRockvilleMarylandUSA
| | - Jill Koshiol
- Infections and Immunoepidemiology BranchDivision of Cancer Epidemiology and GeneticsNational Cancer InstituteNational Institutes of HealthRockvilleMarylandUSA
| | - Stephanie J. Weinstein
- Metabolic Epidemiology BranchDivision of Cancer Epidemiology and GeneticsNational Cancer InstituteNational Institutes of HealthRockvilleMarylandUSA
| | - Demetrius Albanes
- Metabolic Epidemiology BranchDivision of Cancer Epidemiology and GeneticsNational Cancer InstituteNational Institutes of HealthRockvilleMarylandUSA
| | - Rashmi Sinha
- Metabolic Epidemiology BranchDivision of Cancer Epidemiology and GeneticsNational Cancer InstituteNational Institutes of HealthRockvilleMarylandUSA
| | - Erikka Loftfield
- Metabolic Epidemiology BranchDivision of Cancer Epidemiology and GeneticsNational Cancer InstituteNational Institutes of HealthRockvilleMarylandUSA
| |
Collapse
|
34
|
Mancinelli R, Ceci L, Kennedy L, Francis H, Meadows V, Chen L, Carpino G, Kyritsi K, Wu N, Zhou T, Sato K, Pannarale L, Glaser S, Chakraborty S, Alpini G, Gaudio E, Onori P, Franchitto A. The Effects of Taurocholic Acid on Biliary Damage and Liver Fibrosis Are Mediated by Calcitonin-Gene-Related Peptide Signaling. Cells 2022; 11:1591. [PMID: 35563897 PMCID: PMC9104610 DOI: 10.3390/cells11091591] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/07/2022] [Accepted: 05/04/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND & AIMS Cholangiocytes are the target cells of liver diseases that are characterized by biliary senescence (evidenced by enhanced levels of senescence-associated secretory phenotype, SASP, e.g., TGF-β1), and liver inflammation and fibrosis accompanied by altered bile acid (BA) homeostasis. Taurocholic acid (TC) stimulates biliary hyperplasia by activation of 3',5'-cyclic cyclic adenosine monophosphate (cAMP) signaling, thereby preventing biliary damage (caused by cholinergic/adrenergic denervation) through enhanced liver angiogenesis. Also: (i) α-calcitonin gene-related peptide (α-CGRP, which activates the calcitonin receptor-like receptor, CRLR), stimulates biliary proliferation/senescence and liver fibrosis by enhanced biliary secretion of SASPs; and (ii) knock-out of α-CGRP reduces these phenotypes by decreased cAMP levels in cholestatic models. We aimed to demonstrate that TC effects on liver phenotypes are dependent on changes in the α-CGRP/CALCRL/cAMP/PKA/ERK1/2/TGF-β1/VEGF axis. METHODS Wild-type and α-CGRP-/- mice were fed with a control (BAC) or TC diet for 1 or 2 wk. We measured: (i) CGRP levels by both ELISA kits in serum and by qPCR in isolated cholangiocytes (CALCA gene for α-CGRP); (ii) CALCRL immunoreactivity by immunohistochemistry (IHC) in liver sections; (iii) liver histology, intrahepatic biliary mass, biliary senescence (by β-GAL staining and double immunofluorescence (IF) for p16/CK19), and liver fibrosis (by Red Sirius staining and double IF for collagen/CK19 in liver sections), as well as by qPCR for senescence markers in isolated cholangiocytes; and (iv) phosphorylation of PKA/ERK1/2, immunoreactivity of TGF-β1/TGF- βRI and angiogenic factors by IHC/immunofluorescence in liver sections and qPCR in isolated cholangiocytes. We measured changes in BA composition in total liver by liquid chromatography/mass spectrometry. RESULTS TC feeding increased CALCA expression, biliary damage, and liver inflammation and fibrosis, as well as phenotypes that were associated with enhanced immunoreactivity of the PKA/ERK1/2/TGF-β1/TGF-βRI/VEGF axis compared to BAC-fed mice and phenotypes that were reversed in α-CGRP-/- mice fed TC coupled with changes in hepatic BA composition. CONCLUSION Modulation of the TC/ α-CGRP/CALCRL/PKA/ERK1/2/TGF-β1/VEGF axis may be important in the management of cholangiopathies characterized by BA accumulation.
Collapse
Affiliation(s)
- Romina Mancinelli
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, 00161 Rome, Italy; (R.M.); (L.P.); (E.G.); (P.O.)
| | - Ludovica Ceci
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (L.C.); (L.K.); (H.F.); (V.M.); (L.C.); (K.K.); (N.W.); (T.Z.); (K.S.); (G.A.)
| | - Lindsey Kennedy
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (L.C.); (L.K.); (H.F.); (V.M.); (L.C.); (K.K.); (N.W.); (T.Z.); (K.S.); (G.A.)
- Richard L. Roudebush VA Medical Center, Indianapolis, IN 46202, USA
| | - Heather Francis
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (L.C.); (L.K.); (H.F.); (V.M.); (L.C.); (K.K.); (N.W.); (T.Z.); (K.S.); (G.A.)
- Richard L. Roudebush VA Medical Center, Indianapolis, IN 46202, USA
| | - Vik Meadows
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (L.C.); (L.K.); (H.F.); (V.M.); (L.C.); (K.K.); (N.W.); (T.Z.); (K.S.); (G.A.)
| | - Lixian Chen
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (L.C.); (L.K.); (H.F.); (V.M.); (L.C.); (K.K.); (N.W.); (T.Z.); (K.S.); (G.A.)
| | - Guido Carpino
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy;
| | - Konstantina Kyritsi
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (L.C.); (L.K.); (H.F.); (V.M.); (L.C.); (K.K.); (N.W.); (T.Z.); (K.S.); (G.A.)
| | - Nan Wu
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (L.C.); (L.K.); (H.F.); (V.M.); (L.C.); (K.K.); (N.W.); (T.Z.); (K.S.); (G.A.)
| | - Tianhao Zhou
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (L.C.); (L.K.); (H.F.); (V.M.); (L.C.); (K.K.); (N.W.); (T.Z.); (K.S.); (G.A.)
| | - Keisaku Sato
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (L.C.); (L.K.); (H.F.); (V.M.); (L.C.); (K.K.); (N.W.); (T.Z.); (K.S.); (G.A.)
| | - Luigi Pannarale
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, 00161 Rome, Italy; (R.M.); (L.P.); (E.G.); (P.O.)
| | - Shannon Glaser
- Department of Medical Physiology, Texas A&M University, Bryan, TX 77807, USA; (S.G.); (S.C.)
| | - Sanjukta Chakraborty
- Department of Medical Physiology, Texas A&M University, Bryan, TX 77807, USA; (S.G.); (S.C.)
| | - Gianfranco Alpini
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (L.C.); (L.K.); (H.F.); (V.M.); (L.C.); (K.K.); (N.W.); (T.Z.); (K.S.); (G.A.)
- Richard L. Roudebush VA Medical Center, Indianapolis, IN 46202, USA
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, 00161 Rome, Italy; (R.M.); (L.P.); (E.G.); (P.O.)
| | - Paolo Onori
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, 00161 Rome, Italy; (R.M.); (L.P.); (E.G.); (P.O.)
| | - Antonio Franchitto
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, 00161 Rome, Italy; (R.M.); (L.P.); (E.G.); (P.O.)
| |
Collapse
|
35
|
Lotus seed resistant starch decreases the blood lipid and regulates the serum bile acids profiles in hyperlipidemic rats. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
36
|
Ruan Y, Liu R, Gong L. Investigation of dysregulated lipid metabolism in diabetic mice via targeted metabolomics of bile acids in enterohepatic circulation. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2022; 36:e9236. [PMID: 34897861 DOI: 10.1002/rcm.9236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 10/27/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
RATIONALE The mechanism of lipid metabolism disorder in type 2 diabetes (T2DM) remains unclear. This study aimed to reveal the mechanism underlying dysregulated lipid metabolism in T2DM through bile acid metabolism. METHODS A db/db mouse model was employed to investigate the alteration of bile acid profiles in T2DM. Ultrahigh-performance liquid chromatography with tandem mass spectrometry was used to quantify the detailed bile acid levels in each compartment of enterohepatic circulation. The pathological change of mouse liver was assessed by liver histology and serum biochemical assays. The expression level of bile acid-related transporters and synthases was measured with Western blot analysis. RESULTS The results showed that T2DM can result in severe liver fat accumulation and liver damage. In addition, compared to the control group, in T2DM mice, bile acid synthesis is reduced, while the level of bile acids is increased at the storage sites and the reabsorption sites, but there are subtle gender differences. Further, the ratio of conjugated bile acids in total bile acid in the liver of T2DM mice increased significantly relative to the control group for both female and male mice. CONCLUSIONS In T2DM, bile acid metabolism is disordered in both male and female mice, which could be the underlying mechanism of dysregulated lipid metabolism in T2DM.
Collapse
Affiliation(s)
- Yanjiao Ruan
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Rong Liu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lingzhi Gong
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
37
|
Han X, Wang J, Gu H, Liao X, Jiang M. Predictive value of liver cirrhosis using metabolite biomarkers of bile acid in the blood: A protocol for systematic review and meta-analysis. Medicine (Baltimore) 2022; 101:e28529. [PMID: 35089190 PMCID: PMC8797474 DOI: 10.1097/md.0000000000028529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 12/21/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Previous studies have indicated that the changes of bile acids are associated with liver cirrhosis. The objective of our study is to perform a systematic review to explore the relationship between bile acids and the pathologic process of cirrhosis, and to find minimally invasive, accurate and reliable potential biomarkers for predicting cirrhosis. METHODS EMBASE, the Cochrane Library, PubMed, Web of Science, WanFang Data and Chinese National Knowledge Infrastructure (CNKI) will be searched, using the search strategy of liver cirrhosis, bile acids and metabolomic. The screening process will be conducted strictly based on inclusion and exclusion criteria. Clinical studies based on human including randomized controlled trial, cohort study and case control study will be included without restriction of time. Cochrane collaboration's tool for assessing risk of bias and Newcastle-Ottawa Scale (NOS) will be applied to assess the risk of bias to randomized controlled trial and observational study, respectively. The bile acids and their concentrate which are different between liver cirrhosis and control group will be the mainly outcome. A qualitative analysis will be performed to profile the trajectory change of bile acids, then the meta-analysis will be done for quantitative analysis. RESULTS The bile acids profile of liver cirrhosis that has potential predictive value for cirrhosis will be identified. CONCLUSION The conclusion of this systematic review will finding potential biomarkers for predicting cirrhosis. ETHICS AND DISSEMINATION This systematic review is based on published researches, so there is no ethical approval required. We intend to disseminate our findings in a peer-reviewed journal.
Collapse
|
38
|
Khalil A, ElSheashaey A, Abdelsameea E, Obada M, Bayomy F.F. M, El-Said H. Value of Bile Acids in Diagnosing Hepatitis C Virus-Induced Liver Cirrhosis and Hepatocellular Carcinoma. Br J Biomed Sci 2022; 79:10191. [PMID: 35996509 PMCID: PMC8915635 DOI: 10.3389/bjbs.2021.10191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/02/2021] [Indexed: 11/13/2022]
Abstract
Background: Metabonomic studies have related bile acids to hepatic impairment, but their role in predicting hepatocellular carcinoma still unclear. The study aimed to examine the feasibility of bile acids in distinguishing hepatocellular carcinoma from post hepatitis C virus-induced liver cirrhosis.Methods: An ultra-performance liquid chromatography coupled with mass spectrometry measured 14 bile acids in patients with noncirrhotic post hepatitis C virus disease (n = 50), cirrhotic post hepatitis C virus disease (n = 50), hepatocellular carcinoma (n = 50), and control group (n = 50).Results: The spectrum of liver disease was associated with a significant increase in many conjugated bile acids. The fold changes in many bile acid concentrations showed a linear trend with hepatocellular carcinoma > cirrhotic disease > noncirrhotic disease > healthy controls (p < 0.05). Receiver operating characteristic curve analysis revealed five conjugated acids TCA, GCA, GUDCA, TCDCA, GCDCA, that discriminated hepatocellular carcinoma from noncirrhotic liver patients (AUC = 0.85–0.96) with a weaker potential to distinguish it from chronic liver cirrhosis (AUC = 0.41–0.64).Conclusion: Serum bile acids are associated primarily with liver cirrhosis with little value in predicting the progress of cirrhotic disease to hepatocellular carcinoma.
Collapse
Affiliation(s)
- Ashraf Khalil
- Department of Biochemistry and Molecular Diagnostics, National Liver Institute, Menoufia University, Shibin el Kom, Egypt
- *Correspondence: Ashraf Khalil,
| | - Azza ElSheashaey
- Department of Biochemistry and Molecular Diagnostics, National Liver Institute, Menoufia University, Shibin el Kom, Egypt
- Department of Zoology, Faculty of Science, Menoufia University, Shibin el Kom, Egypt
| | - Eman Abdelsameea
- Department of Hepatology and Gastroenterology, National Liver Institute, Menoufia University, Shibin el Kom, Egypt
| | - Manar Obada
- Department of Biochemistry and Molecular Diagnostics, National Liver Institute, Menoufia University, Shibin el Kom, Egypt
| | - Mohamed Bayomy F.F.
- Department of Biochemistry and Molecular Diagnostics, National Liver Institute, Menoufia University, Shibin el Kom, Egypt
- Department of Zoology, Faculty of Science, Menoufia University, Shibin el Kom, Egypt
| | - Hala El-Said
- Department of Biochemistry and Molecular Diagnostics, National Liver Institute, Menoufia University, Shibin el Kom, Egypt
| |
Collapse
|
39
|
Chen T, Zhou K, Sun T, Sang C, Jia W, Xie G. Altered bile acid glycine : taurine ratio in the progression of chronic liver disease. J Gastroenterol Hepatol 2022; 37:208-215. [PMID: 34655465 DOI: 10.1111/jgh.15709] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/07/2021] [Accepted: 10/12/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND AIM The onset and progression of chronic liver disease (CLD) is a multistage process spanning years or several decades. Some bile acid (BA) features are identified as indicators for CLD progression. However, BAs are highly influenced by various factors and are stage and/or population specific. Emerging evidences demonstrated the association of structure of conjugated BAs and CLD progression. Here, we aimed to investigate the alteration of conjugated BAs and identify new features for CLD progression. METHODS Based on liquid chromatography-mass spectrometry platform, 15 BAs were quantified in 1883 participants including healthy controls and CLD patients (non-alcoholic fatty liver [NAFL], non-alcoholic steatohepatitis [NASH], fibrosis, cirrhosis, and three types of liver cancer). Logistic regression was used to construct diagnostic models. Model performances were evaluated in discovery and test sets by area under the receiver operating characteristic curve, sensitivity, specificity, accuracy, and kappa index. RESULTS Five BA glycine : taurine ratios were calculated, and glycocholic acid/taurocholic acid, glycodeoxycholic acid/taurodeoxycholic acid, and glycochenodeoxycholic acid/taurochenocholic acid were identified as candidates. Three diagnostic models were constructed for the differentiation of healthy control and early CLD (NAFL + NASH), early and advanced CLD (fibrosis + cirrhosis + liver cancer), and NAFL and NASH, respectively. The areas under the receiver operating characteristic curve of the models ranged from 0.91 to 0.97. The addition of age and gender improved model performances further. The alterations of the candidates and the performances of the diagnostic models were successfully validated by independent test sets (n = 291). CONCLUSIONS Our findings revealed stage-specific BA perturbation patterns and provided new biomarkers and tools for the monitoring of liver disease progression.
Collapse
Affiliation(s)
- Tianlu Chen
- Shanghai Key Laboratory of Diabetes Mellitus and Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Kejun Zhou
- Human Metabolomics Institute, Inc., Shenzhen, Guangdong, China
| | - Tao Sun
- Shanghai Key Laboratory of Diabetes Mellitus and Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Chao Sang
- Shanghai Key Laboratory of Diabetes Mellitus and Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Wei Jia
- Shanghai Key Laboratory of Diabetes Mellitus and Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
- Hong Kong Traditional Chinese Medicine Phenome Research Centre, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Guoxiang Xie
- Human Metabolomics Institute, Inc., Shenzhen, Guangdong, China
| |
Collapse
|
40
|
He Y, Zhang X, Shao Y, Xu B, Cui Y, Chen X, Chen H, Luo C, Ding M. Recognition of asymptomatic hypercholanemia of pregnancy: Different clinical features, fetal outcomes and bile acids metabolism from intrahepatic cholestasis of pregnancy. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166269. [PMID: 34537368 DOI: 10.1016/j.bbadis.2021.166269] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 12/19/2022]
Abstract
OBJECTIVE To explore the clinical features, fetal outcomes and serum bile acids (BAs) metabolism in asymptomatic hypercholanemia of pregnancy (AHP), as well as the comparison with those in intrahepatic cholestasis of pregnancy (ICP) and normal pregnancies. METHODS A study containing 676 pregnant women was performed to investigate the clinical informations, routine biochemical features and obstetric outcomes of AHP by the comparison with ICP and normal pregnancies. Within the study subjects, 203 pregnant women received prospective determination for 55 serum individual BAs based on a validated UPLC-QTOF-MS/MS method. The differences in clinical features and serum BAs metabolism among the three groups were then investigated. RESULTS The risk of adverse fetal outcomes in AHP (28.3%) was significantly higher than that in normal pregnancies (8.9%, p < 0.001), but lower than that in ICP group (52.1%, p < 0.001). Multivariate statistics analysis indicated a distinctive serum BAs metabolic profiling among the three groups (PLS-DA, R2Y = 0.580, Q2 = 0.537). Levels of serum BAs especially for deoxycholic acid species were found remarkably elevated in AHP as compared to those in ICP. CONCLUSIONS AHP group had distinguished clinical features and serum BAs metabolism as compared to ICP group and normal pregnancies.
Collapse
Affiliation(s)
- Yifan He
- Key Laboratory of Laboratory Medical Diagnosis, Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, China
| | - Xiaoqing Zhang
- Key Laboratory of Laboratory Medical Diagnosis, Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, China
| | - Yong Shao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, China; Department of Clinical Laboratory, The First Affiliated Hospital of Chongqing Medical University, China
| | - Biao Xu
- Department of Clinical Laboratory, The First Affiliated Hospital of Chongqing Medical University, China
| | - Yue Cui
- Key Laboratory of Laboratory Medical Diagnosis, Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, China
| | - Xiao Chen
- Key Laboratory of Laboratory Medical Diagnosis, Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, China
| | - Hong Chen
- Key Laboratory of Laboratory Medical Diagnosis, Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, China
| | - Can Luo
- Key Laboratory of Laboratory Medical Diagnosis, Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, China
| | - Min Ding
- Key Laboratory of Laboratory Medical Diagnosis, Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, China.
| |
Collapse
|
41
|
Farooqui N, Elhence A, Shalimar. A Current Understanding of Bile Acids in Chronic Liver Disease. J Clin Exp Hepatol 2022; 12:155-173. [PMID: 35068796 PMCID: PMC8766695 DOI: 10.1016/j.jceh.2021.08.017] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/16/2021] [Indexed: 01/03/2023] Open
Abstract
Chronic liver disease (CLD) is one of the leading causes of disability-adjusted life years in many countries. A recent understanding of nuclear bile acid receptor pathways has increased focus on the impact of crosstalk between the gut, bile acids, and liver on liver pathology. While conventionally used in cholestatic disorders and to dissolve gallstones, the discovery of bile acids' influence on the gut microbiome and human metabolism offers a unique potential for their utility in early and advanced liver diseases because of diverse etiologies. Based on these findings, preclinical studies using bile acid-based molecules have shown encouraging results at addressing liver inflammation and fibrosis. Emerging data also suggest that bile acid profiles change distinctively across various causes of liver disease. We summarize the current knowledge and evidence related to bile acids in health and disease and discuss culminated and ongoing therapeutic trials of bile acid derivatives in CLD. In the near future, further evidence in this area might help clinicians better detect and manage liver diseases.
Collapse
Key Words
- AD, Acute decompensation
- ALP, Alkaline phosphatase
- AMACR, α-methylacyl-CoA racemase (AMACR)
- ASBT, Apical sodium dependent bile salt transporter
- BA, Bile acid
- BSEP, Bile salt export pump
- BSH, Bile salt hydrolase
- CA, Cholic acid
- CDCA, Chenodeoxycholic acid
- CLD
- CLD, Chronic Liver Disease
- CTP, Child-Turcotte-Pugh
- CYP7A1, Cholesterol 7 α hydroxylase
- DCA, Deoxycholic acid
- DR5, Death receptor 5
- ELF, Enhanced Liver Fibrosis
- FGF-19, Fibroblast growth factor-19
- FGFR4, FGF receptor 4
- FXR, Farnesoid X receptor
- GCA, Glycocholic acid
- GDCA, Glycodeoxycholic acid
- GLP-1, Glucagon-like peptide1
- HBV, Hepatitis B virus
- HCV, Hepatitis C virus
- HVPG, Hepatic Venous Pressure Gradient
- LCA, Lithocholic acid
- LPS, Lipopolysaccharide
- MELD, Model for End-Stage Liver Disease (MELD)
- MRI-PDFF, Magnetic resonance imaging derived proton density fat fraction
- NAFLD
- NAFLD, Non-alcoholic fatty liver disease
- NAS, NAFLD activity score
- NASH, Nonalcoholic steatohepatitis
- NTCP, Sodium taurocholate cotransporting polypeptide
- OCA, Obeticholic acid
- OST, Organic solute transporter
- PBC, Primary biliary cirrhosis
- PFIC, Progressive familial intrahepatic cholestasis
- PSC, Primary sclerosing cholangitis
- PXR, Pregnane X receptor
- SHP, Small heterodimer partner
- TBA, Total bile acids
- TGR5, Takeda G-protein coupled receptor 5
- TRAIL, TNF-related apoptosis-inducing ligand
- UDCA, Ursodeoxycholic acid
- UPLC-MS, Ultra-performance liquid chromatography with tandem mass spectrometry
- VDR, Vitamin D receptor
- bile acids
- cirrhosis
- microbiome
Collapse
Affiliation(s)
- Naba Farooqui
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Anshuman Elhence
- Department of Gastroenterology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Shalimar
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
42
|
Profile of Bile Acid Metabolomics in the Follicular Fluid of PCOS Patients. Metabolites 2021; 11:metabo11120845. [PMID: 34940603 PMCID: PMC8703527 DOI: 10.3390/metabo11120845] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/30/2021] [Accepted: 12/04/2021] [Indexed: 01/12/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is a complex heterogeneous endocrine disease affected by genetic and environmental factors. In this manuscript, we aimed to describe the composition of bile acid metabolomics in the follicular fluid (FF) of PCOS. The FF was collected from 31 control patients and 35 PCOS patients diagnosed according to the Rotterdam diagnostic criteria. The Bile Acid Assay Kit and ultra-performance liquid chromatography/tandem mass spectrometry (UPLC-MS/MS) were used in this study to detect the total bile acid and 24 bile acid metabolites. Glycocholic acid (GC3A), taurocholic acid (TCA), glycochenodeoxycholic acid (GCDCA), and chenodeoxycholic acid-3-β-d-glucuronide (CDCA-3Gln) were elevated in the PCOS group. GCDCA was positively correlated with the serum follicle-stimulating hormone (FSH) (r = 0.3787, p = 0.0017) and luteinizing hormone (LH) (r = 0.2670, p = 0.0302). The level of CDCA-3Gln also rose with the increase in antral follicle counts (AFC) (r = 0.3247, p = 0.0078). Compared with the control group, the primary bile acids (p = 0.0207) and conjugated bile acids (p = 0.0283) were elevated in PCOS. For the first time, our study described the changes in bile acid metabolomics in the FF of PCOS patients, suggesting that bile acids may play an important role in the pathogenesis of PCOS.
Collapse
|
43
|
Neag MA, Mitre AO, Catinean A, Buzoianu AD. Overview of the microbiota in the gut-liver axis in viral B and C hepatitis. World J Gastroenterol 2021; 27:7446-7461. [PMID: 34887642 PMCID: PMC8613744 DOI: 10.3748/wjg.v27.i43.7446] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 08/13/2021] [Accepted: 11/03/2021] [Indexed: 02/06/2023] Open
Abstract
Viral B and C hepatitis are a major current health issue, both diseases having a chronic damaging effect on the liver and its functions. Chronic liver disease can lead to even more severe and life-threatening conditions, such as liver cirrhosis and hepatocellular carcinoma. Recent years have uncovered an important interplay between the liver and the gut microbiome: the gut-liver axis. Hepatitis B and C infections often cause alterations in the gut microbiota by lowering the levels of ‘protective’ gut microorganisms and, by doing so, hinder the microbiota ability to boost the immune response. Treatments aimed at restoring the gut microbiota balance may provide a valuable addition to current practice therapies and may help limit the chronic changes observed in the liver of hepatitis B and C patients. This review aims to summarize the current knowledge on the anato-functional axis between the gut and liver and to highlight the influence that hepatitis B and C viruses have on the microbiota balance, as well as the influence of treatments aimed at restoring the gut microbiota on infected livers and disease progression.
Collapse
Affiliation(s)
- Maria Adriana Neag
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Hatieganu University of Medicine and Pharmacy of Cluj-Napoca, Cluj-Napoca 400337, Romania
| | - Andrei Otto Mitre
- Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy of Cluj-Napoca, Cluj-Napoca 400012, Romania
| | - Adrian Catinean
- Department of Internal Medicine, Iuliu Hatieganu University of Medicine and Pharmacy of Cluj-Napoca, Cluj-Napoca 400006, Romania
| | - Anca Dana Buzoianu
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Hatieganu University of Medicine and Pharmacy of Cluj-Napoca, Cluj-Napoca 400337, Romania
| |
Collapse
|
44
|
Effect of microbiota metabolites on the progression of chronic hepatitis B virus infection. Hepatol Int 2021; 15:1053-1067. [PMID: 34596865 DOI: 10.1007/s12072-021-10230-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 07/01/2021] [Indexed: 02/08/2023]
Abstract
Accumulating evidence shows that the intestinal microbiota is closely related to the pathophysiology and the disease progression of chronic hepatitis B virus (HBV) infection. The intestinal microbiota acts on the host through its metabolites. This review aimed to discuss the effects of gut microbiota metabolites on the disease progression of chronic HBV infection. A literature search on PubMed database and Wiley Online Library with pre-specified criteria yielded 96 unique results. After consensus by all authors, the contents from 86 original publications were extracted and included in this review. In liver disease with HBV infection, the intestinal microbiota changed in different stages and affected the production of bacterial metabolites. The abundance of bacteria producing short-chain fatty acids such as butyrate reduced, which was associated with bacterial translocation and the progression of liver disease. The intestinal microbiota-bile acid-host axis was destroyed, affecting the progression of the disease. Under the control of intestinal microbiota, tryptophan affected the gut-liver axis through three main metabolic pathways, among which the kynurenine pathway was closely related to the immune response of hepatitis B. The level of trimethylamine-N-oxide decreased in liver cancer with HBV infection and were used as a potential biomarker of liver cancer. Vitamin deficiencies, including those of vitamin D and vitamin A related to microbiota, were common and associated with survival. Hydrogen sulfide regulated by the intestinal microbiota was also closely related to the gut-liver axis. In liver disease with hepatitis B infection, the intestinal microbiota is imbalanced, and a variety of intestinal microbiota metabolites participate in the occurrence and development of the disease.
Collapse
|
45
|
Sauerbruch T, Hennenberg M, Trebicka J, Beuers U. Bile Acids, Liver Cirrhosis, and Extrahepatic Vascular Dysfunction. Front Physiol 2021; 12:718783. [PMID: 34393832 PMCID: PMC8358446 DOI: 10.3389/fphys.2021.718783] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 06/29/2021] [Indexed: 12/12/2022] Open
Abstract
The bile acid pool with its individual bile acids (BA) is modulated in the enterohepatic circulation by the liver as the primary site of synthesis, the motility of the gallbladder and of the intestinal tract, as well as by bacterial enzymes in the intestine. The nuclear receptor farnesoid X receptor (FXR) and Gpbar1 (TGR5) are important set screws in this process. Bile acids have a vasodilatory effect, at least according to in vitro studies. The present review examines the question of the extent to which the increase in bile acids in plasma could be responsible for the hyperdynamic circulatory disturbance of liver cirrhosis and whether modulation of the bile acid pool, for example, via administration of ursodeoxycholic acid (UDCA) or via modulation of the dysbiosis present in liver cirrhosis could influence the hemodynamic disorder of liver cirrhosis. According to our analysis, the evidence for this is limited. Long-term studies on this question are lacking.
Collapse
Affiliation(s)
- Tilman Sauerbruch
- Department of Internal Medicine I, University of Bonn, Bonn, Germany
| | - Martin Hennenberg
- Department of Urology I, University Hospital, LMU Munich, Munich, Germany
| | - Jonel Trebicka
- Translational Hepatology, Medical Department, University of Frankfurt, Frankfurt, Germany
| | - Ulrich Beuers
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, location AMC, Amsterdam, Netherlands
| |
Collapse
|
46
|
Zhao J, Ran M, Yang T, Chen L, Ji P, Xu X, Zhang L, Sun S, Liu X, Zhou S, Zhou L, Zhang J. Bicyclol Alleviates Signs of BDL-Induced Cholestasis by Regulating Bile Acids and Autophagy-Mediated HMGB1/p62/Nrf2 Pathway. Front Pharmacol 2021; 12:686502. [PMID: 34366845 PMCID: PMC8334002 DOI: 10.3389/fphar.2021.686502] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 07/05/2021] [Indexed: 11/13/2022] Open
Abstract
Cholestasis is a liver disease characterized by the accumulation of toxic bile salts, bilirubin, and cholesterol, resulting in hepatocellular damage. Recent findings have revealed several key steps of cholestasis liver injury including the toxicity of bile acids and accumulation of proinflammatory mediator. In this study, we investigated the protective effect of bicyclol in cholestasis caused by bile duct ligation (BDL), as well as relevant mechanisms. Bicyclol attenuated liver damage in BDL mice by increasing the levels of hydrophilic bile acid such as α-MCA and β-MCA, regulating bile acid-related pathways and improving histopathological indexes. High-mobility group box 1 (HMGB1) is an extracellular damage-associated molecular pattern molecule which can be used as biomarkers of cells and host defense. Bicyclol treatment decreased extracellular release of HMGB1. In addition, HMGB1 is also involved in regulating autophagy in response to oxidative stress. Bicyclol promoted the lipidation of LC3 (microtubule-associated protein 1 light chain 3)-Ⅱ to activate autophagy. The nuclear factor, E2-related factor 2 (Nrf2) and its antioxidant downstream genes were also activated. Our results indicate that bicyclol is a promising therapeutic strategy for cholestasis by regulating the bile acids and autophagy-mediated HMGB1/p62/Nrf2 pathway.
Collapse
Affiliation(s)
- Jingwen Zhao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Disease, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Maojuan Ran
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Disease, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
- Department of Gastroenterology and Hepatology, Chengdu Second People’s Hospital, Chengdu, China
| | - Ting Yang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Disease, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
- Department of Gastroenterology, Shanxi Provincial People’s Hospital, Taiyuan, China
| | - Liwei Chen
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Disease, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Peixu Ji
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Disease, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Xiuxiu Xu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Disease, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Lu Zhang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Disease, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Siyuan Sun
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Disease, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Xin Liu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Disease, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Simin Zhou
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Disease, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Lu Zhou
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Disease, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Jie Zhang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Disease, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| |
Collapse
|
47
|
Zhang D, Zhu Y, Su Y, Yu M, Xu X, Wang C, Zhang S, Xia L. Taurochenodeoxycholic acid inhibits the proliferation and invasion of gastric cancer and induces its apoptosis. J Food Biochem 2021; 46:e13866. [PMID: 34278593 DOI: 10.1111/jfbc.13866] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/07/2021] [Accepted: 06/18/2021] [Indexed: 11/30/2022]
Abstract
Taurochenodeoxycholic acid (TCDCA) is the principal ingredient of Compound Shougong Powder. Despite traditional Chinese medicine (TCM) research demonstrates that Compound Shougong Powder can restrict tumor growth, whether TCDCA exerts a role in suppressing cancer as the major ingredient of Compound Shougong Powder remains unknown. This study aims to clarify the regulatory mechanism of TCDCA on gastric cancer. Gastric cancer cells SGC-7901 were cultured to investigate the effects of TCDCA on proliferation and apoptosis. Furthermore, a subcutaneously implanted tumor model was established using SGC-7901 cells in BALB/C nude mice and tumor volume was measured under low and high dose treatment of TCDCA. Cell proliferation, apoptosis, and invasion were subjected to 3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di-phenytetrazoliumromide (MTT) assay, flow cytometry, and transwell assay. Differentially expressed genes were screened by transcriptome sequencing. Nude mouse tumorigenicity assay was initiated to identify the effect of TCDCA on both tumor volume and weight, and the expression of candidate genes screened by transcriptome sequencing was determined by real-time fluorescence quantification (qPCR) and Western blot. The experiments revealed that TCDCA could significantly inhibit the proliferation and invasion of gastric cancer cells and induce apoptosis of these cells. Meanwhile, test findings via in vivo indicated that TCDCA severely diminished the volume and weight of tumors. This study first demonstrated that TCDCA inhibited the proliferation and invasion of gastric cancer and induced apoptosis, which is expected to serve as an experimental basis for the application of TCM in tumor therapeutic options. PRACTICAL APPLICATIONS: Through this study, the inhibitory effect of Taurochenodeoxycholic acid on gastric cancer can be clarified, which provides a new research basis for the application of traditional Chinese medicine (TCM) and TCM monomer in cancer. In addition, this study can further promote the research and application of Chinese traditional medicine, which has important application value and economic benefits.
Collapse
Affiliation(s)
- Dongwei Zhang
- Department of Spleen and Stomach, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Yongfu Zhu
- Department of Spleen and Stomach, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Ya Su
- Department of Spleen and Stomach, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Minghui Yu
- Department of Spleen and Stomach, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Xiaozhou Xu
- Department of Spleen and Stomach, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Chunhua Wang
- Department of Spleen and Stomach, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Shaohu Zhang
- Department of Spleen and Stomach, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Liming Xia
- Department of Spleen and Stomach, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
48
|
Xiong F, Zheng Z, Xiao L, Su C, Chen J, Gu X, Tang J, Zhao Y, Luo H, Zha L. Soyasaponin A 2 Alleviates Steatohepatitis Possibly through Regulating Bile Acids and Gut Microbiota in the Methionine and Choline-Deficient (MCD) Diet-induced Nonalcoholic Steatohepatitis (NASH) Mice. Mol Nutr Food Res 2021; 65:e2100067. [PMID: 34047448 DOI: 10.1002/mnfr.202100067] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/21/2021] [Indexed: 12/21/2022]
Abstract
SCOPE Nonalcoholic steatohepatitis (NASH) is a chronic progressive disease with complex pathogenesis of which the bile acids (BAs) and gut microbiota are involved. Soyasaponins (SS) exhibits many health-promoting effects including hepatoprotection, but its prevention against NASH is unclear. This study aims to investigate the preventive bioactivities of SS monomer (SS-A2 ) against NASH and further clarify its mechanism by targeting the BAs and gut microbiota. METHODS AND RESULTS The methionine and choline deficient (MCD) diet-fed male C57BL/6 mice were intervened with obeticholic acid or SS-A2 for 16 weeks. Hepatic pathology is assessed by hematoxylin-eosin and Masson's trichrome staining. BAs in serum, liver, and colon are measured by ultra-performance liquid chromatography coupled with triple quadrupole mass spectrometry (UPLC-TQMS). Gut microbiota in caecum are determined by 16S rDNA amplicon sequencing. In the MCD diet-induced NASH mice, SS-A2 significantly reduces hepatic steatosis, lobular inflammation, ballooning, nonalcoholic fatty liver disease activity score (NAS) scores, and fibrosis, decreases Erysipelotrichaceae (Faecalibaculum) and Lactobacillaceae (Lactobacillus) and increases Desulfovibrionaceae (Desulfovibrio). Moreover, SS-A2 reduces serum BAs accumulation and promotes fecal BAs excretion. SS-A2 changes the BAs profiles in both liver and serum and specifically increases the taurohyodeoxycholic acid (THDCA) level. Faecalibaculum is negatively correlated with serum THDCA. CONCLUSION SS-A2 alleviates steatohepatitis possibly through regulating BAs and gut microbiota in the MCD diet-induced NASH mice.
Collapse
Affiliation(s)
- Fei Xiong
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Zhongdaixi Zheng
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Lingyu Xiao
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Chuhong Su
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Junbin Chen
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Xiangfu Gu
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Jiaqi Tang
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Yue Zhao
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Huiyu Luo
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Longying Zha
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| |
Collapse
|
49
|
Elsheashaey A, Obada M, Abdelsameea E, Bayomy MFF, El-Said H. The role of serum bile acid profile in differentiation between nonalcoholic fatty liver disease and chronic viral hepatitis. EGYPTIAN LIVER JOURNAL 2020. [DOI: 10.1186/s43066-020-00057-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Abstract
Background
Bile acids are essential organic molecules synthesized from cholesterol in the liver. They have been utilized as indicators of hepatobiliary impairment because synthesis of BAs and their metabolism are influenced by liver diseases. We aimed to investigate the role of serum bile acid level and composition in differentiation between nonalcoholic fatty liver disease (NAFLD) and chronic viral hepatitis. An ultra-performance liquid chromatography coupled with mass spectrometry assay was used to measure the serum level of 14 bile acids in chronic viral hepatitis and NAFLD patients beside normal healthy control subjects.
Results
The mean serum levels of 11 out of the 14 bile acids (two primary, six conjugated, and three secondary) were significantly higher in viral hepatitis compared to control. Only 4 bile acids [2 primary, one glycine conjugated (GCDCA), and one secondary (LCA)] had statistically significant increase in their mean serum bile acid level in NAFLD compared to control. Comparing viral hepatitis group against NAFLD group revealed that the mean serum levels of five conjugated and one secondary bile acid (DCA) were significantly higher in viral hepatitis group. Receiver operating characteristic (ROC) curve analysis revealed that LCA had the best diagnostic performance for viral hepatitis followed by TCA and GCDCA. ROC curve for the combined three parameters had better sensitivity and specificity (70.55% and 94.87% respectively).
Conclusion
BA compositions including primary, secondary, and conjugated ones could differentiate between chronic viral hepatitis and NAFLD patients, and they might be potential distinguishing biomarkers for this purpose.
Collapse
|
50
|
Paley EL. Discovery of Gut Bacteria Specific to Alzheimer's Associated Diseases is a Clue to Understanding Disease Etiology: Meta-Analysis of Population-Based Data on Human Gut Metagenomics and Metabolomics. J Alzheimers Dis 2020; 72:319-355. [PMID: 31561379 DOI: 10.3233/jad-190873] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD)-associated sequence (ADAS) of cultured fecal bacteria was discovered in human gut targeted screening. This study provides important information to expand our current understanding of the structure/activity relationship of ADAS and putative inhibitors/activators that are potentially involved in ADAS appearance/disappearance. The NCBI database analysis revealed that ADAS presents at a large proportion in American Indian Oklahoman (C&A) with a high prevalence of obesity/diabetes and in colorectal cancer (CRC) patients from the US and China. An Oklahoman non-native group (NNI) showed no ADAS. Comparison of two large US populations reveals that ADAS is more frequent in individuals aged ≥66 and in females. Prevalence and levels of fecal metabolites are altered in the C&A and CRC groups versus controls. Biogenic amines (histamine, tryptamine, tyramine, phenylethylamine, cadaverine, putrescine, agmatine, spermidine) that present in food and are produced by gut microbiota are significantly higher in C&A (e.g., histamine/histidine 95-fold) versus NNI (histamine/histidine 16-fold). The majority of these bio-amines are cytotoxic at concentrations found in food. Inositol phosphate signaling implicated in AD is altered in C&A and CRC. Tryptamine stimulated accumulation of inositol phosphate. The seizure-eliciting tryptamine induced cytoplasmic vacuolization and vesiculation with cell fragmentation. Present additions of ADAS-carriers at different ages including infants led to an ADAS-comprising human sample size of 2,830 from 27 studies from four continents (North America, Australia, Asia, Europe). Levels of food-derived monoamine oxidase inhibitors and anti-bacterial compounds, the potential modulators of ADAS-bacteria growth and biogenic amine production, were altered in C&A versus NNI. ADAS is attributable to potentially modifiable risk factors of AD associated diseases.
Collapse
Affiliation(s)
- Elena L Paley
- Expert Biomed, Inc., Miami, FL, USA.,Stop Alzheimers Corp, Miami, FL, USA
| |
Collapse
|