1
|
Buntkowsky G, Hoffmann M. NMR and MD Simulations of Non-Ionic Surfactants. Molecules 2025; 30:309. [PMID: 39860179 PMCID: PMC11767737 DOI: 10.3390/molecules30020309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/07/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Non-ionic surfactants are an important solvent in the field of green chemistry with tremendous application potential. Understanding their phase properties in bulk or in confined environments is of high commercial value. In recent years, the combination of molecular dynamics (MD) simulations with multinuclear solid-state NMR spectroscopy and calorimetric techniques has evolved into the most powerful tool for their investigation. Showing recent examples from our groups, the present review demonstrates the power and versatility of this approach, which can handle both small model-surfactants like octanol and large technical surfactants like technical polyethylene glycol (PEG) mixtures and reveals otherwise unobtainable knowledge about their phase behavior and the underlying molecular arrangements.
Collapse
Affiliation(s)
- Gerd Buntkowsky
- Department of Chemistry, Eduard-Zintl-Institute for Inorganic and Physical Chemistry, Technical University of Darmstadt, Peter-Grünberg-Straße 8, 64287 Darmstadt, Germany
| | - Markus Hoffmann
- Department of Chemistry and Biochemistry, State University of New York Brockport, Brockport, NY 14420, USA
| |
Collapse
|
2
|
Gao Y, Guo C, Sui S, Wu X, Zhang Z, Remennik S, Safranchik D, Xu C. An Atomistic Investigation of the Inverse Coarsening Process by the Phase-Field Crystal Model. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:25841-25848. [PMID: 39571074 DOI: 10.1021/acs.langmuir.4c02881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Coarsening is a very common phenomenon that has a crucial impact on the average grain size and properties of materials. However, our current understanding of coarsening is mainly based on the mean-field theories or ex situ observations, and the influence of transient process-related phenomena, such as grain rotation, inverse growth, etc., on coarsening was not considered. In this work, we simulated the coarsening process of supported nanograins by a phase-field crystal (PFC) model. Our simulations show that the inverse coarsening phenomenon might occur under the influence of the substrate, where small grains grow at the expense of the large ones. We found that the substrate-induced grain rotation has a significant effect on the appearance of inverse coarsening, and the average size growth velocity of inverse coarsening is far slower than that of normal coarsening. Furthermore, the influences of initial grain size, misorientations, pinning potential strength, and the lattice mismatch on the coarsening of biocrystal systems are discussed in detail.
Collapse
Affiliation(s)
- Ying Gao
- School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, Shaanxi 710048, China
| | - Can Guo
- School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, Shaanxi 710048, China
| | - Shang Sui
- School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, Shaanxi 710048, China
| | - Xiangquan Wu
- School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, Shaanxi 710048, China
| | - Zhongming Zhang
- School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, Shaanxi 710048, China
| | - Sergei Remennik
- Center for Nanoscience & Nanotechnology, Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 91904, Israel
| | - Daniel Safranchik
- Israel Institute of Metals, Technion City, Haifa 3200003, Israel
- Institute for Machine Elements, Engineering Design and Manufacturing, Freiberg 09599, Germany
| | - Chunjie Xu
- School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, Shaanxi 710048, China
| |
Collapse
|
3
|
Adamu H, Haruna A, Zango ZU, Garba ZN, Musa SG, Yahaya SM, IbrahimTafida U, Bello U, Danmallam UN, Akinpelu AA, Ibrahim AS, Sabo A, Aljunid Merican ZM, Qamar M. Microplastics and Co-pollutants in soil and marine environments: Sorption and desorption dynamics in unveiling invisible danger and key to ecotoxicological risk assessment. CHEMOSPHERE 2024; 362:142630. [PMID: 38897321 DOI: 10.1016/j.chemosphere.2024.142630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/21/2024]
Abstract
Microplastics (MPs) and their co-pollutants pose significant threats to soil and marine environments, necessitating understanding of their colonization processes to combat the plastic pandemic and protect ecosystems. MPs can act as invisible carriers, concentrating and transporting pollutants, leading to a more widespread and potentially toxic impact than the presence of either MPs or the pollutants alone. Analyzing the sorption and desorption dynamics of MPs is crucial for understanding pollutants amplification and predicting the fate and transport of pollutants in soil and marine environments. This review provides an in-depth analysis of the sorption and desorption dynamics of MPs, highlighting the importance of considering these dynamics in ecotoxicological risk assessment of MPs pollution. The review identifies limitations of current frameworks that neglect these interactions and proposes incorporating sorption and desorption data into robust frameworks to improve the ability to predict ecological risks posed by MPs and co-pollutants in soil and marine environments. However, failure to address the interplay between sorption and desorption can result in underestimation of the true impact of MPs and co-pollutants, affecting livelihoods and agro-employments, and exacerbate poverty and community disputes (SDGs 1, 2, 3, 8, 9, and 16). It can also affect food production and security (SDG 2), life below water and life on land (DSGs 14 and 15), cultural practices, and natural heritage (SDG 11.4). Hence, it is necessary to develop new approaches to ecotoxicological risk assessment that consider sorption and desorption processes in the interactions between the components in the framework to address the identified limitations.
Collapse
Affiliation(s)
- Haruna Adamu
- Department of Environmental Management Technology, Abubakar Tafawa Balewa University, Yalwa Campus, 740272, Bauchi, Nigeria; Department of Chemistry, Abubakar Tafawa Balewa University, Gubi Campus, 740102, Bauchi, Nigeria.
| | - Abdurrashid Haruna
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia; Department of Chemistry, Ahmadu Bello University, 810107, Zaria, Nigeria; Institute of Contaminant Management, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | | | - Zaharadden N Garba
- Department of Chemistry, Ahmadu Bello University, 810107, Zaria, Nigeria
| | - Suleiman Gani Musa
- Department of Chemistry, Al-Qalam University, 2137, Katsina, Nigeria; Institute of Contaminant Management, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | | | - Usman IbrahimTafida
- Department of Chemistry, Abubakar Tafawa Balewa University, Gubi Campus, 740102, Bauchi, Nigeria
| | - Usman Bello
- Department of Chemistry, Abubakar Tafawa Balewa University, Gubi Campus, 740102, Bauchi, Nigeria; Biofuel and Biochemical Research Group, Department of Chemical Engineering, Universiti Teknologi, PETRONAS, Seri Iskandar, 32610, Malaysia
| | | | - Adeola Akeem Akinpelu
- Center of Environment and Marine Studies, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Abubakar Sadiq Ibrahim
- Department of Environmental Management Technology, Abubakar Tafawa Balewa University, Yalwa Campus, 740272, Bauchi, Nigeria
| | - Ahmed Sabo
- Department of Environmental Management Technology, Abubakar Tafawa Balewa University, Yalwa Campus, 740272, Bauchi, Nigeria
| | - Zulkifli Merican Aljunid Merican
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia; Institute of Contaminant Management, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Mohammad Qamar
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
4
|
Brahana P, Patel R, Bharti B. Surface Science View of Perfluoroalkyl Acids (PFAAs) in the Environment. ACS ENVIRONMENTAL AU 2024; 4:173-185. [PMID: 39035868 PMCID: PMC11258754 DOI: 10.1021/acsenvironau.3c00079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/19/2024] [Accepted: 04/19/2024] [Indexed: 07/23/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) constitute a notorious category of anthropogenic contaminants, detected across various environmental domains. Among these PFAS, perfluoroalkyl acids (PFAAs) stand out as a focal point in discussions due to their historical industrial utilization and environmental prominence. Their extensive industrial adoption is a direct consequence of their remarkable stability and outstanding amphiphilic properties. However, these very traits that have made PFAAs industrially desirable also render them environmentally catastrophic, leading to adverse consequences for ecosystems. The amphiphilic nature of PFAAs has made them highly unique in the landscape of anthropogenic contaminants and, thereby, difficult to study. We believe that well-established principles from surface science can connect the amphiphilic nature of PFAAs to their accumulation and transport in the environment. Specifically, we discuss the role of interfacial science in describing the stability, interfacial uptake (air-liquid and solid-liquid), and wetting capability of PFAAs. Surface science principles can provide new insights into the environmental fate of PFAAs, as well as provide context on their deleterious effects on both the environment and human health.
Collapse
Affiliation(s)
- Philip
J. Brahana
- Cain Department of Chemical
Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Ruchi Patel
- Cain Department of Chemical
Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Bhuvnesh Bharti
- Cain Department of Chemical
Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
5
|
Liu C, Han Y, Wang Z, Zhang L, Yang W. Preparation of (3-Aminopropyl)triethoxysilane-Modified Silica Particles with Tunable Isoelectric Point. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:12565-12572. [PMID: 38836786 DOI: 10.1021/acs.langmuir.4c01027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Silica particles modified with amino groups hold immense potential across diverse fields, owing to their distinctive properties. The widely adopted method of surface modification, utilizing (3-aminopropyl)triethoxysilane (APTES), facilitates the incorporation of amino-functional groups onto the silica surface, thereby creating sites for subsequent functionalization with other molecules. In this context, the ability to precisely tailor the surface properties of amino-functionalized silica particles is crucial for optimizing their performance in various applications. In this work, we systematically investigated the influence of the APTES concentration and water content on the density of amino groups grafted on the silica surface within an ethanol-water mixture. The rational control of hydrolysis and condensation of APTES enabled the precise regulation of the amino density on the silica surface, resulting in a notable shift in the isoelectric point from 2.9 to 9.2. Subsequently, we assembled amino-functionalized silica with different isoelectric points with gold nanoparticles to demonstrate their tunable ability as surface-enhanced Raman scattering (SERS) substrates. This controlled and tailored amino-functionalization process opens up new routes for fine-tuning the properties of silica particles, thereby expanding their utility across various applications in materials science, nanotechnology, and biomedicine.
Collapse
Affiliation(s)
- Chang Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Yandong Han
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng 475000, China
| | - Zhongshun Wang
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng 475000, China
| | - Lin Zhang
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng 475000, China
| | - Wensheng Yang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng 475000, China
| |
Collapse
|
6
|
Patel R, Saab LE, Brahana PJ, Valsaraj KT, Bharti B. Interfacial Activity and Surface p Ka of Perfluoroalkyl Carboxylic Acids (PFCAs). LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 38330911 PMCID: PMC10883055 DOI: 10.1021/acs.langmuir.3c03398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Perfluoroalkyl carboxylic acids (PFCAs) are widely used synthetic chemicals that are known for their exceptional stability and interfacial activity. Despite their industrial and environmental significance, discrepancies exist in the reported pKa values for PFCAs, often spanning three to four units. These disparities stem from an incomplete understanding of how pH influences the ionized state of PFCA molecules in the bulk solution and at the air-water interface. Using pH titration and surface tension measurements, we show that the pKa values of the PFCAs adsorbed at the air-water interface differ from the bulk. Below the equivalence point, the undissociated and dissociated forms of the PFCAs exist in equilibrium, driving to the spontaneous adsorption and reduced air-water surface tension. Conversely, above the equivalence point, the complete ionization of the headgroup into the carboxylate form renders PFCAs highly hydrophilic, resulting in reduced interfacial activity of the molecules. The distinction in the chemical environments at the interface and bulk results in differences in the pKa of PFCA molecules in the bulk phase and at the air-water interface. We explore the effects of the fluoroalkyl tail length of PFCAs on their surface pKa and interfacial activity across a broad pH range. We further demonstrate the influence of pH-dependent ionized state of PFCAs on their foamability and the rate of microdroplet evaporation, understanding of which is crucial for optimizing their industrial applications and developing effective strategies for their environmental remediation. This study underscores the potential significance of pH in directing the interfacial activity of PFCAs and prompts the inclusion of pH as a key determinant in the predictions of their fate and potential risks in the environment.
Collapse
Affiliation(s)
- Ruchi Patel
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Luis E Saab
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Philip J Brahana
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Kalliat T Valsaraj
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Bhuvnesh Bharti
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
7
|
Brahana PJ, Al Harraq A, Saab LE, Roberg R, Valsaraj KT, Bharti B. Uptake and release of perfluoroalkyl carboxylic acids (PFCAs) from macro and microplastics. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:1519-1531. [PMID: 37602395 DOI: 10.1039/d3em00209h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Microplastics and per- and polyfluoroalkyl substances (PFAS) are two of the most notable emerging contaminants reported in the environment. Micron and nanoscale plastics possess a high surface area-to-volume ratio, which could increase their potential to adsorb pollutants such as PFAS. One of the most concerning sub-classes of PFAS are the perfluoroalkyl carboxylic acids (PFCAs). PFCAs are often studied in the same context as other environmental contaminants, but their amphiphilic properties are often overlooked in determining their fate in the environment. This lack of consideration has resulted in a diminished understanding of the environmental mobility of PFCAs, as well as their interactions with environmental media. Here, we investigate the interaction of PFCAs with polyethylene microplastics, and identify the role of environmental weathering in modifying the nature of interactions. Through a series of adsorption-desorption experiments, we delineate the role of the fluoroalkyl tail in the binding of PFCAs to microplastics. As the number of carbon atoms in the fluoroalkyl chain increases, there is a corresponding increase in the adsorption of PFCAs onto microplastics. This relationship can become modified by environmental weathering, where the PFCAs are released from the macro and microplastic surface after exposure to simulated sunlight. This study identifies the fundamental relationship between PFCAs and plastic pollutants, where they can mutually impact their thermodynamic and transport properties.
Collapse
Affiliation(s)
- Philip J Brahana
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana, 70803, USA.
| | - Ahmed Al Harraq
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana, 70803, USA.
| | - Luis E Saab
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana, 70803, USA.
| | - Ruby Roberg
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana, 70803, USA.
| | - Kaillat T Valsaraj
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana, 70803, USA.
| | - Bhuvnesh Bharti
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana, 70803, USA.
| |
Collapse
|
8
|
Ma Y, Heil C, Nagy G, Heller WT, An Y, Jayaraman A, Bharti B. Synergistic Role of Temperature and Salinity in Aggregation of Nonionic Surfactant-Coated Silica Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:5917-5928. [PMID: 37053432 PMCID: PMC10134496 DOI: 10.1021/acs.langmuir.3c00432] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/03/2023] [Indexed: 06/19/2023]
Abstract
The adsorption of nonionic surfactants onto hydrophilic nanoparticles (NPs) is anticipated to increase their stability in aqueous medium. While nonionic surfactants show salinity- and temperature-dependent bulk phase behavior in water, the effects of these two solvent parameters on surfactant adsorption and self-assembly onto NPs are poorly understood. In this study, we combine adsorption isotherms, dispersion transmittance, and small-angle neutron scattering (SANS) to investigate the effects of salinity and temperature on the adsorption of pentaethylene glycol monododecyl ether (C12E5) surfactant on silica NPs. We find an increase in the amount of surfactant adsorbed onto the NPs with increasing temperature and salinity. Based on SANS measurements and corresponding analysis using computational reverse-engineering analysis of scattering experiments (CREASE), we show that the increase in salinity and temperature results in the aggregation of silica NPs. We further demonstrate the non-monotonic changes in viscosity for the C12E5-silica NP mixture with increasing temperature and salinity and correlate the observations to the aggregated state of NPs. The study provides a fundamental understanding of the configuration and phase transition of the surfactant-coated NPs and presents a strategy to manipulate the viscosity of such dispersion using temperature as a stimulus.
Collapse
Affiliation(s)
- Yingzhen Ma
- Cain
Department of Chemical Engineering, Louisiana
State University, Baton
Rouge, Louisiana 70803, United States
| | - Christian Heil
- Department
of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Gergely Nagy
- Neutron
Scattering Division, Oak Ridge National
Laboratory, Oak Ridge, Tennessee 37831, United States
| | - William T. Heller
- Neutron
Scattering Division, Oak Ridge National
Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Yaxin An
- Cain
Department of Chemical Engineering, Louisiana
State University, Baton
Rouge, Louisiana 70803, United States
| | - Arthi Jayaraman
- Department
of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Bhuvnesh Bharti
- Cain
Department of Chemical Engineering, Louisiana
State University, Baton
Rouge, Louisiana 70803, United States
| |
Collapse
|
9
|
Heil C, Ma Y, Bharti B, Jayaraman A. Computational Reverse-Engineering Analysis for Scattering Experiments for Form Factor and Structure Factor Determination (" P( q) and S( q) CREASE"). JACS AU 2023; 3:889-904. [PMID: 37006757 PMCID: PMC10052275 DOI: 10.1021/jacsau.2c00697] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 05/11/2023]
Abstract
In this paper, we present an open-source machine learning (ML)-accelerated computational method to analyze small-angle scattering profiles [I(q) vs q] from concentrated macromolecular solutions to simultaneously obtain the form factor P(q) (e.g., dimensions of a micelle) and the structure factor S(q) (e.g., spatial arrangement of the micelles) without relying on analytical models. This method builds on our recent work on Computational Reverse-Engineering Analysis for Scattering Experiments (CREASE) that has either been applied to obtain P(q) from dilute macromolecular solutions (where S(q) ∼1) or to obtain S(q) from concentrated particle solutions when P(q) is known (e.g., sphere form factor). This paper's newly developed CREASE that calculates P(q) and S(q), termed as "P(q) and S(q) CREASE", is validated by taking as input I(q) vs q from in silico structures of known polydisperse core(A)-shell(B) micelles in solutions at varying concentrations and micelle-micelle aggregation. We demonstrate how "P(q) and S(q) CREASE" performs if given two or three of the relevant scattering profiles-I total(q), I A(q), and I B(q)-as inputs; this demonstration is meant to guide experimentalists who may choose to do small-angle X-ray scattering (for total scattering from the micelles) and/or small-angle neutron scattering with appropriate contrast matching to get scattering solely from one or the other component (A or B). After validation of "P(q) and S(q) CREASE" on in silico structures, we present our results analyzing small-angle neutron scattering profiles from a solution of core-shell type surfactant-coated nanoparticles with varying extents of aggregation.
Collapse
Affiliation(s)
- Christian
M. Heil
- Department
of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy St., Newark, Delaware 19716, United States
| | - Yingzhen Ma
- Cain
Department of Chemical Engineering, Louisiana
State University, 3307 Patrick F. Taylor Hall, Baton Rouge, Louisiana 70803, United States
| | - Bhuvnesh Bharti
- Cain
Department of Chemical Engineering, Louisiana
State University, 3307 Patrick F. Taylor Hall, Baton Rouge, Louisiana 70803, United States
| | - Arthi Jayaraman
- Department
of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy St., Newark, Delaware 19716, United States
- Department
of Materials Science and Engineering, University
of Delaware, 201 DuPont
Hall, Newark, Delaware 19716, United States
| |
Collapse
|
10
|
Al Harraq A, Brahana PJ, Arcemont O, Zhang D, Valsaraj KT, Bharti B. Effects of Weathering on Microplastic Dispersibility and Pollutant Uptake Capacity. ACS ENVIRONMENTAL AU 2022; 2:549-555. [PMID: 36411868 PMCID: PMC9673469 DOI: 10.1021/acsenvironau.2c00036] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/28/2022]
Abstract
Microplastics are ubiquitous in the environment, leading to a new form of plastic pollution crisis, which has reached an alarming level worldwide. Micron and nanoscale plastics may get integrated into ecological cycles with detrimental effects on various ecosystems. Commodity plastics are widely considered to be chemically inert, and alterations in their surface properties due to environmental weathering are often overlooked. This lack of knowledge on the dynamic changes in the surface chemistry and properties of (micro)plastics has impeded their life-cycle analysis and prediction of their fate in the environment. Through simulated weathering experiments, we delineate the role of sunlight in modifying the physicochemical properties of microplastics. Within 10 days of accelerated weathering, microplastics become dramatically more dispersible in the water column and can more than double the surface uptake of common chemical pollutants, such as malachite green and lead ions. The study provides the basis for identifying the elusive link between the surface properties of microplastics and their fate in the environment.
Collapse
Affiliation(s)
- Ahmed Al Harraq
- Cain
Department of Chemical Engineering, Louisiana
State University, Baton
Rouge, Louisiana 70803, United States
| | - Philip J. Brahana
- Cain
Department of Chemical Engineering, Louisiana
State University, Baton
Rouge, Louisiana 70803, United States
| | - Olivia Arcemont
- Cain
Department of Chemical Engineering, Louisiana
State University, Baton
Rouge, Louisiana 70803, United States
| | - Donghui Zhang
- Department
of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Kalliat T. Valsaraj
- Cain
Department of Chemical Engineering, Louisiana
State University, Baton
Rouge, Louisiana 70803, United States
| | - Bhuvnesh Bharti
- Cain
Department of Chemical Engineering, Louisiana
State University, Baton
Rouge, Louisiana 70803, United States
| |
Collapse
|
11
|
Beyond particle stabilization of emulsions and foams: Proteins in liquid-liquida and liquid-gas interfaces. Adv Colloid Interface Sci 2022; 308:102743. [DOI: 10.1016/j.cis.2022.102743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/04/2022] [Accepted: 07/15/2022] [Indexed: 01/02/2023]
|
12
|
Fameau A, Marangoni AG. Back to the future: Fatty acids, the green genie to design smart soft materials. J AM OIL CHEM SOC 2022. [DOI: 10.1002/aocs.12615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Anne‐Laure Fameau
- Université Lille, CNRS, Centrale Lille, UMET INRAe Villeneuve d'Ascq France
| | | |
Collapse
|
13
|
Da C, Chen X, Zhu J, Alzobaidi S, Garg G, Johnston KP. Elastic gas/water interface for highly stable foams with modified anionic silica nanoparticles and a like-charged surfactant. J Colloid Interface Sci 2022; 608:1401-1413. [PMID: 34749135 DOI: 10.1016/j.jcis.2021.10.058] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 10/10/2021] [Accepted: 10/11/2021] [Indexed: 10/20/2022]
Abstract
HYPOTHESIS Surface active anionic nanoparticles (NPs) with strategically designed covalent ligands may be combined with a liked-charged surfactant to form a highly elastic gas-water interface leading to highly stable gas/water foams. EXPERIMENTS The colloidal stability of the NPs was determined by dynamic light scattering, and the surface elastic dilational modulus E' of the interface by sinusoidal oscillation of a pendant droplet at 0.1 Hz, which was superimposed on large-amplitude compression-expansion cycles. The foam stability was measured with optical microscopy of the bubble size distribution and from the macroscopic foam height. FINDINGS The NPs played the key role the formation of a highly elastic air-water interface with a high E' despite a surfactant level well above the critical micelle concentration. Unlike the case for most previous studies, the NP amphiphilicity was essentially independent of the surfactant given the very low adsorption of the surfactant on the like-charged NP surfaces. With high E' values, both coalescence and coarsening were reduced leading to highly foam up to 80 °C. However, the surfactant facilitated foam generation at much lower shear rates than with NPs alone. The tuning of NP surfaces with ligands for colloidal stability in brine and simultaneously high amphiphilicity at the gas-water interface, over a wide range in surfactant concentration, is of broad interest for enabling the design of highly stable foams.
Collapse
Affiliation(s)
- Chang Da
- McKetta Department of Chemical Engineering and Texas Materials Institute, The University of Texas, Austin, TX, USA
| | - Xiongyu Chen
- McKetta Department of Chemical Engineering and Texas Materials Institute, The University of Texas, Austin, TX, USA
| | - Jingyi Zhu
- McKetta Department of Chemical Engineering and Texas Materials Institute, The University of Texas, Austin, TX, USA
| | - Shehab Alzobaidi
- McKetta Department of Chemical Engineering and Texas Materials Institute, The University of Texas, Austin, TX, USA
| | - Gaurav Garg
- McKetta Department of Chemical Engineering and Texas Materials Institute, The University of Texas, Austin, TX, USA
| | - Keith P Johnston
- McKetta Department of Chemical Engineering and Texas Materials Institute, The University of Texas, Austin, TX, USA.
| |
Collapse
|
14
|
Ma Y, Nagy G, Siebenbürger M, Kaur R, Dooley KM, Bharti B. Adsorption and Catalytic Activity of Gold Nanoparticles in Mesoporous Silica: Effect of Pore Size and Dispersion Salinity. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2022; 126:2531-2541. [PMID: 35178138 PMCID: PMC8842498 DOI: 10.1021/acs.jpcc.1c09573] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/12/2022] [Indexed: 05/25/2023]
Abstract
The assembled state of nanoparticles (NPs) within porous matrices plays a governing role in directing their biological, electronic, and catalytic properties. However, the effects of the spatial confinement and environmental factors, such as salinity, on the NP assemblies within the pores are poorly understood. In this study, we use adsorption isotherms, spectrophotometry, and small-angle neutron scattering to develop a better understanding of the effect of spatial confinement on the assembled state and catalytic performance of gold (Au) NPs in propylamine-functionalized SBA-15 and MCM-41 mesoporous silica materials (mSiO2). We carry out a detailed investigation of the effect of pore diameter and ionic strength on the packing and spatial distribution of AuNPs within mSiO2 to get a comprehensive insight into the structure, functioning, and activity of these NPs. We demonstrate the ability of the adsorbed AuNPs to withstand aggregation under high salinity conditions. We attribute the observed preservation of the adsorbed state of AuNPs to the strong electrostatic attraction between oppositely charged pore walls and AuNPs. The preservation of the structure allows the AuNPs to retain their catalytic activity for a model reaction in high salinity aqueous solution, here, the reduction of p-nitrophenol to p-aminophenol, which otherwise is significantly diminished due to bulk aggregation of the AuNPs. This fundamental study demonstrates the critical role of confinement and dispersion salinity on the adsorption and catalytic performance of NPs.
Collapse
Affiliation(s)
- Yingzhen Ma
- Cain
Department of Chemical Engineering, Louisiana
State University, Baton
Rouge, Louisiana 70803, United States
| | - Gergely Nagy
- Neutron
Scattering Division, Oak Ridge National
Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Miriam Siebenbürger
- Center
for Advanced Microstructures and Devices, Louisiana State University, Baton
Rouge, Louisiana 70806, United States
| | - Ravneet Kaur
- Life
and Physical Science Department, Ivy Tech
Community College of Indiana, Valparaiso, Indiana 46360, United States
| | - Kerry M. Dooley
- Cain
Department of Chemical Engineering, Louisiana
State University, Baton
Rouge, Louisiana 70803, United States
| | - Bhuvnesh Bharti
- Cain
Department of Chemical Engineering, Louisiana
State University, Baton
Rouge, Louisiana 70803, United States
| |
Collapse
|
15
|
Abstract
Microplastics are sub-millimeter-sized fragments of plastics and a relatively new class of pollutant increasingly found in the environment. Due to their size and surface area to volume ratio, the physicochemical characteristics of microplastics can diverge from those of their macroscopic counterparts. This is partly why it is challenging to understand their origin, analyze their behavior, and predict their fates in the environment compared to large pollutants. We believe that adopting a view of microplastics as a colloid provides a holistic framework that connects their physical properties and surface chemistries with observations of their dynamics in the environment. In particular, we discuss the role of fundamental principles of colloid science in interpreting phenomena of wetting, adsorption, aggregation, and transport of microplastics. Colloid and interface science can provide the tools to couple or decouple the physicochemical behaviors of microplastics, which may aid in understanding the environmental challenge both from a fundamental perspective and with respect to practical remediation methods.
Collapse
Affiliation(s)
- Ahmed Al Harraq
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Bhuvnesh Bharti
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
16
|
Self-crosslinked admicelle of sodium conjugated linoleate@nano-CaCO3 and its stimuli–response to Ca2+/pH/CO2 triple triggers. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127417] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
17
|
Foamitizer: High ethanol content foams using fatty acid crystalline particles. J Colloid Interface Sci 2021; 600:882-886. [PMID: 34062345 DOI: 10.1016/j.jcis.2021.05.076] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 11/20/2022]
Abstract
Aqueous foams are encountered in many commercial products used in our everyday lives and are widely studied. However, the formation and stabilization of foams using high alcohol content (>75%) solvents such as ethanol is still a scientific challenge. Herein, we report for the first-time foams based on high ethanol content showing long-term stability by using natural fatty acid crystals. The platelet-shape crystals are adsorbed at the air-water surface protecting the bubbles against coalescence. The melting of crystals triggers the foam destabilization leading to thermostimulable high ethanol content foams. These foams can be used as a new formulation strategy for alcohol-based hand sanitizers to better clean hands, protect the skin by the presence of fatty acids, and limit the transmission of virus and other pathogens.
Collapse
|
18
|
Skladnev DA, Karlov SP, Khrunyk YY, Kotsyurbenko OR. Water-Sulfuric Acid Foam as a Possible Habitat for Hypothetical Microbial Community in the Cloud Layer of Venus. Life (Basel) 2021; 11:1034. [PMID: 34685405 PMCID: PMC8540952 DOI: 10.3390/life11101034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 09/22/2021] [Accepted: 09/25/2021] [Indexed: 11/16/2022] Open
Abstract
The data available at the moment suggest that ancient Venus was covered by extensive bodies of water which could harbor life. Later, however, the drastic overheating of the planet made the surface of Venus uninhabitable for Earth-type life forms. Nevertheless, hypothetical Venusian organisms could have gradually adapted to conditions within the cloud layer of Venus-the only niche containing liquid water where the Earth-type extremophiles could survive. Here we hypothesize that the unified internal volume of a microbial community habitat is represented by the heterophase liquid-gas foam structure of Venusian clouds. Such unity of internal space within foam water volume facilitates microbial cells movements and trophic interactions between microorganisms that creates favorable conditions for the effective development of a true microbial community. The stabilization of a foam heterophase structure can be provided by various surfactants including those synthesized by living cells and products released during cell lysis. Such a foam system could harbor a microbial community of different species of (poly)extremophilic microorganisms that are capable of photo- and chemosynthesis and may be closely integrated into aero-geochemical processes including the processes of high-temperature polymer synthesis on the planet's surface. Different complex nanostructures transferred to the cloud layers by convection flows could further contribute to the stabilization of heterophase liquid-gas foam structure and participate in chemical and photochemical reactions, thus supporting ecosystem stability.
Collapse
Affiliation(s)
- Dmitry A. Skladnev
- Research Center of Biotechnology of the Russian Academy of Sciences, Winogradsky Institute of Microbiology, 119071 Moscow, Russia;
- Network of Researchers on the Chemical Evolution of Life, Leeds LS7 3RB, UK
| | - Sergei P. Karlov
- Department of Urban Studies, Moscow Polytechnic University, 107023 Moscow, Russia;
| | - Yuliya Y. Khrunyk
- Department of Heat Treatment and Physics of Metal, Ural Federal University, 620002 Ekaterinburg, Russia;
- M.N. Mikheev Institute of Metal Physics of the Ural Branch of the Russian Academy of Sciences, 620108 Ekaterinburg, Russia
| | - Oleg R. Kotsyurbenko
- Network of Researchers on the Chemical Evolution of Life, Leeds LS7 3RB, UK
- High Ecology School, Yugra State University, 628011 Khanty-Mansiysk, Russia
| |
Collapse
|
19
|
Aqueous foams and emulsions stabilized by mixtures of silica nanoparticles and surfactants: A state-of-the-art review. CHEMICAL ENGINEERING JOURNAL ADVANCES 2021. [DOI: 10.1016/j.ceja.2021.100116] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
20
|
Holley NP, Lee JG, Valsaraj KT, Bharti B. Synthesis and characterization of ZEin-based Low Density Porous Absorbent (ZELDA) for oil spill recovery. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
21
|
Ma Y, Heller WT, He L, Shelton WA, Rother G, Bharti B. Characterisation of nano-assemblies inside mesopores using neutron scattering*. Mol Phys 2021. [DOI: 10.1080/00268976.2021.1905190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yingzhen Ma
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA, USA
| | - William T. Heller
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Lilin He
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - William A. Shelton
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA, USA
| | - Gernot Rother
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Bhuvnesh Bharti
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA, USA
| |
Collapse
|
22
|
Lee JG, Lannigan K, Shelton WA, Meissner J, Bharti B. Adsorption of Myoglobin and Corona Formation on Silica Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:14157-14165. [PMID: 33210541 PMCID: PMC7735741 DOI: 10.1021/acs.langmuir.0c01613] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 11/02/2020] [Indexed: 06/01/2023]
Abstract
The adsorption of proteins from aqueous medium leads to the formation of protein corona on nanoparticles. The formation of protein corona is governed by a complex interplay of protein-particle and protein-protein interactions, such as electrostatics, van der Waals, hydrophobic, hydrogen bonding, and solvation. The experimental parameters influencing these interactions, and thus governing the protein corona formation on nanoparticles, are currently poorly understood. This lack of understanding is due to the complexity in the surface charge distribution and anisotropic shape of the protein molecules. Here, we investigate the effect of pH and salinity on the characteristics of corona formed by myoglobin on silica nanoparticles. We experimentally measure and theoretically model the adsorption isotherms of myoglobin binding to silica nanoparticles. By combining adsorption studies with surface electrostatic mapping of myoglobin, we demonstrate that a monolayered hard corona is formed in low salinity dispersions, which transforms into a multilayered hard + soft corona upon the addition of salt. We attribute the observed changes in protein adsorption behavior with increasing pH and salinity to the change in electrostatic interactions and surface charge regulation effects. This study provides insights into the mechanism of protein adsorption and corona formation on nanoparticles, which would guide future studies on optimizing nanoparticle design for maximum functional benefits and minimum toxicity.
Collapse
Affiliation(s)
- Jin Gyun Lee
- Cain
Department of Chemical Engineering, Louisiana
State University, Baton
Rouge, Louisiana 70803, United States
| | - Kelly Lannigan
- Cain
Department of Chemical Engineering, Louisiana
State University, Baton
Rouge, Louisiana 70803, United States
- Department
of Biomedical Engineering, Bucknell University, Lewisburg, Pennsylvania 17837, United States
| | - William A. Shelton
- Cain
Department of Chemical Engineering, Louisiana
State University, Baton
Rouge, Louisiana 70803, United States
- Center
for Computation and Technology, Louisiana
State University, Baton Rouge, Louisiana 70808, United States
| | - Jens Meissner
- Institute
for Chemistry, Technische Universität
Berlin, 10623 Berlin, Germany
| | - Bhuvnesh Bharti
- Cain
Department of Chemical Engineering, Louisiana
State University, Baton
Rouge, Louisiana 70808, United States
| |
Collapse
|
23
|
|