1
|
Venter L, Alfaro AC, Lindeque JZ, Jansen van Rensburg PJ, Delorme NJ, Ragg NLC, Zamora LN. Characterising Sex-Specific Metabolite Differences in New Zealand Geoduck ( Panopea zelandica) Using LC-MS/MS Metabolomics. Animals (Basel) 2025; 15:860. [PMID: 40150389 PMCID: PMC11939408 DOI: 10.3390/ani15060860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/10/2025] [Accepted: 03/12/2025] [Indexed: 03/29/2025] Open
Abstract
Geoduck aquaculture is becoming a key component in meeting international market demand, given the natural and regulatory restrictions on wild geoduck supply. Geoduck clams are not sexually dimorphic, making it practically unfeasible to distinguish between males and females prior to a spawning event. To facilitate increased production of geoduck, a better understanding of reproductive biology and associated targeted bio-markers is required. In this study, metabolomics was utilised as a research tool to distinguish between metabolites related to male and female New Zealand geoduck (Panopea zelandica), gill and muscle samples collected from broodstock individuals housed in an experimental hatchery. A total of 17 metabolites were detected, showing significant differences between sexes. The findings indicate that metabolites associated with lipid biosynthesis were increased in female clams to support reproductive functions. An increase in carbohydrate-linked metabolic pathways was detected in male geoduck, arguably to sustain sperm production. Taurine has been reported as a biomarker to distinguish between male and female bivalves in other studies and is confirmed within this study, with significant elevation in male adductor muscle tissue. Moreover, male geoduck had increased purine and pyrimidine biosynthesis, supporting energy needs. This study provides useful sex biomarkers for future breeding strategies of P. zelandica.
Collapse
Affiliation(s)
- Leonie Venter
- Aquaculture Biotechnology Research Group, Faculty of Health and Environmental Sciences, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand;
| | - Andrea C. Alfaro
- Aquaculture Biotechnology Research Group, Faculty of Health and Environmental Sciences, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand;
| | - Jeremie Zander Lindeque
- Biomedical and Molecular Metabolism Research, Faculty of Natural and Agricultural Science, North-West University, Private Bag 1290, Potchefstroom 2520, South Africa; (J.Z.L.); (P.J.J.v.R.)
| | - Peet J. Jansen van Rensburg
- Biomedical and Molecular Metabolism Research, Faculty of Natural and Agricultural Science, North-West University, Private Bag 1290, Potchefstroom 2520, South Africa; (J.Z.L.); (P.J.J.v.R.)
| | - Natalí J. Delorme
- Cawthron Institute, Private Bag 2, Nelson 7042, New Zealand; (N.J.D.); (N.L.C.R.); (L.N.Z.)
| | - Norman L. C. Ragg
- Cawthron Institute, Private Bag 2, Nelson 7042, New Zealand; (N.J.D.); (N.L.C.R.); (L.N.Z.)
| | - Leonardo N. Zamora
- Cawthron Institute, Private Bag 2, Nelson 7042, New Zealand; (N.J.D.); (N.L.C.R.); (L.N.Z.)
| |
Collapse
|
2
|
Timmins-Schiffman EB, Khanna R, Brown T, Dilworth J, MacLean BX, Mudge MC, White SJ, Kenkel CD, Rodrigues LJ, Nunn BL, Padilla-Gamiño JL. Proteomic Plasticity in the Coral Montipora capitata Gamete Bundles after Parent Thermal Bleaching. J Proteome Res 2025; 24:1317-1328. [PMID: 39996506 DOI: 10.1021/acs.jproteome.4c00946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Coral reefs are vital to marine biodiversity and human livelihoods, but they face significant threats from climate change. Increased ocean temperatures drive massive "bleaching" events, during which corals lose their symbiotic algae and the important metabolic resources those algae provide. Proteomics is a crucial tool for understanding coral function and tolerance to thermal stress, as proteins drive physiological processes and accurately represent cell functional phenotypes. We examined the physiological condition of coral (Montipora capitata) gametes from parents that either experienced thermal bleaching or were nonbleached controls by comparing data dependent (DDA) and data independent (DIA) acquisition methods and peptide quantification (spectral counting and area-under-the-curve, AUC) strategies. For DDA, AUC captured a broader dynamic range than spectral counting. DIA yielded better coverage of low abundance proteins than DDA and a higher number of proteins, making it the more suitable method for detecting subtle, yet biologically significant, shifts in protein abundance in gamete bundles. Gametes from bleached corals showed a broadscale decrease in metabolic proteins involved in carbohydrate metabolism, citric acid cycle, and protein translation. This metabolic plasticity could reveal how organisms and their offspring acclimatize and adapt to future environmental stress, ultimately shaping the resilience and dynamics of coral populations.
Collapse
Affiliation(s)
- Emma B Timmins-Schiffman
- Department of Genome Sciences, University of Washington, 3720 15th Ave NE, Seattle, Washington 98195, United States
| | - Rayhan Khanna
- Department of Genome Sciences, University of Washington, 3720 15th Ave NE, Seattle, Washington 98195, United States
| | - Tanya Brown
- School of Aquatic and Fishery Sciences, University of Washington, 1122 NE Boat Street, Seattle, Washington 98195, United States
| | - Jenna Dilworth
- College of Letters, Arts and Sciences, University of Southern California Dornsife, AHF 231, 3616 Trousdale Pkwy, Los Angeles, California 90089, United States
| | - Brendan X MacLean
- Department of Genome Sciences, University of Washington, 3720 15th Ave NE, Seattle, Washington 98195, United States
| | - Miranda C Mudge
- Department of Genome Sciences, University of Washington, 3720 15th Ave NE, Seattle, Washington 98195, United States
| | - Samuel J White
- School of Aquatic and Fishery Sciences, University of Washington, 1122 NE Boat Street, Seattle, Washington 98195, United States
| | - Carly D Kenkel
- College of Letters, Arts and Sciences, University of Southern California Dornsife, AHF 231, 3616 Trousdale Pkwy, Los Angeles, California 90089, United States
| | - Lisa J Rodrigues
- College of Liberal Arts and Sciences, Villanova University, 800 E. Lancaster Avenue, Villanova, Pennsylvania 19085, United States
| | - Brook L Nunn
- Department of Genome Sciences, University of Washington, 3720 15th Ave NE, Seattle, Washington 98195, United States
| | - Jacqueline L Padilla-Gamiño
- School of Aquatic and Fishery Sciences, University of Washington, 1122 NE Boat Street, Seattle, Washington 98195, United States
| |
Collapse
|
3
|
Timmins-Schiffman E, Telish J, Field C, Monson C, Guzmán JM, Nunn BL, Young G, Forsgren K. An In-Depth Coho Salmon (Oncorhynchus kisutch) Ovarian Follicle Proteome Reveals Coordinated Changes Across Diverse Cellular Processes during the Transition From Primary to Secondary Growth. Proteomics 2025; 25:e202400311. [PMID: 39648474 DOI: 10.1002/pmic.202400311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 12/10/2024]
Abstract
Teleost fishes are a highly diverse, ecologically essential group of aquatic vertebrates that include coho salmon (Oncorhynchus kisutch). Coho are semelparous and all ovarian follicles develop synchronously. Owing to their ubiquitous distribution, teleosts provide critical sources of food worldwide through subsistence, commercial fisheries, and aquaculture. Enhancement of hatchery practices requires detailed knowledge of teleost reproductive physiology. Despite decades of research on teleost reproductive processes, an in-depth proteome of teleost ovarian development has yet to be generated. We have described a coho salmon ovarian proteome of over 5700 proteins, generated with data independent acquisition, revealing the proteins that change through the transition from primary to secondary ovarian follicle development. This transition is critical during the onset of puberty and for determining egg quality and embryonic development. Primary follicle development was marked by differential abundances of proteins in carbohydrate metabolism, protein turnover, and the complement pathway, suggesting elevated metabolism as the follicles develop through stages of oogenesis. The greatest proteomic shift occurred during the transition from primary to secondary follicle growth, with increased abundance of proteins underlying cortical alveoli formation, extracellular matrix reorganization, iron binding, and cell-cell signaling. This work provides a foundation for identifying biomarkers of salmon oocyte stage and quality.
Collapse
Affiliation(s)
| | - Jennifer Telish
- Fullerton, Biological Sciences, California State University, Fullterton, California, USA
| | - Chelsea Field
- Fullerton, Biological Sciences, California State University, Fullterton, California, USA
| | - Chris Monson
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, Washington, USA
| | - José M Guzmán
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, Washington, USA
| | - Brook L Nunn
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Graham Young
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, Washington, USA
| | - Kristy Forsgren
- Fullerton, Biological Sciences, California State University, Fullterton, California, USA
| |
Collapse
|
4
|
Timmins-Schiffman E, Duselis E, Brown T, Axworthy JB, Backstrom CH, Riffle M, Dilworth J, Kenkel CD, Rodrigues LJ, Nunn BL, Padilla-Gamiño JL. Reproductive resilience: pathways to gametogenic success in Montipora capitata after bleaching. Sci Rep 2024; 14:27765. [PMID: 39532979 PMCID: PMC11557575 DOI: 10.1038/s41598-024-78768-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
Thermal bleaching, or the loss of symbiotic algae that provide most energetic resources for the coral host, is an increasing threat to reefs worldwide and is projected to worsen with climate change. While bleaching is a well-recognized threat, the impact on the process of reproduction in bleaching survivors is not well resolved, despite being central to coral resilience. Montipora capitata can survive bleaching while completing a full gametogenic cycle, offering an ideal system to study gametogenic resilience and physiological tradeoffs. We experimentally bleached fragments of M. capitata colonies and followed their gametogenesis and physiological responses for 10 months (six time points). All bleached colonies produced gametes at the same time as controls, suggesting that reproductive processes were energetically prioritized. However, proteomic analysis revealed tradeoffs and delays in activating key physiological processes earlier in gametogenesis in areas such as skeletal growth and reproductive hormone synthesis. Tradeoffs during the gametogenic cycle, likely a direct response to thermal bleaching, resulted in smaller oocytes from bleached colonies, potentially indicating decreased transfer of parental resources to gametes. While gametogenesis is likely to continue in this species, it is unknown how the fecundity, synchrony of spawning, viability and success of future offspring may be impacted by future bleaching events.
Collapse
Affiliation(s)
- E Timmins-Schiffman
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA.
| | - E Duselis
- Consolidated Safety Services, Inc., Fairfax, VA, 22031, USA
- Genentech, South San Francisco, CA, 94080, USA
| | - T Brown
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, 98195, USA
- University of Texas at Tyler, Tyler, TX, 75799, USA
| | - J B Axworthy
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, 98195, USA
| | - C H Backstrom
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, 98195, USA
| | - M Riffle
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA
| | - J Dilworth
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - C D Kenkel
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - L J Rodrigues
- College of Liberal Arts and Sciences, Villanova University, Villanova, PA, 19085, USA
| | - B L Nunn
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA
| | - J L Padilla-Gamiño
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
5
|
Timmins-Schiffman E, Maas AE, Khanna R, Blanco-Bercial L, Huang E, Nunn BL. Removal of Exogenous Stimuli Reveals a Canalization of Circadian Physiology in a Vertically Migrating Copepod. J Proteome Res 2024; 23:2112-2123. [PMID: 38690632 DOI: 10.1021/acs.jproteome.4c00086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Diel rhythms are observed across taxa and are important for maintaining synchrony between the environment and organismal physiology. A striking example of this is the diel vertical migration undertaken by zooplankton, some of which, such as the 5 mm-long copepod Pleuromamma xiphias (P. xiphias), migrate hundreds of meters daily between the surface ocean and deeper waters. Some of the molecular pathways that underlie the expressed phenotype at different stages of this migration are entrained by environmental variables (e.g., day length and food availability), while others are regulated by internal clocks. We identified a series of proteomic biomarkers that vary across ocean DVM and applied them to copepods incubated in 24 h of darkness to assess circadian control. The dark-incubated copepods shared some proteomic similarities to the ocean-caught copepods (i.e., increased abundance of carbohydrate metabolism proteins at night). Shipboard-incubated copepods demonstrated a clearer distinction between night and day proteomic profiles, and more proteins were differentially abundant than in the in situ copepods, even in the absence of the photoperiod and other environmental cues. This pattern suggests that there is a canalization of rhythmic diel physiology in P. xiphias that reflects likely circadian clock control over diverse molecular pathways.
Collapse
Affiliation(s)
- Emma Timmins-Schiffman
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, United States
| | - Amy E Maas
- Bermuda Institute of Ocean Sciences, Arizona State University, St. George's 98C3+8F, Bermuda
| | - Rayhan Khanna
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, United States
- Cornell University, Ithaca, New York 14850, United States
| | - Leocadio Blanco-Bercial
- Bermuda Institute of Ocean Sciences, Arizona State University, St. George's 98C3+8F, Bermuda
| | - Eric Huang
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, United States
- Just-Evotec Biologics, Seattle, Washington 98109, United States
| | - Brook L Nunn
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
6
|
Maas AE, Timmins-Schiffman E, Tarrant AM, Nunn BL, Park J, Blanco-Bercial L. Diel metabolic patterns revealed by in situ transcriptome and proteome in a vertically migratory copepod. Mol Ecol 2024; 33:e17284. [PMID: 38258354 DOI: 10.1111/mec.17284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/06/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024]
Abstract
Zooplankton undergo a diel vertical migration (DVM) which exposes them to gradients of light, temperature, oxygen, and food availability on a predictable daily schedule. Disentangling the co-varying and potentially synergistic interactions on metabolic rates has proven difficult, despite the importance of this migration for the delivery of metabolic waste products to the distinctly different daytime (deep) and nighttime (surface) habitats. This study examines the transcriptomic and proteomic profiles of the circumglobal migratory copepod, Pleuromamma xiphias, over the diel cycle. The transcriptome showed that 96% of differentially expressed genes were upregulated during the middle of the day - the period often considered to be of lowest zooplankton activity. The changes in protein abundance were more spread out over time, peaking (42% of comparisons) in the early evening. Between 9:00 and 15:00, both the transcriptome and proteome datasets showed increased expression related to chitin synthesis and degradation. Additionally, at 09:00 and 22:00, there were increases in myosin and vitellogenin proteins, potentially linked to the stress of migration and/or reproductive investment. Based on protein abundances detected, there is an inferred switch in broad metabolic processes, shifting from electron transport system in the day to glycolysis and glycogen mobilization in the afternoon/evening. These observations provide evidence of the diel impact of DVM on transcriptomic and proteomic pathways that likely influence metabolic processes and subsequent excretion products, and clarify how this behaviour results in the direct rapid transport of waste metabolites from the surface to the deep ocean.
Collapse
Affiliation(s)
- Amy E Maas
- Bermuda Institute of Ocean Sciences, School of Ocean Futures, Arizona State University, St. George's, Bermuda
| | | | - Ann M Tarrant
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| | - Brook L Nunn
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Jea Park
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Leocadio Blanco-Bercial
- Bermuda Institute of Ocean Sciences, School of Ocean Futures, Arizona State University, St. George's, Bermuda
| |
Collapse
|
7
|
Blanco S, Morán P, Diz AP, Olabarria C, Vázquez E. Effects of short-term hyposalinity stress on four commercially important bivalves: A proteomic perspective. ENVIRONMENTAL RESEARCH 2022; 215:114371. [PMID: 36162473 DOI: 10.1016/j.envres.2022.114371] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/29/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Increased heavy rainfall can reduce salinity to values close to 0 in estuaries. Lethal and sublethal physiological and behavioural effects of decreases in salinity below ten have already been found to occur in the commercially important clam species Venerupis corrugata, Ruditapes decussatus and R. philippinarum and the cockle Cerastoderma edule, which generate an income of ∼74 million euros annually in Galicia (NW Spain). However, studies of the molecular response to hyposaline stress in bivalves are scarce. This 'shotgun' proteomics study evaluates changes in mantle-edge proteins subjected to short-term hyposaline episodes in two different months (March and May) during the gametogenic cycle. We found evidence that the mantle-edge proteome was more responsive to sampling time than to hyposalinity, strongly suggesting that reproductive stages condition the stress response. However, hyposalinity modulated proteome profiles in V. corrugata and C. edule in both months and R. philippinarum in May, involving proteins implicated in protein folding, redox homeostasis, detoxification, cytoskeleton modulation and the regulation of apoptotic, autophagic and lipid degradation pathways. However, proteins that are essential for an optimal osmotic stress response but which are highly energy demanding, such as chaperones, osmoprotectants and DNA repair factors, were found in small relative abundances. In both months in R. decussatus and in March in R. philippinarum, almost no differences between treatments were detected. Concordant trends in the relative abundance of stress response candidate proteins were also obtained in V. corrugata and C. edule in the different months, but not in Ruditapes spp., strongly suggesting that the osmotic stress response in bivalves is complex and possibly influenced by a combination of controlled (sampling time) and uncontrolled variables. In this paper, we report potential molecular targets for studying the response to osmotic stress, especially in the most osmosensitive native species C. edule and V. corrugata, and suggest factors to consider when searching for biomarkers of hyposaline stress in bivalves.
Collapse
Affiliation(s)
- S Blanco
- CIM - Centro de Investigación Mariña and Departamento de Bioquímica, Xenética e Inmunoloxía, Facultade de Bioloxía, Universidade de Vigo, 36310, Vigo, Spain.
| | - P Morán
- CIM - Centro de Investigación Mariña and Departamento de Bioquímica, Xenética e Inmunoloxía, Facultade de Bioloxía, Universidade de Vigo, 36310, Vigo, Spain
| | - A P Diz
- CIM - Centro de Investigación Mariña and Departamento de Bioquímica, Xenética e Inmunoloxía, Facultade de Bioloxía, Universidade de Vigo, 36310, Vigo, Spain
| | - C Olabarria
- CIM - Centro de Investigación Mariña and Departamento de Ecoloxía e Bioloxía Animal, Facultade de Ciencias do Mar, Universidade de Vigo, 36310, Vigo, Spain
| | - E Vázquez
- CIM - Centro de Investigación Mariña and Departamento de Ecoloxía e Bioloxía Animal, Facultade de Ciencias do Mar, Universidade de Vigo, 36310, Vigo, Spain
| |
Collapse
|
8
|
Translational proteomics and phosphoproteomics: Tissue to extracellular vesicles. Adv Clin Chem 2022; 112:119-153. [PMID: 36642482 DOI: 10.1016/bs.acc.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We are currently experiencing a rapidly developing era in terms of translational and clinical medical sciences. The relatively mature state of nucleic acid examination has significantly improved our understanding of disease mechanism and therapeutic potential of personalized treatment, but misses a large portion of phenotypic disease information. Proteins, in particular phosphorylation events that regulates many cellular functions, could provide real-time information for disease onset, progression and treatment efficacy. The technical advances in liquid chromatography and mass spectrometry have realized large-scale and unbiased proteome and phosphoproteome analyses with disease relevant samples such as tissues. However, tissue biopsy still has multiple shortcomings, such as invasiveness of sample collection, potential health risk for patients, difficulty in protein preservation and extreme heterogeneity. Recently, extracellular vesicles (EVs) have offered a great promise as a unique source of protein biomarkers for non-invasive liquid biopsy. Membranous EVs provide stable preservation of internal proteins and especially labile phosphoproteins, which is essential for effective routine biomarker detection. To aid efficient EV proteomic and phosphoproteomic analyses, recent developments showcase clinically-friendly EV techniques, facilitating diagnostic and therapeutic applications. Ultimately, we envision that with streamlined sample preparation from tissues and EVs proteomics and phosphoproteomics analysis will become routine in clinical settings.
Collapse
|
9
|
Chong L, Hsu CC, Zhu Y. Advances in mass spectrometry-based phosphoproteomics for elucidating abscisic acid signaling and plant responses to abiotic stress. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:6547-6557. [PMID: 35959917 DOI: 10.1093/jxb/erac324] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/23/2022] [Indexed: 06/15/2023]
Abstract
Abiotic stresses have significant impacts on crop yield and quality. Even though significant efforts during the past decade have been devoted to uncovering the core signaling pathways associated with the phytohormone abscisic acid (ABA) and abiotic stress in plants, abiotic stress signaling mechanisms in most crops remain largely unclear. The core components of the ABA signaling pathway, including early events in the osmotic stress-induced phosphorylation network, have recently been elucidated in Arabidopsis with the aid of phosphoproteomics technologies. We now know that SNF1-related kinases 2 (SnRK2s) are not only inhibited by the clade A type 2C protein phosphatases (PP2Cs) through dephosphorylation, but also phosphorylated and activated by upstream mitogen-activated protein kinase kinase kinases (MAP3Ks). Through describing the course of studies to elucidate abiotic stress and ABA signaling, we will discuss how we can take advantage of the latest innovations in mass-spectrometry-based phosphoproteomics and structural proteomics to boost our investigation of plant regulation and responses to ABA and abiotic stress.
Collapse
Affiliation(s)
- Leelyn Chong
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Chuan-Chih Hsu
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA
| | - Yingfang Zhu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
- Sanya Institute of Henan University, Sanya, Hainan, China
| |
Collapse
|
10
|
Crandall G, Elliott Thompson R, Eudeline B, Vadopalas B, Timmins-Schiffman E, Roberts S. Proteomic response of early juvenile Pacific oysters ( Crassostrea gigas) to temperature. PeerJ 2022; 10:e14158. [PMID: 36262416 PMCID: PMC9575672 DOI: 10.7717/peerj.14158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 09/08/2022] [Indexed: 12/03/2022] Open
Abstract
Pacific oysters (Crassostrea gigas) are a valuable aquaculture product that provides important ecosystem benefits. Among other threats, climate-driven changes in ocean temperature can impact oyster metabolism, survivorship, and immune function. We investigated how elevated temperature impacts larval oysters during settlement (19-33 days post-fertilization), using shotgun proteomics with data-independent acquisition to identify proteins present in the oysters after 2 weeks of exposure to 23 °C or 29 °C. Oysters maintained at elevated temperatures were larger and had a higher settlement rate, with 86% surviving to the end of the experiment; these oysters also had higher abundance trends of proteins related to metabolism and growth. Oysters held at 23 °C were smaller, had a decreased settlement rate, displayed 100% mortality, and had elevated abundance trends of proteins related to immune response. This novel use of proteomics was able to capture characteristic shifts in protein abundance that hint at important differences in the phenotypic response of Pacific oysters to temperature regimes. Additionally, this work has produced a robust proteomic product that will be the basis for future research on bivalve developmental processes.
Collapse
Affiliation(s)
- Grace Crandall
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, United States
| | | | | | - Brent Vadopalas
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, United States
| | | | - Steven Roberts
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, United States
| |
Collapse
|
11
|
Gajahin Gamage NT, Miyashita R, Takahashi K, Asakawa S, Senevirathna JDM. Proteomic Applications in Aquatic Environment Studies. Proteomes 2022; 10:proteomes10030032. [PMID: 36136310 PMCID: PMC9505238 DOI: 10.3390/proteomes10030032] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/28/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Genome determines the unique individualities of organisms; however, proteins play significant roles in the generation of the colorful life forms below water. Aquatic systems are usually complex and multifaceted and can take on unique modifications and adaptations to environmental changes by altering proteins at the cellular level. Proteomics is an essential strategy for exploring aquatic ecosystems due to the diverse involvement of proteins, proteoforms, and their complexity in basic and advanced cellular functions. Proteomics can expedite the analysis of molecular mechanisms underlying biological processes in an aquatic environment. Previous proteomic studies on aquatic environments have mainly focused on pollution assessments, ecotoxicology, their role in the food industry, and extraction and identification of natural products. Aquatic protein biomarkers have been comprehensively reported and are currently extensively applied in the pharmaceutical and medical industries. Cellular- and molecular-level responses of organisms can be used as indicators of environmental changes and stresses. Conversely, environmental changes are expedient in predicting aquatic health and productivity, which are crucial for ecosystem management and conservation. Recent advances in proteomics have contributed to the development of sustainable aquaculture, seafood safety, and high aquatic food production. Proteomic approaches have expanded to other aspects of the aquatic environment, such as protein fingerprinting for species identification. In this review, we encapsulated current proteomic applications and evaluated the potential strengths, weaknesses, opportunities, and threats of proteomics for future aquatic environmental studies. The review identifies both pros and cons of aquatic proteomics and projects potential challenges and recommendations. We postulate that proteomics is an emerging, powerful, and integrated omics approach for aquatic environmental studies.
Collapse
Affiliation(s)
- Nadeeka Thushari Gajahin Gamage
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
- Department of Animal Science, Faculty of Animal Science and Export Agriculture, Uva Wellassa University, Badulla 90000, Sri Lanka
| | - Rina Miyashita
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Kazutaka Takahashi
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Shuichi Asakawa
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Jayan Duminda Mahesh Senevirathna
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
- Department of Animal Science, Faculty of Animal Science and Export Agriculture, Uva Wellassa University, Badulla 90000, Sri Lanka
- Correspondence:
| |
Collapse
|
12
|
Physiological and molecular responses of lobe coral indicate nearshore adaptations to anthropogenic stressors. Sci Rep 2021; 11:3423. [PMID: 33564085 PMCID: PMC7873073 DOI: 10.1038/s41598-021-82569-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/18/2021] [Indexed: 01/08/2023] Open
Abstract
Corals in nearshore marine environments are increasingly exposed to reduced water quality, which is the primary local threat to Hawaiian coral reefs. It is unclear if corals surviving in such conditions have adapted to withstand sedimentation, pollutants, and other environmental stressors. Lobe coral populations from Maunalua Bay, Hawaii showed clear genetic differentiation between the 'polluted, high-stress' nearshore site and the 'less polluted, lower-stress' offshore site. To understand the driving force of the observed genetic partitioning, reciprocal transplant and common-garden experiments were conducted to assess phenotypic differences between these two populations. Physiological responses differed significantly between the populations, revealing more stress-resilient traits in the nearshore corals. Changes in protein profiles highlighted the inherent differences in the cellular metabolic processes and activities between the two; nearshore corals did not significantly alter their proteome between the sites, while offshore corals responded to nearshore transplantation with increased abundances of proteins associated with detoxification, antioxidant defense, and regulation of cellular metabolic processes. The response differences across multiple phenotypes between the populations suggest local adaptation of nearshore corals to reduced water quality. Our results provide insight into coral’s adaptive potential and its underlying processes, and reveal potential protein biomarkers that could be used to predict resiliency.
Collapse
|
13
|
Carrera M, Piñeiro C, Martinez I. Proteomic Strategies to Evaluate the Impact of Farming Conditions on Food Quality and Safety in Aquaculture Products. Foods 2020; 9:E1050. [PMID: 32759674 PMCID: PMC7466198 DOI: 10.3390/foods9081050] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 02/08/2023] Open
Abstract
This review presents the primary applications of various proteomic strategies to evaluate the impact of farming conditions on food quality and safety in aquaculture products. Aquaculture is a quickly growing sector that represents 47% of total fish production. Food quality, dietary management, fish welfare, the stress response, food safety, and antibiotic resistance, which are covered by this review, are among the primary topics in which proteomic techniques and strategies are being successfully applied. The review concludes by outlining future directions and potential perspectives.
Collapse
Affiliation(s)
- Mónica Carrera
- Food Technology Department, Institute of Marine Research (IIM), Spanish National Research Council (CSIC), 36208 Vigo, Pontevedra, Spain
| | - Carmen Piñeiro
- Scientific Instrumentation and Quality Service (SICIM), Institute of Marine Research (IIM), Spanish National Research Council (CSIC), 36208 Vigo, Pontevedra, Spain;
| | - Iciar Martinez
- Research Centre for Experimental Marine Biology and Biotechnology—Plentzia Marine Station (PiE), University of the Basque Country UPV/EHU, 48620 Plentzia, Spain;
- IKERBASQUE Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
14
|
Timmins-Schiffman E, Guzmán JM, Elliott Thompson R, Vadopalas B, Eudeline B, Roberts SB. Larval Geoduck (Panopea generosa) Proteomic Response to Ciliates. Sci Rep 2020; 10:6042. [PMID: 32269285 PMCID: PMC7142153 DOI: 10.1038/s41598-020-63218-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 01/31/2020] [Indexed: 11/21/2022] Open
Abstract
The innate immune response is active in invertebrate larvae from early development. Induction of immune response pathways may occur as part of the natural progression of larval development, but an up-regulation of pathways can also occur in response to a pathogen. Here, we took advantage of a protozoan ciliate infestation of a larval geoduck clam culture in a commercial hatchery to investigate the molecular underpinnings of the innate immune response of the larvae to the pathogen. Larval proteomes were analyzed on days 4-10 post-fertilization; ciliates were present on days 8 and 10 post-fertilization. Through comparisons with larval cultures that did not encounter ciliates, proteins implicated in the response to ciliate presence were identified using mass spectrometry-based proteomics. Ciliate response proteins included many associated with ribosomal synthesis and protein translation, suggesting the importance of protein synthesis during the larval immune response. There was also an increased abundance of proteins typically associated with the stress and immune responses during ciliate exposure, such as heat shock proteins, glutathione metabolism, and the reactive oxygen species response. These findings provide a basic understanding of the bivalve molecular response to a mortality-inducing ciliate and improved characterization of the ontogenetic development of the innate immune response.
Collapse
Affiliation(s)
- Emma Timmins-Schiffman
- University of Washington, Department of Genome Sciences, 3720 15th Ave NE, Seattle, WA, 98195, United States
| | - José M Guzmán
- University of Washington, School of Aquatic and Fishery Sciences, 1122 Boat St., Seattle, WA, 98195, United States
| | - Rhonda Elliott Thompson
- Taylor Shellfish Hatchery, 701 Broadspit Rd., Quilcene, WA, 98376, United States
- Mason County Public Health, 415N 6th St., Shelton, WA, 98584, United States
| | - Brent Vadopalas
- University of Washington, School of Aquatic and Fishery Sciences, 1122 Boat St., Seattle, WA, 98195, United States
| | - Benoit Eudeline
- Taylor Shellfish Hatchery, 701 Broadspit Rd., Quilcene, WA, 98376, United States
| | - Steven B Roberts
- University of Washington, School of Aquatic and Fishery Sciences, 1122 Boat St., Seattle, WA, 98195, United States.
| |
Collapse
|
15
|
Timmins‐Schiffman E, Guzmán JM, Elliott Thompson R, Vadopalas B, Eudeline B, Roberts SB. Dynamic response in the larval geoduck ( Panopea generosa) proteome to elevated pCO 2. Ecol Evol 2020; 10:185-197. [PMID: 31988722 PMCID: PMC6972802 DOI: 10.1002/ece3.5885] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/15/2019] [Accepted: 11/10/2019] [Indexed: 12/20/2022] Open
Abstract
Pacific geoducks (Panopea generosa) are clams found along the northeast Pacific coast where they are important components of coastal and estuarine ecosystems and a major aquaculture product. The Pacific coastline, however, is also experiencing rapidly changing ocean habitat, including significant reductions in pH. To better understand the physiological impact of ocean acidification on geoduck clams, we characterized for the first time the proteomic profile of this bivalve during larval development and compared it to that of larvae exposed to low pH conditions. Geoduck larvae were reared at pH 7.5 (ambient) or pH 7.1 in a commercial shellfish hatchery from day 6 to day 19 postfertilization and sampled at six time points for an in-depth proteomics analysis using high-resolution data-dependent analysis. Larvae reared at low pH were smaller than those reared at ambient pH, especially in the prodissoconch II phase of development, and displayed a delay in their competency for settlement. Proteomic profiles revealed that metabolic, cell cycle, and protein turnover pathways differed between the two pH and suggested that differing phenotypic outcomes between pH 7.5 and 7.1 are likely due to environmental disruptions to the timing of physiological events. In summary, ocean acidification results in elevated energetic demand on geoduck larvae, resulting in delayed development and disruptions to normal molecular developmental pathways, such as carbohydrate metabolism, cell growth, and protein synthesis.
Collapse
Affiliation(s)
| | - José M. Guzmán
- School of Aquatic and Fishery SciencesUniversity of WashingtonSeattleWAUSA
| | - Rhonda Elliott Thompson
- School of Aquatic and Fishery SciencesUniversity of WashingtonSeattleWAUSA
- Taylor Shellfish HatcheryQuilceneWAUSA
- Mason County Public HealthSheltonWAUSA
| | | | | | - Steven B. Roberts
- School of Aquatic and Fishery SciencesUniversity of WashingtonSeattleWAUSA
| |
Collapse
|
16
|
Spencer LH, Horwith M, Lowe AT, Venkataraman YR, Timmins-Schiffman E, Nunn BL, Roberts SB. Pacific geoduck (Panopea generosa) resilience to natural pH variation. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2019; 30:91-101. [PMID: 30818101 DOI: 10.1016/j.cbd.2019.01.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 01/10/2019] [Accepted: 01/14/2019] [Indexed: 02/02/2023]
Abstract
Pacific geoduck aquaculture is a growing industry, however, little is known about how geoduck respond to varying environmental conditions, or how the industry will fare under projected climate conditions. To understand how geoduck production may be impacted by low pH associated with ocean acidification, multi-faceted environmental heterogeneity needs to be included to understand species and community responses. In this study, eelgrass habitats and environmental heterogeneity across four estuarine bays were leveraged to examine low pH effects on geoduck under different natural regimes, using targeted proteomics to assess physiology. Juvenile geoduck were deployed in eelgrass and adjacent unvegetated habitats for 30 days while pH, temperature, dissolved oxygen, and salinity were monitored. Across the four bays, pH was lower in unvegetated habitats compared to eelgrass habitats. However this did not impact geoduck growth, survival, or proteomic abundance patterns in gill tissue. Temperature and dissolved oxygen differences across all locations corresponded to differences in growth and targeted protein abundance patterns. Specifically, three protein abundance levels (trifunctional-enzyme β-subunit, puromycin-sensitive aminopeptidase, and heat shock protein 90-α) and shell growth positively correlated with dissolved oxygen variability and inversely correlated with mean temperature. These results demonstrate that geoduck may be resilient to low pH in a natural setting, but other abiotic factors (i.e. temperature, dissolved oxygen variability) may have a greater influence on geoduck physiology. In addition this study contributes to the understanding of how eelgrass patches influences water chemistry.
Collapse
Affiliation(s)
- Laura H Spencer
- University of Washington, School of Aquatic and Fishery Sciences, 1122 NE Boat St, Seattle, WA 98105, United States
| | - Micah Horwith
- Washington State Department of Natural Resources, 1111 Washington St SE, MS 47027, Olympia, WA 98504, United States
| | - Alexander T Lowe
- University of Washington, Biological Sciences, 24 Kincaid Hall, Seattle, WA 98105, United States
| | - Yaamini R Venkataraman
- University of Washington, School of Aquatic and Fishery Sciences, 1122 NE Boat St, Seattle, WA 98105, United States
| | - Emma Timmins-Schiffman
- University of Washington, Genome Sciences, William H. Foege Hall, 3720 15th Ave NE, Seattle, WA 98195, United States
| | - Brook L Nunn
- University of Washington, Genome Sciences, William H. Foege Hall, 3720 15th Ave NE, Seattle, WA 98195, United States
| | - Steven B Roberts
- University of Washington, School of Aquatic and Fishery Sciences, 1122 NE Boat St, Seattle, WA 98105, United States.
| |
Collapse
|
17
|
Maas AE, Blanco-Bercial L, Lo A, Tarrant AM, Timmins-Schiffman E. Variations in Copepod Proteome and Respiration Rate in Association with Diel Vertical Migration and Circadian Cycle. THE BIOLOGICAL BULLETIN 2018; 235:30-42. [PMID: 30160998 DOI: 10.1086/699219] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The diel vertical migration of zooplankton is a process during which individuals spend the night in surface waters and retreat to depth during the daytime, with substantial implications for carbon transport and the ecology of midwater ecosystems. The physiological consequences of this daily pattern have, however, been poorly studied beyond investigations of speed and the energetic cost of swimming. Many other processes are likely influenced, such as fuel use, energetic trade-offs, underlying diel (circadian) rhythms, and antioxidant responses. Using a new reference transcriptome, proteomic analyses were applied to compare the physiological state of a migratory copepod, Pleuromamma xiphias, immediately after arriving to the surface at night and six hours later. Oxygen consumption was monitored semi-continuously to explore underlying cyclical patterns in metabolic rate under dark-dark conditions. The proteomic analysis suggests a distinct shift in physiology that reflects migratory exertion and changes in metabolism. These proteomic analyses are supported by the respiration experiments, which show an underlying cycle in metabolic rate, with a peak at dawn. This project generates molecular tools (transcriptome and proteome) that will allow for more detailed understanding of the underlying physiological processes that influence and are influenced by diel vertical migration. Further, these studies suggest that P. xiphias is a tractable model for continuing investigations of circadian and diel vertical migration influences on plankton physiology. Previous studies did not account for this cyclic pattern of respiration and may therefore have unrepresented respiratory carbon fluxes from copepods by about 24%.
Collapse
Key Words
- ACN, acetonitrile
- ANOSIM, analysis of similarity
- BATS, Bermuda Atlantic Time Series
- BUSCO, Benchmarking Universal Single-Copy Orthologs
- DM, dry mass
- DVM, diel vertical migration
- FFT-NLLS, fast Fourier transform non-linear least squares
- GO, gene ontology
- MESA, maximum entropy spectral analysis
- NAD+, oxidized nicotinamide adenine dinucleotide
- NAD, nicotinamide adenine dinucleotide
- NADH, reduced nicotinamide adenine dinucleotide
- NMDS, non-metric multidimensional scaling
- NSAF, normalized spectral abundance factor
- RT, room temperature
- TTP, Trans Proteomic Pipeline
- nr, non-redundant database
Collapse
|