1
|
Lee C, Quintana A, Suppanz I, Gomez-Auli A, Mittler G, Cissé II. Light-induced targeting enables proteomics on endogenous condensates. Cell 2024; 187:7079-7090.e17. [PMID: 39426378 PMCID: PMC11793346 DOI: 10.1016/j.cell.2024.09.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 07/23/2024] [Accepted: 09/26/2024] [Indexed: 10/21/2024]
Abstract
Endogenous condensates with transient constituents are notoriously difficult to study with common biological assays like mass spectrometry and other proteomics profiling. Here, we report a method for light-induced targeting of endogenous condensates (LiTEC) in living cells. LiTEC combines the identification of molecular zip codes that target the endogenous condensates with optogenetics to enable controlled and reversible partitioning of an arbitrary cargo, such as enzymes commonly used in proteomics, into the condensate in a blue light-dependent manner. We demonstrate a proof of concept by combining LiTEC with proximity-based biotinylation (BioID) and uncover putative components of transcriptional condensates in mouse embryonic stem cells. Our approach opens the road to genome-wide functional studies of endogenous condensates.
Collapse
Affiliation(s)
- Choongman Lee
- Max Planck Institute for Immunobiology and Epigenetics, Freiburg 79108, Germany; Department of Biological Physics, Max Planck Institute for Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Andrea Quintana
- Max Planck Institute for Immunobiology and Epigenetics, Freiburg 79108, Germany; Department of Biological Physics, Max Planck Institute for Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Ida Suppanz
- Max Planck Institute for Immunobiology and Epigenetics, Freiburg 79108, Germany; Proteomics Facility, Max Planck Institute for Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Alejandro Gomez-Auli
- Max Planck Institute for Immunobiology and Epigenetics, Freiburg 79108, Germany; Proteomics Facility, Max Planck Institute for Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Gerhard Mittler
- Max Planck Institute for Immunobiology and Epigenetics, Freiburg 79108, Germany; Proteomics Facility, Max Planck Institute for Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Ibrahim I Cissé
- Max Planck Institute for Immunobiology and Epigenetics, Freiburg 79108, Germany; Department of Biological Physics, Max Planck Institute for Immunobiology and Epigenetics, Freiburg 79108, Germany.
| |
Collapse
|
2
|
Chen HR, Sun Y, Mittler G, Rumpf T, Shvedunova M, Grosschedl R, Akhtar A. MOF-mediated PRDX1 acetylation regulates inflammatory macrophage activation. Cell Rep 2024; 43:114682. [PMID: 39207899 DOI: 10.1016/j.celrep.2024.114682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 06/27/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024] Open
Abstract
Signaling-dependent changes in protein phosphorylation are critical to enable coordination of transcription and metabolism during macrophage activation. However, the role of acetylation in signal transduction during macrophage activation remains obscure. Here, we identify the redox signaling regulator peroxiredoxin 1 (PRDX1) as a substrate of the lysine acetyltransferase MOF. MOF acetylates PRDX1 at lysine 197, preventing hyperoxidation and thus maintaining its activity under stress. PRDX1 K197ac responds to inflammatory signals, decreasing rapidly in mouse macrophages stimulated with bacterial lipopolysaccharides (LPSs) but not with interleukin (IL)-4 or IL-10. The LPS-induced decrease of PRDX1 K197ac elevates cellular hydrogen peroxide accumulation and augments ERK1/2, but not p38 or AKT, phosphorylation. Concomitantly, diminished PRDX1 K197ac stimulates glycolysis, potentiates H3 serine 28 phosphorylation, and ultimately enhances the production of pro-inflammatory mediators such as IL-6. Our work reveals a regulatory role for redox protein acetylation in signal transduction and coordinating metabolic and transcriptional programs during inflammatory macrophage activation.
Collapse
Affiliation(s)
- Hui-Ru Chen
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Baden-Württemberg, Germany; Albert-Ludwigs-University Freiburg, Faculty of Biology, Freiburg, Baden-Württemberg, Germany
| | - Yidan Sun
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Baden-Württemberg, Germany
| | - Gerhard Mittler
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Baden-Württemberg, Germany
| | - Tobias Rumpf
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Baden-Württemberg, Germany
| | - Maria Shvedunova
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Baden-Württemberg, Germany
| | - Rudolf Grosschedl
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Baden-Württemberg, Germany
| | - Asifa Akhtar
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Baden-Württemberg, Germany.
| |
Collapse
|
3
|
Mihlan M, Wissmann S, Gavrilov A, Kaltenbach L, Britz M, Franke K, Hummel B, Imle A, Suzuki R, Stecher M, Glaser KM, Lorentz A, Carmeliet P, Yokomizo T, Hilgendorf I, Sawarkar R, Diz-Muñoz A, Buescher JM, Mittler G, Maurer M, Krause K, Babina M, Erpenbeck L, Frank M, Rambold AS, Lämmermann T. Neutrophil trapping and nexocytosis, mast cell-mediated processes for inflammatory signal relay. Cell 2024; 187:5316-5335.e28. [PMID: 39096902 DOI: 10.1016/j.cell.2024.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 04/10/2024] [Accepted: 07/08/2024] [Indexed: 08/05/2024]
Abstract
Neutrophils are sentinel immune cells with essential roles for antimicrobial defense. Most of our knowledge on neutrophil tissue navigation derived from wounding and infection models, whereas allergic conditions remained largely neglected. Here, we analyzed allergen-challenged mouse tissues and discovered that degranulating mast cells (MCs) trap living neutrophils inside them. MCs release the attractant leukotriene B4 to re-route neutrophils toward them, thus exploiting a chemotactic system that neutrophils normally use for intercellular communication. After MC intracellular trap (MIT) formation, neutrophils die, but their undigested material remains inside MC vacuoles over days. MCs benefit from MIT formation, increasing their functional and metabolic fitness. Additionally, they are more pro-inflammatory and can exocytose active neutrophilic compounds with a time delay (nexocytosis), eliciting a type 1 interferon response in surrounding macrophages. Together, our study highlights neutrophil trapping and nexocytosis as MC-mediated processes, which may relay neutrophilic features over the course of chronic allergic inflammation.
Collapse
Affiliation(s)
- Michael Mihlan
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany; Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation (ZMBE), University of Münster, Münster 48149, Germany.
| | - Stefanie Wissmann
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany; Institute for Biomechanics, ETH Zürich, Zürich 8092, Switzerland
| | - Alina Gavrilov
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany; Roche Pharma Research and Early Development (pRED), Cardiovascular, Metabolism, Immunology, Infectious Diseases and Ophthalmology (CMI2O), Roche Innovation Center, Basel 4070, Switzerland
| | - Lukas Kaltenbach
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Marie Britz
- Department of Dermatology, Universitätsklinikum Münster, Münster 48149, Germany
| | - Kristin Franke
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, Berlin 12203, Germany; Charité-Universitätsmedizin Berlin, Institute of Allergology, Berlin 12203, Germany
| | - Barbara Hummel
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Andrea Imle
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg 69117, Germany
| | - Ryo Suzuki
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Manuel Stecher
- Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation (ZMBE), University of Münster, Münster 48149, Germany
| | - Katharina M Glaser
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany; Institut Curie, PSL Research University, INSERM U932, Paris 75005, France
| | - Axel Lorentz
- Institute of Nutritional Medicine, University of Hohenheim, Stuttgart 70593, Germany
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, VIB, Leuven 3000, Belgium; Center for Biotechnology, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates
| | - Takehiko Yokomizo
- Department of Biochemistry, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Ingo Hilgendorf
- Department of Cardiology and Angiology, University Heart Center and Faculty of Medicine, University of Freiburg, Freiburg 79106, Germany
| | - Ritwick Sawarkar
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany; Medical Research Council (MRC) Toxicology Unit and Department of Genetics, University of Cambridge, Cambridge CB21QR, UK
| | - Alba Diz-Muñoz
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg 69117, Germany
| | - Joerg M Buescher
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Gerhard Mittler
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Marcus Maurer
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, Berlin 12203, Germany; Charité-Universitätsmedizin Berlin, Institute of Allergology, Berlin 12203, Germany
| | - Karoline Krause
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, Berlin 12203, Germany; Charité-Universitätsmedizin Berlin, Institute of Allergology, Berlin 12203, Germany
| | - Magda Babina
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, Berlin 12203, Germany; Charité-Universitätsmedizin Berlin, Institute of Allergology, Berlin 12203, Germany
| | - Luise Erpenbeck
- Department of Dermatology, Universitätsklinikum Münster, Münster 48149, Germany
| | - Marcus Frank
- Medical Biology and Electron Microscopy Center, Rostock University Medical Center, Rostock 18057, Germany; Department Life, Light and Matter, Rostock University, Rostock 18051, Germany
| | - Angelika S Rambold
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Tim Lämmermann
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany; Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation (ZMBE), University of Münster, Münster 48149, Germany.
| |
Collapse
|
4
|
Wogram E, Sümpelmann F, Dong W, Rawat E, Fernández Maestre I, Fu D, Braswell B, Khalil A, Buescher JM, Mittler G, Borner GHH, Vlachos A, Tholen S, Schilling O, Bell GW, Rambold AS, Akhtar A, Schnell O, Beck J, Abu-Remaileh M, Prinz M, Jaenisch R. Rapid phagosome isolation enables unbiased multiomic analysis of human microglial phagosomes. Immunity 2024; 57:2216-2231.e11. [PMID: 39151426 DOI: 10.1016/j.immuni.2024.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 01/25/2024] [Accepted: 07/19/2024] [Indexed: 08/19/2024]
Abstract
Microglia are the resident macrophages of the central nervous system (CNS). Their phagocytic activity is central during brain development and homeostasis-and in a plethora of brain pathologies. However, little is known about the composition, dynamics, and function of human microglial phagosomes under homeostatic and pathological conditions. Here, we developed a method for rapid isolation of pure and intact phagosomes from human pluripotent stem cell-derived microglia under various in vitro conditions, and from human brain biopsies, for unbiased multiomic analysis. Phagosome profiling revealed that microglial phagosomes were equipped to sense minute changes in their environment and were highly dynamic. We detected proteins involved in synapse homeostasis, or implicated in brain pathologies, and identified the phagosome as the site where quinolinic acid was stored and metabolized for de novo nicotinamide adenine dinucleotide (NAD+) generation in the cytoplasm. Our findings highlight the central role of phagosomes in microglial functioning in the healthy and diseased brain.
Collapse
Affiliation(s)
- Emile Wogram
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Institute of Neuropathology, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Felix Sümpelmann
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Wentao Dong
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA; The Institute for Chemistry, Engineering & Medicine for Human Health (Sarafan ChEM-H), Stanford University, Stanford, CA 94305, USA
| | - Eshaan Rawat
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA; The Institute for Chemistry, Engineering & Medicine for Human Health (Sarafan ChEM-H), Stanford University, Stanford, CA 94305, USA
| | | | - Dongdong Fu
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Brandyn Braswell
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Andrew Khalil
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; The Wyss Institute for Biologically Inspired Engineering, Boston, MA 02115, USA; Harvard John A. Paulson School of Engineering and Applied Sciences, Boston, MA 02134, USA
| | - Joerg M Buescher
- Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108 Freiburg, Germany
| | - Gerhard Mittler
- Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108 Freiburg, Germany
| | - Georg H H Borner
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Andreas Vlachos
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Stefan Tholen
- Institute of Surgical Pathology, Medical Center, University of Freiburg, 79106 Freiburg, Germany
| | - Oliver Schilling
- Institute of Surgical Pathology, Medical Center, University of Freiburg, 79106 Freiburg, Germany
| | - George W Bell
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Angelika S Rambold
- Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108 Freiburg, Germany
| | - Asifa Akhtar
- Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108 Freiburg, Germany
| | - Oliver Schnell
- Department of Neurosurgery, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Jürgen Beck
- Department of Neurosurgery, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Monther Abu-Remaileh
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA; The Institute for Chemistry, Engineering & Medicine for Human Health (Sarafan ChEM-H), Stanford University, Stanford, CA 94305, USA
| | - Marco Prinz
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies and Centre for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, 79104 Freiburg, Germany
| | - Rudolf Jaenisch
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| |
Collapse
|
5
|
Yuan B, Zhang Q, Zhang B, Li J, Chen W, Zhao Y, Dong W, Zhang Y, Zhao X, Gao Y. Exploring the Mechanism of H 2S Synthesis in Male Bactrian Camel Poll Glands Based on Data Independent Acquisition Proteomics and Non-Targeted Metabolomics. Int J Mol Sci 2024; 25:7700. [PMID: 39062942 PMCID: PMC11276878 DOI: 10.3390/ijms25147700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/28/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
During estrus, the poll glands of male Bactrian Camels (Camelus Bactrianus) become slightly raised, exuding a large amount of pale yellow watery secretion with a characteristic odor that may contain hydrogen sulfide (H2S). However, whether H2S can be synthesized in the poll glands of male Bactrian Camels and its role in inducing camel estrus remains unclear. This study aimed to identify differentially expressed proteins (DEPs) and signaling pathways in the poll gland tissues of male Bactrian Camels using data independent acquisition (DIA) proteomics. Additionally, gas chromatography-mass spectrometry (GC-MS) was performed to identify differentially expressed metabolites (DEMs) in the neck hair containing secretions during estrus in male Bactrian Camels, to explore the specific expression patterns and mechanisms in the poll glands of camels during estrus. The results showed that cystathionine-γ-lyase (CTH) and cystathionine-β-synthase (CBS), which are closely related to H2S synthesis in camel poll glands during estrus, were mainly enriched in glycine, serine, and threonine metabolism, amino acid biosynthesis, and metabolic pathways. In addition, both enzymes were widely distributed and highly expressed in the acinar cells of poll gland tissues in camels during estrus. Meanwhile, the neck hair secretion contains high levels of amino acids, especially glycine, serine, threonine, and cystathionine, which are precursors for H2S biosynthesis. These results demonstrate that the poll glands of male Bactrian Camels can synthesize and secrete H2S during estrus. This study provides a basis for exploring the function and mechanism of H2S in the estrus of Bactrian Camels.
Collapse
Affiliation(s)
- Bao Yuan
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (B.Y.); (J.L.); (W.C.); (Y.Z.); (Y.Z.); (X.Z.)
- Gansu Key Laboratory of Animal Reproductive Physiology and Reproductive Regulation, Lanzhou 730070, China; (B.Z.); (W.D.)
| | - Quanwei Zhang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (B.Y.); (J.L.); (W.C.); (Y.Z.); (Y.Z.); (X.Z.)
- Gansu Key Laboratory of Animal Reproductive Physiology and Reproductive Regulation, Lanzhou 730070, China; (B.Z.); (W.D.)
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Bohao Zhang
- Gansu Key Laboratory of Animal Reproductive Physiology and Reproductive Regulation, Lanzhou 730070, China; (B.Z.); (W.D.)
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Jianfu Li
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (B.Y.); (J.L.); (W.C.); (Y.Z.); (Y.Z.); (X.Z.)
- Gansu Key Laboratory of Animal Reproductive Physiology and Reproductive Regulation, Lanzhou 730070, China; (B.Z.); (W.D.)
| | - Wenli Chen
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (B.Y.); (J.L.); (W.C.); (Y.Z.); (Y.Z.); (X.Z.)
- Gansu Key Laboratory of Animal Reproductive Physiology and Reproductive Regulation, Lanzhou 730070, China; (B.Z.); (W.D.)
| | - Yu Zhao
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (B.Y.); (J.L.); (W.C.); (Y.Z.); (Y.Z.); (X.Z.)
- Gansu Key Laboratory of Animal Reproductive Physiology and Reproductive Regulation, Lanzhou 730070, China; (B.Z.); (W.D.)
| | - Weitao Dong
- Gansu Key Laboratory of Animal Reproductive Physiology and Reproductive Regulation, Lanzhou 730070, China; (B.Z.); (W.D.)
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Yong Zhang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (B.Y.); (J.L.); (W.C.); (Y.Z.); (Y.Z.); (X.Z.)
- Gansu Key Laboratory of Animal Reproductive Physiology and Reproductive Regulation, Lanzhou 730070, China; (B.Z.); (W.D.)
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Xingxu Zhao
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (B.Y.); (J.L.); (W.C.); (Y.Z.); (Y.Z.); (X.Z.)
- Gansu Key Laboratory of Animal Reproductive Physiology and Reproductive Regulation, Lanzhou 730070, China; (B.Z.); (W.D.)
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Yuan Gao
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (B.Y.); (J.L.); (W.C.); (Y.Z.); (Y.Z.); (X.Z.)
- Gansu Key Laboratory of Animal Reproductive Physiology and Reproductive Regulation, Lanzhou 730070, China; (B.Z.); (W.D.)
| |
Collapse
|
6
|
Atinbayeva N, Valent I, Zenk F, Loeser E, Rauer M, Herur S, Quarato P, Pyrowolakis G, Gomez-Auli A, Mittler G, Cecere G, Erhardt S, Tiana G, Zhan Y, Iovino N. Inheritance of H3K9 methylation regulates genome architecture in Drosophila early embryos. EMBO J 2024; 43:2685-2714. [PMID: 38831123 PMCID: PMC11217351 DOI: 10.1038/s44318-024-00127-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/27/2024] [Accepted: 04/15/2024] [Indexed: 06/05/2024] Open
Abstract
Constitutive heterochromatin is essential for transcriptional silencing and genome integrity. The establishment of constitutive heterochromatin in early embryos and its role in early fruitfly development are unknown. Lysine 9 trimethylation of histone H3 (H3K9me3) and recruitment of its epigenetic reader, heterochromatin protein 1a (HP1a), are hallmarks of constitutive heterochromatin. Here, we show that H3K9me3 is transmitted from the maternal germline to the next generation. Maternally inherited H3K9me3, and the histone methyltransferases (HMT) depositing it, are required for the organization of constitutive heterochromatin: early embryos lacking H3K9 methylation display de-condensation of pericentromeric regions, centromere-centromere de-clustering, mitotic defects, and nuclear shape irregularities, resulting in embryo lethality. Unexpectedly, quantitative CUT&Tag and 4D microscopy measurements of HP1a coupled with biophysical modeling revealed that H3K9me2/3 is largely dispensable for HP1a recruitment. Instead, the main function of H3K9me2/3 at this developmental stage is to drive HP1a clustering and subsequent heterochromatin compaction. Our results show that HP1a binding to constitutive heterochromatin in the absence of H3K9me2/3 is not sufficient to promote proper embryo development and heterochromatin formation. The loss of H3K9 HMTs and H3K9 methylation alters genome organization and hinders embryonic development.
Collapse
Affiliation(s)
- Nazerke Atinbayeva
- Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg im Breisgau, Germany
- Albert-Ludwigs-Universität Freiburg, Fahnenbergplatz, 79085, Freiburg im Breisgau, Germany
| | - Iris Valent
- Karlsruhe Institute of Technology (KIT), Zoological Institute, 76131, Karlsruhe, Germany
| | - Fides Zenk
- Brain Mind Institute, School of Life Sciences EPFL, SV3809, 1015, Lausanne, Switzerland
| | - Eva Loeser
- Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg im Breisgau, Germany
| | - Michael Rauer
- Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg im Breisgau, Germany
| | - Shwetha Herur
- Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg im Breisgau, Germany
| | - Piergiuseppe Quarato
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Giorgos Pyrowolakis
- Centre for Biological signaling studies, University of Freiburg, 79104, Freiburg im Breisgau, Germany
| | - Alejandro Gomez-Auli
- Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg im Breisgau, Germany
| | - Gerhard Mittler
- Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg im Breisgau, Germany
| | - Germano Cecere
- Institute Pasteur, Mechanisms of Epigenetic Inheritance, Department of Developmental and Stem Cell Biology, UMR3738, CNRS, 75724, Cedex 15, Paris, France
| | - Sylvia Erhardt
- Karlsruhe Institute of Technology (KIT), Zoological Institute, 76131, Karlsruhe, Germany
| | - Guido Tiana
- Università degli Studi di Milano and INFN, Milan, Italy
| | - Yinxiu Zhan
- Department of Experimental Oncology, European Institute of Oncology-IRCCS, Milan, Italy.
| | - Nicola Iovino
- Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg im Breisgau, Germany.
| |
Collapse
|
7
|
Wang R, Guo Y, Shi Z, Qin S. A quantitative proteomic analyses of primary myocardial cell injury induced by heat stress in chicken embryo. J Therm Biol 2023; 112:103461. [PMID: 36796906 DOI: 10.1016/j.jtherbio.2023.103461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 12/27/2022] [Accepted: 01/06/2023] [Indexed: 01/15/2023]
Abstract
In this study, the model of heat stress was constructed in primary chick embryonic myocardial cells at 42 °C for 4 h. Proteome analysis using DIA identified 245 differentially expressed proteins (DEPs) (Q-value <0.05, fold change >1.5), of which 63 proteins were up-regulated and 182 proteins were down-regulated. Many were related to metabolism, oxidative stress, oxidative phosphorylation and apoptosis. Gene Ontology (GO) analysis showed that many DEPs under heat stress were involved in regulating metabolites and energy, cellular respiration, catalytic activity and stimulation. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that DEPs were enriched in metabolic pathways, oxidative phosphorylation, citrate cycle (TCA cycle), cardiac muscle contraction, and carbon metabolism. The results could help understanding of the effect of heat stress on myocardial cells and even the heart and possible action mechanism at the protein level.
Collapse
Affiliation(s)
- Rui Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, PR China
| | - Yanli Guo
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, PR China
| | - Zhaoguo Shi
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, PR China
| | - Shizhen Qin
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, PR China.
| |
Collapse
|
8
|
Kong G, Yang Y, Luo Y, Liu F, Song D, Sun G, Li D, Guo J, Dong M, Xu M. Cysteine-Mediated Extracellular Electron Transfer of Lysinibacillus varians GY32. Microbiol Spectr 2022; 10:e0279822. [PMID: 36318024 PMCID: PMC9769522 DOI: 10.1128/spectrum.02798-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022] Open
Abstract
Microbial extracellular electron transfer (EET) is essential in many natural and engineering processes. Compared with the versatile EET pathways of Gram-negative bacteria, the EET of Gram-positive bacteria has been studied much less and is mainly limited to the flavin-mediated pathway. Here, we investigate the EET pathway of a Gram-positive filamentous bacterium Lysinibacillus varians GY32. Strain GY32 has a wide electron donor spectrum (including lactate, acetate, formate, and some amino acids) in electrode respiration. Transcriptomic, proteomic, and electrochemical analyses show that the electrode respiration of GY32 mainly depends on electron mediators, and c-type cytochromes may be involved in its respiration. Fluorescent sensor and electrochemical analyses demonstrate that strain GY32 can secrete cysteine and flavins. Cysteine added shortly after inoculation into microbial fuel cells accelerated EET, showing cysteine is a new endogenous electron mediator of Gram-positive bacteria, which provides novel information to understand the EET networks in natural environments. IMPORTANCE Extracellular electron transport (EET) is a key driving force in biogeochemical element cycles and microbial chemical-electrical-optical energy conversion on the Earth. Gram-positive bacteria are ubiquitous and even dominant in EET-enriched environments. However, attention and knowledge of their EET pathways are largely lacking. Gram-positive bacterium Lysinibacillus varians GY32 has extremely long cells (>1 mm) and conductive nanowires, promising a unique and enormous role in the microenvironments where it lives. Its capability to secrete cysteine renders it not only an EET pathway to respire and survive, but also an electrochemical strategy to connect and shape the ambient microbial community at a millimeter scale. Moreover, its incapability of using flavins as an electron mediator suggests that the common electron mediator is species-dependent. Therefore, our results are important to understanding the EET networks in natural and engineering processes.
Collapse
Affiliation(s)
- Guannan Kong
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yonggang Yang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yeshen Luo
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Fei Liu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Da Song
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Guoping Sun
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Daobo Li
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Jun Guo
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Meijun Dong
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Meiying Xu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
9
|
Zhang Q, Bai X, Lin T, Wang X, Zhang B, Dai L, Shi J, Zhang Y, Zhao X. HMOX1 Promotes Ferroptosis in Mammary Epithelial Cells via FTH1 and Is Involved in the Development of Clinical Mastitis in Dairy Cows. Antioxidants (Basel) 2022; 11:2221. [PMID: 36421410 PMCID: PMC9686786 DOI: 10.3390/antiox11112221] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 08/26/2023] Open
Abstract
Ferroptosis is associated with inflammatory diseases as a lethal iron-dependent lipid peroxidation; its role in the development of clinical mastitis (CM) in dairy cows is not well understood. The aim of this study was to identify differentially expressed proteins (DEPs) associated with iron homeostasis and apoptosis, and to investigate further their roles in dairy cows with CM. The results suggested that ferroptosis occurs in the mammary glands of Holstein cows with CM. Using data-independent acquisition proteomics, 302 DEPs included in 11 GO terms related to iron homeostasis and apoptosis were identified. In particular, heme oxygenase-1 (HMOX1) was identified and involved in nine pathways. In addition, ferritin heavy chain 1 (FTH1) was identified and involved in the ferroptosis pathway. HMOX1 and FTH1 were located primarily in mammary epithelial cells (MECs), and displayed significantly up-regulated expression patterns compared to the control group (healthy cows). The expression levels of HMOX1 and FTH1 were up-regulated in a dose-dependent manner in LPS induced MAC-T cells with increased iron accumulation. The expression levels of HMOX1 and FTH1 and iron accumulation levels in the MAC-T cells were significantly up-regulated by using LPS, but were lower than the levels seen with Erastin (ERA). Finally, we deduced the mechanism of ferroptosis in the MECs of Holstein cows with CM. These results provide new insights for the prevention and treatment of ferroptosis-mediated clinical mastitis in dairy animals.
Collapse
Affiliation(s)
- Quanwei Zhang
- College of Life Science and Technology, Gansu Agriculture University, Lanzhou 730070, China
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou 730070, China
- Gansu Key Laboratory of Animal Reproductive Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Xu Bai
- College of Life Science and Technology, Gansu Agriculture University, Lanzhou 730070, China
- Gansu Key Laboratory of Animal Reproductive Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Ting Lin
- College of Life Science and Technology, Gansu Agriculture University, Lanzhou 730070, China
- Gansu Key Laboratory of Animal Reproductive Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Xueying Wang
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou 730070, China
- Gansu Key Laboratory of Animal Reproductive Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Bohao Zhang
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou 730070, China
- Gansu Key Laboratory of Animal Reproductive Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Lijun Dai
- College of Life Science and Technology, Gansu Agriculture University, Lanzhou 730070, China
- Gansu Key Laboratory of Animal Reproductive Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Jun Shi
- College of Life Science and Technology, Gansu Agriculture University, Lanzhou 730070, China
- Gansu Key Laboratory of Animal Reproductive Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Yong Zhang
- College of Life Science and Technology, Gansu Agriculture University, Lanzhou 730070, China
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou 730070, China
- Gansu Key Laboratory of Animal Reproductive Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Xingxu Zhao
- College of Life Science and Technology, Gansu Agriculture University, Lanzhou 730070, China
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou 730070, China
- Gansu Key Laboratory of Animal Reproductive Physiology and Reproductive Regulation, Lanzhou 730070, China
| |
Collapse
|
10
|
An LKB1-mitochondria axis controls T H17 effector function. Nature 2022; 610:555-561. [PMID: 36171294 PMCID: PMC9844518 DOI: 10.1038/s41586-022-05264-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 08/22/2022] [Indexed: 01/19/2023]
Abstract
CD4+ T cell differentiation requires metabolic reprogramming to fulfil the bioenergetic demands of proliferation and effector function, and enforce specific transcriptional programmes1-3. Mitochondrial membrane dynamics sustains mitochondrial processes4, including respiration and tricarboxylic acid (TCA) cycle metabolism5, but whether mitochondrial membrane remodelling orchestrates CD4+ T cell differentiation remains unclear. Here we show that unlike other CD4+ T cell subsets, T helper 17 (TH17) cells have fused mitochondria with tight cristae. T cell-specific deletion of optic atrophy 1 (OPA1), which regulates inner mitochondrial membrane fusion and cristae morphology6, revealed that TH17 cells require OPA1 for its control of the TCA cycle, rather than respiration. OPA1 deletion amplifies glutamine oxidation, leading to impaired NADH/NAD+ balance and accumulation of TCA cycle metabolites and 2-hydroxyglutarate-a metabolite that influences the epigenetic landscape5,7. Our multi-omics approach revealed that the serine/threonine kinase liver-associated kinase B1 (LKB1) couples mitochondrial function to cytokine expression in TH17 cells by regulating TCA cycle metabolism and transcriptional remodelling. Mitochondrial membrane disruption activates LKB1, which restrains IL-17 expression. LKB1 deletion restores IL-17 expression in TH17 cells with disrupted mitochondrial membranes, rectifying aberrant TCA cycle glutamine flux, balancing NADH/NAD+ and preventing 2-hydroxyglutarate production from the promiscuous activity of the serine biosynthesis enzyme phosphoglycerate dehydrogenase (PHGDH). These findings identify OPA1 as a major determinant of TH17 cell function, and uncover LKB1 as a sensor linking mitochondrial cues to effector programmes in TH17 cells.
Collapse
|
11
|
Grzejda D, Mach J, Schweizer JA, Hummel B, Rezansoff AM, Eggenhofer F, Panhale A, Lalioti ME, Cabezas Wallscheid N, Backofen R, Felsenberg J, Hilgers V. The long noncoding RNA mimi scaffolds neuronal granules to maintain nervous system maturity. SCIENCE ADVANCES 2022; 8:eabo5578. [PMID: 36170367 PMCID: PMC9519039 DOI: 10.1126/sciadv.abo5578] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 08/15/2022] [Indexed: 05/29/2023]
Abstract
RNA binding proteins and messenger RNAs (mRNAs) assemble into ribonucleoprotein granules that regulate mRNA trafficking, local translation, and turnover. The dysregulation of RNA-protein condensation disturbs synaptic plasticity and neuron survival and has been widely associated with human neurological disease. Neuronal granules are thought to condense around particular proteins that dictate the identity and composition of each granule type. Here, we show in Drosophila that a previously uncharacterized long noncoding RNA, mimi, is required to scaffold large neuronal granules in the adult nervous system. Neuronal ELAV-like proteins directly bind mimi and mediate granule assembly, while Staufen maintains condensate integrity. mimi granules contain mRNAs and proteins involved in synaptic processes; granule loss in mimi mutant flies impairs nervous system maturity and neuropeptide-mediated signaling and causes phenotypes of neurodegeneration. Our work reports an architectural RNA for a neuronal granule and provides a handle to interrogate functions of a condensate independently of those of its constituent proteins.
Collapse
Affiliation(s)
- Dominika Grzejda
- Max-Planck-Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
- Faculty of Biology, Albert Ludwig University of Freiburg, Freiburg 79104, Germany
- International Max Planck Research School for Molecular and Cellular Biology (IMPRS- MCB), Freiburg 79108, Germany
| | - Jana Mach
- Max-Planck-Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Johanna Aurelia Schweizer
- Friedrich Miescher Institute for Biomedical Research (FMI), Basel 4058, Switzerland
- University of Basel, Basel 4001, Switzerland
| | - Barbara Hummel
- Max-Planck-Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | | | - Florian Eggenhofer
- Department of Computer Science, Albert Ludwig University of Freiburg, Freiburg 79110, Germany
| | - Amol Panhale
- Max-Planck-Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Maria-Eleni Lalioti
- Max-Planck-Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | | | - Rolf Backofen
- Department of Computer Science, Albert Ludwig University of Freiburg, Freiburg 79110, Germany
- BIOSS and CIBSS Centres for Biological Signalling Studies, University of Freiburg, Freiburg 79104, Germany
| | - Johannes Felsenberg
- Friedrich Miescher Institute for Biomedical Research (FMI), Basel 4058, Switzerland
| | - Valérie Hilgers
- Max-Planck-Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg 79104, Germany
| |
Collapse
|
12
|
Histone variant H2A.Z regulates zygotic genome activation. Nat Commun 2021; 12:7002. [PMID: 34853314 PMCID: PMC8636486 DOI: 10.1038/s41467-021-27125-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/28/2021] [Indexed: 12/13/2022] Open
Abstract
During embryogenesis, the genome shifts from transcriptionally quiescent to extensively active in a process known as Zygotic Genome Activation (ZGA). In Drosophila, the pioneer factor Zelda is known to be essential for the progression of development; still, it regulates the activation of only a small subset of genes at ZGA. However, thousands of genes do not require Zelda, suggesting that other mechanisms exist. By conducting GRO-seq, HiC and ChIP-seq in Drosophila embryos, we demonstrate that up to 65% of zygotically activated genes are enriched for the histone variant H2A.Z. H2A.Z enrichment precedes ZGA and RNA Polymerase II loading onto chromatin. In vivo knockdown of maternally contributed Domino, a histone chaperone and ATPase, reduces H2A.Z deposition at transcription start sites, causes global downregulation of housekeeping genes at ZGA, and compromises the establishment of the 3D chromatin structure. We infer that H2A.Z is essential for the de novo establishment of transcriptional programs during ZGA via chromatin reorganization. During embryogenesis, the genome becomes transcriptionally active in a process known as zygotic genome activation (ZGA); how ZGA is initiated is still an open question. Here the authors show histone variant H2A.Z deposition precedes RNA polymerase II binding on chromatin, before ZGA. H2A.Z loss causes transcriptional downregulation of ZGA genes and leads to changes in the 3D genome organization.
Collapse
|
13
|
Complete loss of H3K9 methylation dissolves mouse heterochromatin organization. Nat Commun 2021; 12:4359. [PMID: 34272378 PMCID: PMC8285382 DOI: 10.1038/s41467-021-24532-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 06/17/2021] [Indexed: 12/26/2022] Open
Abstract
Histone H3 lysine 9 (H3K9) methylation is a central epigenetic modification that defines heterochromatin from unicellular to multicellular organisms. In mammalian cells, H3K9 methylation can be catalyzed by at least six distinct SET domain enzymes: Suv39h1/Suv39h2, Eset1/Eset2 and G9a/Glp. We used mouse embryonic fibroblasts (MEFs) with a conditional mutation for Eset1 and introduced progressive deletions for the other SET domain genes by CRISPR/Cas9 technology. Compound mutant MEFs for all six SET domain lysine methyltransferase (KMT) genes lack all H3K9 methylation states, derepress nearly all families of repeat elements and display genomic instabilities. Strikingly, the 6KO H3K9 KMT MEF cells no longer maintain heterochromatin organization and have lost electron-dense heterochromatin. This is a compelling analysis of H3K9 methylation-deficient mammalian chromatin and reveals a definitive function for H3K9 methylation in protecting heterochromatin organization and genome integrity.
Collapse
|
14
|
Gonçalves E, Guillén Y, Lama JR, Sanchez J, Brander C, Paredes R, Combadière B. Host Transcriptome and Microbiota Signatures Prior to Immunization Profile Vaccine Humoral Responsiveness. Front Immunol 2021; 12:657162. [PMID: 34040607 PMCID: PMC8141841 DOI: 10.3389/fimmu.2021.657162] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/16/2021] [Indexed: 11/28/2022] Open
Abstract
The identification of new biomarkers is essential to predict responsiveness to vaccines. We investigated the whole-blood transcriptome and microbiome prior to immunization, in order to assess their involvement in induction of humoral responses two months later. We based our analyses on stool and skin microbiota, and blood transcriptome prior to immunization, in a randomized clinical study in which participants were vaccinated with the MVA-HIV clade B vaccine (MVA-B). We found that the levels of neutralizing antibody responses were correlated with abundance of Eubacterium in stool and Prevotella in skin. In addition, genus diversity and bacterial species abundance were also correlated with the expression of genes involved in B cell development prior to immunization and forecast strong responders to MVA-B. To our knowledge, this is the first study integrating host blood gene expression and microbiota that might open an avenue of research in this field and to optimize vaccination strategies and predict responsiveness to vaccines.
Collapse
Affiliation(s)
- Elena Gonçalves
- Sorbonne Université, INSERM, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Yolanda Guillén
- IrsiCaixa AIDS Research Institute-HIVACAT, Hospital Universitari Germans Trias i Pujol, Barcelona, Spain
| | - Javier R Lama
- Asociacion Civil Impacta Salud y Educacion, Lima, Peru
| | - Jorge Sanchez
- Centro de Investigaciones Tecnológicas, Biomedicas y Medioambientales, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Christian Brander
- IrsiCaixa AIDS Research Institute-HIVACAT, Hospital Universitari Germans Trias i Pujol, Barcelona, Spain.,Faculty of Medicine, Universitat de Vic-Central de Catalunya (UVic-UCC), Vic, Spain.,Institució Catalana de Recerca I Estudis Avançats (ICREA), Barcelona, Spain
| | - Roger Paredes
- Infectious Diseases Department, Hospital Universitari Germans Trias, Barcelona, Spain
| | - Behazine Combadière
- Sorbonne Université, INSERM, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| |
Collapse
|
15
|
Jia B, Zhao X, Wu D, Dong Z, Chi Y, Zhao J, Wu M, An T, Wang Y, Zhuo M, Li J, Chen X, Tian G, Long J, Yang X, Chen H, Wang J, Zhai X, Li S, Li J, Ma M, He Y, Kong L, Brcic L, Fang J, Wang Z. Identification of serum biomarkers to predict pemetrexed/platinum chemotherapy efficacy for advanced lung adenocarcinoma patients by data-independent acquisition (DIA) mass spectrometry analysis with parallel reaction monitoring (PRM) verification. Transl Lung Cancer Res 2021; 10:981-994. [PMID: 33718037 PMCID: PMC7947410 DOI: 10.21037/tlcr-21-153] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Background Pemetrexed/platinum chemotherapy has been the standard chemotherapy regimen for lung adenocarcinoma patients, but the efficacy varies considerably. Methods To discover new serum biomarkers to predict the efficacy of pemetrexed/platinum chemotherapy, we analyzed 20 serum samples from advanced lung adenocarcinoma patients who received pemetrexed/platinum chemotherapy with the data-independent acquisition (DIA) quantitative mass spectrometry (MS). Results The 20 patients were categorized as “good response” [12 patients achieving partial response (PR)] and “poor response” [8 patients with progressive disease (PD)] groups. Altogether 23 significantly different expressed proteins were identified, which had relative ratios higher than 1.2 or lower than –0.83, with 7 proteins having an area under the curve (AUC) above 0.8. To further validate the DIA results, we used the parallel reaction monitoring (PRM) method to examine 16 candidate serum biomarkers in the study cohort of 20 patients and another cohort of 22 advanced lung adenocarcinoma patients (16 PR and 6 PD). Quantitative validation using PRM correlated well with the DIA results, and 10 promising proteins exhibited a similar up- or downregulation. It is worth noting that glutathione peroxidase 3 (GPX3) exhibits significant upregulation in the poor response group compared with the good response group, which was validated by both DIA and PRM methods. Conclusions Our study confirmed that combined DIA MS and PRM approaches were effective in identifying serum predictive biomarkers for advanced lung adenocarcinoma patients. Further studies are needed to explore the potential biological mechanism underlying these biomarkers.
Collapse
Affiliation(s)
- Bo Jia
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Medical Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xinghui Zhao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Medical Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Di Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Oncology II, Peking University Cancer Hospital & Institute, Beijing, China
| | - Zhi Dong
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of GI Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Yujia Chi
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Medical Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Jun Zhao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Medical Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Meina Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Medical Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Tongtong An
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Medical Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Yuyan Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Medical Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Minglei Zhuo
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Medical Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Jianjie Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Medical Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xiaoling Chen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Oncology II, Peking University Cancer Hospital & Institute, Beijing, China
| | - Guangming Tian
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Oncology II, Peking University Cancer Hospital & Institute, Beijing, China
| | - Jieran Long
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Oncology II, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xue Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Medical Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Hanxiao Chen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Medical Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Jingjing Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Medical Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xiaoyu Zhai
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Medical Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Sheng Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Medical Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Junfeng Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Medical Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Menglei Ma
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Medical Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Yuling He
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Medical Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Lingdong Kong
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Medical Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Luka Brcic
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Jian Fang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Oncology II, Peking University Cancer Hospital & Institute, Beijing, China
| | - Ziping Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Medical Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| |
Collapse
|
16
|
Kelly B, Carrizo GE, Edwards-Hicks J, Sanin DE, Stanczak MA, Priesnitz C, Flachsmann LJ, Curtis JD, Mittler G, Musa Y, Becker T, Buescher JM, Pearce EL. Sulfur sequestration promotes multicellularity during nutrient limitation. Nature 2021; 591:471-476. [PMID: 33627869 PMCID: PMC7969356 DOI: 10.1038/s41586-021-03270-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 01/20/2021] [Indexed: 01/31/2023]
Abstract
The behaviour of Dictyostelium discoideum depends on nutrients1. When sufficient food is present these amoebae exist in a unicellular state, but upon starvation they aggregate into a multicellular organism2,3. This biology makes D. discoideum an ideal model for investigating how fundamental metabolism commands cell differentiation and function. Here we show that reactive oxygen species-generated as a consequence of nutrient limitation-lead to the sequestration of cysteine in the antioxidant glutathione. This sequestration limits the use of the sulfur atom of cysteine in processes that contribute to mitochondrial metabolism and cellular proliferation, such as protein translation and the activity of enzymes that contain an iron-sulfur cluster. The regulated sequestration of sulfur maintains D. discoideum in a nonproliferating state that paves the way for multicellular development. This mechanism of signalling through reactive oxygen species highlights oxygen and sulfur as simple signalling molecules that dictate cell fate in an early eukaryote, with implications for responses to nutrient fluctuations in multicellular eukaryotes.
Collapse
Affiliation(s)
- Beth Kelly
- grid.429509.30000 0004 0491 4256Max Planck Institute for Immunobiology and Epigenetics, Freiburg, Germany
| | - Gustavo E. Carrizo
- grid.429509.30000 0004 0491 4256Max Planck Institute for Immunobiology and Epigenetics, Freiburg, Germany
| | - Joy Edwards-Hicks
- grid.429509.30000 0004 0491 4256Max Planck Institute for Immunobiology and Epigenetics, Freiburg, Germany
| | - David E. Sanin
- grid.429509.30000 0004 0491 4256Max Planck Institute for Immunobiology and Epigenetics, Freiburg, Germany
| | - Michal A. Stanczak
- grid.429509.30000 0004 0491 4256Max Planck Institute for Immunobiology and Epigenetics, Freiburg, Germany
| | - Chantal Priesnitz
- grid.5963.9Institute of Biochemistry and Molecular Biology, ZMBZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany ,grid.5963.9Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Lea J. Flachsmann
- grid.429509.30000 0004 0491 4256Max Planck Institute for Immunobiology and Epigenetics, Freiburg, Germany
| | - Jonathan D. Curtis
- grid.429509.30000 0004 0491 4256Max Planck Institute for Immunobiology and Epigenetics, Freiburg, Germany
| | - Gerhard Mittler
- grid.429509.30000 0004 0491 4256Max Planck Institute for Immunobiology and Epigenetics, Freiburg, Germany
| | - Yaarub Musa
- grid.429509.30000 0004 0491 4256Max Planck Institute for Immunobiology and Epigenetics, Freiburg, Germany
| | - Thomas Becker
- grid.10388.320000 0001 2240 3300Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Joerg M. Buescher
- grid.429509.30000 0004 0491 4256Max Planck Institute for Immunobiology and Epigenetics, Freiburg, Germany
| | - Erika L. Pearce
- grid.429509.30000 0004 0491 4256Max Planck Institute for Immunobiology and Epigenetics, Freiburg, Germany ,grid.21107.350000 0001 2171 9311Present Address: The Bloomberg–Kimmel Institute for Cancer Immunotherapy at Johns Hopkins, Johns Hopkins University, Baltimore, MD USA
| |
Collapse
|
17
|
Quan J, Kang Y, Li L, Zhao G, Sun J, Liu Z. Proteome analysis of rainbow trout (Oncorhynchus mykiss) liver responses to chronic heat stress using DIA/SWATH. J Proteomics 2020; 233:104079. [PMID: 33346158 DOI: 10.1016/j.jprot.2020.104079] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 12/07/2020] [Accepted: 12/07/2020] [Indexed: 12/22/2022]
Abstract
Aquaculture of rainbow trout (Oncorhynchus mykiss) is severely hampered by high temperatures in summer, and understanding the regulatory mechanisms controlling responses to chronic heat stress may assist the development of measures to relieve heat stress. In the present study, biochemical parameters revealed a strong stress response in rainbow trout at 24 °C, including activation of stress defence and immune systems. Liver proteome analysis under heat stress (24 °C) and control (18 °C) conditions using DIA/SWATH identified precursors (90,827), peptides (67,028), proteins (6770) and protein groups (5124), among which 460 differentially abundant proteins (DAPs; q-value < 0.05, fold change >1.5), 201 and 259 were up- and down-regulated, respectively. Many were related to heat shock proteins (HSPs), metabolism and immunity. Gene Ontology (GO) analysis showed that some DAPs induced at high temperature were involved in regulating cell homeostasis, metabolism, adaptive stress and stimulation. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis identified metabolic pathways, protein processing in endoplasmic reticulum, PPAR signalling, and complement and coagulation cascades. Protein-protein interaction (PPI) network analysis indicated that HSP90b1 and C3 may cooperative to affect cell membrane integrity under heat stress. Our findings assist the development of strategies to relieve heat stress in rainbow trout.
Collapse
Affiliation(s)
- Jinqiang Quan
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Yujun Kang
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Lanlan Li
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Guiyan Zhao
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Jun Sun
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Zhe Liu
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou 730070, PR China.
| |
Collapse
|
18
|
Carrasco J, Rauer M, Hummel B, Grzejda D, Alfonso-Gonzalez C, Lee Y, Wang Q, Puchalska M, Mittler G, Hilgers V. ELAV and FNE Determine Neuronal Transcript Signatures through EXon-Activated Rescue. Mol Cell 2020; 80:156-163.e6. [PMID: 33007255 DOI: 10.1016/j.molcel.2020.09.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/03/2020] [Accepted: 08/12/2020] [Indexed: 12/22/2022]
Abstract
The production of alternative RNA variants contributes to the tissue-specific regulation of gene expression. In the animal nervous system, a systematic shift toward distal sites of transcription termination produces transcript signatures that are crucial for neuron development and function. Here, we report that, in Drosophila, the highly conserved protein ELAV globally regulates all sites of neuronal 3' end processing and directly binds to proximal polyadenylation sites of target mRNAs in vivo. We uncover an endogenous strategy of functional gene rescue that safeguards neuronal RNA signatures in an ELAV loss-of-function context. When not directly repressed by ELAV, the transcript encoding the ELAV paralog FNE acquires a mini-exon, generating a new protein able to translocate to the nucleus and rescue ELAV-mediated alternative polyadenylation and alternative splicing. We propose that exon-activated functional rescue is a more widespread mechanism that ensures robustness of processes regulated by a hierarchy, rather than redundancy, of effectors.
Collapse
Affiliation(s)
- Judit Carrasco
- Max-Planck-Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany; Faculty of Biology, Albert Ludwig University, 79104 Freiburg, Germany; International Max Planck Research School for Molecular and Cellular Biology (IMPRS-MCB), 79108 Freiburg, Germany
| | - Michael Rauer
- Max-Planck-Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Barbara Hummel
- Max-Planck-Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Dominika Grzejda
- Max-Planck-Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany; Faculty of Biology, Albert Ludwig University, 79104 Freiburg, Germany; International Max Planck Research School for Molecular and Cellular Biology (IMPRS-MCB), 79108 Freiburg, Germany
| | - Carlos Alfonso-Gonzalez
- Max-Planck-Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany; Faculty of Biology, Albert Ludwig University, 79104 Freiburg, Germany; International Max Planck Research School for Immunology, Epigenetics and Metabolism (IMPRS-IEM), 79108 Freiburg, Germany
| | - Yeon Lee
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Qingqing Wang
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Monika Puchalska
- Max-Planck-Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Gerhard Mittler
- Max-Planck-Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Valérie Hilgers
- Max-Planck-Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany.
| |
Collapse
|
19
|
Zhu W, Cheng X, Ren C, Chen J, Zhang Y, Chen Y, Jia X, Wang S, Sun Z, Zhang R, Zhang Z. Proteomic characterization and comparison of ram (Ovis aries) and buck (Capra hircus) spermatozoa proteome using a data independent acquisition mass spectometry (DIA-MS) approach. PLoS One 2020; 15:e0228656. [PMID: 32053710 PMCID: PMC7018057 DOI: 10.1371/journal.pone.0228656] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 01/21/2020] [Indexed: 12/14/2022] Open
Abstract
Fresh semen is most commonly used in an artificial insemination of small ruminants, because of low fertility rates of frozen sperm. Generally, when developing and applying assisted reproductive technologies, sheep and goats are classified as one species. In order to optimize sperm cryopreservation protocols in sheep and goat, differences in sperm proteomes between ram and buck are necessary to investigate, which may contribute to differences in function and fertility of spermatozoa. In the current work, a data-independent acquisition-mass spectrometry proteomic approach was used to characterize and make a comparison of ram (Ovis aries) and buck (Capra hircus) sperm proteomes. A total of 2,109 proteins were identified in ram and buck spermatozoa, with 238 differentially abundant proteins. Proteins identified in ram and buck spermatozoa are mainly involved in metabolic pathways for generation of energy and diminishing oxidative stress. Specifically, there are greater abundance of spermatozoa proteins related to the immune protective and capacity activities in ram, while protein that inhibit sperm capacitation shows greater abundance in buck. Our results not only provide novel insights into the characteristics and potential activities of spermatozoa proteins, but also expand the potential direction for sperm cryopreservation in ram and buck.
Collapse
Affiliation(s)
- Wen Zhu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, P. R. China
| | - Xiao Cheng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, P. R. China
| | - Chunhuan Ren
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, P. R. China
| | - Jiahong Chen
- New Rural Develop Research Institute, Anhui Agricultural University, Hefei, P. R. China
| | - Yan Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, P. R. China
| | - Yale Chen
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, P. R. China
| | - Xiaojiao Jia
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, P. R. China
| | - Shijia Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, P. R. China
| | - Zhipeng Sun
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, P. R. China
| | - Renzheng Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, P. R. China
| | - Zijun Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, P. R. China
| |
Collapse
|
20
|
Okawa S, Del Sol A. A general computational approach to predicting synergistic transcriptional cores that determine cell subpopulation identities. Nucleic Acids Res 2019; 47:3333-3343. [PMID: 30820550 PMCID: PMC6468312 DOI: 10.1093/nar/gkz147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/18/2019] [Accepted: 02/21/2019] [Indexed: 12/21/2022] Open
Abstract
Advances in single-cell RNA-sequencing techniques reveal the existence of distinct cell subpopulations. Identification of transcription factors (TFs) that define the identity of these subpopulations poses a challenge. Here, we postulate that identity depends on background subpopulations, and is determined by a synergistic core combination of TFs mainly uniquely expressed in each subpopulation, but also TFs more broadly expressed across background subpopulations. Building on this view, we develop a new computational method for determining such synergistic identity cores of subpopulations within a given cell population. Our method utilizes an information-theoretic measure for quantifying transcriptional synergy, and implements a novel algorithm for searching for optimal synergistic cores. It requires only single-cell RNA-seq data as input, and does not rely on any prior knowledge of candidate genes or gene regulatory networks. Hence, it can be directly applied to any cellular systems, including those containing novel subpopulations. The method is capable of recapitulating known experimentally validated identity TFs in eight published single-cell RNA-seq datasets. Furthermore, some of these identity TFs are known to trigger cell conversions between subpopulations. Thus, this methodology can help design strategies for cell conversion within a cell population, guiding experimentalists in the field of stem cell research and regenerative medicine.
Collapse
Affiliation(s)
- Satoshi Okawa
- Integrated BioBank of Luxembourg, Dudelange L-3555, Luxembourg.,Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 6, avenue du Swing, L-4367 Belvaux, Luxembourg
| | - Antonio Del Sol
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 6, avenue du Swing, L-4367 Belvaux, Luxembourg.,CIC bioGUNE, Bizkaia Technology Park, 801 building, Derio 48160, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao 48013, Spain.,Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
| |
Collapse
|
21
|
CAPRI enables comparison of evolutionarily conserved RNA interacting regions. Nat Commun 2019; 10:2682. [PMID: 31213602 PMCID: PMC6581911 DOI: 10.1038/s41467-019-10585-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 05/21/2019] [Indexed: 12/21/2022] Open
Abstract
RNA-protein complexes play essential regulatory roles at nearly all levels of gene expression. Using in vivo crosslinking and RNA capture, we report a comprehensive RNA-protein interactome in a metazoan at four levels of resolution: single amino acids, domains, proteins and multisubunit complexes. We devise CAPRI, a method to map RNA-binding domains (RBDs) by simultaneous identification of RNA interacting crosslinked peptides and peptides adjacent to such crosslinked sites. CAPRI identifies more than 3000 RNA proximal peptides in Drosophila and human proteins with more than 45% of them forming new interaction interfaces. The comparison of orthologous proteins enables the identification of evolutionary conserved RBDs in globular domains and intrinsically disordered regions (IDRs). By comparing the sequences of IDRs through evolution, we classify them based on the type of motif, accumulation of tandem repeats, conservation of amino acid composition and high sequence divergence. Comprehensive characterisation of RNA-protein interactions requires different levels of resolution. Here, the authors present an integrated mass spectrometry-based approach that allows them to define the Drosophila RNA-protein interactome from the level of multisubunit complexes down to the RNA-binding amino acid.
Collapse
|
22
|
Yao B, Zhang M, Leng X, Zhao D. Proteomic analysis of the effects of antler extract on chondrocyte proliferation, differentiation and apoptosis. Mol Biol Rep 2019; 46:1635-1648. [DOI: 10.1007/s11033-019-04612-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 01/17/2019] [Indexed: 01/09/2023]
|
23
|
Wu X, Xing X, Dowlut D, Zeng Y, Liu J, Liu X. Integrating phosphoproteomics into kinase-targeted cancer therapies in precision medicine. J Proteomics 2019; 191:68-79. [PMID: 29621648 DOI: 10.1016/j.jprot.2018.03.033] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 03/20/2018] [Accepted: 03/31/2018] [Indexed: 12/12/2022]
Abstract
Protein phosphorylation is a post-translational modification that is involved in the regulation of all major biological processes in cells. As a rapid and reversible means to modulate protein activity and transduce signals, aberrant protein phosphorylation is implicated in the onset and progression of most cancer types. Therefore, pharmacological inhibitors against protein kinases are highly pursued therapeutic approaches for treating cancer. Phosphoproteomics has become an important approach for investigating protein phosphorylation, and it is a technique that provides measurements of kinase pathway activation and the circuitry of signalling networks with both spatial and temporal resolution. Combined with the recent advances in mass spectrometry and development in biochemical procedures for phosphopeptide enrichment and computational approaches, high-throughput phosphoproteomics enables the investigation of kinase signalling networks with unprecedented depth. Here, we review the recent progresses in phosphoproteomics methodology and how phosphoproteomics profiling could be implemented in translational research to aid cancer therapies, facilitate novel drug target discovery and overcome the therapeutic obstacles caused by drug resistance. SIGNIFICANCE: In this review, we summarized the recent progress in mass spectrometry-based phosphoproteomics and discussed how phosphoproteomics profiling can be implemented in translational research to aid cancer therapies, facilitate novel drug target discovery and overcome the therapeutic obstacles caused by drug resistance due to the rapid remodelling of signalling networks in response to kinase inhibitor treatment. In addition, we addressed the insights and challenges of applying MS phosphoproteomics in clinical routine practice in precision medicine. This review will help readers become more familiar with the recent advancements and applications of phosphoproteomics, especially in the field of kinase-targeted cancer therapy.
Collapse
Affiliation(s)
- Xiaomo Wu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, People's Republic of China; Department of Biomedicine, University of Basel, Klingelbergstr. 70, CH-4056 Basel, Switzerland; Dermatology Institute of Fuzhou, Dermatology Hospital of Fuzhou, Fuzhou 350025, People's Republic of China
| | - Xiaohua Xing
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, People's Republic of China; Liver Disease Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350007, People's Republic of China
| | - Djameel Dowlut
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, People's Republic of China; Liver Disease Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350007, People's Republic of China
| | - Yongyi Zeng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, People's Republic of China; Liver Disease Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350007, People's Republic of China
| | - Jingfeng Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, People's Republic of China; Liver Disease Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350007, People's Republic of China.
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, People's Republic of China; Liver Disease Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350007, People's Republic of China.
| |
Collapse
|
24
|
The Chinese Medicinal Formulation Guzhi Zengsheng Zhitongwan Modulates Chondrocyte Structure, Dynamics, and Metabolism by Controlling Multiple Functional Proteins. BIOMED RESEARCH INTERNATIONAL 2019; 2018:9847286. [PMID: 30596102 PMCID: PMC6282133 DOI: 10.1155/2018/9847286] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 11/08/2018] [Indexed: 12/15/2022]
Abstract
Traditional Chinese medicine is one of the oldest medical systems in the world and has its unique principles and theories in the prevention and treatment of human diseases, which are achieved through the interactions of different types of materia medica in the form of Chinese medicinal formulations. GZZSZTW, a classical and effective Chinese medicinal formulation, was designed and created by professor Bailing Liu who is the only national medical master professor in the clinical research field of traditional Chinese medicine and skeletal diseases. GZZSZTW has been widely used in clinical settings for several decades for the treatment of joint diseases. However, the underlying molecular mechanisms are still largely unknown. In the present study, we performed quantitative proteomic analysis to investigate the effects of GZZSZTW on mouse primary chondrocytes using state-of-the-art iTRAQ technology. We demonstrated that the Chinese medicinal formulation GZZSZTW modulates chondrocyte structure, dynamics, and metabolism by controlling multiple functional proteins that are involved in the cellular processes of DNA replication and transcription, protein synthesis and degradation, cytoskeleton dynamics, and signal transduction. Thus, this study has expanded the current knowledge of the molecular mechanism of GZZSZTW treatment on chondrocytes. It has also shed new light on possible strategies to further prevent and treat cartilage-related diseases using traditional Chinese medicinal formulations.
Collapse
|
25
|
Sanin DE, Matsushita M, Klein Geltink RI, Grzes KM, van Teijlingen Bakker N, Corrado M, Kabat AM, Buck MD, Qiu J, Lawless SJ, Cameron AM, Villa M, Baixauli F, Patterson AE, Hässler F, Curtis JD, O'Neill CM, O'Sullivan D, Wu D, Mittler G, Huang SCC, Pearce EL, Pearce EJ. Mitochondrial Membrane Potential Regulates Nuclear Gene Expression in Macrophages Exposed to Prostaglandin E2. Immunity 2018; 49:1021-1033.e6. [PMID: 30566880 PMCID: PMC7271981 DOI: 10.1016/j.immuni.2018.10.011] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 09/16/2018] [Accepted: 10/10/2018] [Indexed: 12/16/2022]
Abstract
Metabolic engagement is intrinsic to immune cell function. Prostaglandin E2 (PGE2) has been shown to modulate macrophage activation, yet how PGE2 might affect metabolism is unclear. Here, we show that PGE2 caused mitochondrial membrane potential (Δψm) to dissipate in interleukin-4-activated (M(IL-4)) macrophages. Effects on Δψm were a consequence of PGE2-initiated transcriptional regulation of genes, particularly Got1, in the malate-aspartate shuttle (MAS). Reduced Δψm caused alterations in the expression of 126 voltage-regulated genes (VRGs), including those encoding resistin-like molecule α (RELMα), a key marker of M(IL-4) cells, and genes that regulate the cell cycle. The transcription factor ETS variant 1 (ETV1) played a role in the regulation of 38% of the VRGs. These results reveal ETV1 as a Δψm-sensitive transcription factor and Δψm as a mediator of mitochondrial-directed nuclear gene expression.
Collapse
Affiliation(s)
- David E Sanin
- Department of Immunometabolism, Max Planck Institute of Epigenetics and Immunobiology, Freiburg im Breisgau, Germany
| | - Mai Matsushita
- Department of Immunometabolism, Max Planck Institute of Epigenetics and Immunobiology, Freiburg im Breisgau, Germany
| | - Ramon I Klein Geltink
- Department of Immunometabolism, Max Planck Institute of Epigenetics and Immunobiology, Freiburg im Breisgau, Germany
| | - Katarzyna M Grzes
- Department of Immunometabolism, Max Planck Institute of Epigenetics and Immunobiology, Freiburg im Breisgau, Germany
| | - Nikki van Teijlingen Bakker
- Department of Immunometabolism, Max Planck Institute of Epigenetics and Immunobiology, Freiburg im Breisgau, Germany; Faculty of Biology, University of Freiburg, Freiburg im Breisgau, Germany
| | - Mauro Corrado
- Department of Immunometabolism, Max Planck Institute of Epigenetics and Immunobiology, Freiburg im Breisgau, Germany
| | - Agnieszka M Kabat
- Department of Immunometabolism, Max Planck Institute of Epigenetics and Immunobiology, Freiburg im Breisgau, Germany
| | - Michael D Buck
- Department of Immunometabolism, Max Planck Institute of Epigenetics and Immunobiology, Freiburg im Breisgau, Germany
| | - Jing Qiu
- Department of Immunometabolism, Max Planck Institute of Epigenetics and Immunobiology, Freiburg im Breisgau, Germany
| | - Simon J Lawless
- Department of Immunometabolism, Max Planck Institute of Epigenetics and Immunobiology, Freiburg im Breisgau, Germany
| | - Alanna M Cameron
- Department of Immunometabolism, Max Planck Institute of Epigenetics and Immunobiology, Freiburg im Breisgau, Germany
| | - Matteo Villa
- Department of Immunometabolism, Max Planck Institute of Epigenetics and Immunobiology, Freiburg im Breisgau, Germany
| | - Francesc Baixauli
- Department of Immunometabolism, Max Planck Institute of Epigenetics and Immunobiology, Freiburg im Breisgau, Germany
| | - Annette E Patterson
- Department of Immunometabolism, Max Planck Institute of Epigenetics and Immunobiology, Freiburg im Breisgau, Germany
| | - Fabian Hässler
- Department of Immunometabolism, Max Planck Institute of Epigenetics and Immunobiology, Freiburg im Breisgau, Germany
| | - Jonathan D Curtis
- Department of Immunometabolism, Max Planck Institute of Epigenetics and Immunobiology, Freiburg im Breisgau, Germany
| | - Christina M O'Neill
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - David O'Sullivan
- Department of Immunometabolism, Max Planck Institute of Epigenetics and Immunobiology, Freiburg im Breisgau, Germany
| | - Duojiao Wu
- Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Gerhard Mittler
- Proteomics, Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| | - Stanley Ching-Cheng Huang
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Erika L Pearce
- Department of Immunometabolism, Max Planck Institute of Epigenetics and Immunobiology, Freiburg im Breisgau, Germany
| | - Edward J Pearce
- Department of Immunometabolism, Max Planck Institute of Epigenetics and Immunobiology, Freiburg im Breisgau, Germany; Faculty of Biology, University of Freiburg, Freiburg im Breisgau, Germany.
| |
Collapse
|