1
|
Abdulsada ZK, Kibbee R, Princz J, Örmeci B. Impact of Silver and Copper Oxide Nanoparticles on Anaerobic Digestion of Sludge and Bacterial Community Structure. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:236. [PMID: 39940212 PMCID: PMC11820454 DOI: 10.3390/nano15030236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/27/2025] [Accepted: 01/29/2025] [Indexed: 02/14/2025]
Abstract
The effect of metal nanoparticles on the anaerobic digestion of sludge and the sludge bacterial community are still not well-understood, and both improvements and inhibitions have been reported. This study investigated the impact of 2, 10, and 30 mg/g TS silver and copper oxide nanoparticles (AgNPs and CuONPs) on the mesophilic anaerobic digestion of sludge and the bacterial community structure. The reactors were monitored for changes in tCOD, sCOD, TS, VS, biogas generation, and cell viability. Also, the relative abundance and taxonomic distribution of the bacterial communities were analyzed at the phylum and genus levels, including the genera involved in anaerobic digestion. Both AgNPs and CuONPs exhibited some inhibition on anaerobic digestion of sludge and biogas generation, and the inhibition was more evident at higher concentrations. CuONPs had a stronger inhibitory effect compared to AgNPs. After the introduction of AgNPs and CuONPs, cell viability initially decreased over the first two weeks but recovered after that. At high concentrations, AgNPs and CuONPs decreased the overall bacterial diversity, and inhibited the dominant bacterial species, allowing those in less abundance to flourish. The relative abundance of the bacteria responsible for hydrolysis and acidogenesis increased and the relative abundance of acetogenic bacteria decreased with higher AgNP and CuONP concentrations. The majority of the parameters measured for monitoring the anaerobic digestion performance and bacterial community were not statistically significant at 2 mg/g TS of AgNPs and CuONPs, which represents naturally present concentrations in wastewater sludge that are below the USEPA ceiling concentration limits.
Collapse
Affiliation(s)
- Zainab K. Abdulsada
- Department of Civil and Environmental Engineering, Carleton University, 1125 Colonel by Drive, Ottawa, ON K1S 5B6, Canada; (Z.K.A.); (R.K.)
| | - Richard Kibbee
- Department of Civil and Environmental Engineering, Carleton University, 1125 Colonel by Drive, Ottawa, ON K1S 5B6, Canada; (Z.K.A.); (R.K.)
| | - Juliska Princz
- Environment and Climate Change Canada, 335 River Road South, Ottawa, ON K1V 1C7, Canada;
| | - Banu Örmeci
- Department of Civil and Environmental Engineering, Carleton University, 1125 Colonel by Drive, Ottawa, ON K1S 5B6, Canada; (Z.K.A.); (R.K.)
| |
Collapse
|
2
|
Stanco D, Lipsa D, Bogni A, Bremer-Hoffmann S, Clerbaux LA. An Adverse Outcome Pathway for food nanomaterial-induced intestinal barrier disruption. FRONTIERS IN TOXICOLOGY 2024; 6:1474397. [PMID: 39776762 PMCID: PMC11703861 DOI: 10.3389/ftox.2024.1474397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 11/19/2024] [Indexed: 01/11/2025] Open
Abstract
Introduction The ingestion of nanomaterials (NMs) may impair the intestinal barrier, but the underlying mechanisms remain evasive, and evidence has not been systematically gathered or produced. A mechanistic-based approach would be instrumental in assessing whether relevant NMs disrupt the intestinal barrier, thereby supporting the NM risk assessment in the food sector. Methods In this study, we developed an adverse outcome pathway (AOP) based on biological plausibility and by leveraging information from an existing NM-relevant AOP that leads to hepatic outcomes. We then extracted the current evidence from the literature for a targeted selection of NMs with high relevance to the food sector, namely, ZnO, CuO, FeO, SiO2, and Ag NMs and nanocellulose. Results We propose a new AOP (AOP 530) that starts with endocytic lysosomal uptake, leading to lysosomal disruption inducing mitochondrial dysfunction. Mitochondrial impairments can lead to cell injury/death and disrupt the intestinal barrier. The evidence collected supports that these food-related NMs can be taken up by intestinal cells and indicates that intestinal barrier disruption may occur due to Ag, CuO, and SiO2 NMs, while only few studies support this outcome for FeO and ZnO. Lysosomal disruption and mitochondrial dysfunction are rarely evaluated. For nanocellulose, none of the studies report toxicity-related events. Conclusion The collection of existing scientific evidence supporting our AOP linking NM uptake to intestinal barrier impairments allowed us to highlight current evidence gaps and data inconsistencies. These inconsistencies could be associated with the variety of stressors, biological systems, and key event (KE)-related assays used in different studies. This underscores the need for further harmonized methodologies and the production of mechanistic evidence for the safety regulatory assessment of NMs in the food sector.
Collapse
Affiliation(s)
- Deborah Stanco
- European Commission, Joint Research Center (JRC), Ispra, Italy
| | | | - Alessia Bogni
- European Commission, Joint Research Center (JRC), Ispra, Italy
| | | | - Laure-Alix Clerbaux
- Institute of Experimental and Clinical Research, UCLouvain, Brussels, Belgium
| |
Collapse
|
3
|
Zhang P, Cao M, Chetwynd AJ, Faserl K, Abdolahpur Monikh F, Zhang W, Ramautar R, Ellis LJA, Davoudi HH, Reilly K, Cai R, Wheeler KE, Martinez DST, Guo Z, Chen C, Lynch I. Analysis of nanomaterial biocoronas in biological and environmental surroundings. Nat Protoc 2024; 19:3000-3047. [PMID: 39044000 DOI: 10.1038/s41596-024-01009-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 04/10/2024] [Indexed: 07/25/2024]
Abstract
A biomolecular coating, or biocorona, forms on the surface of engineered nanomaterials (ENMs) immediately as they enter biological or environmental systems, defining their biological and environmental identity and influencing their fate and performance. This biomolecular layer includes proteins (the protein corona) and other biomolecules, such as nucleic acids and metabolites. To ensure a meaningful and reproducible analysis of the ENMs-associated biocorona, it is essential to streamline procedures for its preparation, separation, identification and characterization, so that studies in different labs can be easily compared, and the information collected can be used to predict the composition, dynamics and properties of biocoronas acquired by other ENMs. Most studies focus on the protein corona as proteins are easier to monitor and characterize than other biomolecules and play crucial roles in receptor engagement and signaling; however, metabolites play equally critical roles in signaling. Here we describe how to reproducibly prepare and characterize biomolecule-coated ENMs, noting especially the steps that need optimization for different types of ENMs. The structure and composition of the biocoronas are characterized using general methods (transmission electron microscopy, dynamic light scattering, capillary electrophoresis-mass spectrometry and liquid chromatography-mass spectrometry) as well as advanced techniques, such as transmission electron cryomicroscopy, synchrotron-based X-ray absorption near edge structure and circular dichroism. We also discuss how to use molecular dynamic simulation to study and predict the interaction between ENMs and biomolecules and the resulting biocorona composition. The application of this protocol can provide mechanistic insights into the formation, composition and evolution of the ENM biocorona, ultimately facilitating the biomedical and agricultural application of ENMs and a better understanding of their impact in the environment.
Collapse
Grants
- 1001634 RCUK | Engineering and Physical Sciences Research Council (EPSRC)
- 814572, 814425, 731032, 101008099 EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
- 814572 EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
- 814425 EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
- 731032, 101008099 EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
- BX2021088 Bureau of International Cooperation, Chinese Academy of Sciences
- XDB36000000, BX2021088 Bureau of International Cooperation, Chinese Academy of Sciences
- 1853690, 2122860 Royal Society
- 1853690 Royal Society
- 22027810, 32071402, 22027810, U2032107 National Natural Science Foundation of China (National Science Foundation of China)
Collapse
Affiliation(s)
- Peng Zhang
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, China
| | - Mingjing Cao
- CAS Center for Excellence in Nanoscience and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, New Cornerstone Science Laboratory, National Center for Nanoscience and Technology of China, Beijing, China
| | - Andrew J Chetwynd
- Department of Women's and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
- Centre for Proteome Research, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Klaus Faserl
- Institute of Medical Biochemistry, Medical University of Innsbruck, Innsbruck, Austria
| | - Fazel Abdolahpur Monikh
- Department of Chemical Sciences, University of Padua, Padova, Italy
- Institute for Nanomaterials, Advanced Technologies, and Innovation, Technical University of Liberec, Liberec, Czech Republic
| | - Wei Zhang
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | - Rawi Ramautar
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | - Laura-Jayne A Ellis
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, China
| | - Hossein Hayat Davoudi
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, China
| | - Katie Reilly
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, China
| | - Rong Cai
- CAS Center for Excellence in Nanoscience and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, New Cornerstone Science Laboratory, National Center for Nanoscience and Technology of China, Beijing, China
| | - Korin E Wheeler
- Department of Chemistry and Biochemistry, Santa Clara University, Santa Clara, CA, USA
| | - Diego Stéfani Teodoro Martinez
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Centre for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Zhiling Guo
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK.
| | - Chunying Chen
- CAS Center for Excellence in Nanoscience and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, New Cornerstone Science Laboratory, National Center for Nanoscience and Technology of China, Beijing, China.
- Research Unit of Nanoscience and Technology, Chinese Academy of Medical Sciences, Beijing, China.
- GBA National Institute for Nanotechnology Innovation, Guangzhou, China.
| | - Iseult Lynch
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
4
|
Almatroudi A. Unlocking the Potential of Silver Nanoparticles: From Synthesis to Versatile Bio-Applications. Pharmaceutics 2024; 16:1232. [PMID: 39339268 PMCID: PMC11435049 DOI: 10.3390/pharmaceutics16091232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/04/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
Silver nanoparticles (AgNPs) are leading the way in nanotechnological innovation, combining the captivating properties of silver with the accuracy of nanoscale engineering, thus revolutionizing material science. Three main techniques arise within the alchemical domains of AgNP genesis: chemical, physical, and biological synthesis. Each possesses its distinct form of magic for controlling size, shape, and scalability-key factors necessary for achieving expertise in the practical application of nanoparticles. The story unravels, describing the careful coordination of chemical reduction, the environmentally sensitive charm of green synthesis utilizing plant extracts, and the precise accuracy of physical techniques. AgNPs are highly praised in the field of healthcare for their powerful antibacterial characteristics. These little warriors display a wide-ranging attack against bacteria, fungi, parasites, and viruses. Their critical significance in combating hospital-acquired and surgical site infections is highly praised, serving as a beacon of hope in the fight against the challenging problem of antibiotic resistance. In addition to their ability to kill bacteria, AgNPs are also known to promote tissue regeneration and facilitate wound healing. The field of cancer has also observed the adaptability of AgNPs. The review documents their role as innovative carriers of drugs, specifically designed to target cancer cells with accuracy, minimizing harm to healthy tissues. Additionally, it explores their potential as cancer therapy or anticancer agents capable of disrupting the growth of tumors. In the food business, AgNPs are utilized to enhance the durability of packing materials and coatings by infusing them with their bactericidal properties. This results in improved food safety measures and a significant increase in the duration that products can be stored, thereby tackling the crucial issue of food preservation. This academic analysis recognizes the many difficulties that come with the creation and incorporation of AgNPs. This statement pertains to the evaluation of environmental factors and the effort to enhance synthetic processes. The review predicts future academic pursuits, envisioning progress that will enhance the usefulness of AgNPs and increase their importance from being new to becoming essential within the realms of science and industry. Besides, AgNPs are not only a subject of scholarly interest but also a crucial component in the continuous effort to tackle some of the most urgent health and conservation concerns of contemporary society. This review aims to explore the complex process of AgNP synthesis and highlight their numerous uses, with a special focus on their growing importance in the healthcare and food business sectors. This review invites the scientific community to explore the extensive possibilities of AgNPs in order to fully understand and utilize their potential.
Collapse
Affiliation(s)
- Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| |
Collapse
|
5
|
Oczkowski M, Dziendzikowska K, Gromadzka-Ostrowska J, Kruszewski M, Grzelak A. Intragastric exposure of rats to silver nanoparticles modulates the redox balance and expression of steroid receptors in testes. Food Chem Toxicol 2024; 191:114841. [PMID: 38944145 DOI: 10.1016/j.fct.2024.114841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/08/2024] [Accepted: 06/25/2024] [Indexed: 07/01/2024]
Abstract
Nanosilver (AgNPs) is popular nanomaterials used in food industry that makes gastrointestinal tract an essential route of its uptake. The aim of the presented study was to assess the effects of intragastric exposure to AgNPs on redox balance and steroid receptors in the testes of adult Fisher 344 rats. The animals were exposed to 20 nm AgNPs (30 mg/kg bw/day, by gavage) for 7 and 28 days compared to saline (control groups). It was demonstrated that 7-day AgNPs administration resulted in increased level of total antioxidant status (TAS), glutathione reductase (GR) activity, lower superoxide dismutase activity (SOD), decreased glutathione (GSH) level and GSH/GSSG ratio, as well as higher estrogen receptor (ESR2) and aromatase (Aro) protein expression in Leydig cells compared to the 28-day AgNPs esposure. The longer-time effects of AgNPs exposition were associated with increased lipid hydroperoxidation (LOOHs) and decreased SOD activity and androgen receptor protein level. In conclusion, the present study demonstrated the adverse gastrointestinally-mediated AgNPs effects in male gonads. In particular, the short-term AgNPs exposure impaired antioxidant defence with concurrent effects on the stimulation of estrogen signaling, while the sub-chronic AgNPs exposition revealed the increased testicle oxidative stress that attenuated androgens signaling.
Collapse
Affiliation(s)
- Michał Oczkowski
- Department of Dietetics, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (SGGW), Warsaw, Poland.
| | - Katarzyna Dziendzikowska
- Department of Dietetics, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (SGGW), Warsaw, Poland.
| | - Joanna Gromadzka-Ostrowska
- Department of Dietetics, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (SGGW), Warsaw, Poland.
| | - Marcin Kruszewski
- Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Warsaw, Poland; Department of Molecular Biology and Translational Research, Institute of Rural Health, Lublin, Poland.
| | - Agnieszka Grzelak
- Cytometry Laboratory, Department of Oncobiology and Epigenetics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland.
| |
Collapse
|
6
|
Wang L, Hu M, Liu R, Xi S, Cheng M, Bao Y, Wang N, Dong Y. Development and analysis of a universal label-free micro/nano component for three-channel detection of silver ions, mercury ions, and tetracycline. Anal Chim Acta 2023; 1276:341606. [PMID: 37573104 DOI: 10.1016/j.aca.2023.341606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/26/2023] [Accepted: 07/07/2023] [Indexed: 08/14/2023]
Abstract
In this paper, an enzyme-free and label-free fluorescent nanomodule is proposed for rapid, simple and sensitive detection of Ag+, Hg2+ and tetracycline (TC). The strategy is cleverly designed to enable multiple-purpose detection with as little as 31 nt of ssDNA. Both the embedded dye SYBR Green I and the nanomaterial graphene oxide (GO) are able to distinguish single-stranded DNA from double-stranded DNA; thus, the combination of the two instead of using traditional molecular beacon (MB)-labeled fluorophores and quencher groups can effectively reduce the cost of experiments while efficiently reducing the background noise. Performance testing experiments confirmed the stability and selectivity of the platform; the limits of detection (LODs) of Ag+ and Hg2+ were 1.41 nM and 1.79 nM, respectively, and the detection range were within the WHO standards. In addition, only some base sequences in the flexible functional domain of the nanoloop needed to be programmed to build a universal platform, which was feasible using TC as a target. Therefore, the designed nanomodule has the potential to detect various types of targets, such as antibiotics, proteins, and target genes, and has broad application prospects in environmental monitoring, food testing, and disease diagnosis.
Collapse
Affiliation(s)
- Luhui Wang
- College of Life Science, Shaanxi Normal University, Xi'an, Shaanxi, 710119, PR China
| | - Mengyang Hu
- College of Life Science, Shaanxi Normal University, Xi'an, Shaanxi, 710119, PR China
| | - Rong Liu
- College of Computer Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, PR China
| | - Sunfan Xi
- College of Life Science, Shaanxi Normal University, Xi'an, Shaanxi, 710119, PR China
| | - Meng Cheng
- College of Life Science, Shaanxi Normal University, Xi'an, Shaanxi, 710119, PR China
| | - Yangyinchun Bao
- College of Life Science, Shaanxi Normal University, Xi'an, Shaanxi, 710119, PR China
| | - Na Wang
- College of Life Science, Shaanxi Normal University, Xi'an, Shaanxi, 710119, PR China
| | - Yafei Dong
- College of Life Science, Shaanxi Normal University, Xi'an, Shaanxi, 710119, PR China; College of Computer Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, PR China.
| |
Collapse
|
7
|
Silver Nanoparticles Modified by Carbosilane Dendrons and PEG as Delivery Vectors of Small Interfering RNA. Int J Mol Sci 2023; 24:ijms24010840. [PMID: 36614277 PMCID: PMC9820844 DOI: 10.3390/ijms24010840] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023] Open
Abstract
The fact that cancer is one of the leading causes of death requires researchers to create new systems of effective treatment for malignant tumors. One promising area is genetic therapy that uses small interfering RNA (siRNA). These molecules are capable of blocking mutant proteins in cells, but require specific systems that will deliver RNA to target cells and successfully release them into the cytoplasm. Dendronized and PEGylated silver nanoparticles as potential vectors for proapoptotic siRNA (siMCL-1) were used here. Using the methods of one-dimensional gel electrophoresis, the zeta potential, dynamic light scattering, and circular dichroism, stable siRNA and AgNP complexes were obtained. Data gathered using multicolor flow cytometry showed that AgNPs are able to deliver (up to 90%) siRNAs efficiently to some types of tumor cells, depending on the degree of PEGylation. Analysis of cell death showed that complexes of some AgNP variations with siMCL-1 lead to ~70% cell death in the populations that uptake these complexes due to apoptosis.
Collapse
|
8
|
Chen J, Zhang X, Bassey AP, Xu X, Gao F, Guo K, Zhou G. Prospects for the next generation of artificial enzymes for ensuring the quality of chilled meat: Opportunities and challenges. Crit Rev Food Sci Nutr 2022; 64:3583-3603. [PMID: 36239319 DOI: 10.1080/10408398.2022.2133077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
As living standards rise, the demand for high-quality chilled meat among consumers also grows. Researchers and enterprises have been interested in ensuring the quality of chilled meat in all links of the downstream industry. Nanozyme has shown the potential to address the aforementioned requirements. Reasons and approaches for the application of nanozymes in the freshness assessment or shelf life extension of chilled meat were discussed. The challenges for applying these nanozymes to ensure the quality of chilled meat were also summarized. Finally, this review examined the safety, regulatory status, and consumer attitudes toward nanozymes. This review revealed that the freshness assessment of chilled meat is closely related to mimicking the enzyme activities of nanozymes, whereas the shelf life changes of chilled meat are mostly dependent on the photothermal activities and pseudophotodynamic activities of nanozymes. In contrast, studies regarding the shelf life of chilled meat are more challenging to develop, as excessive heat or reactive oxygen species impair its quality. Notably, meat contains a complex matrix composition that may interact with the nanozyme, reducing its effectiveness. Nanopollution and mass manufacturing are additional obstacles that must be overcome. Therefore, it is vital to choose suitable approaches to ensure meat quality. Furthermore, the safety of nanozymes in meat applications still needs careful consideration owing to their widespread usage.
Collapse
Affiliation(s)
- Jiahui Chen
- Key Laboratory of Meat Processing, Ministry of Agriculture, Key Lab of Meat Processing and Quality Control, Ministry of Education, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xing Zhang
- Department of Trauma and Reconstructive Surgery, RWTH Aachen University, Aachen, Germany
| | - Anthony Pius Bassey
- Key Laboratory of Meat Processing, Ministry of Agriculture, Key Lab of Meat Processing and Quality Control, Ministry of Education, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xinglian Xu
- Key Laboratory of Meat Processing, Ministry of Agriculture, Key Lab of Meat Processing and Quality Control, Ministry of Education, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Fenglei Gao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Kaijin Guo
- Institute of Orthopedics, Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Guanghong Zhou
- Key Laboratory of Meat Processing, Ministry of Agriculture, Key Lab of Meat Processing and Quality Control, Ministry of Education, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
9
|
Arezki Y, Delalande F, Schaeffer-Reiss C, Cianférani S, Rapp M, Lebeau L, Pons F, Ronzani C. Surface charge influences protein corona, cell uptake and biological effects of carbon dots. NANOSCALE 2022; 14:14695-14710. [PMID: 36168840 DOI: 10.1039/d2nr03611h] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Carbon dots are emerging nanoparticles (NPs) with tremendous applications, especially in the biomedical field. Herein is reported the first quantitative proteomic analysis of the protein corona formed on CDs with different surface charge properties. Four CDs were synthesized from citric acid and various amine group-containing passivation reagents, resulting in cationic NPs with increasing zeta (ζ)-potential and density of positive charges. After CD contact with serum, we show that protein corona identity is influenced by CD surface charge properties, which in turn impacts CD uptake and viability loss in macrophages. In particular, CDs with high ζ-potential (>+30 mV) and charge density (>2 μmol mg-1) are the most highly internalized, and their cell uptake is strongly correlated with a corona enriched in vitronectin, fibulin, fetuin, adiponectin and alpha-glycoprotein. On the contrary, CDs with a lower ζ-potential (+11 mV) and charge density (0.01 μmol mg-1) are poorly internalized, while having a corona with a very different protein signature characterized by a high abundance of apolipoproteins (APOA1, APOB and APOC), albumin and hemoglobin. These data illustrate how corona characterization may contribute to a better understanding of CD cellular fate and biological effects, and provide useful information for the development of CDs for biomedical applications.
Collapse
Affiliation(s)
- Yasmin Arezki
- Laboratoire de Conception et Application de Molécules Bioactives, UMR 7199 CNRS-Université de Strasbourg, 67400 Illkirch, France.
| | - François Delalande
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), IPHC, UMR 7178, CNRS-Université de Strasbourg, 67087 Strasbourg, France
- Infrastructure Nationale de Protéomique ProFI - FR2048 CNRS, 67087 Strasbourg, France
| | - Christine Schaeffer-Reiss
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), IPHC, UMR 7178, CNRS-Université de Strasbourg, 67087 Strasbourg, France
- Infrastructure Nationale de Protéomique ProFI - FR2048 CNRS, 67087 Strasbourg, France
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), IPHC, UMR 7178, CNRS-Université de Strasbourg, 67087 Strasbourg, France
- Infrastructure Nationale de Protéomique ProFI - FR2048 CNRS, 67087 Strasbourg, France
| | - Mickaël Rapp
- Laboratoire de Conception et Application de Molécules Bioactives, UMR 7199 CNRS-Université de Strasbourg, 67400 Illkirch, France.
| | - Luc Lebeau
- Laboratoire de Conception et Application de Molécules Bioactives, UMR 7199 CNRS-Université de Strasbourg, 67400 Illkirch, France.
| | - Françoise Pons
- Laboratoire de Conception et Application de Molécules Bioactives, UMR 7199 CNRS-Université de Strasbourg, 67400 Illkirch, France.
| | - Carole Ronzani
- Laboratoire de Conception et Application de Molécules Bioactives, UMR 7199 CNRS-Université de Strasbourg, 67400 Illkirch, France.
| |
Collapse
|
10
|
Protein coronas coating polymer-stabilized silver nanocolloids attenuate cytotoxicity with minor effects on antimicrobial performance. Colloids Surf B Biointerfaces 2022; 218:112778. [PMID: 35998523 DOI: 10.1016/j.colsurfb.2022.112778] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 11/24/2022]
Abstract
Silver nanoparticles are versatile platforms with a variety of applications in the biomedical field. In this framework, their presence in biological media inevitably leads to the interaction with proteins thus conducting to the formation of biomolecular coronas. This feature alters the identity of the nanomaterial and may affect many biological events. These considerations motivated the investigation of protein adsorption onto the surface of polymer-stabilized AgNPs. The metallic colloids were coated by polyethyleneimine (PEI), polyvinylpyrrolidone (PVP), and poly(2-vinyl pyridine)-b-poly(ethylene oxide) (PEO-b-P2VP), and nanoparticle-protein interaction was probed by using a library of analytical techniques. The experimental data revealed a higher extent of protein adsorption at the surface of AgNPs@PVP whereas PEO-b-P2VP coating conducted to the least amount. The main component of the protein coronas was evidenced to be bovine serum albumin (BSA), which is indeed the protein at the highest abundancy in the model biological media. We have further demonstrated reduced cytotoxicity of the silver colloids coated by biomolecular coronas as compared to the pristine counterparts. Nevertheless, the protein coatings did not notably reduce the antimicrobial performance of the polymer-stabilized AgNPs. Accordingly, although the protein-repelling property is frequently targeted towards longer in vivo circulation of nanoparticles, we herein underline that protein coatings, which are commonly treated as artifacts to be avoided, may indeed enhance the biological performance of nanomaterials. These findings are expected to be highly relevant in the design of polymer-stabilized metallic colloids intended to be used in healthcare.
Collapse
|
11
|
Bioinformatic Analysis of the Effect of Silver Nanoparticles on Colorectal Cancer Cell Line. BIOMED RESEARCH INTERNATIONAL 2022; 2022:6828837. [PMID: 35445138 PMCID: PMC9015850 DOI: 10.1155/2022/6828837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 03/09/2022] [Accepted: 03/18/2022] [Indexed: 11/24/2022]
Abstract
Colorectal cancer (CRC) is the most diagnosed cancer with the highest mortality rate each year globally. Although there are treatments for CRC, the development of resistance to therapies decreases the success of treatments. In vitro studies using the Caco-2 cell line have revealed the anticancer properties of silver nanoparticles (AgNPs) as a possible treatment for this disease. This study considered four researches that evaluated the proteomic profiles of cells of the Caco-2 line exposed to AgNPs. We performed a bioinformatics analysis to predict protein-protein interaction, hub genes, Gene Ontology (molecular function, biological process, and cellular components), KEGG pathways, analysis of expression, and immune cell infiltration. For these analyses, the STRING, DAVID, UALCAN, GEPIA2, and TISIDB databases were used. The results in Gene Ontology show that AgNPs cause a deregulation of genes related to cell-cell adhesion, the cytoplasm, the centriole, and carbon metabolism. Hub genes were identified, including GADPH, ENO1, EEF2, and ATP5A1, which showed differential expression in patients with adenocarcinoma of the colon and rectum. Additionally, the expression of the hub genes and immune cells was correlated. It was found that ATP5A1 and ENO1 were positively correlated with the infiltration of CD4+ T lymphocytes in colon adenocarcinoma and a negative correlation between GADPH and PDIA3 with the infiltration of NK cells and CD4+ T lymphocytes in rectal adenocarcinoma, respectively. In conclusion, the administration of AgNPs causes an alteration of biological processes, cellular components, metabolic pathways, deregulation of hub genes, and the activity of immune cells leading to a potential anticancer effect.
Collapse
|
12
|
Bhargava A, Dev A, Mohanbhai SJ, Pareek V, Jain N, Choudhury SR, Panwar J, Karmakar S. Pre-coating of protein modulate patterns of corona formation, physiological stability and cytotoxicity of silver nanoparticles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 772:144797. [PMID: 33578167 DOI: 10.1016/j.scitotenv.2020.144797] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/15/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
Surface functionalization on silver nanoparticles greatly affects the dynamics of protein corona formation. In the present study, the implications of protein pre-coating on corona formation and nanoparticle's physiological stability, cellular uptake and toxicity were studied on similar sized alkaline protease coated nanoparticles of biological and chemical origin along with the uncoated nanoparticle as compared to the albumin coated nanoparticles. All four nanoparticle types invited serum protein adsorption on their surface. However, the presence of protein pre-coating on nanoparticle surface significantly reduced the extent of further protein binding. Moreover, corona formation on pristine nanoparticles significantly improved their stability in the biological medium. The effect was found to be diluted in protein pre-coated nanoparticles with due exception. Results obtained in the cell-based experiment suggested that the nanoparticles binding to the cell, its uptake, and toxicity in different cell lines can be directly linked to their physiological stability owing to corona formation.
Collapse
Affiliation(s)
- Arpit Bhargava
- Institute of Nano Science and Technology, Habitat Centre, Phase-10, Mohali 160062, Punjab, India
| | - Atul Dev
- Institute of Nano Science and Technology, Habitat Centre, Phase-10, Mohali 160062, Punjab, India
| | - Soni Jignesh Mohanbhai
- Institute of Nano Science and Technology, Habitat Centre, Phase-10, Mohali 160062, Punjab, India
| | - Vikram Pareek
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani 333031, Rajasthan, India
| | - Navin Jain
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani 333031, Rajasthan, India
| | - Subhasree Roy Choudhury
- Institute of Nano Science and Technology, Habitat Centre, Phase-10, Mohali 160062, Punjab, India
| | - Jitendra Panwar
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani 333031, Rajasthan, India
| | - Surajit Karmakar
- Institute of Nano Science and Technology, Habitat Centre, Phase-10, Mohali 160062, Punjab, India.
| |
Collapse
|
13
|
Kianfar E. Protein nanoparticles in drug delivery: animal protein, plant proteins and protein cages, albumin nanoparticles. J Nanobiotechnology 2021; 19:159. [PMID: 34051806 PMCID: PMC8164776 DOI: 10.1186/s12951-021-00896-3] [Citation(s) in RCA: 185] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 05/12/2021] [Indexed: 12/19/2022] Open
Abstract
In this article, we will describe the properties of albumin and its biological functions, types of sources that can be used to produce albumin nanoparticles, methods of producing albumin nanoparticles, its therapeutic applications and the importance of albumin nanoparticles in the production of pharmaceutical formulations. In view of the increasing use of Abraxane and its approval for use in the treatment of several types of cancer and during the final stages of clinical trials for other cancers, to evaluate it and compare its effectiveness with conventional non formulations of chemotherapy Paclitaxel is paid. In this article, we will examine the role and importance of animal proteins in Nano medicine and the various benefits of these biomolecules for the preparation of drug delivery carriers and the characteristics of plant protein Nano carriers and protein Nano cages and their potentials in diagnosis and treatment. Finally, the advantages and disadvantages of protein nanoparticles are mentioned, as well as the methods of production of albumin nanoparticles, its therapeutic applications and the importance of albumin nanoparticles in the production of pharmaceutical formulations.
Collapse
Affiliation(s)
- Ehsan Kianfar
- ERNAM-Erciyes University Nanotechnology Application and Research Center, Kayseri, 38039, Turkey.
- Department of Analytical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri, 38039, Turkey.
| |
Collapse
|
14
|
Huang X, Liu H, Lu D, Lin Y, Liu J, Liu Q, Nie Z, Jiang G. Mass spectrometry for multi-dimensional characterization of natural and synthetic materials at the nanoscale. Chem Soc Rev 2021; 50:5243-5280. [PMID: 33656017 DOI: 10.1039/d0cs00714e] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Characterization of materials at the nanoscale plays a crucial role in in-depth understanding the nature and processes of the substances. Mass spectrometry (MS) has characterization capabilities for nanomaterials (NMs) and nanostructures by offering reliable multi-dimensional information consisting of accurate mass, isotopic, and molecular structural information. In the last decade, MS has emerged as a powerful nano-characterization technique. This review comprehensively summarizes the capabilities of MS in various aspects of nano-characterization that greatly enrich the toolbox of nano research. Compared with other characterization techniques, MS has unique capabilities for real-time monitoring and tracking reaction intermediates and by-products. Moreover, MS has shown application potential in some novel aspects, such as MS imaging of the biodistribution and fate of NMs in animals and humans, stable isotopic tracing of NMs, and risk assessment of NMs, which deserve update and integration into the current knowledge framework of nano-characterization.
Collapse
Affiliation(s)
- Xiu Huang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huihui Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Dawei Lu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Yue Lin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Jingfu Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China. and University of Chinese Academy of Sciences, Beijing 100049, China and Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Zongxiu Nie
- University of Chinese Academy of Sciences, Beijing 100049, China and Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
15
|
Gillois K, Stoffels C, Leveque M, Fourquaux I, Blesson J, Mils V, Cambier S, Vignard J, Terrisse H, Mirey G, Audinot JN, Theodorou V, Ropers MH, Robert H, Mercier-Bonin M. Repeated exposure of Caco-2 versus Caco-2/HT29-MTX intestinal cell models to (nano)silver in vitro: Comparison of two commercially available colloidal silver products. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 754:142324. [PMID: 33254900 DOI: 10.1016/j.scitotenv.2020.142324] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 06/12/2023]
Abstract
Colloidal silver products are sold for a wide range of disinfectant and health applications. This has increased the potential for human exposure to silver nanoparticles (AgNPs) and ions (Ag+), for which oral ingestion is considered to be a major route of exposure. Our objective was to evaluate and compare the toxicity of two commercially available colloidal silver products on two human intestinal epithelial models under realistic exposure conditions. Mesosilver™ and AgC were characterized and a concentration range between 0.1 and 12 μg/mL chosen. Caco-2 cells vs. co-culture of Caco-2 and mucus-secreting HT29-MTX cells (90/10) were used. Repeated exposure was carried out to determine cell viability over 18 days of cell differentiation in 24-well plates. Selected concentrations (0.1, 1, and 3 μg/mL) were tested on cells cultured in E-plates and Transwells with the same repeated exposure regimen, to determine cell impedance, and cell viability and trans-epithelial electrical resistance (TEER), respectively. Silver uptake, intracellular localisation, and translocation were determined by CytoViva™, HIM-SIMS, and ICP-MS. Genotoxicity was determined on acutely-exposed proliferating Caco-2 cells by γH2AX immunofluorescence staining. Repeated exposure of a given concentration of AgC, which is composed solely of ionic silver, generally exerted more toxic effects on Caco-2 cells than Mesosilver™, which contains a mix of AgNPs and ionic silver. Due to its patchy structure, the presence of mucus in the Caco-2/HT29-MTX co-culture only slightly mitigated the deleterious effects on cell viability. Increased genotoxicity was observed for AgC on proliferating Caco-2 cells. Silver uptake, intracellular localisation, and translocation were similar. In conclusion, Mesosilver™ and AgC colloidal silver products show different levels of gut toxicity due to the forms of distinct silver (AgNPs and/or Ag+) contained within. This study highlights the applicability of high-resolution (chemical) imaging to detect and localize silver and provides insights into its uptake mechanisms, intracellular fate and cellular effects.
Collapse
Affiliation(s)
- Kévin Gillois
- Toxalim, Université de Toulouse, INRAE, INP-ENVT, INP-EI-Purpan, Université de Toulouse 3 Paul Sabatier, Toulouse, France
| | - Charlotte Stoffels
- Luxembourg Institute of Science and Technology (LIST), 41, rue de Brill, Belvaux L-4422, Luxembourg
| | - Mathilde Leveque
- Toxalim, Université de Toulouse, INRAE, INP-ENVT, INP-EI-Purpan, Université de Toulouse 3 Paul Sabatier, Toulouse, France
| | - Isabelle Fourquaux
- Centre de Microscopie Électronique Appliquée à la Biologie, CMEAB, 133 route de Narbonne, 31062 Toulouse, France
| | - Justine Blesson
- Toxalim, Université de Toulouse, INRAE, INP-ENVT, INP-EI-Purpan, Université de Toulouse 3 Paul Sabatier, Toulouse, France
| | - Valérie Mils
- Toxalim, Université de Toulouse, INRAE, INP-ENVT, INP-EI-Purpan, Université de Toulouse 3 Paul Sabatier, Toulouse, France
| | - Sébastien Cambier
- Luxembourg Institute of Science and Technology (LIST), 41, rue de Brill, Belvaux L-4422, Luxembourg
| | - Julien Vignard
- Toxalim, Université de Toulouse, INRAE, INP-ENVT, INP-EI-Purpan, Université de Toulouse 3 Paul Sabatier, Toulouse, France
| | - Hélène Terrisse
- Université de Nantes, CNRS, Institut des Matériaux Jean Rouxel, IMN, F-44000 Nantes, France
| | - Gladys Mirey
- Toxalim, Université de Toulouse, INRAE, INP-ENVT, INP-EI-Purpan, Université de Toulouse 3 Paul Sabatier, Toulouse, France
| | - Jean-Nicolas Audinot
- Luxembourg Institute of Science and Technology (LIST), 41, rue de Brill, Belvaux L-4422, Luxembourg
| | - Vassilia Theodorou
- Toxalim, Université de Toulouse, INRAE, INP-ENVT, INP-EI-Purpan, Université de Toulouse 3 Paul Sabatier, Toulouse, France
| | | | - Hervé Robert
- Toxalim, Université de Toulouse, INRAE, INP-ENVT, INP-EI-Purpan, Université de Toulouse 3 Paul Sabatier, Toulouse, France
| | - Muriel Mercier-Bonin
- Toxalim, Université de Toulouse, INRAE, INP-ENVT, INP-EI-Purpan, Université de Toulouse 3 Paul Sabatier, Toulouse, France.
| |
Collapse
|
16
|
Vazquez-Muñoz R, Bogdanchikova N, Huerta-Saquero A. Beyond the Nanomaterials Approach: Influence of Culture Conditions on the Stability and Antimicrobial Activity of Silver Nanoparticles. ACS OMEGA 2020; 5:28441-28451. [PMID: 33195894 PMCID: PMC7658933 DOI: 10.1021/acsomega.0c02007] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/17/2020] [Indexed: 05/08/2023]
Abstract
Silver nanoparticles (AgNPs) as antimicrobial agents have been extensively studied. It is generally assumed that their inhibitory activity heavily depends on their physicochemical features. Yet, other parameters may affect the AgNP traits and activity, such as culture medium composition, pH, and temperature, among others. In this work, we evaluated the effect of the culture medium physicochemical traits on both the stability and antibacterial activity of AgNPs. We found that culture media impact the physicochemical traits of AgNPs, such as hydrodynamic size, surface charge, aggregation, and the availability of ionic silver release rate. As a consequence, culture media play a major role in AgNP stability and antimicrobial potency. The AgNP minimal inhibitory concentration (MIC) values changed up to 2 orders of magnitude by the influence of culture media alone when single-stock AgNPs were tested on the same strain of Escherichia coli. Furthermore, a meta-analysis of the AgNP MIC values confirms that the "chemical complexity" of culture media influences the AgNP activity. Studies that address only the antimicrobial activities of nanoparticles on common bacterial models should be performed by standardized susceptibility assays, thus generating replicable, comparable reports regarding the antimicrobial potency of nanomaterials.
Collapse
Affiliation(s)
- Roberto Vazquez-Muñoz
- Department
of Biology and The South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249, Unites
States
- Centro
de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km 107 Carretera Tijuana-Ensenada, CP 22860 Ensenada, Baja California, México
| | - Nina Bogdanchikova
- Centro
de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km 107 Carretera Tijuana-Ensenada, CP 22860 Ensenada, Baja California, México
| | - Alejandro Huerta-Saquero
- Centro
de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km 107 Carretera Tijuana-Ensenada, CP 22860 Ensenada, Baja California, México
| |
Collapse
|
17
|
Citrate-Coated Platinum Nanoparticles Exhibit a Primary Particle-Size Dependent Effect on Stimulating Melanogenesis in Human Melanocytes. COSMETICS 2020. [DOI: 10.3390/cosmetics7040088] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Hypopigmentation disorders due to an underproduction of the pigment melanin by melanocytes cause uneven skin coloration, while in hair follicles they cause grey hair. There is a need for novel materials which can stimulate melanogenesis in the skin and hair for personal care use. While titanium dioxide, gold and silver nanoparticles have been extensively used for applications in cosmetic and personal-care products (PCP), the use of relatively inert platinum nanoparticles (PtNPs) has remained underappreciated. PtNPs have been reported to be a mimetic of the enzyme catechol oxidase with small size PtNPs reported to exhibit a higher catechol oxidase activity in a cell-free system, but no testing has been conducted in melanocytes to date. Herein, we have investigated if PtNPs of two sizes (SPtNP: 5 nm; LPtNP: 50 nm) might have an effect on melanogenesis. To this end, we have used MNT-1 human melanoma cells and primary human melanocytes from moderately-pigmented skin (HEMn-MP). Both SPtNP and LPtNP were nontoxic over a concentration range 6.25–25 μg/mL, hence these concentrations were used in further experiments. Both PtNPs stimulated higher extracellular melanin levels than control; SPtNP at concentrations 12.5 and 25 μg/mL significantly stimulated higher levels of extracellular melanin as compared to similar concentrations of LPtNP in MNT-1 cells, in the absence of ROS generation. The effects of PtNPs on melanin secretion were reversible upon removal of PtNPs from the culture medium. The results of primary particle size-specific augmentation of extracellular melanin by SPtNPs were also validated in HEMn-MP cells. Our results thus provide a proof-of-principle that SPtNP might hold potential as a candidate for the treatment of white skin patches, for sunless skin-tanning and for use in anti-greying hair products in cosmetics.
Collapse
|
18
|
Liu S, Wang Z, Jiang X, Gan J, Tian X, Xing Z, Yan Y, Chen J, Zhang J, Wang C, Dong L. Denatured corona proteins mediate the intracellular bioactivities of nanoparticles via the unfolded protein response. Biomaterials 2020; 265:120452. [PMID: 33190736 DOI: 10.1016/j.biomaterials.2020.120452] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/22/2020] [Accepted: 10/11/2020] [Indexed: 12/15/2022]
Abstract
Biomolecular corona formed on nanoparticles (NPs) influences the latter's in vivo biological effects. Nanomaterials with different physicochemical properties exert similar adverse effects, such as cytotoxicity, suggesting the existence of ubiquitous signals during various corona formations that mediate common and fundamental cellular events. Here, we discover the involvement of the unfolded protein response (UPR) and recruited chaperones in the corona. Specially, heat shock protein 90 kDa α class B member 1 (Hsp90ab1) is abundantly enriched in the corona, accompanied by substantial aggregation of misfolded protein on particles intracellularly. Further analysis reveals the particulate matter 2.5 (PM2.5) and metal-containing particles are more capable of denaturing proteins. The recruited Hsp90ab1 activates diverse NPs' pathological behaviour by heat stress response (HSR), which were significantly reversed by geldanamycin (GA), the inhibitor of Hsp90ab1. Murine lung inflammation induced by PM2.5 and iron oxide NPs (Fe3O4NPs) is suppressed by GA, highlighting that Hsp90ab1-mediated UPR is a potential target for the treatment of environmental pollution-related illnesses. Based on our findings, the UPR and Hsp90ab1 presented in the corona of particles initiate fundamental intracellular reactions that lead to common pathological outcomes, which may provide new insights for understanding nanotoxicity and designing therapeutic approaches for diseases associated with environmental pollution.
Collapse
Affiliation(s)
- Shang Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences and Medical School, Nanjing University, 163 Xianlin Avenue, Nanjing, 210093, China
| | - Zhenzhen Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences and Medical School, Nanjing University, 163 Xianlin Avenue, Nanjing, 210093, China; State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, 999078, China
| | - Xinbang Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences and Medical School, Nanjing University, 163 Xianlin Avenue, Nanjing, 210093, China
| | - Jingjing Gan
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences and Medical School, Nanjing University, 163 Xianlin Avenue, Nanjing, 210093, China
| | - Xuejiao Tian
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences and Medical School, Nanjing University, 163 Xianlin Avenue, Nanjing, 210093, China
| | - Zhen Xing
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences and Medical School, Nanjing University, 163 Xianlin Avenue, Nanjing, 210093, China
| | - Yiqing Yan
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences and Medical School, Nanjing University, 163 Xianlin Avenue, Nanjing, 210093, China
| | - Jiahui Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences and Medical School, Nanjing University, 163 Xianlin Avenue, Nanjing, 210093, China
| | - Junfeng Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences and Medical School, Nanjing University, 163 Xianlin Avenue, Nanjing, 210093, China
| | - Chunming Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, 999078, China
| | - Lei Dong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences and Medical School, Nanjing University, 163 Xianlin Avenue, Nanjing, 210093, China; Chemistry and Biomedicine Innovative Center, Nanjing University, 163 Xianlin Avenue, Nanjing 210093, China.
| |
Collapse
|
19
|
Pryshchepa O, Pomastowski P, Buszewski B. Silver nanoparticles: Synthesis, investigation techniques, and properties. Adv Colloid Interface Sci 2020; 284:102246. [PMID: 32977142 DOI: 10.1016/j.cis.2020.102246] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/15/2020] [Accepted: 08/18/2020] [Indexed: 12/19/2022]
Abstract
The unique silver properties, especially in the form of nanoparticles (NPs), allow to utilize them in numerous applications. For instance, Ag NPs can be utilized for the production of electronic and solar energy harvesting devices, in advanced analytical techniques (NALDI, SERS), catalysis and photocatalysis. Moreover, the Ag NPs can be useful in medicine for bioimaging, biosensing as well as in antibacterial and anticancer therapies. The Ag NPs utilization requires comprehensive knowledge about their features regarding the synthesis approaches as well as exploitation conditions. Unfortunately, a large number of scientific articles provide only restricted information according to the objects under investigation. Additionally, the results could be affected by artifacts introduced with exploited equipment, the utilized technique or sample preparation stages. However, it is rather difficult to get information about problems, which may occur during the studies. Thus, the review provides information about novel trends in the Ag NPs synthesis, among which the physical, chemical, and biological approaches can be found. Basic information about approaches for the control of critical parameters of NPs, i.e. size and shape, was also revealed. It was shown, that the reducing agent, stabilizer, the synthesis environment, including trace ions, have a direct impact on the Ag NPs properties. Further, the capabilities of modern analytical techniques for Ag NPs and nanocomposites investigations were shown, among other microscopic (optical, TEM, SEM, STEM, AFM), spectroscopic (UV-Vis, IR, Raman, NMR, electron spectroscopy, XRD), spectrometric (MALDI-TOF MS, SIMS, ICP-MS), and separation (CE, FFF, gel electrophoresis) techniques were described. The limitations and possible artifacts of the techniques were mentioned. A large number of presented techniques is a distinguishing feature, which makes the review different from others. Finally, the physicochemical and biological properties of Ag NPs were demonstrated. It was shown, that Ag NPs features are dependent on their basic parameters, such as size, shape, chemical composition, etc. At the end of the review, the modern theories of the Ag NPs toxic mechanism were shown in a way that has never been presented before. The review should be helpful for scientists in their own studies, as it can help to prepare experiments more carefully.
Collapse
|
20
|
Liu S, Jiang X, Tian X, Wang Z, Xing Z, Chen J, Zhang J, Wang C, Dong L. A method to measure the denatured proteins in the corona of nanoparticles based on the specific adsorption of Hsp90ab1. NANOSCALE 2020; 12:15857-15868. [PMID: 32696774 DOI: 10.1039/d0nr02297g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The protein corona influences and determines the biological function of nanoparticles (NPs) in vivo. Analysis and understanding of the activities of proteins in coronas are crucial for nanobiology and nanomedicine research. Misfolded proteins in the corona of NPs theoretically exist, and a protein denaturation-related cellular response might occur in this process as well as in related diseases. The exact evaluation of protein denaturation in the corona is valuable to assess the bioactivities of NPs. Here, we found that the level of adsorbed heat shock protein 90 kDa α class B member 1 (Hsp90ab1) by the denatured protein in iron-cobalt-nickel alloy NPs (FeCoNi NPs) and iron oxide NPs (Fe3O4 NPs) was correlated with circular dichroism (CD) analysis and 1-anilinonaphthalene-8-sulfonate (ANS) analysis. The content of Hsp90ab1 in the corona could be easily analysed by western blotting (WB). Further analysis suggested that the method could precisely show the time-dependent protein denaturation on Fe3O4 NPs, as well as the influence of the size and the surface modification. More importantly, this method could be applied to other proteins, like lysozyme, other than albumin. Based on the results and the correlation analysis, incubation and detection of Hsp90ab1 in the NP-corona complex can be used as a new and feasible method to evaluate protein denaturation induced by NPs.
Collapse
Affiliation(s)
- Shang Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences & Medical School, Nanjing University, 163 Xianlin Avenue, Nanjing 210093, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Kämpfer AAM, Busch M, Schins RPF. Advanced In Vitro Testing Strategies and Models of the Intestine for Nanosafety Research. Chem Res Toxicol 2020; 33:1163-1178. [PMID: 32383381 DOI: 10.1021/acs.chemrestox.0c00079] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
There is growing concern about the potential adverse effects of oral exposure to engineered nanomaterials (ENM). Recent years have witnessed major developments in and advancement of intestinal in vitro models for nanosafety evaluation. The present paper reviews the key factors that should be considered for inclusion in nonanimal alternative testing approaches to reliably reflect the in vivo dynamics of the physicochemical properties of ENM as well the intestinal physiology and morphology. Currently available models range from simple cell line-based monocultures to advanced 3D systems and organoids. In addition, in vitro approaches exist to replicate the mucous barrier, digestive processes, luminal flow, peristalsis, and interactions of ENM with the intestinal microbiota. However, while the inclusion of a multitude of individual factors/components of particle (pre)treatment, exposure approach, and cell model approximates in vivo-like conditions, such increasing complexity inevitably affects the system's robustness and reproducibility. The selection of the individual modules to build the in vitro testing strategy should be driven and justified by the specific purpose of the study and, not least, the intended or actual application of the investigated ENM. Studies that address health hazards of ingested ENM likely require different approaches than research efforts to unravel the fundamental interactions or toxicity mechanisms of ENM in the intestine. Advanced reliable and robust in vitro models of the intestine, especially when combined in an integrated testing approach, offer great potential to further improve the field of nanosafety research.
Collapse
Affiliation(s)
- Angela A M Kämpfer
- Leibniz Research Institute for Environmental Medicine, IUF, 40225 Düsseldorf, Germany
| | - Mathias Busch
- Leibniz Research Institute for Environmental Medicine, IUF, 40225 Düsseldorf, Germany
| | - Roel P F Schins
- Leibniz Research Institute for Environmental Medicine, IUF, 40225 Düsseldorf, Germany
| |
Collapse
|
22
|
Yan X, Zhang Y, Lu Y, He L, Qu J, Zhou C, Hong P, Sun S, Zhao H, Liang Y, Ren L, Zhang Y, Chen J, Li C. The Complex Toxicity of Tetracycline with Polystyrene Spheres on Gastric Cancer Cells. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17082808. [PMID: 32325809 PMCID: PMC7216245 DOI: 10.3390/ijerph17082808] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 04/16/2020] [Indexed: 12/13/2022]
Abstract
Nowadays, microplastics (MPs) exist widely in the marine. The surface has strong adsorption capacity for antibiotics in natural environments, and the cytotoxicity of complex are poorly understood. In the study, 500 nm polystyrene (PS-MPs) and 60 nm nanoplastics (PS-NPs) were synthesized. The adsorption of PS to tetracycline (TC) was studied and their toxicity to gastric cancer cells (AGS) was researched. The adsorption experimental results show that PS absorbing capacity increased with increasing TC concentrations. The defense mechanism results show that 60 nm PS-NPs, 500 nm PS-MPs and their complex induce different damage to AGS cells. Furthermore, 600 mg/L PS-NPs and PS-MPs decline cell viability, induce oxidation stress and cause apoptosis. There is more serious damage of 60 nm PS-NPs than 500 nm PS-MPs in cell viability and intracellular reactive oxygen species (ROS). DNA are also damaged by 60 nm PS-NPs and PS-TC NPs, 500 nm PS-MPs and PS-TC MPs, and 60 nm PS-NPs damage DNA more serious than 500 nm PS-MPs. Moreover, 60 nm PS-NPs and PS-TC NPs seem to promote bcl-2 associated X protein (Bax) overexpression. All treatments provided us with evidence on how PS-NPs, PS-MPs and their compounds damaged AGS cells.
Collapse
Affiliation(s)
- Xiemin Yan
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (X.Y.); (J.Q.); (C.Z.); (P.H.)
| | - Yuanyuan Zhang
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China;
| | - Yuqin Lu
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China; (Y.L.); (S.S.); (H.Z.); (Y.L.)
| | - Lei He
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China; (Y.L.); (S.S.); (H.Z.); (Y.L.)
- Correspondence: (L.H.); (C.L.); Tel.: +86-759-238-3636 (C.L.)
| | - Junhao Qu
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (X.Y.); (J.Q.); (C.Z.); (P.H.)
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China; (Y.L.); (S.S.); (H.Z.); (Y.L.)
| | - Chunxia Zhou
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (X.Y.); (J.Q.); (C.Z.); (P.H.)
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China;
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524088, China
| | - Pengzhi Hong
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (X.Y.); (J.Q.); (C.Z.); (P.H.)
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China;
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524088, China
| | - Shengli Sun
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China; (Y.L.); (S.S.); (H.Z.); (Y.L.)
| | - Hui Zhao
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China; (Y.L.); (S.S.); (H.Z.); (Y.L.)
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524088, China
| | - Yanqiu Liang
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China; (Y.L.); (S.S.); (H.Z.); (Y.L.)
| | - Lei Ren
- College of Agriculture, Guangdong Ocean University, Zhanjiang 524088, China; (L.R.); (Y.Z.); (J.C.)
| | - Yueqin Zhang
- College of Agriculture, Guangdong Ocean University, Zhanjiang 524088, China; (L.R.); (Y.Z.); (J.C.)
| | - Jinjun Chen
- College of Agriculture, Guangdong Ocean University, Zhanjiang 524088, China; (L.R.); (Y.Z.); (J.C.)
| | - Chengyong Li
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China;
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China; (Y.L.); (S.S.); (H.Z.); (Y.L.)
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524088, China
- Correspondence: (L.H.); (C.L.); Tel.: +86-759-238-3636 (C.L.)
| |
Collapse
|
23
|
Liu N, Tang M, Ding J. The interaction between nanoparticles-protein corona complex and cells and its toxic effect on cells. CHEMOSPHERE 2020; 245:125624. [PMID: 31864050 DOI: 10.1016/j.chemosphere.2019.125624] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 12/08/2019] [Accepted: 12/09/2019] [Indexed: 05/23/2023]
Abstract
Once nanoparticles (NPs) contact with the biological fluids, the proteins immediately adsorb onto their surface, forming a layer called protein corona (PC), which bestows the biological identity on NPs. Importantly, the NPs-PC complex is the true identity of NPs in physiological environment. Based on the affinity and the binding and dissociation rate, PC is classified into soft protein corona, hard protein corona, and interfacial protein corona. Especially, the hard PC, a protein layer relatively stable and closer to their surface, plays particularly important role in the biological effects of the complex. However, the abundant corona proteins rarely correspond to the most abundant proteins found in biological fluids. The composition profile, formation and conformational change of PC can be affected by many factors. Here, the influence factors, not only the nature of NPs, but also surface chemistry and biological medium, are discussed. Likewise, the formed PC influences the interaction between NPs and cells, and the associated subsequent cellular uptake and cytotoxicity. The uncontrolled PC formation may induce undesirable and sometimes opposite results: increasing or inhibiting cellular uptake, hindering active targeting or contributing to passive targeting, mitigating or aggravating cytotoxicity, and stimulating or mitigating the immune response. In the present review, we discuss these aspects and hope to provide a valuable reference for controlling protein adsorption, predicting their behavior in vivo experiments and designing lower toxicity and enhanced targeting nanomedical materials for nanomedicine.
Collapse
Affiliation(s)
- Na Liu
- Key Laboratory of Environmental Medicine & Engineering, Ministry of Education, School of Public Health, Southeast University, 87 Ding Jia Qiao, Nanjing, 210009, PR China.
| | - Meng Tang
- Key Laboratory of Environmental Medicine & Engineering, Ministry of Education, School of Public Health, Southeast University, 87 Ding Jia Qiao, Nanjing, 210009, PR China.
| | - Jiandong Ding
- Department of Cardiology, Zhongda Hospital, Southeast University, 87 Ding Jia Qiao, Nanjing, 210009, PR China.
| |
Collapse
|
24
|
Ovais M, Nethi SK, Ullah S, Ahmad I, Mukherjee S, Chen C. Recent advances in the analysis of nanoparticle-protein coronas. Nanomedicine (Lond) 2020; 15:1037-1061. [DOI: 10.2217/nnm-2019-0381] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In spite of radical advances in nanobiotechnology, the clinical translation of nanoparticle (NP)-based agents is still a major challenge due to various physiological factors that influence their interactions with biological systems. Recent decade witnessed meticulous investigation on protein corona (PC) that is the first surrounds NPs once administered into the body. Formation of PC around NP surface exhibits resilient effects on their circulation, distribution, therapeutic activity, toxicity and other factors. Although enormous literature is available on the role of PC in altering pharmacokinetics and pharmacodynamics of NPs, understanding on its analytical characterization methods still remains shallow. Therefore, the current review summarizes the impact of PC on biological fate of NPs and stressing on analytical methods employed for studying the NP-PC.
Collapse
Affiliation(s)
- Muhammad Ovais
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience & Technology (NCNST), Beijing, 100190, PR China
- University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Susheel Kumar Nethi
- Department of Experimental & Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Saleem Ullah
- Department of Environmental Science & Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan
| | - Irshad Ahmad
- Department of Life Sciences, King Fahd University of Petroleum & Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
| | - Sudip Mukherjee
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience & Technology (NCNST), Beijing, 100190, PR China
- University of Chinese Academy of Sciences, Beijing, 100049, PR China
| |
Collapse
|
25
|
Batista CCS, Albuquerque LJC, Jäger A, Stepánek P, Giacomelli FC. Probing protein adsorption onto polymer-stabilized silver nanocolloids towards a better understanding on the evolution and consequences of biomolecular coronas. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 111:110850. [PMID: 32279743 DOI: 10.1016/j.msec.2020.110850] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/21/2020] [Accepted: 03/12/2020] [Indexed: 12/13/2022]
Abstract
The use of noble metal nanoparticles in biomedical and biotechnological applications is nowadays well established. Particularly, silver nanoparticles (AgNPs) were proven to be effective for instance as a biocide agent. They also find applications in tumor therapies and sensing applications being encouraging tools for in-vivo imaging. In this framework, whenever they are in contact with living systems, they are rapidly coated by a protein corona thereby influencing a variety of biological events including cellular uptake, blood circulation lifetime, cytotoxicity and, ultimately, the therapeutic effect. Taking these considerations into account, we have explored the behavior of polymer-coated AgNPs in model protein environments focusing on the self-development of protein coronas. The polymers polyethyleneimine (PEI), polyvinylpyrrolidone (PVP) and poly(2-vinyl pyridine)-b-poly(ethylene oxide) (PEO-b-P2VP) were used as stabilizing agents. The chemical nature of the polymer capping remarkably influences the behavior of the hybrid nanomaterials in protein environments. The PEO-b-P2VP and PVP-stabilized AgNPs are essentially inert to the model proteins adsorption. On the other hand, the PEI-stabilized AgNPs interact strongly with bovine serum albumin (BSA). Nevertheless, the same silver colloids were evidenced to be stable in IgG and lysozyme environments. The BSA adsorption into the PEI-stabilized AgNPs is most probably driven by hydrogen bonding and van der Waals interactions as suggested by isothermal titration calorimetry data. The development of protein coronas around the AgNPs may have relevant implications in a variety of biological events. Therefore, further investigations are currently underway to evaluate the influence of its presence on the cytotoxicity, hemolytic effects and biocide properties of the produced hybrid nanomaterials.
Collapse
Affiliation(s)
- Carin C S Batista
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, Brazil
| | | | - Alessandro Jäger
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Petr Stepánek
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Fernando C Giacomelli
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, Brazil.
| |
Collapse
|
26
|
Böhmert L, Voß L, Stock V, Braeuning A, Lampen A, Sieg H. Isolation methods for particle protein corona complexes from protein-rich matrices. NANOSCALE ADVANCES 2020; 2:563-582. [PMID: 36133244 PMCID: PMC9417621 DOI: 10.1039/c9na00537d] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 01/08/2020] [Indexed: 05/20/2023]
Abstract
Background: Nanoparticles become rapidly encased by a protein layer when they are in contact with biological fluids. This protein shell is called a corona. The composition of the corona has a strong influence on the surface properties of the nanoparticles. It can affect their cellular interactions, uptake and signaling properties. For this reason, protein coronae are investigated frequently as an important part of particle characterization. Main body of the abstract: The protein corona can be analyzed by different methods, which have their individual advantages and challenges. The separation techniques to isolate corona-bound particles from the surrounding matrices include centrifugation, magnetism and chromatographic methods. Different organic matrices, such as blood, blood serum, plasma or different complex protein mixtures, are used and the approaches vary in parameters such as time, concentration and temperature. Depending on the investigated particle type, the choice of separation method can be crucial for the subsequent results. In addition, it is important to include suitable controls to avoid misinterpretation and false-positive or false-negative results, thus allowing the achievement of a valuable protein corona analysis result. Conclusion: Protein corona studies are an important part of particle characterization in biological matrices. This review gives a comparative overview about separation techniques, experimental parameters and challenges which occur during the investigation of the protein coronae of different particle types.
Collapse
Affiliation(s)
- Linda Böhmert
- German Federal Institute for Risk Assessment, Dept. Food Safety Max-Dohrn-Str. 8-10 10589 Berlin Germany +49 (30) 18412-25800
| | - Linn Voß
- German Federal Institute for Risk Assessment, Dept. Food Safety Max-Dohrn-Str. 8-10 10589 Berlin Germany +49 (30) 18412-25800
| | - Valerie Stock
- German Federal Institute for Risk Assessment, Dept. Food Safety Max-Dohrn-Str. 8-10 10589 Berlin Germany +49 (30) 18412-25800
| | - Albert Braeuning
- German Federal Institute for Risk Assessment, Dept. Food Safety Max-Dohrn-Str. 8-10 10589 Berlin Germany +49 (30) 18412-25800
| | - Alfonso Lampen
- German Federal Institute for Risk Assessment, Dept. Food Safety Max-Dohrn-Str. 8-10 10589 Berlin Germany +49 (30) 18412-25800
| | - Holger Sieg
- German Federal Institute for Risk Assessment, Dept. Food Safety Max-Dohrn-Str. 8-10 10589 Berlin Germany +49 (30) 18412-25800
| |
Collapse
|
27
|
Gliga AR, De Loma J, Di Bucchianico S, Skoglund S, Keshavan S, Odnevall Wallinder I, Karlsson HL, Fadeel B. Silver nanoparticles modulate lipopolysaccharide-triggered Toll-like receptor signaling in immune-competent human cell lines. NANOSCALE ADVANCES 2020; 2:648-658. [PMID: 36133225 PMCID: PMC9417054 DOI: 10.1039/c9na00721k] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/08/2020] [Indexed: 05/21/2023]
Abstract
Silver (Ag) nanoparticles are commonly used in consumer products due to their antimicrobial properties. Here we studied the impact of Ag nanoparticles on immune responses by using cell lines of monocyte/macrophage and lung epithelial cell origin, respectively. Short-term experiments (24 h) showed that Ag nanoparticles reduced the lipopolysaccharide (LPS)-induced secretion of pro-inflammatory cytokines in THP-1 cells under serum-free conditions. ICP-MS analysis revealed that cellular uptake of Ag was higher under these conditions. Long-term exposure (up to 6 weeks) of BEAS-2B cells to Ag nanoparticles also suppressed pro-inflammatory cytokine production following a brief challenge with LPS. Experiments using reporter cells revealed that Ag nanoparticles as well as AgNO3 inhibited LPS-triggered Toll-like receptor (TLR) signaling. Furthermore, RNA-sequencing of BEAS-2B cells indicated that Ag nanoparticles affected TLR signaling pathways. In conclusion, Ag nanoparticles reduced the secretion of pro-inflammatory cytokines in response to LPS, likely as a result of the release of silver ions leading to an interference with TLR signaling. This could have implications for the use of Ag nanoparticles as antibacterial agents. Further in vivo studies are warranted to study this.
Collapse
Affiliation(s)
- Anda R Gliga
- Division of Biochemical Toxicology, Institute of Environmental Medicine, Karolinska Institutet Stockholm Sweden
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet Stockholm Sweden
| | - Jessica De Loma
- Division of Biochemical Toxicology, Institute of Environmental Medicine, Karolinska Institutet Stockholm Sweden
| | - Sebastiano Di Bucchianico
- Division of Biochemical Toxicology, Institute of Environmental Medicine, Karolinska Institutet Stockholm Sweden
| | - Sara Skoglund
- Department of Chemistry, Surface and Corrosion Science, KTH Royal Institute of Technology Stockholm Sweden
| | - Sandeep Keshavan
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet Stockholm Sweden
| | - Inger Odnevall Wallinder
- Department of Chemistry, Surface and Corrosion Science, KTH Royal Institute of Technology Stockholm Sweden
| | - Hanna L Karlsson
- Division of Biochemical Toxicology, Institute of Environmental Medicine, Karolinska Institutet Stockholm Sweden
| | - Bengt Fadeel
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet Stockholm Sweden
| |
Collapse
|
28
|
Lima T, Bernfur K, Vilanova M, Cedervall T. Understanding the Lipid and Protein Corona Formation on Different Sized Polymeric Nanoparticles. Sci Rep 2020; 10:1129. [PMID: 31980686 PMCID: PMC6981174 DOI: 10.1038/s41598-020-57943-6] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 11/26/2019] [Indexed: 12/13/2022] Open
Abstract
When in contact with biological fluids, nanoparticles dynamically absorb biomolecules like proteins and lipids onto their surface, forming a "corona". This biocorona is a dynamic and complex structure that determines how host cells respond to nanoparticles. Despite the common use of mouse models in pre-clinical and toxicological experiments, the impact of corona formed in mouse serum on the biophysical and biological properties of different size NP has not been thoroughly explored. Furthering the knowledge on the corona formed on NP exposed to mouse serum proteins can help in understanding what role it might have in in vivo studies at systemic, tissue, and cellular levels. To investigate biocorona formation, different sized polystyrene NP were exposed to mouse serum. Our data show a size- and time-dependent protein and lipid corona formation. Several proteins were identified and apolipoproteins were by far the most common group on the NPs surfaces. Moreover, we observed that cholesterol and triglycerides effectively bind to NP emphasizing that proteins are not the only biomolecules with high-affinity binding to nanomaterial surfaces. These results highlight that further knowledge on NP interactions with mouse serum is necessary regarding the common use of this model to predict the in vivo efficiency of NP.
Collapse
Affiliation(s)
- Tânia Lima
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal. .,I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal. .,ICBAS- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal.
| | - Katja Bernfur
- Biochemistry and Structural Biology, Lund University, Lund, Sweden
| | - Manuel Vilanova
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.,I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,ICBAS- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Tommy Cedervall
- Biochemistry and Structural Biology, Lund University, Lund, Sweden.,NanoLund, Lund University, Lund, Sweden
| |
Collapse
|
29
|
Lunova M, Smolková B, Lynnyk A, Uzhytchak M, Jirsa M, Kubinová Š, Dejneka A, Lunov O. Targeting the mTOR Signaling Pathway Utilizing Nanoparticles: A Critical Overview. Cancers (Basel) 2019; 11:E82. [PMID: 30642006 PMCID: PMC6356373 DOI: 10.3390/cancers11010082] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 12/21/2018] [Accepted: 01/05/2019] [Indexed: 12/21/2022] Open
Abstract
Proteins of the mammalian target of rapamycin (mTOR) signaling axis are overexpressed or mutated in cancers. However, clinical inhibition of mTOR signaling as a therapeutic strategy in oncology shows rather limited progress. Nanoparticle-based mTOR targeted therapy proposes an attractive therapeutic option for various types of cancers. Along with the progress in the biomedical applications of nanoparticles, we start to realize the challenges and opportunities that lie ahead. Here, we critically analyze the current literature on the modulation of mTOR activity by nanoparticles, demonstrate the complexity of cellular responses to functionalized nanoparticles, and underline challenges lying in the identification of the molecular mechanisms of mTOR signaling affected by nanoparticles. We propose the idea that subcytotoxic doses of nanoparticles could be relevant for the induction of subcellular structural changes with possible involvement of mTORC1 signaling. The evaluation of the mechanisms and therapeutic effects of nanoparticle-based mTOR modulation will provide fundamental knowledge which could help in developing safe and efficient nano-therapeutics.
Collapse
Affiliation(s)
- Mariia Lunova
- Institute of Physics of the Czech Academy of Sciences, Prague, 18221, Czech Republic.
- Institute for Clinical & Experimental Medicine (IKEM), Prague, 140 21, Czech Republic.
| | - Barbora Smolková
- Institute of Physics of the Czech Academy of Sciences, Prague, 18221, Czech Republic.
| | - Anna Lynnyk
- Institute of Physics of the Czech Academy of Sciences, Prague, 18221, Czech Republic.
| | - Mariia Uzhytchak
- Institute of Physics of the Czech Academy of Sciences, Prague, 18221, Czech Republic.
| | - Milan Jirsa
- Institute for Clinical & Experimental Medicine (IKEM), Prague, 140 21, Czech Republic.
| | - Šárka Kubinová
- Institute of Physics of the Czech Academy of Sciences, Prague, 18221, Czech Republic.
- Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, 14220, Czech Republic.
| | - Alexandr Dejneka
- Institute of Physics of the Czech Academy of Sciences, Prague, 18221, Czech Republic.
| | - Oleg Lunov
- Institute of Physics of the Czech Academy of Sciences, Prague, 18221, Czech Republic.
| |
Collapse
|
30
|
Xu M, Soliman MG, Sun X, Pelaz B, Feliu N, Parak WJ, Liu S. How Entanglement of Different Physicochemical Properties Complicates the Prediction of in Vitro and in Vivo Interactions of Gold Nanoparticles. ACS NANO 2018; 12:10104-10113. [PMID: 30212621 DOI: 10.1021/acsnano.8b04906] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The physicochemical properties of a set of 21 different gold nanoparticles (spherical and rod-shaped nanoparticles (NPs) of different diameters with three different surface coatings) were studied. Protein corona formation, in vitro uptake, effect on cell viability and proliferation, and in vivo biodistribution of these NPs were determined. The relation of the results of the different NPs was analyzed by hierarchical cluster analysis, which will tell which NPs have the most similar physicochemical properties and biological effects, without having to specify individual physicochemical parameters. The results show that the physicochemical properties of gold nanoparticles (Au NPs) are mainly accounted for by their hydrodynamic diameter and their zeta-potential. The formation of the protein corona is determined by the pH-dependence of their zeta-potential. While several reports found that in vitro uptake and in vivo biodistribution of NPs are correlated to individual physicochemical parameters, e. g., size, shape, or surface chemistry, such direct dependence in the investigated multidimensional set of NPs was not found in our study. This most likely is due to entanglement of the different parameters, which complicates the prediction of the biological effect of NPs in case multiple physicochemical properties are simultaneously varied. The in vitro uptake and in vivo biodistribution of NPs seem to be not directly driven by the protein corona, but the physicochemical properties determine as well the corona as they influence in vitro/ in vivo behaviors, and thus the effect of the protein corona would be rather indirect.
Collapse
Affiliation(s)
- Ming Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Mahmoud G Soliman
- Fachbereich Physik , Philipps Universität Marburg , Marburg 35032 , Germany
- Fachbereich Physik und Chemie, CHyN , Universität Hamburg , Hamburg 20148 , Germany
- Physics Department, Faculty of Science , Al-Azhar University , Cairo , Egypt
| | - Xing Sun
- Fachbereich Physik , Philipps Universität Marburg , Marburg 35032 , Germany
- Fachbereich Physik und Chemie, CHyN , Universität Hamburg , Hamburg 20148 , Germany
| | - Beatriz Pelaz
- Fachbereich Physik , Philipps Universität Marburg , Marburg 35032 , Germany
| | - Neus Feliu
- Fachbereich Physik und Chemie, CHyN , Universität Hamburg , Hamburg 20148 , Germany
- Department of Laboratory Medicine (LABMED) , Karolinska Institutet , Stockholm 171 77 , Sweden
| | - Wolfgang J Parak
- Fachbereich Physik , Philipps Universität Marburg , Marburg 35032 , Germany
- Fachbereich Physik und Chemie, CHyN , Universität Hamburg , Hamburg 20148 , Germany
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| |
Collapse
|
31
|
Profiling of nanoparticle–protein interactions by electrophoresis techniques. Anal Bioanal Chem 2018; 411:79-96. [DOI: 10.1007/s00216-018-1401-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 09/18/2018] [Accepted: 09/24/2018] [Indexed: 01/02/2023]
|
32
|
Zhang T, Gaffrey MJ, Thrall BD, Qian WJ. Mass spectrometry-based proteomics for system-level characterization of biological responses to engineered nanomaterials. Anal Bioanal Chem 2018; 410:6067-6077. [PMID: 29947897 PMCID: PMC6119095 DOI: 10.1007/s00216-018-1168-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 05/17/2018] [Accepted: 05/28/2018] [Indexed: 12/21/2022]
Abstract
The widespread use of engineered nanomaterials or nanotechnology makes the characterization of biological responses to nanomaterials an important area of research. The application of omics approaches, such as mass spectrometry-based proteomics, has revealed new insights into the cellular responses of exposure to nanomaterials, including how nanomaterials interact and alter cellular pathways. In addition, exposure to engineered nanomaterials often leads to the generation of reactive oxygen species and cellular oxidative stress, which implicates a redox-dependent regulation of cellular responses under such conditions. In this review, we discuss quantitative proteomics-based approaches, with an emphasis on redox proteomics, as a tool for system-level characterization of the biological responses induced by engineered nanomaterials. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Tong Zhang
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Matthew J Gaffrey
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Brian D Thrall
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| |
Collapse
|
33
|
Barbalinardo M, Caicci F, Cavallini M, Gentili D. Protein Corona Mediated Uptake and Cytotoxicity of Silver Nanoparticles in Mouse Embryonic Fibroblast. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1801219. [PMID: 30058105 DOI: 10.1002/smll.201801219] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/17/2018] [Indexed: 05/06/2023]
Abstract
Medical applications of nanoparticles (NPs) require understanding of their interactions with living systems in order to control their physiological response, such as cellular uptake and cytotoxicity. When NPs are exposed to biological fluids, the adsorption of extracellular proteins on the surface of NPs, creating the so-called protein corona, can critically affect their interactions with cells. Here, the effect of surface coating of silver nanoparticles (AgNPs) on the adsorption of serum proteins (SPs) and its consequence on cellular uptake and cytotoxicity in mouse embryonic fibroblasts are shown. In particular, citrate-capped AgNPs are internalized by cells and show a time- and dose-dependent toxicity, while the passivation of the NP surface with an oligo(ethylene glycol) (OEG)-alkanethiol drastically reduces their uptake and cytotoxicity. The exposure to growth media containing SPs reveals that citrate-capped AgNPs are promptly coated and stabilized by proteins, while the AgNPs resulting from capping with the OEG-alkanethiol are more resistant to adsorption of proteins onto their surface. Using NIH-3T3 cultured in serum-free, the key role of the adsorption of SPs onto surface of NPs is shown as only AgNPs with a preformed protein corona can be internalized by the cells and, consequently, carry out their inherent cytotoxic activity.
Collapse
Affiliation(s)
- Marianna Barbalinardo
- Consiglio Nazionale delle Ricerche, Istituto per lo Studio dei Materiali Nanostrutturati (CNR-ISMN), via P. Gobetti 101, 40129, Bologna, Italy
| | - Federico Caicci
- Dipartimento di Biologia, Università di Padova, via U. Bassi 58/b, 35121, Padova, Italy
| | - Massimiliano Cavallini
- Consiglio Nazionale delle Ricerche, Istituto per lo Studio dei Materiali Nanostrutturati (CNR-ISMN), via P. Gobetti 101, 40129, Bologna, Italy
| | - Denis Gentili
- Consiglio Nazionale delle Ricerche, Istituto per lo Studio dei Materiali Nanostrutturati (CNR-ISMN), via P. Gobetti 101, 40129, Bologna, Italy
| |
Collapse
|
34
|
Chetwynd AJ, Guggenheim EJ, Briffa SM, Thorn JA, Lynch I, Valsami-Jones E. Current Application of Capillary Electrophoresis in Nanomaterial Characterisation and Its Potential to Characterise the Protein and Small Molecule Corona. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E99. [PMID: 29439415 PMCID: PMC5853730 DOI: 10.3390/nano8020099] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 01/22/2018] [Accepted: 01/30/2018] [Indexed: 12/11/2022]
Abstract
Due to the increasing use and production of nanomaterials (NMs), the ability to characterise their physical/chemical properties quickly and reliably has never been so important. Proper characterisation allows a thorough understanding of the material and its stability, and is critical to establishing dose-response curves to ascertain risks to human and environmental health. Traditionally, methods such as Transmission Electron Microscopy (TEM), Field Flow Fractionation (FFF) and Dynamic Light Scattering (DLS) have been favoured for size characterisation, due to their wide-availability and well-established protocols. Capillary Electrophoresis (CE) offers a faster and more cost-effective solution for complex dispersions including polydisperse or non-spherical NMs. CE has been used to rapidly separate NMs of varying sizes, shapes, surface modifications and compositions. This review will discuss the literature surrounding the CE separation techniques, detection and NM characteristics used for the analysis of a wide range of NMs. The potential of combining CE with mass spectrometry (CE-MS) will also be explored to further expand the characterisation of NMs, including the layer of biomolecules adsorbed to the surface of NMs in biological or environmental compartments, termed the acquired biomolecule corona. CE offers the opportunity to uncover new/poorly characterised low abundance and polar protein classes due to the high ionisation efficiency of CE-MS. Furthermore, the possibility of using CE-MS to characterise the poorly researched small molecule interactions within the NM corona is discussed.
Collapse
Affiliation(s)
- Andrew J. Chetwynd
- AB Sciex UK Ltd., Phoenix House, Lakeside Drive, Warrington, Cheshire WA1 1RX, UK;
| | - Emily J. Guggenheim
- School of Geography Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (E.J.G.); (S.M.B.); (E.V.-J.)
| | - Sophie M. Briffa
- School of Geography Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (E.J.G.); (S.M.B.); (E.V.-J.)
| | - James A. Thorn
- AB Sciex UK Ltd., Phoenix House, Lakeside Drive, Warrington, Cheshire WA1 1RX, UK;
| | - Iseult Lynch
- School of Geography Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (E.J.G.); (S.M.B.); (E.V.-J.)
| | - Eugenia Valsami-Jones
- School of Geography Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (E.J.G.); (S.M.B.); (E.V.-J.)
| |
Collapse
|