1
|
Lee DW, Kim TH, Kim YK, Seo DS. Uniform Molecular Alignment on Ag-Doped Nickel Oxide Films. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:449. [PMID: 40137622 PMCID: PMC11946119 DOI: 10.3390/nano15060449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 03/12/2025] [Accepted: 03/14/2025] [Indexed: 03/29/2025]
Abstract
This study presents the uniform alignment of liquid crystal (LC) molecules on silver (Ag)-doped nickel oxide (NiO) films. The films were fabricated using a solution brush coating process, with Ag doping concentrations of 0, 10, and 20 wt%. X-ray photoelectron spectroscopy confirmed the successful formation of the films, while atomic force microscopy revealed nano/microgroove anisotropic structures, attributed to brush hair movement during coating. X-ray diffraction analysis indicated the films' amorphous nature. Optical transmittance measurements demonstrated their suitability for electronic display applications. Polarized optical microscopy verified uniform LC molecular alignment and effective optical control. The fabricated LC cells exhibited increased LC polar anchoring energy, improving device stability. The polar anchoring energy increased by 1159.02% after Ag doping. Additionally, reduced residual charge was observed, suggesting minimized image sticking. These findings indicate that Ag-doped NiO films are a promising alternative for LC alignment layers in functional LC systems.
Collapse
Affiliation(s)
- Dong Wook Lee
- Department of Electrical and Electronic Engineering, Jeonju University, 303 Cheonjam-ro, Wansan-gu, Jeonju-si 55069, Jeollabuk-do, Republic of Korea;
| | - Tae-Hyun Kim
- Department of Electrical and Electronic Engineering, Jeonju University, 303 Cheonjam-ro, Wansan-gu, Jeonju-si 55069, Jeollabuk-do, Republic of Korea;
| | - Young Kwon Kim
- Energy Industry Promotion Group, Jeonbuk Technopark, 110-5 Ballyong-ro, Deokjin-gu, Jeonju-si 54853, Jeollabuk-do, Republic of Korea;
| | - Dae-Shik Seo
- IT Nano Electronic Device Laboratory, Department of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| |
Collapse
|
2
|
Vanhentenrijk S, Grodin JL, Augusto SN, Tang WHW. Hereditary Transthyretin Cardiac Amyloidosis With the p.V142I Variant: Mechanistic Insights and Diagnostic Challenges. Circ Heart Fail 2025:e012469. [PMID: 40084403 DOI: 10.1161/circheartfailure.124.012469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 02/11/2025] [Indexed: 03/16/2025]
Abstract
The most common form of hereditary transthyretin cardiac amyloidosis (hATTR-CA) in the United States and the United Kingdom is the p.V142I variant. About 3% to 4% of patients with African ancestry carry this genetic predisposition to develop signs and symptoms of hATTR-CA. Nevertheless, clinical manifestations of hATTR-CA appear only late in the fifth and sixth decades of life, despite its clear genetic background. Imbalances in native protein-stabilizing and elementary breakdown cellular mechanisms are postulated as potential causes for affecting transthyretin structural integrity and myocardial fibril deposition. Noncoding variants, epigenetic and environmental factors, as well as gut microbiome derangements may serve as disease-modifying factors that feature detrimental amyloidogenic organ involvement and impact disease severity. Organ amyloid deposition varies widely among different carriers of a genetic transthyretin variant. The genotype-phenotype interdependence causes unpredictable phenotypic penetrance that results in a variety of signs and symptoms and patient outcomes. Cardiovascular biomarkers and multimodality imaging may identify initial amyloidogenic organ involvement. These early clinical clues through the course of hATTR-CA offer a window of opportunity for early treatment onset to cease disease progression and alter prognosis. Identifying at-risk patients requires information on the genetic background of probands and their relatives. Initiatives to reveal asymptomatic gene carriers early in the disease should be encouraged, as it necessitates stringent patient follow-up and immediate treatment onset to reduce the burden of heart failure hospitalization and mortality in hATTR-CA.
Collapse
Affiliation(s)
- Simon Vanhentenrijk
- Kaufman Center for Heart Failure Treatment and Recovery, Heart Vascular and Thoracic Institute, Cleveland Clinic, OH (S.V., W.H.W.T.)
| | - Justin L Grodin
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas (J.L.G.)
| | - Silvio Nunes Augusto
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, OH (S.N.A., W.H.W.T.)
| | - W H Wilson Tang
- Kaufman Center for Heart Failure Treatment and Recovery, Heart Vascular and Thoracic Institute, Cleveland Clinic, OH (S.V., W.H.W.T.)
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, OH (S.N.A., W.H.W.T.)
| |
Collapse
|
3
|
Aziz S, Khan S, Karkashan A, Asim N, Bukhari K, Mohammad Almousa R, Ali Shah Z, Allemailem KS, Al-Megrin WAI. Exploring natural compounds and synthetic derivatives as potential inhibitors of SARS-CoV-2 PLpro: a computational approach with enzyme inhibition and cytotoxicity assessment. J Biomol Struct Dyn 2025:1-21. [PMID: 39972932 DOI: 10.1080/07391102.2024.2333456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 03/15/2024] [Indexed: 02/21/2025]
Abstract
To address coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), there is a pressing need for direct-acting antiviral medications. Papain-like protease (PLpro) domain of Nsp3 from SARS-CoV-2 is central to viral replication and detrimentally affects the host immune response by cleaving ubiquitin and interferon-stimulated gene 15 proteins. Consequently, targeting PLpro with small-molecule therapeutics offers a promising strategy to effectively inhibit the virus and mitigate its impact on the host's immune system. Employing a multifaceted computational approach, we identified three phytochemicals demonstrating substantial molecular interactions and binding affinity [α-lapachone (C1) -37.82 ± 0.08 kcal/mol, Lapachol (C2) -48.56 ± 0.04 kcal/mol and Peshawarquinone (C3) -46.64 ± 0.03 kcal/mol)] with PLpro. Molecular dynamics simulations indicated that these compounds formed stable complexes with the naphthalene-inhibitor binding site, inducing a closed PLpro conformation and altering its normal function. Besides, they are predicted to possess favorable physicochemical, pharmacokinetics and drug-like properties. Among these compounds, C3 exhibited the most potent inhibitory potential (IC50 value: 1.76 ± 0.17 µM), followed by C2 (IC50 value; 2.50 ± 0.12 µM) and C1 (IC50 value: 3.42 ± 0.17 µM). Furthermore, evaluating the cytotoxicity of C1-C3 on human BJ cells revealed minimal harmful effects at a 50 µM dosage. These findings suggest that evaluated compounds hold therapeutic promise and could become potential drug candidates for treating SARS-CoV-2.
Collapse
Affiliation(s)
- Shahkaar Aziz
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture, Peshawar, Pakistan
| | - Sana Khan
- Department of Human Nutrition and Dietetics, Women University Mardan, Mardan, Pakistan
| | - Alaa Karkashan
- Department of Biological Sciences, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Noreen Asim
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture, Peshawar, Pakistan
| | - Khulud Bukhari
- Department of Microbiology and Parasitology, College of Veterinary Medicine, King Faisal University, Hofuf, Al-Ahsa, Saudi Arabia
| | | | - Zafar Ali Shah
- Department of Agricultural Chemistry and Biochemistry, The University of Agriculture, Peshawar, Pakistan
| | - Khaled S Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Wafa Abdullah I Al-Megrin
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| |
Collapse
|
4
|
Adnan M, Kashif M, Irshad Z, Hussain R, Darwish HW, Lim J. Advancing optoelectronic characteristics of Diketopyrrolopyrrole-Based molecules as donors for organic and as hole transporting materials for perovskite solar cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 320:124615. [PMID: 38906061 DOI: 10.1016/j.saa.2024.124615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/09/2024] [Accepted: 06/05/2024] [Indexed: 06/23/2024]
Abstract
A stable and efficient hole-transport material (HTM) is crucial for high-performance perovskite solar cells (PSCs). A 2,2',7,7'-tetrakis[N,N-di(4-methoxyphenyl)amino]-9,9'-spirobifluorene (Spiro-MeOTAD) being used widely to prepare highly efficient PSCs. However, Spiro-MeOTAD has some limitations due to its complex synthesis, which increases its cost, and it also requires dopants to improve its performance. Therefore, we designed thirteen unique small-molecule-based HTMs (MK1-MK13), which are easy to synthesize, highly cost-effective, and don't require dopants to prepare efficient PSCs. Their electrical and optical properties are then investigated theoretically using advanced quantum chemical approaches. The designed molecules showed lower energy gaps and improved optical and optoelectronic characteristics because of the improved phase inversion geometry. The detailed photo-physical and optoelectronic characteristics have been studied using density functional theory (DFT) and time-dependent (TD-DFT) calculations. Moreover, we investigated the impact of holes and electrons and the density of states, open-circuit voltage, frontier molecular orbital, transition density matrix, and other structural and photovoltaic characteristics of these materials. Among these, the MK3 molecule possesses the much narrower optical band gap of 1.04 eV and absorbance (λ max) of 684 nm, respectively. In addition, a profound investigation of the MK3/PC61BM blend shows excellent charge transfer at the acceptor-donor interface. Therefore, our proposed technique is necessary for generating appropriate photovoltaic materials for efficient optoelectronic devices and is helpful in further advancing the field.
Collapse
Affiliation(s)
- Muhammad Adnan
- Graduate School of Energy Science and Technology, Chungnam National University, Daejeon, 34134, Republic of Korea.
| | - Muhammad Kashif
- Department of Chemistry, University of Okara, 56300, Pakistan
| | - Zobia Irshad
- Graduate School of Energy Science and Technology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Riaz Hussain
- Department of Chemistry, University of Okara, 56300, Pakistan.
| | - Hany W Darwish
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Jongchul Lim
- Graduate School of Energy Science and Technology, Chungnam National University, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
5
|
Shahid S, Khan A, Shahid W, Rehan M, Asif R, Nisar H, Kanwal Q, Choi JR. Nanoenzymes: A Radiant Hope for the Early Diagnosis and Effective Treatment of Breast and Ovarian Cancers. Int J Nanomedicine 2024; 19:5813-5835. [PMID: 38895143 PMCID: PMC11184228 DOI: 10.2147/ijn.s460712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/16/2024] [Indexed: 06/21/2024] Open
Abstract
Breast and ovarian cancers, despite having chemotherapy and surgical treatment, still have the lowest survival rate. Experimental stages using nanoenzymes/nanozymes for ovarian cancer diagnosis and treatment are being carried out, and correspondingly the current treatment approaches to treat breast cancer have a lot of adverse side effects, which is the reason why researchers and scientists are looking for new strategies with less side effects. Nanoenzymes have intrinsic enzyme-like activities and can reduce the shortcomings of naturally occurring enzymes due to the ease of storage, high stability, less expensive, and enhanced efficiency. In this review, we have discussed various ways in which nanoenzymes are being used to diagnose and treat breast and ovarian cancer. For breast cancer, nanoenzymes and their multi-enzymatic properties can control the level of reactive oxygen species (ROS) in cells or tissues, for example, oxidase (OXD) and peroxidase (POD) activity can be used to generate ROS, while catalase (CAT) or superoxide dismutase (SOD) activity can scavenge ROS. In the case of ovarian cancer, most commonly nanoceria is being investigated, and also when folic acid is combined with nanoceria there are additional advantages like inhibition of beta galactosidase. Nanocarriers are also used to deliver small interfering RNA that are effective in cancer treatment. Studies have shown that iron oxide nanoparticles are actively being used for drug delivery, similarly ferritin carriers are used for the delivery of nanozymes. Hypoxia is a major factor in ovarian cancer, therefore MnO2-based nanozymes are being used as a therapy. For cancer diagnosis and screening, nanozymes are being used in sonodynamic cancer therapy for cancer diagnosis and screening, whereas biomedical imaging and folic acid gold particles are also being used for image guided treatments. Nanozyme biosensors have been developed to detect ovarian cancer. This review article summarizes a detailed insight into breast and ovarian cancers in light of nanozymes-based diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Samiah Shahid
- Research Centre for Health Sciences (RCHS), The University of Lahore, Lahore, Pakistan
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore, Lahore, Pakistan
| | - Ayesha Khan
- Research Centre for Health Sciences (RCHS), The University of Lahore, Lahore, Pakistan
| | - Wajeehah Shahid
- Department of Physics, The University of Lahore, Lahore, Pakistan
| | - Mehvesh Rehan
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore, Lahore, Pakistan
| | - Roha Asif
- Research Centre for Health Sciences (RCHS), The University of Lahore, Lahore, Pakistan
| | - Haseeb Nisar
- School of Life Sciences, University of Management and Technology, Lahore, Pakistan
| | - Qudsia Kanwal
- Department of Chemistry, The University of Lahore, Lahore, Pakistan
| | - Jeong Ryeol Choi
- School of Electronic Engineering, Kyonggi University, Suwon, Kyeonggi-do, 16227, Republic of Korea
| |
Collapse
|
6
|
Thangeswaran D, Shamsuddin S, Balakrishnan V. A comprehensive review on the progress and challenges of tetrahydroisoquinoline derivatives as a promising therapeutic agent to treat Alzheimer's disease. Heliyon 2024; 10:e30788. [PMID: 38803973 PMCID: PMC11128835 DOI: 10.1016/j.heliyon.2024.e30788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 04/30/2024] [Accepted: 05/06/2024] [Indexed: 05/29/2024] Open
Abstract
Alzheimer's disease (AD) is the most common and irreversible neurodegenerative disorder worldwide. While the precise mechanism behind this rapid progression and multifaceted disease remains unknown, the numerous drawbacks of the available therapies are prevalent, necessitating effective alternative treatment methods. In view of the rising demand for effective AD treatment, numerous reports have shown that tetrahydroisoquinoline (THIQ) is a valuable scaffold in various clinical medicinal molecules and has a promising potential as a therapeutic agent in treating AD due to its significant neuroprotective, anti-inflammatory, and antioxidative properties via several mechanisms that target the altered signaling pathways. Therefore, this review comprehensively outlines the potential application of THIQ derivatives in AD treatment and the challenges in imparting the action of these prospective therapeutic agents. The review emphasizes a number of THIQ derivatives, including Dauricine, jatrorrhizine, 1MeTIQ, and THICAPA, that have been incorporated in AD studies in recent years. Subsequently, a dedicated section of the review briefly discusses the emerging potential benefits of multi-target therapeutics, which lie in their ability to be integrated with alternative therapeutics. Eventually, this review elaborates on the rising challenges and future recommendations for the development of therapeutic drug agents to treat AD effectively. In essence, the valuable research insights of THIQ derivatives presented in this comprehensive review would serve as an integral reference for future studies to develop potent therapeutic drugs for AD research.
Collapse
Affiliation(s)
- Danesh Thangeswaran
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia
| | - Shaharum Shamsuddin
- School of Health Sciences, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia
- Nanobiotech Research Initiative, Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Venugopal Balakrishnan
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia
| |
Collapse
|
7
|
Shahab M, Danial M, Duan X, Khan T, Liang C, Gao H, Chen M, Wang D, Zheng G. Machine learning-based drug design for identification of thymidylate kinase inhibitors as a potential anti-Mycobacterium tuberculosis. J Biomol Struct Dyn 2024; 42:3874-3886. [PMID: 37232453 DOI: 10.1080/07391102.2023.2216278] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/15/2023] [Indexed: 05/27/2023]
Abstract
The rise of antibiotic-resistant Mycobacterium tuberculosis (Mtb) has reduced the availability of medications for tuberculosis therapy, resulting in increased morbidity and mortality globally. Tuberculosis spreads from the lungs to other parts of the body, including the brain and spine. Developing a single drug can take several decades, making drug discovery costly and time-consuming. Machine learning algorithms like support vector machines (SVM), k-nearest neighbor (k-NN), random forest (RF) and Gaussian naive base (GNB) are fast and effective and are commonly used in drug discovery. These algorithms are ideal for the virtual screening of large compound libraries to classify molecules as active or inactive. For the training of the models, a dataset of 307 was downloaded from BindingDB. Among 307 compounds, 85 compounds were labeled as active, having an IC50 below 58 mM, while 222 compounds were labeled inactive against thymidylate kinase, with 87.2% accuracy. The developed models were subjected to an external ZINC dataset of 136,564 compounds. Furthermore, we performed the 100-ns dynamic simulation and post trajectories analysis of compounds having good interaction and score in molecular docking. As compared to the standard reference compound, the top three hits revealed greater stability and compactness. In conclusion, our predicted hits can inhibit thymidylate kinase overexpression to combat Mycobacterium tuberculosis.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Muhammad Shahab
- State Key Laboratories of Chemical Resources Engineering Beijing University of Chemical Technology, Beijing, China
| | - Muhammad Danial
- University of Chinese Academy of Sciences, Shenzhen Institute of Advanced Technology, Shenzhen, China
| | - Xiuyuan Duan
- State Key Laboratories of Chemical Resources Engineering Beijing University of Chemical Technology, Beijing, China
| | - Taimur Khan
- State Key Laboratories of Chemical Resources Engineering Beijing University of Chemical Technology, Beijing, China
| | - Chaoqun Liang
- State Key Laboratories of Chemical Resources Engineering Beijing University of Chemical Technology, Beijing, China
| | - Hanzi Gao
- State Key Laboratories of Chemical Resources Engineering Beijing University of Chemical Technology, Beijing, China
| | - Meiyu Chen
- State Key Laboratories of Chemical Resources Engineering Beijing University of Chemical Technology, Beijing, China
| | - Daixi Wang
- State Key Laboratories of Chemical Resources Engineering Beijing University of Chemical Technology, Beijing, China
| | - Guojun Zheng
- State Key Laboratories of Chemical Resources Engineering Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
8
|
Aziz S, Waqas M, Naz HF, Halim SA, Jan A, Muhsinah AB, Khan A, Al-Harrasi A. Identification of novel compounds and repurposing of FDA drugs for 1-deoxy-D-xylulose 5-phosphate reductoisomerase enzyme of Plasmodium falciparum to combat malaria resistance. Int J Biol Macromol 2024; 257:128672. [PMID: 38092105 DOI: 10.1016/j.ijbiomac.2023.128672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/28/2023] [Accepted: 12/06/2023] [Indexed: 01/27/2024]
Abstract
The rise of Plasmodium falciparum resistance to Artemisinin-based combination therapies (ACTs) is a significant concern in the fight against malaria. This situation calls for the search for novel anti-malarial candidates. 1-deoxy-D-xylulose 5-phosphate reductoisomerase (IspC) is a potential target involved in various cellular processes in P. falciparum (Pf). We screened ∼0.69 billion novel compounds from the ZINC20 library and repurposed ∼1400 FDA drugs using computational drug discovery methods against PfIspC. Following our computational pipeline, we found five novel ZINC20 compounds (Z-2, Z-3, Z-10, Z-13, and Z-14) and three FDA drugs (Aliskiren, Ceftolozane, and Ombitasvir) that showed striking docking energy (ranging from -8.405 to -10.834 kcal/mol), and strong interactions with key binding site residues (Ser269, Ser270, Ser306, Asn311, Lys312, and Met360) of PfIspC. The novel anti-malarial compounds also exhibited favorable pharmacokinetics and physicochemical properties. Furthermore, through molecular dynamics simulation, we observed the stable dynamics of PfIspC-inhibitor complexes and the influence of inhibitor binding on the protein's conformational arrangements. Notably, the binding free energy estimation confirmed high binding affinity (varied from -11.68 to -33.16 kcal/mol) of these compounds for PfIspC. Our findings could contribute to the ongoing efforts in combating malaria and invite experimental-lab researchers for validation.
Collapse
Affiliation(s)
- Shahkaar Aziz
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture, Peshawar 25130, Pakistan
| | - Muhammad Waqas
- Department of Biotechnology and Genetic Engineering, Hazara University, Mansehra 21120, Pakistan; Natural and Medical Sciences Research Center, University of Nizwa, Birkat-ul-Mouz, 616 Nizwa, Oman
| | - Hafiza Farah Naz
- Department of Biotechnology, , Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Sobia Ahsan Halim
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat-ul-Mouz, 616 Nizwa, Oman
| | - Afnan Jan
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, Kingdom of Saudi Arabia
| | - Abdullatif Bin Muhsinah
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 61441, Saudi Arabia
| | - Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat-ul-Mouz, 616 Nizwa, Oman.
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat-ul-Mouz, 616 Nizwa, Oman.
| |
Collapse
|
9
|
Pongkitwitoon B, Putalun W, Triwitayakorn K, Kitisripanya T, Kanchanapoom T, Boonsnongcheep P. Anti-inflammatory activity of verbascoside- and isoverbascoside-rich Lamiales medicinal plants. Heliyon 2024; 10:e23644. [PMID: 38187323 PMCID: PMC10770615 DOI: 10.1016/j.heliyon.2023.e23644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/23/2023] [Accepted: 12/08/2023] [Indexed: 01/09/2024] Open
Abstract
Verbascoside and isoverbascoside are two active phenylethanoid glycosides mainly found in plants of the order Lamiales. This study analyzes the verbascoside and isoverbascoside levels and the total phenolic contents in the water and ethanolic extracts of 20 medicinal plants of the order Lamiales commonly used in Thailand. The related bioactivities, including the antioxidant activity via the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric reduction activity potential assays and anti-tyrosinase and -inflammatory activities via the cyclooxygenase and nitric oxide assays are also investigated. The extracts of several plant species, including Barleria prionitis, B. lupulina, Rhinacanthus nasutus, Orthosiphon aristatus, and Nicoteba betonica, exhibit high verbascoside and isoverbascoside content levels. The correlation analysis between the bioactive activities and the active compounds demonstrates a significant association between the verbascoside level in the water extracts and both the DPPH antioxidant activity and the nitric oxide level in the anti-inflammatory assays. This study provides the first report on the verbascoside and isoverbascoside quantification of several plant samples. The findings provide valuable insights for future research on lesser-studied plants possessing high verbascoside and isoverbascoside levels, which exhibit promising anti-inflammatory activities.
Collapse
Affiliation(s)
- Benyakan Pongkitwitoon
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | - Waraporn Putalun
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | | | - Tharita Kitisripanya
- Department of Pharmacognosy, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | | | | |
Collapse
|
10
|
Yang DB, Oh JY, Choi BK, Lee DW, Kim DH, Seo DS. High electrical characteristics through graphene oxide doping process on physicochemically reformed inorganic thin films. J Chem Phys 2023; 159:214502. [PMID: 38051098 DOI: 10.1063/5.0177064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/12/2023] [Indexed: 12/07/2023] Open
Abstract
This study investigated the improvement of the electro-optical properties of a liquid crystal (LC) cell fabricated through brush coating using graphene oxide (GO) doping. The physical deformation of the surface was analyzed using atomic force microscopy. The size of the groove increased as the GO dopant concentration increased, but the direction of the groove along the brush direction was maintained. X-ray photoelectron spectroscopy analysis confirmed that the number of C-C and O-Sn bonds increased as the GO concentration increased. Since the van der Waals force on the surface increases as the number of O-metal bonds increases, we were able to determine why the anchoring energy of the LC alignment layer increased. This was confirmed by residual DC voltage and anchoring energy measurements that were later performed. As the GO concentration increased, the width of the hysteresis curve decreased, indicating that the residual DC voltage decreased. Additionally, the 15% GO-doped sample exhibited a significant increase in its anchoring energy up to 1.34 × 10-3 J/m2, which is similar to that of rubbed polyimide. It also secured a high level of electro-optical properties and demonstrated potential as a next-generation thin-film display despite being produced via a simple brush-coating process.
Collapse
Affiliation(s)
- Da-Bin Yang
- IT Nano Electronic Device Laboratory, Department of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, Republic of Korea
| | - Jin Young Oh
- IT Nano Electronic Device Laboratory, Department of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, Republic of Korea
| | - Bo-Kyeong Choi
- IT Nano Electronic Device Laboratory, Department of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, Republic of Korea
| | - Dong Wook Lee
- Department of Electrical and Electronic Engineering, Jeonju University, 303 Cheonjam-ro, Wansan-gu, Jeonju-si, Jeollabuk-do 55069, South Korea
| | - Dong Hyun Kim
- Department of Electronic Engineering, Cheongju University, 298 Daesung-ro, Cheongju 28503, South Korea
| | - Dae-Shik Seo
- IT Nano Electronic Device Laboratory, Department of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, Republic of Korea
| |
Collapse
|
11
|
Chavda VP, Balar PC, Nalla LV, Bezbaruah R, Gogoi NR, Gajula SNR, Peng B, Meena AS, Conde J, Prasad R. Conjugated Nanoparticles for Solid Tumor Theranostics: Unraveling the Interplay of Known and Unknown Factors. ACS OMEGA 2023; 8:37654-37684. [PMID: 37867666 PMCID: PMC10586263 DOI: 10.1021/acsomega.3c05069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/19/2023] [Indexed: 10/24/2023]
Abstract
Cancer diagnoses have been increasing worldwide, and solid tumors are among the leading contributors to patient mortality, creating an enormous burden on the global healthcare system. Cancer is responsible for around 10.3 million deaths worldwide. Solid tumors are one of the most prevalent cancers observed in recent times. On the other hand, early diagnosis is a significant challenge that could save a person's life. Treatment with existing methods has pitfalls that limit the successful elimination of the disorder. Though nanoparticle-based imaging and therapeutics have shown a significant impact in healthcare, current methodologies for solid tumor treatment are insufficient. There are multiple complications associated with the diagnosis and management of solid tumors as well. Recently, surface-conjugated nanoparticles such as lipid nanoparticles, metallic nanoparticles, and quantum dots have shown positive results in solid tumor diagnostics and therapeutics in preclinical models. Other nanotheranostic material platforms such as plasmonic theranostics, magnetotheranostics, hybrid nanotheranostics, and graphene theranostics have also been explored. These nanoparticle theranostics ensure the appropriate targeting of tumors along with selective delivery of cargos (both imaging and therapeutic probes) without affecting the surrounding healthy tissues. Though they have multiple applications, nanoparticles still possess numerous limitations that need to be addressed in order to be fully utilized in the clinic. In this review, we outline the importance of materials and design strategies used to engineer nanoparticles in the treatment and diagnosis of solid tumors and how effectively each method overcomes the drawbacks of the current techniques. We also highlight the gaps in each material platform and how design considerations can address their limitations in future research directions.
Collapse
Affiliation(s)
- Vivek P. Chavda
- Department
of Pharmaceutics and Pharmaceutical Technology, L.M. College of Pharmacy, Ahmedabad 380001, India
| | - Pankti C. Balar
- Pharmacy
Section, L.M. College of Pharmacy, Ahmedabad 380001, India
| | - Lakshmi Vineela Nalla
- Department
of Pharmacy, Koneru Lakshmaiah Education
Foundation, Vaddeswaram, Andhra Pradesh 522302, India
| | - Rajashri Bezbaruah
- Department
of Pharmaceutical Sciences, Faculty of Science
and Engineering, Dibrugarh, 786004 Assam, India
| | - Niva Rani Gogoi
- Department
of Pharmaceutical Sciences, Faculty of Science
and Engineering, Dibrugarh, 786004 Assam, India
| | - Siva Nageswara Rao Gajula
- Department
of Pharmaceutical Analysis, GITAM School of Pharmacy, GITAM (Deemed to be University), Rushikonda, Visakhapatnam, Andhra Pradesh 530045, India
| | - Berney Peng
- Department
of Pathology and Laboratory Medicine, University
of California at Los Angeles, Los
Angeles, California 90095, United States
| | - Avtar S. Meena
- Department
of Biotechnology, All India Institute of
Medical Sciences (AIIMS), Ansari
Nagar, New Delhi 110029, India
| | - João Conde
- ToxOmics,
NOVA Medical School, Faculdade de Ciências Médicas,
NMS|FCM, Universidade Nova de Lisboa, Lisboa 1169-056, Portugal
| | - Rajendra Prasad
- School
of Biochemical Engineering, Indian Institute
of Technology (BHU), Varanasi 221005, India
| |
Collapse
|
12
|
Moreno-Gázquez I, Pérez-Palacios R, Abengochea-Quílez L, Lahuerta Pueyo C, Roteta Unceta Barrenechea A, Andrés Gracia A, Aibar Arregui MA, Menao Guillén S. Targeted sequencing of selected functional genes in patients with wild-type transthyretin amyloidosis. BMC Res Notes 2023; 16:249. [PMID: 37784196 PMCID: PMC10546623 DOI: 10.1186/s13104-023-06491-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 09/03/2023] [Indexed: 10/04/2023] Open
Abstract
OBJECTIVE Wild-type transthyretin (ATTRwt) amyloidosis is caused by the misfolding and deposition of the transthyretin protein (TTR) in the absence of mutations in the TTR gene. Studies regarding the variant form of ATTR amyloidosis (ATTRv) suggest that the presence of single-nucleotide polymorphisms (SNP) in genes other than the TTR, may influence the development of the disease. However, other genetic factors involved in the aetiopathogenesis of ATTRwt are currently unknown. This work investigates the presence of sequence variants in genes selected for their possible impact on ATTRwt amyloidosis. To do so, targeted sequencing of 84 protein-coding genes was performed in a cohort of 27 patients diagnosed with ATTRwt. RESULTS After applying quality and frequency filtering criteria, 72 rare or novel genetic variants were found. Subsequent classification according to the ACMG-AMP criteria resulted in 17 variants classified as of uncertain significance in 14 different genes. To our knowledge, this is the first report associating novel gene variants with ATTRwt amyloidosis. In conclusion, this study provides potential insights into the aetiopathogenesis of ATTRwt amyloidosis by linking novel coding-gene variants with the occurrence of the disease.
Collapse
Affiliation(s)
- Inmaculada Moreno-Gázquez
- Department of Clinical Biochemistry, Hospital Clínico Universitario Lozano Blesa, Zaragoza, Spain.
- Basic Research in Internal Medicine Group, GIIS-084 (IIS Aragón), Zaragoza, Spain.
| | - Raquel Pérez-Palacios
- Department of Anatomy, Embryology and Genetics, Veterinary Faculty, University of Zaragoza, Zaragoza, Spain
- Basic Research in Internal Medicine Group, GIIS-084 (IIS Aragón), Zaragoza, Spain
| | - Lucia Abengochea-Quílez
- Health Research Institute in Aragón, Zaragoza, Spain
- Department of Chemical and Environmental Engineering, Campus Río Ebro- Edificio I+D, University of Zaragoza, Zaragoza, Spain
- Basic Research in Internal Medicine Group, GIIS-084 (IIS Aragón), Zaragoza, Spain
| | - Carmen Lahuerta Pueyo
- Department of Clinical Biochemistry, Hospital Clínico Universitario Lozano Blesa, Zaragoza, Spain
- Basic Research in Internal Medicine Group, GIIS-084 (IIS Aragón), Zaragoza, Spain
| | - Ana Roteta Unceta Barrenechea
- Department of Nuclear Medicine, Multihospital Nuclear Medicine Clinical Unit of Aragón, Zaragoza, Spain
- Basic Research in Internal Medicine Group, GIIS-084 (IIS Aragón), Zaragoza, Spain
| | - Alejandro Andrés Gracia
- Department of Nuclear Medicine, Multihospital Nuclear Medicine Clinical Unit of Aragón, Zaragoza, Spain
- Basic Research in Internal Medicine Group, GIIS-084 (IIS Aragón), Zaragoza, Spain
| | - Miguel Angel Aibar Arregui
- Department of Internal Medicine, Hospital Clínico Universitario Lozano Blesa, Zaragoza, Spain
- Basic Research in Internal Medicine Group, GIIS-084 (IIS Aragón), Zaragoza, Spain
| | - Sebastián Menao Guillén
- Department of Clinical Biochemistry, Hospital Clínico Universitario Lozano Blesa, Zaragoza, Spain
- Basic Research in Internal Medicine Group, GIIS-084 (IIS Aragón), Zaragoza, Spain
| |
Collapse
|
13
|
Chen X, Fazel Anvari-Yazdi A, Duan X, Zimmerling A, Gharraei R, Sharma N, Sweilem S, Ning L. Biomaterials / bioinks and extrusion bioprinting. Bioact Mater 2023; 28:511-536. [PMID: 37435177 PMCID: PMC10331419 DOI: 10.1016/j.bioactmat.2023.06.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/19/2023] [Accepted: 06/08/2023] [Indexed: 07/13/2023] Open
Abstract
Bioinks are formulations of biomaterials and living cells, sometimes with growth factors or other biomolecules, while extrusion bioprinting is an emerging technique to apply or deposit these bioinks or biomaterial solutions to create three-dimensional (3D) constructs with architectures and mechanical/biological properties that mimic those of native human tissue or organs. Printed constructs have found wide applications in tissue engineering for repairing or treating tissue/organ injuries, as well as in vitro tissue modelling for testing or validating newly developed therapeutics and vaccines prior to their use in humans. Successful printing of constructs and their subsequent applications rely on the properties of the formulated bioinks, including the rheological, mechanical, and biological properties, as well as the printing process. This article critically reviews the latest developments in bioinks and biomaterial solutions for extrusion bioprinting, focusing on bioink synthesis and characterization, as well as the influence of bioink properties on the printing process. Key issues and challenges are also discussed along with recommendations for future research.
Collapse
Affiliation(s)
- X.B. Chen
- Department of Mechanical Engineering, University of Saskatchewan, 57 Campus Dr, S7K 5A9, Saskatoon, Canada
- Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Dr, Saskatoon, S7K 5A9, Canada
| | - A. Fazel Anvari-Yazdi
- Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Dr, Saskatoon, S7K 5A9, Canada
| | - X. Duan
- Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Dr, Saskatoon, S7K 5A9, Canada
| | - A. Zimmerling
- Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Dr, Saskatoon, S7K 5A9, Canada
| | - R. Gharraei
- Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Dr, Saskatoon, S7K 5A9, Canada
| | - N.K. Sharma
- Department of Mechanical Engineering, University of Saskatchewan, 57 Campus Dr, S7K 5A9, Saskatoon, Canada
| | - S. Sweilem
- Department of Mechanical Engineering, Cleveland State University, Cleveland, OH, 44115, USA
| | - L. Ning
- Department of Mechanical Engineering, Cleveland State University, Cleveland, OH, 44115, USA
| |
Collapse
|
14
|
Peng T, Qiu F, Qu Y, Yu C, Cheng X, Li L. Current and Future of "Turn-On" Based Small-Molecule Copper Probes for Cuproptosis. ChemistryOpen 2023; 12:e202300078. [PMID: 37705070 PMCID: PMC10499804 DOI: 10.1002/open.202300078] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/20/2023] [Indexed: 09/15/2023] Open
Abstract
Increasing evidence shows that abnormal copper (Cu) metabolism is highly related to many diseases, such as Alzheimer's disease, Wilson's disease, hematological malignancies and Menkes disease. Very recently, cuproptosis, a Cu-dependent, programmed cell death was firstly described by Tsvetkov et al. in 2022. Their findings may provide a new perspective for the treatment of related diseases. However, the concrete mechanisms of these diseases, especially cuproptosis, remain completely unclear, the reason of which may be a lack of reliable tools to conduct highly selective, sensitive and high-resolution imaging of Cu in complex life systems. So far, numerous small-molecular fluorescent probes have been designed and utilized to explore the Cu signal pathway. Among them, fluorescence turn-on probes greatly enhance the resolution and accuracy of imaging and may be a promising tool for research of investigation into cuproptosis. This review summarizes the probes developed in the past decade which have the potential to study cuproptosis, focusing on the design strategies, luminescence mechanism and biological-imaging applications. Besides, we put forward some ideas concerning the design of next-generation probes for cuproptosis, aiming to tackle the main problems in this new field. Furthermore, the prospect of cuproptosis in the treatment of corresponding diseases is also highlighted.
Collapse
Affiliation(s)
- Ting‐En Peng
- Key Laboratory of Flexible Electronics (KLOFE) &Institute of Advanced Materials (IAM) Jiangsu National Synergetic Innovation Center forAdvanced Materials (SICAM)Nanjing Tech UniversityNanjing211816China
| | - Feng Qiu
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringJiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)Nanjing Tech UniversityNanjing211816China
| | - Yunwei Qu
- The Institute of Flexible Electronics (IFE, Future Technologies)Xiamen UniversityXiamen361005China
| | - Changmin Yu
- Key Laboratory of Flexible Electronics (KLOFE) &Institute of Advanced Materials (IAM) Jiangsu National Synergetic Innovation Center forAdvanced Materials (SICAM)Nanjing Tech UniversityNanjing211816China
| | - Xiamin Cheng
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringJiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)Nanjing Tech UniversityNanjing211816China
| | - Lin Li
- Key Laboratory of Flexible Electronics (KLOFE) &Institute of Advanced Materials (IAM) Jiangsu National Synergetic Innovation Center forAdvanced Materials (SICAM)Nanjing Tech UniversityNanjing211816China
- The Institute of Flexible Electronics (IFE, Future Technologies)Xiamen UniversityXiamen361005China
| |
Collapse
|
15
|
Sepahvand S, Kargarzadeh H, Jonoobi M, Ashori A, Ismaeilimoghadam S, Varghese RT, Chirayl CJ, Azimi B, Danti S. Recent developments in nanocellulose-based aerogels as air filters: A review. Int J Biol Macromol 2023; 246:125721. [PMID: 37419257 DOI: 10.1016/j.ijbiomac.2023.125721] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/20/2023] [Accepted: 07/04/2023] [Indexed: 07/09/2023]
Abstract
Today, one of the world's critical environmental issues is air pollution, which is the most important parameter threatening human health and the environment. Synthetic polymers are widely used in industrial air filter production; however, they are incompatible with the environment due to their secondary pollution. Using renewable materials to manufacture air filters is not only environmentally friendly but also essential. Recently, a new generation of biopolymers called cellulose nanofiber (CNF)-based hydrogels have been proposed, with three dimensional (3D) nanofiber networks and unique physical and mechanical properties. CNFs have become a hot research topic for application as air filter materials because they can compete with synthetic nanofibers due to their advantages, such as abundant, renewable, nontoxic, high specific surface area, high reactivity, flexibility, low cost, low density, and network structure formation. The main focus of the current review is the recent progress in the preparation and employment of nanocellulose materials, especially CNF-based hydrogels, to absorb PM and CO2. This study summarizes the preparation methods, modification strategies, fabrications, and further applications of CNF-based aerogels as air filters. Lastly, challenges in the fabrication of CNFs, and trends for future developments are presented.
Collapse
Affiliation(s)
- Sima Sepahvand
- Department of Bio Systems, Faculty of New Technologies and Aerospace Engineering, Zirab Campus, Shahid Beheshti University, Tehran, Iran
| | - Hanieh Kargarzadeh
- Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Poland
| | - Mehdi Jonoobi
- Department of Wood and Paper Science and Technology, Faculty of Natural Resources, University of Tehran, Karaj, Iran.
| | - Alireza Ashori
- Department of Chemical Technologies, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran.
| | - Saeed Ismaeilimoghadam
- Department of Wood and Paper Science and Technology, Faculty of Natural Resources, University of Tehran, Karaj, Iran
| | - Rini Thresia Varghese
- Department of Chemistry, Newman College, Thodupuzha, Kerala 685584, India; School of Chemical Sciences, Mahatma Gandhi University, Kottayam, Kerala 686560, India
| | | | - Bahareh Azimi
- Department of Translational Research on New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Serena Danti
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy
| |
Collapse
|
16
|
Sarkar S, Bhowmick TK, Gayen K. Enhancement for the synthesis of bio-energy molecules (carbohydrates and lipids) in Desmodesmus subspicatus: experiments and optimization techniques. Prep Biochem Biotechnol 2023; 54:343-357. [PMID: 37531084 DOI: 10.1080/10826068.2023.2241898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Microalgae are regarded as renewable resources of energy, foods and high-valued compounds using a biorefinery approach. In the present study, we explored isolated microalgae (Desmodesmus subspicatus) for the production of bio-energy molecules (carbohydrate and lipid). Optimizations of media (BG-11) components have been made using the Taguchi orthogonal array (TOA) technique to maximize biomass, carbohydrate and lipid production. Optimized results showed that biomass, carbohydrates and lipid productivity increased by 1.3 times at optimal combinations of media components than standard BG-11 media. Further, the influence of various carbon and nitrogen sources as nutritional supplement with optimum media composition under different light intensities was investigated for productivity of carbohydrate and lipid. Results demonstrated that 1.5 times higher productivity of carbohydrate and lipids were achieved in the presence optimum BG-11 under a broad range of light intensities (84-504 µmol m-2 s-1). Among different nitrogen sources, glycine was found to give higher productivity (1.5 times) followed by urea. Use of the cellulose as a carbon source in the media significantly increases biomass (2.4 times), carbohydrates (2.3 times) and lipids (2.3 times) productivity. Investigations revealed that cultivating Desmodesmus subspicatus under optimum culture conditions has the potential for large-scale bio-ethanol and bio-diesel production.
Collapse
Affiliation(s)
- Sreya Sarkar
- Department of Chemical Engineering, National Institute of Technology Agartala, West Tripura, Tripura, India
| | - Tridib Kumar Bhowmick
- Department of Bioengineering, National Institute of Technology Agartala, West Tripura, Tripura, India
| | - Kalyan Gayen
- Department of Chemical Engineering, National Institute of Technology Agartala, West Tripura, Tripura, India
| |
Collapse
|
17
|
Munawwar A, Sajjad A, Rasul A, Sattar M, Jabeen F. Dissecting the Role of SMYD2 and Its Inhibitor (LLY-507) in the Treatment of Chemically Induced Non-Small Cell Lung Cancer (NSCLC) by Using Fe 3O 4 Nanoparticles Drug Delivery System. Pharmaceuticals (Basel) 2023; 16:986. [PMID: 37513898 PMCID: PMC10384399 DOI: 10.3390/ph16070986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/15/2023] [Accepted: 06/25/2023] [Indexed: 07/30/2023] Open
Abstract
Cancer therapies based on nanoparticles with a loaded drug can overcome the problem of the drug's toxic effects in the traditional chemotherapeutic approach. In this study, we loaded LLY-507, a potent inhibitor of SMYD2, a methyltransferase enzyme, on iron oxide nanoparticles (IONPs). The prepared nanoparticles were characterized by microscopic analysis, loading efficiency, and drug release studies. Microscopic examination revealed an average grain size of 44 nm. The in vitro effect of LLY-507-IONPs, LLY-507, and IONPs was determined by MTT analysis (A549 cells) and hemolysis studies. IONPs have almost negative hemolytic activity in blood. The cell viability assay revealed IC50 values of both LLY-507 alone and LLY-507-loaded IONPs against A549; the lower value of the drug loaded on NPs (0.71 µg/mL alone and 0.53 µg/mL loaded on NPs) shows strong synergistic anticancer potential. We further tested the role of loaded NPs in a urethane-induced lung cancer mouse model (n = 40 mice in three independent trials, 20 mice in control group) to check the role of SMYD2 at various time points of lung cancer development. The loss of SMYD2 due to LLY-507 suppressed tumor growth, emphysema, hemorrhage, and congestion considerably. Hence, it can be concluded that the SMYD2 inhibitor has an anti-inflammatory effect on the mouse lung and suppresses tumor growth by inhibiting the SMYD2 protein.
Collapse
Affiliation(s)
- Aasma Munawwar
- Department of Zoology, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Amna Sajjad
- Department of Zoology, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Azhar Rasul
- Department of Zoology, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Mehran Sattar
- Department of Zoology, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Farhat Jabeen
- Department of Zoology, Government College University Faisalabad, Faisalabad 38000, Pakistan
| |
Collapse
|
18
|
Du B, Li W, Zhu H, Xu J, Wang Q, Shou X, Wang X, Zhou J. A functional lignin for heavy metal ions adsorption and wound care dressing. Int J Biol Macromol 2023; 239:124268. [PMID: 37003375 DOI: 10.1016/j.ijbiomac.2023.124268] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/15/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
Recently, the application of lignin activation by demethylation to improve reactivity and enrich multiple functions has intensively attracted attention. However, it is still challenge up to now due to the low reactivity and complexity of lignin structure. Here, an effective demethylation way was explored by microwave-assisted method for substantially enhancing the hydroxyl (-OH) content and retaining the structure of lignin. Then, the optimum demethylated lignin was used to removal heavy metal ions and promote wound healing, respectively. In detail, for microwave-assisted demethylated poplar lignin (M-DPOL), the contents of phenolic (Ar-OH) and total hydroxyl (Tot-OH) groups reached the maximum for 60 min at 90 °C in DMF with 7.38 and 9.13 mmol/g, respectively. After demethylation, with this M-DPOL as lignin-based adsorbent, the maximum adsorption capacity (Qmax) for Pb2+ ions reached 104.16 mg/g. Based on the isotherm, kinetic and thermodynamic models analyses, the chemisorption occurred in monolayer on the surface of M-DPOL, and all adsorption processes were endothermic and spontaneous. Meanwhile, M-DPOL as a wound dressing had excellent antioxidant property, outstanding bactericidal activity and remarkable biocompatibility, suggesting that it did not interfere with cell proliferation. Besides, the wounded rats treated with M-DPOL significantly promoted its formation of re-epithelialization and wound healing of full-thickness skin defects. Overall, microwave-assisted method of demethylated lignin can offer great advantages for heavy metal ions removal and wound care dressing, which facilitates high value application of lignin.
Collapse
Affiliation(s)
- Boyu Du
- Liaoning Key Laboratory of Lignocellulose Chemistry and Biomaterials, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Wanjing Li
- Department of Cardiology, Shaanxi Province People's Hospital and The Third Affiliated Hospital Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710018, China
| | - Hongwei Zhu
- Liaoning Key Laboratory of Lignocellulose Chemistry and Biomaterials, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Jingyu Xu
- Liaoning Key Laboratory of Lignocellulose Chemistry and Biomaterials, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Qingyu Wang
- Institute for Catalysis (ICAT) and Graduate School of Chemical Sciences and Engineering, Hokkaido University, N21W10, Kita-ku, Sapporo 001-0021, Japan
| | - Xiling Shou
- Department of Cardiology, Shaanxi Province People's Hospital and The Third Affiliated Hospital Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710018, China.
| | - Xing Wang
- Liaoning Key Laboratory of Lignocellulose Chemistry and Biomaterials, Dalian Polytechnic University, Dalian, Liaoning 116034, China.
| | - Jinghui Zhou
- Liaoning Key Laboratory of Lignocellulose Chemistry and Biomaterials, Dalian Polytechnic University, Dalian, Liaoning 116034, China.
| |
Collapse
|
19
|
Osman AI, Hosny M, Eltaweil AS, Omar S, Elgarahy AM, Farghali M, Yap PS, Wu YS, Nagandran S, Batumalaie K, Gopinath SCB, John OD, Sekar M, Saikia T, Karunanithi P, Hatta MHM, Akinyede KA. Microplastic sources, formation, toxicity and remediation: a review. ENVIRONMENTAL CHEMISTRY LETTERS 2023; 21:1-41. [PMID: 37362012 PMCID: PMC10072287 DOI: 10.1007/s10311-023-01593-3] [Citation(s) in RCA: 150] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 03/14/2023] [Indexed: 06/10/2023]
Abstract
Microplastic pollution is becoming a major issue for human health due to the recent discovery of microplastics in most ecosystems. Here, we review the sources, formation, occurrence, toxicity and remediation methods of microplastics. We distinguish ocean-based and land-based sources of microplastics. Microplastics have been found in biological samples such as faeces, sputum, saliva, blood and placenta. Cancer, intestinal, pulmonary, cardiovascular, infectious and inflammatory diseases are induced or mediated by microplastics. Microplastic exposure during pregnancy and maternal period is also discussed. Remediation methods include coagulation, membrane bioreactors, sand filtration, adsorption, photocatalytic degradation, electrocoagulation and magnetic separation. Control strategies comprise reducing plastic usage, behavioural change, and using biodegradable plastics. Global plastic production has risen dramatically over the past 70 years to reach 359 million tonnes. China is the world's top producer, contributing 17.5% to global production, while Turkey generates the most plastic waste in the Mediterranean region, at 144 tonnes per day. Microplastics comprise 75% of marine waste, with land-based sources responsible for 80-90% of pollution, while ocean-based sources account for only 10-20%. Microplastics induce toxic effects on humans and animals, such as cytotoxicity, immune response, oxidative stress, barrier attributes, and genotoxicity, even at minimal dosages of 10 μg/mL. Ingestion of microplastics by marine animals results in alterations in gastrointestinal tract physiology, immune system depression, oxidative stress, cytotoxicity, differential gene expression, and growth inhibition. Furthermore, bioaccumulation of microplastics in the tissues of aquatic organisms can have adverse effects on the aquatic ecosystem, with potential transmission of microplastics to humans and birds. Changing individual behaviours and governmental actions, such as implementing bans, taxes, or pricing on plastic carrier bags, has significantly reduced plastic consumption to 8-85% in various countries worldwide. The microplastic minimisation approach follows an upside-down pyramid, starting with prevention, followed by reducing, reusing, recycling, recovering, and ending with disposal as the least preferable option.
Collapse
Affiliation(s)
- Ahmed I. Osman
- School of Chemistry and Chemical Engineering, David Keir Building, Queen’s University Belfast, Stranmillis Road, Belfast, BT9 5AG Northern Ireland, UK
| | - Mohamed Hosny
- Green Technology Group, Environmental Sciences Department, Faculty of Science, Alexandria University, Alexandria, 21511 Egypt
| | | | - Sara Omar
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Ahmed M. Elgarahy
- Environmental Science Department, Faculty of Science, Port Said University, Port Said, Egypt
- Egyptian Propylene and Polypropylene Company (EPPC), Port-Said, Egypt
| | - Mohamed Farghali
- Department of Agricultural Engineering and Socio-Economics, Kobe University, Kobe, 657-8501 Japan
- Department of Animal and Poultry Hygiene & Environmental Sanitation, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526 Egypt
| | - Pow-Seng Yap
- Department of Civil Engineering, Xi’an Jiaotong-Liverpool University, Suzhou, 215123 China
| | - Yuan-Seng Wu
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, 47500 Subang Jaya, Selangor Malaysia
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, 47500 Subang Jaya, Selangor Malaysia
| | - Saraswathi Nagandran
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, 47500 Subang Jaya, Selangor Malaysia
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, 47500 Subang Jaya, Selangor Malaysia
| | - Kalaivani Batumalaie
- Department of Biomedical Sciences, Faculty of Health Sciences, Asia Metropolitan University, 81750 Johor Bahru, Malaysia
| | - Subash C. B. Gopinath
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), 02600 Arau, Perlis Malaysia
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), 01000 Kangar, Perlis, Malaysia
- Micro System Technology, Centre of Excellence, Universiti Malaysia Perlis (UniMAP), Pauh Campus, 02600 Arau, Perlis Malaysia
| | - Oliver Dean John
- Faculty of Science and Natural Resources, Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah Malaysia
| | - Mahendran Sekar
- Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, 30450 Ipoh, Perak Malaysia
| | - Trideep Saikia
- Girijananda Chowdhury Institute of Pharmaceutical Science, Guwahati Assam, India
| | - Puvanan Karunanithi
- Department of Anatomy, Faculty of Medicine, Manipal University College Malaysia (MUCM), Melaka, Malaysia
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Mohd Hayrie Mohd Hatta
- Centre for Research and Development, Asia Metropolitan University, 81750 Johor Bahru, Johor Malaysia
| | - Kolajo Adedamola Akinyede
- Department of Medical Bioscience, University of the Western Cape, Bellville, Cape Town, 7530 South Africa
- Biochemistry Unit, Department of Science Technology, The Federal Polytechnic, P.M.B.5351, Ado Ekiti, 360231 Ekiti State Nigeria
| |
Collapse
|
20
|
Farasati Far B, Isfahani AA, Nasiriyan E, Pourmolaei A, Mahmoudvand G, Karimi Rouzbahani A, Namiq Amin M, Naimi-Jamal MR. An Updated Review on Advances in Hydrogel-Based Nanoparticles for Liver Cancer Treatment. LIVERS 2023; 3:161-189. [DOI: 10.3390/livers3020012] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
Abstract
More than 90% of all liver malignancies are hepatocellular carcinomas (HCCs), for which chemotherapy and immunotherapy are the ideal therapeutic choices. Hepatocellular carcinoma is descended from other liver diseases, such as viral hepatitis, alcoholism, and metabolic syndrome. Normal cells and tissues may suffer damage from common forms of chemotherapy. In contrast to systemic chemotherapy, localized chemotherapy can reduce side effects by delivering a steady stream of chemotherapeutic drugs directly to the tumor site. This highlights the significance of controlled-release biodegradable hydrogels as drug delivery methods for chemotherapeutics. This review discusses using hydrogels as drug delivery systems for HCC and covers thermosensitive, pH-sensitive, photosensitive, dual-sensitive, and glutathione-responsive hydrogels. Compared to conventional systemic chemotherapy, hydrogel-based drug delivery methods are more effective in treating cancer.
Collapse
Affiliation(s)
- Bahareh Farasati Far
- Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Ali Attaripour Isfahani
- Department of Biological Science and Technology, Najafabad Branch, Islamic Azad University, Najafabad 8514143131, Iran
| | - Elnaz Nasiriyan
- Department of Biological Science and Technology, Najafabad Branch, Islamic Azad University, Najafabad 8514143131, Iran
| | - Ali Pourmolaei
- Chemical Engineering Department, Babol Noshirvani University of Technology Shariati Ave, Babol 47148-71167, Iran
| | - Golnaz Mahmoudvand
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad 6718773654, Iran
- USERN Office, Lorestan University of Medical Sciences, Khorramabad 6718773654, Iran
| | - Arian Karimi Rouzbahani
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad 6718773654, Iran
- USERN Office, Lorestan University of Medical Sciences, Khorramabad 6718773654, Iran
| | - Mohammed Namiq Amin
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
| | | |
Collapse
|
21
|
Jiang Y, Chen J, Xuan W, Liang Y, Huang X, Cao Z, Sun L, Dong S, Luo J. Numerical Study of Particle Separation through Integrated Multi-Stage Surface Acoustic Waves and Modulated Driving Signals. SENSORS (BASEL, SWITZERLAND) 2023; 23:2771. [PMID: 36904975 PMCID: PMC10006892 DOI: 10.3390/s23052771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/25/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
The manipulation of biomedical particles, such as separating circulating tumor cells from blood, based on standing surface acoustic wave (SSAW) has been widely used due to its advantages of label-free approaches and good biocompatibility. However, most of the existing SSAW-based separation technologies are dedicated to isolate bioparticles in only two different sizes. It is still challenging to fractionate various particles in more than two different sizes with high efficiency and accuracy. In this work, to tackle the problems of low efficiency for multiple cell particle separation, integrated multi-stage SSAW devices with different wavelengths driven by modulated signals were designed and studied. A three-dimensional microfluidic device model was proposed and analyzed using the finite element method (FEM). In addition, the effect of the slanted angle, acoustic pressure, and the resonant frequency of the SAW device on the particle separation were systemically studied. From the theoretical results, the separation efficiency of three different size particles based on the multi-stage SSAW devices reached 99%, which was significantly improved compared with conventional single-stage SSAW devices.
Collapse
Affiliation(s)
- Yingqi Jiang
- Ministry of Education Key Laboratory of RF Circuits and Systems, College of Electronic & Information, Hangzhou Dianzi University, Hangzhou 310018, China
- Zhejiang Key Laboratory of Large-Scale Integrated Circuit Design, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Jin Chen
- Ministry of Education Key Laboratory of RF Circuits and Systems, College of Electronic & Information, Hangzhou Dianzi University, Hangzhou 310018, China
- Zhejiang Key Laboratory of Large-Scale Integrated Circuit Design, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Weipeng Xuan
- Ministry of Education Key Laboratory of RF Circuits and Systems, College of Electronic & Information, Hangzhou Dianzi University, Hangzhou 310018, China
- Zhejiang Key Laboratory of Large-Scale Integrated Circuit Design, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Yuhao Liang
- Ministry of Education Key Laboratory of RF Circuits and Systems, College of Electronic & Information, Hangzhou Dianzi University, Hangzhou 310018, China
- Zhejiang Key Laboratory of Large-Scale Integrated Circuit Design, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Xiwei Huang
- Ministry of Education Key Laboratory of RF Circuits and Systems, College of Electronic & Information, Hangzhou Dianzi University, Hangzhou 310018, China
- Zhejiang Key Laboratory of Large-Scale Integrated Circuit Design, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Zhen Cao
- Key Laboratory of Advanced Micro/Nano Electronics Devices & Smart Systems of Zhejiang, College of Information Science & Electronic Engineering, Zhejiang University, Hangzhou 310027, China
- International Joint Innovation Center, Zhejiang University, Haining 314400, China
| | - Lingling Sun
- Ministry of Education Key Laboratory of RF Circuits and Systems, College of Electronic & Information, Hangzhou Dianzi University, Hangzhou 310018, China
- Zhejiang Key Laboratory of Large-Scale Integrated Circuit Design, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Shurong Dong
- Key Laboratory of Advanced Micro/Nano Electronics Devices & Smart Systems of Zhejiang, College of Information Science & Electronic Engineering, Zhejiang University, Hangzhou 310027, China
- International Joint Innovation Center, Zhejiang University, Haining 314400, China
| | - Jikui Luo
- Key Laboratory of Advanced Micro/Nano Electronics Devices & Smart Systems of Zhejiang, College of Information Science & Electronic Engineering, Zhejiang University, Hangzhou 310027, China
- International Joint Innovation Center, Zhejiang University, Haining 314400, China
| |
Collapse
|
22
|
The Protein Network in Subcutaneous Fat Biopsies from Patients with AL Amyloidosis: More Than Diagnosis? Cells 2023; 12:cells12050699. [PMID: 36899835 PMCID: PMC10000381 DOI: 10.3390/cells12050699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/11/2023] [Accepted: 02/16/2023] [Indexed: 02/25/2023] Open
Abstract
AL amyloidosis is caused by the misfolding of immunoglobulin light chains leading to an impaired function of tissues and organs in which they accumulate. Due to the paucity of -omics profiles from undissected samples, few studies have addressed amyloid-related damage system wide. To fill this gap, we evaluated proteome changes in the abdominal subcutaneous adipose tissue of patients affected by the AL isotypes κ and λ. Through our retrospective analysis based on graph theory, we have herein deduced new insights representing a step forward from the pioneering proteomic investigations previously published by our group. ECM/cytoskeleton, oxidative stress and proteostasis were confirmed as leading processes. In this scenario, some proteins, including glutathione peroxidase 1 (GPX1), tubulins and the TRiC complex, were classified as biologically and topologically relevant. These and other results overlap with those already reported for other amyloidoses, supporting the hypothesis that amyloidogenic proteins could induce similar mechanisms independently of the main fibril precursor and of the target tissues/organs. Of course, further studies based on larger patient cohorts and different tissues/organs will be essential, which would be a key point that would allow for a more robust selection of the main molecular players and a more accurate correlation with clinical aspects.
Collapse
|
23
|
Darroudi M, Elnaz Nazari S, Karimzadeh M, Asgharzadeh F, Khalili-Tanha N, Asghari SZ, Ranjbari S, Babaei F, Rezayi M, Khazaei M. Two-dimensional-Ti 3C 2 magnetic nanocomposite for targeted cancer chemotherapy. Front Bioeng Biotechnol 2023; 11:1097631. [PMID: 36761295 PMCID: PMC9905703 DOI: 10.3389/fbioe.2023.1097631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/09/2023] [Indexed: 01/26/2023] Open
Abstract
Introduction: Cervical cancer is the leading cause of cancer-related death in women, so novel therapeutic approaches are needed to improve the effectiveness of current therapies or extend their activity. In recent decades, graphene analogs, such as Mxene, an emerging class of two-dimensional (2D) graphene analogs, have been drawing considerable attention based on their intrinsic physicochemical properties and performance as potential candidates for tumor therapy, particularly for therapeutic purposes. Here we explored the targeted drug delivery in cervical cancer in in vivo model. Mxene-based nanocarriers are not able to be precisely controlled in cancer treatment. Method: To solve this problem, the titanium carbide-magnetic core-shell nanocarrier (Ti3C2-Fe3O4@SiO2-FA) is also developed to provide synergetic anticancer with magnetic controlling ability along with pH-responsive drug release. A xenograft model of the cervix was used to investigate the effects of Cisplatin alone, or in combination with Ti3C2@FA and Ti3C2@ Fe3O4@SiO2-FA, on tumor growth following histological staining for evaluation of necrosis. Result and Discussion: A significant tumor-growth suppression effect is shown when the Ti3C2-Fe3O4@SiO2-FA nanocarrier is magnetically controlled Cisplatin drug release. It reveals a synergistic therapeutic efficacy used in conjunction with pharmaceuticals (p < .001). According to the in vivo study, the Ti3C2@FA@Cisplatin nanocomposite exhibits less tumor growth than the drug alone or Ti3C2@FA@Cisplatin via increasing necrosis effect (p < .001). Through this study, Mxene nanosheets are expanded for biomedical applications, not only through the fabrication of biocompatible magnetic Mxene nanocomposite but also through the development of functionalization strategies that enable the magnetic Ti3C2 nanocomposite to load high levels of Cisplatin for cervical cancer treatment (242.5%). Hence, Ti3C2-Fe3O4@SiO2-FA nanocarriers would be promising candidates to improve cancer treatment efficiency.
Collapse
Affiliation(s)
- Mahdieh Darroudi
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Science, Mashhad, Iran,Department of Medical Biotechnology and Nanotechnology, School of Science, Mashhad University of Medical Science, Mashhad, Iran,Department of Electrical and Computer Engineering, University of Central Florida, Orlando, FL, United states
| | - Seyedeh Elnaz Nazari
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Science, Mashhad, Iran
| | - Maryam Karimzadeh
- Department of Medical Biotechnology and Nanotechnology, School of Science, Mashhad University of Medical Science, Mashhad, Iran
| | - Fereshteh Asgharzadeh
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Science, Mashhad, Iran
| | - Nima Khalili-Tanha
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Science, Mashhad, Iran
| | - Seyyedeh Zahra Asghari
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Science, Mashhad, Iran
| | - Sara Ranjbari
- Chemical Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Fatemeh Babaei
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Science, Mashhad, Iran
| | - Majid Rezayi
- Department of Medical Biotechnology and Nanotechnology, School of Science, Mashhad University of Medical Science, Mashhad, Iran,Metabolic Syndrome Research Centre, Mashhad University of Medical Science, Mashhad, Iran,Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran,*Correspondence: Majid Rezayi, ; Majid Khazaei,
| | - Majid Khazaei
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Science, Mashhad, Iran,Metabolic Syndrome Research Centre, Mashhad University of Medical Science, Mashhad, Iran,*Correspondence: Majid Rezayi, ; Majid Khazaei,
| |
Collapse
|
24
|
Ashique S, Garg A, Singh V, Rai G, Mishra N, Soni ML, Kumar S, Madamsetty VS. Role of Block Copolymers in Colon Cancer. BLOCK CO-POLYMERIC NANOCARRIERS: DESIGN, CONCEPT, AND THERAPEUTIC APPLICATIONS 2023:181-209. [DOI: 10.1007/978-981-99-6917-3_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
25
|
Rayegani A, Saberian M, Delshad Z, Liang J, Sadiq M, Nazar AM, Mohsan SAH, Khan MA. Recent Advances in Self-Powered Wearable Sensors Based on Piezoelectric and Triboelectric Nanogenerators. BIOSENSORS 2022; 13:37. [PMID: 36671872 PMCID: PMC9855384 DOI: 10.3390/bios13010037] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 06/06/2023]
Abstract
Early clinical diagnosis and treatment of disease rely heavily on measuring the many various types of medical information that are scattered throughout the body. Continuous and accurate monitoring of the human body is required in order to identify abnormal medical signals and to locate the factors that contribute to their occurrence in a timely manner. In order to fulfill this requirement, a variety of battery-free and self-powered methods of information collecting have been developed. For the purpose of a health monitoring system, this paper presents smart wearable sensors that are based on triboelectric nanogenerators (TENG) and piezoelectric nanogenerators (PENG), as well as hybrid nanogenerators that combine piezoelectric and triboelectric nanogenerators (PTNG). Following the presentation of the PENG and TENG principles, a summary and discussion of the most current developments in self-powered medical information sensors with a variety of purposes, structural designs, and electric performances follows. Wearable sensors that generate their own electricity are crucial not only for the proper development of children and patients with unique conditions, but for the purpose of maintaining checks on the wellbeing of the elderly and those who have recently recovered from illness, and for administering any necessary medical care. This work sought to do two things at once: provide perspectives for health monitoring, and open up new avenues for the analysis of long-distance biological movement status.
Collapse
Affiliation(s)
- Arash Rayegani
- Department of Civil Engineering, Sharif University of Technology, Tehran 1458889694, Iran
| | | | - Zahra Delshad
- Department of Nursing, Kashan Branch, Islamic Azad University, Kashan 8715998151, Iran
| | - Junwei Liang
- College of Software Engineering, Shenzhen Institute of Information Technology, Shenzhen 518172, China
| | - Muhammad Sadiq
- Shenzhen Institute of Information Technology, Shenzhen 518172, China
| | - Ali Matin Nazar
- The Zhejiang University-University of Illinois at Urbana-Champaign Institute, Zhejiang University, Haining 314400, China
| | - Syed Agha Hassnain Mohsan
- Optical Communications Laboratory, Ocean College, Zhejiang University, Zheda Road 1, Zhoushan 316021, China
| | - Muhammad Asghar Khan
- Hamdard Institute of Engineering and Technology, Hamdard University, Islamabad 700081, Pakistan
| |
Collapse
|
26
|
8,13-Dimethylicosa-9,11-diyne-8,13-diol. MOLBANK 2022. [DOI: 10.3390/m1484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The protocol, 3-methyldec-1-yn-3-ol (1a) was chosen to perform the dimerization process. The optimal conditions for synthesis of 8,13-dimethylicosa-9,11-diyne-8,13 (2a) with high efficiency when using copper-catalyzed, N,N,N′N′-tetramethylethylenediamine as a ligand and CCl4 and methanol solvents in atmospheric pressure were determined. The structure of the obtained compound was proved by IR, 1H-NMR and 13C-NMR spectroscopy.
Collapse
|
27
|
Kebede M, Fite T. RNA interference (RNAi) applications to the management of fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae): Its current trends and future prospects. Front Mol Biosci 2022; 9:944774. [PMID: 36158573 PMCID: PMC9490220 DOI: 10.3389/fmolb.2022.944774] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
The fall armyworm Spodoptera frugiperda (Lepidoptera: Noctuidae) is among the invasive insect pests that damages maize and sorghum, the high-priority crops in newly colonized agro-ecologies, including African contexts. Owing to the increasing infestation of the pest and the limitations of current conventional methods for its management, there is a call for discovering advanced pest management approaches. RNA interference (RNAi) is an emerging molecular tool showing flexible potential for the management of S. frugiperda. We conducted a search of the recent application of RNAi literature using Google Scholar and Mendeley to find advanced papers on S. frugiperda management using RNAi molecular tools that led to growth inhibition, developmental aberrations, reduced fecundity, and mortality, mainly by disruption of normal biological processes of the pest. Although efforts have been made to accelerate the utility of RNAi, many factors limit the efficiency of RNAi to achieve successful control over S. frugiperda. Owing to RNAi’s potential bioactivity and economic and ecological acceptability, continued research efforts should focus on improving its broad applicability, including field conditions. Screening and identification of key target genes should be a priority task to achieve effective and sustainable management of this insect via RNAi. In addition, a clear understanding of the present status of RNAi utilization in S. frugiperda management is of paramount importance to improve its efficiency. Therefore, in this review, we highlight the biology of S. frugiperda and the RNAi mechanism as a foundation for the molecular management of the pest. Then, we discuss the current knowledge of the RNAi approach in S. frugiperda management and the factors affecting the efficiency of RNAi application. Finally, the prospects for RNAi-based insect pest management are highlighted for future research to achieve effective management of S. frugiperda.
Collapse
|
28
|
Ji Y, Song J, Su T, Gu X. Adipokine Retinol Binding Protein 4 and Cardiovascular Diseases. Front Physiol 2022; 13:856298. [PMID: 35309061 PMCID: PMC8924404 DOI: 10.3389/fphys.2022.856298] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 01/31/2022] [Indexed: 01/12/2023] Open
Abstract
The morbidity and mortality of cardiovascular diseases (CVDs) have been increasing year by year all over the world and expanding greatly to the younger population, which becomes the leading causes of death globally that threatens human life safety. Prediction of the occurrence of diseases by using risk related adverse events is crucial for screening and early detection of CVDs. Thus, the discovery of new biomarkers that related to risks of CVDs are of urgent in the field. Retinol-binding protein 4 (RBP4) is a 21-kDa adipokine, mainly secreted by adipocytes. Besides its well-established function in the induction of insulin resistance, it has also been found in recent years to be closely associated with CVDs and other risk factors, such as hypertension, coronary heart disease, heart failure, obesity, and hyperlipidemia. In this review, we mainly focus on the progress of research that establishes the correlation between RBP4 and CVDs and the corresponding major risk factors in recent years.
Collapse
|
29
|
Dittloff KT, Iezzi A, Zhong JX, Mohindra P, Desai TA, Russell B. Transthyretin amyloid fibrils alter primary fibroblast structure, function, and inflammatory gene expression. Am J Physiol Heart Circ Physiol 2021; 321:H149-H160. [PMID: 34018852 DOI: 10.1152/ajpheart.00073.2021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Age-related wild-type transthyretin amyloidosis (wtATTR) is characterized by systemic deposition of amyloidogenic fibrils of misfolded transthyretin (TTR) in the connective tissue of many organs. In the heart, this leads to cardiac dysfunction, which is a significant cause of age-related heart failure. The hypothesis tested is that TTR affects cardiac fibroblasts in ways that may contribute to fibrosis. When primary cardiac fibroblasts were cultured on TTR-deposited substrates, the F-actin cytoskeleton was disorganized, focal adhesion formation was decreased, and nuclear shape was flattened. Fibroblasts had faster collective and single-cell migration velocities on TTR-deposited substrates. In addition, fibroblasts cultured on microposts with TTR deposition had reduced attachment and increased proliferation above untreated. Transcriptomic and proteomic analyses of fibroblasts grown on glass covered with TTR showed significant upregulation of inflammatory genes after 48 h, indicative of progression in TTR-based diseases. Together, results suggest that TTR deposited in tissue extracellular matrix may affect the structure, function, and gene expression of cardiac fibroblasts. As therapies for wtATTR are cost-prohibitive and only slow disease progression, better understanding of cellular maladaptation may elucidate novel therapeutic targets.NEW & NOTEWORTHY Transthyretin (TTR) cardiac amyloidosis involves deposition of fibrils of misfolded TTR in the aging human heart, leading to cardiac dysfunction and heart failure. Our novel in vitro studies show that TTR fibrils alter primary cardiac fibroblast cytoskeletal and nuclear structure and focal adhesion formation. Furthermore, both fibrillar and tetrameric TTR significantly increased cellular migration velocity and caused upregulation of inflammatory genes determined by transcriptomic RNA and protein analysis. These findings may suggest new therapeutic approaches.
Collapse
Affiliation(s)
- Kyle T Dittloff
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois
| | - Antonio Iezzi
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois
| | - Justin X Zhong
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco, California.,Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California
| | - Priya Mohindra
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco, California.,Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California
| | - Tejal A Desai
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco, California.,Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California.,Department of Bioengineering, University of California, Berkeley, California
| | - Brenda Russell
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois.,Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
30
|
Ticau S, Sridharan GV, Tsour S, Cantley WL, Chan A, Gilbert JA, Erbe D, Aldinc E, Reilly MM, Adams D, Polydefkis M, Fitzgerald K, Vaishnaw A, Nioi P. Neurofilament Light Chain as a Biomarker of Hereditary Transthyretin-Mediated Amyloidosis. Neurology 2020; 96:e412-e422. [PMID: 33087494 PMCID: PMC7884985 DOI: 10.1212/wnl.0000000000011090] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 09/01/2020] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE To identify changes in the proteome associated with onset and progression of hereditary transthyretin-mediated (hATTR) amyloidosis, also known as ATTRv amyloidosis, we performed an observational, case-controlled study that compared proteomes of patients with ATTRv amyloidosis and healthy controls. METHODS Plasma levels of >1,000 proteins were measured in patients with ATTRv amyloidosis with polyneuropathy who received either placebo or patisiran in a Phase 3 study of patisiran (APOLLO), and in healthy controls. The effect of patisiran on the time profile of each protein was determined by linear mixed model at 0, 9, and 18 months. Neurofilament light chain (NfL) was further assessed with an orthogonal quantitative approach. RESULTS Levels of 66 proteins were significantly changed with patisiran vs placebo, with NfL change most significant (p < 10-20). Analysis of changes in protein levels demonstrated that the proteome of patients treated with patisiran trended toward that of healthy controls at 18 months. Healthy controls' NfL levels were 4-fold lower than in patients with ATTRv amyloidosis with polyneuropathy (16.3 pg/mL vs 69.4 pg/mL, effect -53.1 pg/mL [95% confidence interval -60.5 to -45.9]). NfL levels at 18 months increased with placebo (99.5 pg/mL vs 63.2 pg/mL, effect 36.3 pg/mL [16.5-56.1]) and decreased with patisiran treatment (48.8 pg/mL vs 72.1 pg/mL, effect -23.3 pg/mL [-33.4 to -13.1]) from baseline. At 18 months, improvement in modified Neuropathy Impairment Score +7 score after patisiran treatment significantly correlated with reduced NfL (R = 0.43 [0.29-0.55]). CONCLUSIONS Findings suggest that NfL may serve as a biomarker of nerve damage and polyneuropathy in ATTRv amyloidosis, enable earlier diagnosis of patients with ATTRv amyloidosis, and facilitate monitoring of disease progression. CLASSIFICATION OF EVIDENCE This study provides Class III evidence that NfL levels may enable earlier diagnosis of polyneuropathy in patients with ATTRv amyloidosis and facilitate monitoring of disease progression.
Collapse
Affiliation(s)
- Simina Ticau
- From Alnylam Pharmaceuticals (S.T., G.V.S., S.T., W.L.C., A.C., J.A.G., D.E., E.A., K.F., A.V., P.N.) , Cambridge, MA; MRC Centre for Neuromuscular Diseases (M.M.R.), UCL Queen Square Institute of Neurology, London, UK; AP-HP (D.A.), Université Paris-Saclay, CHU Bicêtre, INSERM U1195, Le Kremlin Bicêtre, France; and Department of Neurology (M.P.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Gautham V Sridharan
- From Alnylam Pharmaceuticals (S.T., G.V.S., S.T., W.L.C., A.C., J.A.G., D.E., E.A., K.F., A.V., P.N.) , Cambridge, MA; MRC Centre for Neuromuscular Diseases (M.M.R.), UCL Queen Square Institute of Neurology, London, UK; AP-HP (D.A.), Université Paris-Saclay, CHU Bicêtre, INSERM U1195, Le Kremlin Bicêtre, France; and Department of Neurology (M.P.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Shira Tsour
- From Alnylam Pharmaceuticals (S.T., G.V.S., S.T., W.L.C., A.C., J.A.G., D.E., E.A., K.F., A.V., P.N.) , Cambridge, MA; MRC Centre for Neuromuscular Diseases (M.M.R.), UCL Queen Square Institute of Neurology, London, UK; AP-HP (D.A.), Université Paris-Saclay, CHU Bicêtre, INSERM U1195, Le Kremlin Bicêtre, France; and Department of Neurology (M.P.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - William L Cantley
- From Alnylam Pharmaceuticals (S.T., G.V.S., S.T., W.L.C., A.C., J.A.G., D.E., E.A., K.F., A.V., P.N.) , Cambridge, MA; MRC Centre for Neuromuscular Diseases (M.M.R.), UCL Queen Square Institute of Neurology, London, UK; AP-HP (D.A.), Université Paris-Saclay, CHU Bicêtre, INSERM U1195, Le Kremlin Bicêtre, France; and Department of Neurology (M.P.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Amy Chan
- From Alnylam Pharmaceuticals (S.T., G.V.S., S.T., W.L.C., A.C., J.A.G., D.E., E.A., K.F., A.V., P.N.) , Cambridge, MA; MRC Centre for Neuromuscular Diseases (M.M.R.), UCL Queen Square Institute of Neurology, London, UK; AP-HP (D.A.), Université Paris-Saclay, CHU Bicêtre, INSERM U1195, Le Kremlin Bicêtre, France; and Department of Neurology (M.P.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Jason A Gilbert
- From Alnylam Pharmaceuticals (S.T., G.V.S., S.T., W.L.C., A.C., J.A.G., D.E., E.A., K.F., A.V., P.N.) , Cambridge, MA; MRC Centre for Neuromuscular Diseases (M.M.R.), UCL Queen Square Institute of Neurology, London, UK; AP-HP (D.A.), Université Paris-Saclay, CHU Bicêtre, INSERM U1195, Le Kremlin Bicêtre, France; and Department of Neurology (M.P.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - David Erbe
- From Alnylam Pharmaceuticals (S.T., G.V.S., S.T., W.L.C., A.C., J.A.G., D.E., E.A., K.F., A.V., P.N.) , Cambridge, MA; MRC Centre for Neuromuscular Diseases (M.M.R.), UCL Queen Square Institute of Neurology, London, UK; AP-HP (D.A.), Université Paris-Saclay, CHU Bicêtre, INSERM U1195, Le Kremlin Bicêtre, France; and Department of Neurology (M.P.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Emre Aldinc
- From Alnylam Pharmaceuticals (S.T., G.V.S., S.T., W.L.C., A.C., J.A.G., D.E., E.A., K.F., A.V., P.N.) , Cambridge, MA; MRC Centre for Neuromuscular Diseases (M.M.R.), UCL Queen Square Institute of Neurology, London, UK; AP-HP (D.A.), Université Paris-Saclay, CHU Bicêtre, INSERM U1195, Le Kremlin Bicêtre, France; and Department of Neurology (M.P.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Mary M Reilly
- From Alnylam Pharmaceuticals (S.T., G.V.S., S.T., W.L.C., A.C., J.A.G., D.E., E.A., K.F., A.V., P.N.) , Cambridge, MA; MRC Centre for Neuromuscular Diseases (M.M.R.), UCL Queen Square Institute of Neurology, London, UK; AP-HP (D.A.), Université Paris-Saclay, CHU Bicêtre, INSERM U1195, Le Kremlin Bicêtre, France; and Department of Neurology (M.P.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - David Adams
- From Alnylam Pharmaceuticals (S.T., G.V.S., S.T., W.L.C., A.C., J.A.G., D.E., E.A., K.F., A.V., P.N.) , Cambridge, MA; MRC Centre for Neuromuscular Diseases (M.M.R.), UCL Queen Square Institute of Neurology, London, UK; AP-HP (D.A.), Université Paris-Saclay, CHU Bicêtre, INSERM U1195, Le Kremlin Bicêtre, France; and Department of Neurology (M.P.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Michael Polydefkis
- From Alnylam Pharmaceuticals (S.T., G.V.S., S.T., W.L.C., A.C., J.A.G., D.E., E.A., K.F., A.V., P.N.) , Cambridge, MA; MRC Centre for Neuromuscular Diseases (M.M.R.), UCL Queen Square Institute of Neurology, London, UK; AP-HP (D.A.), Université Paris-Saclay, CHU Bicêtre, INSERM U1195, Le Kremlin Bicêtre, France; and Department of Neurology (M.P.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Kevin Fitzgerald
- From Alnylam Pharmaceuticals (S.T., G.V.S., S.T., W.L.C., A.C., J.A.G., D.E., E.A., K.F., A.V., P.N.) , Cambridge, MA; MRC Centre for Neuromuscular Diseases (M.M.R.), UCL Queen Square Institute of Neurology, London, UK; AP-HP (D.A.), Université Paris-Saclay, CHU Bicêtre, INSERM U1195, Le Kremlin Bicêtre, France; and Department of Neurology (M.P.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Akshay Vaishnaw
- From Alnylam Pharmaceuticals (S.T., G.V.S., S.T., W.L.C., A.C., J.A.G., D.E., E.A., K.F., A.V., P.N.) , Cambridge, MA; MRC Centre for Neuromuscular Diseases (M.M.R.), UCL Queen Square Institute of Neurology, London, UK; AP-HP (D.A.), Université Paris-Saclay, CHU Bicêtre, INSERM U1195, Le Kremlin Bicêtre, France; and Department of Neurology (M.P.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Paul Nioi
- From Alnylam Pharmaceuticals (S.T., G.V.S., S.T., W.L.C., A.C., J.A.G., D.E., E.A., K.F., A.V., P.N.) , Cambridge, MA; MRC Centre for Neuromuscular Diseases (M.M.R.), UCL Queen Square Institute of Neurology, London, UK; AP-HP (D.A.), Université Paris-Saclay, CHU Bicêtre, INSERM U1195, Le Kremlin Bicêtre, France; and Department of Neurology (M.P.), Johns Hopkins University School of Medicine, Baltimore, MD.
| |
Collapse
|
31
|
Gupta N, Sahar T, Khullar D, Jain SK, Wajid S. Differential expression of MAP3K7 and TROPONIN C proteins and related perturbations in renal amyloidosis. Expert Rev Proteomics 2020; 17:685-694. [PMID: 33023362 DOI: 10.1080/14789450.2020.1833722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
OBJECTIVES Renal amyloidosis (RA) is a rare protein misfolding disorder that prompts progressive renal insufficiency. This study aimed to decipher proteomic changes in human sera to understand the pathophysiology and molecular mechanisms underlying the disease development, hence assisting in the diagnosis of RA. METHODS Serum proteomic analysis was performed using a gel-based approach followed by MALDI-TOF MS. RA patients with age and sex matched healthy volunteers were recruited from Max Super Speciality Hospital, New Delhi, India. RESULTS Proteome profiles of serum revealed eight differentially expressed proteins namely, Zinc finger protein 624, Protein FAM183A, Calcium-binding mitochondrial carrier protein Scamc-3, V-type proton ATPase 116 kDa subunit A isoforms 2, Protein TXNRD3NB, ATP - dependent RNA helicase, Troponin C and Mitogen-activated protein kinase kinase kinase 7. These proteins were reported first time in RA. The increased levels of MAP3K7 and TROPONIN C were validated by bio-layer interferometry and their diagnostic accuracy was evaluated by ROC curve analysis. The differentially expressed proteins were predominantly associated with vesicular trafficking, transcriptional regulation, metabolic processes, apoptotic process and mitochondrial metabolism. CONCLUSION The results indicate that these proteomic signatures may be considered as potential molecular targets for RA diagnostics and therapeutics subject to validation on large sample size. Abbreviations: AβP= Amyloid-beta protein, Aβ=Amyloid-beta, AL= Light chain amyloidosis, AA= Amyloid A, ALECT2= LECT2 amyloidosis, APS= Ammonium persulfate CKD= Chronic Kidney Diseases, EBRT= external beam radiation therapy, ESRD= End-Stage Kidney Disease, Glis2= Gli-similar 2, JNK= c-Jun NH 2-terminal kinase, MAPK= Mitogen-Activated Protein Kinase, MM=Multiple Myeloma, PHD= Prolyl hydroxylase, RA = Renal Amyloidosis, SAA= Serum Amyloid A, SD= Standard Deviation, Sepp= Selenoprotein, SCC= Squamous cell carcinoma, SDS= Sodium dodecyl sulfate, TEMED = tetramethyl ethylenediamine, TGF-Beta-1=Transforming growth factor- Beta-1, Trx = Thioredoxin, TrxR= Thioredoxin reductase.
Collapse
Affiliation(s)
- Nimisha Gupta
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard , New Delhi, India
| | - Tahreem Sahar
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard , New Delhi, India
| | - Dinesh Khullar
- Nephrology and Renal Transplant Medicine, Max Super Speciality Hospital , New Delhi, India
| | - S K Jain
- Department of Biochemistry, Hamdard Institute of Medical Sciences and Research, Jamia Hamdard , New Delhi, India
| | - Saima Wajid
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard , New Delhi, India
| |
Collapse
|
32
|
Chaudhary N, Sasaki R, Shuto T, Watanabe M, Kawahara T, Suico MA, Yokoyama T, Mizuguchi M, Kai H, Devkota HP. Transthyretin Amyloid Fibril Disrupting Activities of Extracts and Fractions from Juglans mandshurica Maxim. var. cordiformis (Makino) Kitam. Molecules 2019; 24:molecules24030500. [PMID: 30704121 PMCID: PMC6384717 DOI: 10.3390/molecules24030500] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/25/2019] [Accepted: 01/29/2019] [Indexed: 12/27/2022] Open
Abstract
Transthyretin-related amyloidosis is a slowly progressive disorder caused by deposition of insoluble amyloid plaques formed by fibrillization of mutant or defective transthyretin (TTR) monomers that leads to neurodegeneration and organ failure. Thus, any compound exhibiting TTR amyloid formation inhibitory activity or TTR amyloid fibril disrupting activity might be a potential candidate for the development of therapies for these disorders. Our aim in this study was the evaluation of the TTR amyloid fibril disrupting potential of extracts of leaves and immature fruits of two Juglans plants, i.e., Juglans mandshurica var. sachalinensis and Juglans mandshurica var. cordiformis. The TTR amyloid fibril disrupting activity was measured by Thioflavin-T (ThT) assay and PROTEOSTAT® Protein aggregation assay methods. A fifty percent acetone extract of the fruits of Juglans mandshurica var. cordiformis showed strong amyloid fibril disrupting activity, and was further fractionated using different solvents. Ethyl acetate and n-butanol fractions showed significant activity in both assays. Syringic acid was isolated and identified as main compound in both of these fractions; however, it did not show any activity. Furthermore, some of the previously reported compounds from Juglans plants including naphthoquinone derivatives and phenolic compounds were evaluated to identify the potential bioactive compounds. Among them, juglone, a naphthoquinone derivative showed promising activity. However, juglone also showed strong cytotoxicity in HEK293 cells. Thus, future studies should focus on the isolation and identification of naphthoquinone derivatives or other compounds from Juglans plan ts with potent bioactivity and low cytotoxicity.
Collapse
Affiliation(s)
- Niraj Chaudhary
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan.
- Program for Leading Graduate Schools, Health Life Science: Interdisciplinary and Glocal Oriented (HIGO) Program, Kumamoto University, Kumamoto 862-0973, Japan.
| | - Ryoko Sasaki
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan.
| | - Tsuyoshi Shuto
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan.
| | - Masato Watanabe
- Department of Medicinal Botany, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan.
| | - Teppei Kawahara
- Useful and Unique Natural Products for Drug Discovery and Development (UpRoD), Program for Building Regional Innovation Ecosystems at Kumamoto University, Kumamoto 862-0973, Japan.
| | - Mary Ann Suico
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan.
| | - Takeshi Yokoyama
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| | - Mineyuki Mizuguchi
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| | - Hirofumi Kai
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan.
| | - Hari Prasad Devkota
- Program for Leading Graduate Schools, Health Life Science: Interdisciplinary and Glocal Oriented (HIGO) Program, Kumamoto University, Kumamoto 862-0973, Japan.
- Department of Medicinal Botany, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan.
| |
Collapse
|
33
|
Chan GG, Koch CM, Connors LH. Serum Proteomic Variability Associated with Clinical Phenotype in Familial Transthyretin Amyloidosis (ATTRm). J Proteome Res 2017; 16:4104-4112. [PMID: 28922609 DOI: 10.1021/acs.jproteome.7b00479] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Transthyretin (TTR), normally a plasma circulating protein, can become misfolded and aggregated, ultimately leading to extracellular deposition of amyloid fibrils usually targeted to heart or nerve tissues. Referred to as TTR-associated amyloidoses (ATTR), this group of diseases is frequently life threatening and fatal if untreated. ATTR, caused by amyloid-forming variant TTR proteins (ATTRm) that arise from point mutations in the TTR gene, were classically referred to as familial amyloid cardiomyopathy (FAC) or familial amyloid polyneuropathy (FAP), reflecting the clinical phenotype. FAC and FAP are pathologies that can be challenging to diagnose as there are no definitive biomarkers of disease; moreover, disease-specific measures of progression are lacking, and treatment options are limited. Thus, the discovery of sensitive and specific indicators of disease has the potential to improve recognition, enable accurate measurement of amyloid progression and response to treatment, and reveal key information regarding FAC and FAP pathobiological mechanisms. In this study, the goal was to investigate serum proteomic features unique to FAC and FAP types of ATTRm. Multiple-reaction monitoring mass spectrometry (MRM-MS), a powerful technique in profiling proteomes, was used to measure the serum concentrations of 160 proteins in samples from FAC and FAP patients. Results were compared to data from healthy control sera obtained from individuals matched to age (≥60 years), gender (male), and race (Caucasian). Proteomic analyses of ATTRm (FAC and FAP) and control samples showed significant concentration differences in 107 of 192 (56%) of the serum proteins that were studied. In comparing FAC to FAP, differences in concentrations as well as interactions and functions of several proteins were identified as unique to each disease; significantly lower levels of TTR were specific to FAC, but not to FAP. Annotated functional clustering identified extracellular region, signal, and signal peptide as terms common to FAC and FAP. Conversely, disulfide bond was unique to FAC; secreted, glycosylation site: N-linked, glycosylation, glycoprotein, polymorphism, and sequence variant were associated solely with FAP. Predicted protein-protein associations in FAC were seen for reaction, binding, and activation processes; no associations were found in FAP. This study demonstrates significant proteomic differences between ATTRm patient and control sera, as well as ATTRm phenotype-associated variations in the circulating levels of several proteins including TTR. The identification of serum proteins unique to FAC and FAP may have diagnostic and prognostic utility and could possibly provide important clues about disease mechanisms.
Collapse
Affiliation(s)
- Gloria G Chan
- Amyloidosis Center and ‡Department of Pathology and Laboratory Medicine, Boston University School of Medicine , Boston, Massachusetts 02118, United States
| | - Clarissa M Koch
- Amyloidosis Center and ‡Department of Pathology and Laboratory Medicine, Boston University School of Medicine , Boston, Massachusetts 02118, United States
| | - Lawreen H Connors
- Amyloidosis Center and ‡Department of Pathology and Laboratory Medicine, Boston University School of Medicine , Boston, Massachusetts 02118, United States
| |
Collapse
|