1
|
Tian H, Liu J, Zhang W, Liu Z, Liu H, Zhu X, Liu Z, Wu J, Bian B, Wu Y, Liu Y, Shang J, Li RW. Recent advances for core-shell gallium-based liquid metal particles: properties, fabrication, modification, and applications. NANOSCALE 2025; 17:11934-11959. [PMID: 40269561 DOI: 10.1039/d4nr05380j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
Gallium-based liquid metal micro-nanoparticles (Ga-LMPs) have attracted extensive attention in recent years due to their unique physicochemical properties, such as biocompatibility, fluidity and large specific surface area. However, the surface of gallium-based liquid metal is prone to oxidation, forming a solid insulating gallium oxide shell that limits its functionality and applications. Therefore, it has become a hot research topic to endow Ga-LMPs with new functionalities by surface modification. This review summarizes the surface properties, preparation methods, and surface modification mechanisms of Ga-LMPs, with a focus on the diverse functionalities gained through surface modification, such as enhanced particle stability, electrical conductivity, drug delivery, stimulus responsiveness, thermoelectric property and catalytic activity. The potential applications of these properties in fields such as sensing, energy storage, and catalysis are also discussed.
Collapse
Affiliation(s)
- Huihui Tian
- CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China.
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinyun Liu
- CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China.
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wuxu Zhang
- CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China.
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhaopeng Liu
- CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China.
| | - Hao Liu
- CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China.
| | - Xingyu Zhu
- CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China.
| | - Zhongqi Liu
- CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China.
| | - Jiawei Wu
- CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China.
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baoru Bian
- CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China.
| | - Yuanzhao Wu
- CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China.
| | - Yiwei Liu
- CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China.
| | - Jie Shang
- CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Run-Wei Li
- Eastern Institute of Technology, Ningbo 315200, China
| |
Collapse
|
2
|
Wang Y, Tang J, Huang L, Wang X, Yu J. Liquid Metal-Ionogel Core-Shell Fibers for Reflection-Suppressed Electromagnetic Interference Shielding and Strain Sensing. ACS APPLIED MATERIALS & INTERFACES 2025; 17:27299-27309. [PMID: 40295109 DOI: 10.1021/acsami.5c05273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Electromagnetic interference (EMI) shielding fibers are crucial in practical uses for their flexibility and one-dimensional form. However, their application is limited by poor compatibility between EMI shielding components and fiber substrates, and high electromagnetic wave reflectivity. Herein, a core/shell-structured EMI shielding fiber is introduced, featuring a core of Ga-In-Sn-Zn alloy, Carbopol, and air bubbles, and a shell of ionogel formed from copolymerized acrylamide and acrylic acid. A single fiber achieves a total shielding effectiveness of ∼35 dB within the 2-18 GHz range, which increases to ∼70 dB when three fibers are stacked. Remarkably, the fiber demonstrates enhanced EMI shielding performance following stretching and recovery. Additionally, it exhibits excellent impedance matching, with a reflection power coefficient as low as 0.14 at 10 GHz. The fiber's EMI shielding mechanism encompasses reflection shielding, absorption shielding─attributable to conduction loss and polarization loss─and multiple reflection shielding. Furthermore, the fiber shows potential as a strain sensor. This research offers an effective strategy for creating flexible fibers with high EMI shielding capabilities and low EM wave reflection.
Collapse
Affiliation(s)
- Yichao Wang
- College of Textiles, Donghua University, Shanghai 201600, China
| | - Jingli Tang
- College of Textiles, Donghua University, Shanghai 201600, China
| | - Liqian Huang
- College of Textiles, Donghua University, Shanghai 201600, China
- Clothing and Design Faculty, Minjiang University, Fuzhou 350108, China
| | - Xueli Wang
- Textile Technology Innovation Center, Donghua University, Shanghai 201620, China
| | - Jianyong Yu
- Textile Technology Innovation Center, Donghua University, Shanghai 201620, China
| |
Collapse
|
3
|
Song Y, Chen K, Chen S, Zhang L, Wang Y, Wu K, Xu C, Li B, Zhang J, Liu G, Sun J. Stretchable and adhesive bilayers for electrical interfacing. MATERIALS HORIZONS 2025; 12:1981-1991. [PMID: 39744932 DOI: 10.1039/d4mh01166j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2025]
Abstract
Integrated stretchable devices, containing soft modules, rigid modules, and encapsulation modules, are of potential use in implantable bioelectronics and wearable devices. However, such systems often suffer from electrical deterioration due to debonding failure at the connection between rigid and soft modules induced by severe stress concentration, limiting their practical implementation. Here, we report a highly conductive and adhesive bilayer interface that can reliably connect soft-soft modules and soft-rigid modules together by simply pressing without conductive pastes. This interface configuration features a nanoscale styrene-ethylene-butylene-styrene (SEBS) elastomer layer and a SEBS-liquid metal (LM) composite layer. The top SEBS layer enables a strong adhesion with different modules. The connections between soft-soft and soft-rigid modules can be stretched to high strains of 400% and 250%, respectively. Coupling electron tunneling through an ultrathin SEBS layer with LM particle networks in a SEBS-LM composite layer renders continuous pathways for electrical conductivity. Such a bilayer interface exhibits a strain-insensitive high conductivity (3.7 × 105 S m-1) over a wide strain range from 0 to 680%, which can be facilely fabricated in a self-organized manner by sedimentation of LM particles. We present a proof-of-concept demonstration of this bilayer interface as an electrode, interconnect, and self-solder for monitoring physiological signals.
Collapse
Affiliation(s)
- Yuli Song
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.
| | - Kai Chen
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.
| | - Shimeng Chen
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.
| | - Linyuan Zhang
- School of Biomedical Engineering, The Fourth Military Medical University, Xi'an, 710032, P. R. China.
| | - Yaqiang Wang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.
| | - Kai Wu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.
| | - Canhua Xu
- School of Biomedical Engineering, The Fourth Military Medical University, Xi'an, 710032, P. R. China.
| | - Bo Li
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.
| | - Jinyu Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.
| | - Gang Liu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.
| | - Jun Sun
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.
| |
Collapse
|
4
|
Zhexembekova A, Lim S, Lee C, Kim YT, Lee CY. A Liquid Metal Balloon for the Exfoliation of an Ultrathin and Uniform Gallium Oxide Layer. Molecules 2024; 29:5894. [PMID: 39769983 PMCID: PMC11677224 DOI: 10.3390/molecules29245894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/02/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
We report the exfoliation of ultrathin gallium oxide (Ga2O3) films from liquid metal balloons, formed by injecting air into droplets of eutectic gallium-indium alloy (eGaIn). These Ga2O3 films enable the selective adsorption of carbon nanotubes (CNTs) dispersed in water, resulting in the formation of a dense, percolating CNT network on their surface. The self-assembled CNT network on Ga2O3 provides a versatile platform for device fabrication. As an example application, we fabricated a chemiresistive gas sensor for detecting simulants of chemical warfare agents (CWAs), including diisopropyl methylphosphonate (DIMP), dimethyl methylphosphonate (DMMP), and triethyl phosphate (TEP). The sensor exhibited reversible responses, high sensitivity, and low limits of detection (13 ppb for DIMP, 28 ppb for DMMP, and 53 ppb for TEP). These findings highlight the potential of Ga2O3 films derived from liquid metal balloons for integrating CNTs into functional electronic devices.
Collapse
Affiliation(s)
- Anar Zhexembekova
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea; (A.Z.); (S.L.); (C.L.); (Y.-T.K.)
| | - Seongyeop Lim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea; (A.Z.); (S.L.); (C.L.); (Y.-T.K.)
| | - Cheongha Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea; (A.Z.); (S.L.); (C.L.); (Y.-T.K.)
| | - Yun-Tae Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea; (A.Z.); (S.L.); (C.L.); (Y.-T.K.)
| | - Chang Young Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea; (A.Z.); (S.L.); (C.L.); (Y.-T.K.)
- Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| |
Collapse
|
5
|
Wang B, Jiang X, Liu L, Wu BC, Zhao D. Effect of Anions on Deformation of Gallium-Based Liquid Metal in Solution. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:23483-23490. [PMID: 39436096 DOI: 10.1021/acs.langmuir.4c03160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
In this study, deformation behaviors of gallium-based liquid metals in acidified cupric sulfate or cupric chloride solutions with varying concentrations of chloride anion or sulfate anion were investigated to explore their potential applications in soft machines and electronics. Gallium-based liquid metals are known for their unique deformability, making them promising materials for various fields. Previous research has shown that deformation of the liquid metal can be achieved in the presence of acidified cupric or ferric salts. However, the specific influence of different anions on the deformation process remains unclear. Our findings indicate that the deformation rate of the liquid metal increases with higher concentrations of chloride ions and decreases with higher concentrations of sulfate ions in the solution. UV-vis absorbance spectra of the solutions were analyzed to identify the formation of hydrated cupric cations. It was observed that increasing the concentration of Cl- ions promotes the formation of cupric-chloro complexes, thereby reducing the concentration of hydrated cupric ions in the solution. Furthermore, the addition of sulfate ions to the solution enhances the ionic strength of the medium, leading to the dissociation of cupric-chloro complexes. Additionally, sulfate ions can form insoluble layers with gallium ions, which impede the deformation of the liquid metal. The deformation rate of the liquid metal was found to be inversely correlated with the concentration of cupric ions in the solution. These results provide valuable insights into the deformable behavior of gallium-based liquid metals and their potential applications in liquid metal-based soft robots. This study highlights the importance of understanding the role of different anions in the deformation process of liquid metals, shedding light on the design and optimization of soft machines and electronics utilizing these materials.
Collapse
Affiliation(s)
- Bingxing Wang
- College of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Xiaoying Jiang
- College of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Liheng Liu
- College of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Bin-Chao Wu
- College of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Donglin Zhao
- Division of Chemical and Energy Engineering, School of Engineering, London South Bank University, London SE1 0AA, United Kingdom
| |
Collapse
|
6
|
Ku HH, Wang PY, Huang CW. Remote Control: Electrochemically Driving EGaIn@Fe Liquid Metal for Application of Soft Robotics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405279. [PMID: 39240017 DOI: 10.1002/smll.202405279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/14/2024] [Indexed: 09/07/2024]
Abstract
This study introduces magnetized EGaIn@Fe, an innovative material synthesized by incorporating iron powder into the eutectic gallium-indium alloy (EGaIn). Unlike traditional methods requiring electrolyte environments for electrical control, EGaIn@Fe can be manipulated using external magnetic fields, expanding control from 2D to 3D spaces. The material exhibits both active and passive splitting capabilities under magnetic and electrical control, demonstrating exceptional deformability, precision, and flexibility. EGaIn@Fe shows significant promise in applications such as microfluidic channels, circuit repair, and soft robotics. Specifically, 5 wt.% EGaIn@Fe is optimal for microfluidic tasks and circuit repairs in confined spaces, while higher concentrations (10 and 15 wt.%) enhance 3D control and reduce material usage. Additionally, 20 wt.% EGaIn@Fe displays octopus-like movements for navigating impassable channels. EGaIn@Fe can enhance fluid manipulation in microfluidics, bridge gaps in circuit repairs, and enable flexible actuators in soft robotics, driving advancements in adaptive materials and technologies.
Collapse
Affiliation(s)
- Hao-Han Ku
- Department of Materials Science and Engineering, Feng Chia University, Taichung City, 407, Taiwan
| | - Po-Yung Wang
- Department of Materials Science and Engineering, Feng Chia University, Taichung City, 407, Taiwan
| | - Chun-Wei Huang
- Department of Materials Science and Engineering, Feng Chia University, Taichung City, 407, Taiwan
| |
Collapse
|
7
|
Handschuh-Wang S, Wang T, Gancarz T, Liu X, Wang B, He B, Dickey MD, Wimmer GW, Stadler FJ. The Liquid Metal Age: A Transition From Hg to Ga. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408466. [PMID: 39295483 DOI: 10.1002/adma.202408466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/25/2024] [Indexed: 09/21/2024]
Abstract
This review offers an illuminating journey through the historical evolution and modern-day applications of liquid metals, presenting a comprehensive view of their significance in diverse fields. Tracing the trajectory from mercury applications to contemporary innovations, the paper explores their pivotal role in industry and research. The analysis spans electrical switches, mechanical applications, electrodes, chemical synthesis, energy storage, thermal transport, electronics, and biomedicine. Each section examines the intricacies of liquid metal integration, elucidating their contributions to technological advancements and societal progress. Moreover, the review critically appraises the challenges and prospects inherent in liquid metal applications, addressing issues of recycling, corrosion management, device stability, economic feasibility, translational hurdles, and market dynamics. By delving into these complexities, the paper advances scholarly understanding and offers actionable insights for researchers, engineers, and policymakers. It aims to catalyze innovation, foster interdisciplinary collaboration, and promote liquid metal-enabled solutions for societal needs. Through its comprehensive analysis and forward-looking perspective, this review serves as a guide for navigating the landscape of liquid metal applications, bridging historical legacies with contemporary challenges, and highlighting the transformative potential of liquid metals in shaping future technologies.
Collapse
Affiliation(s)
- Stephan Handschuh-Wang
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118, China
| | - Tao Wang
- Advanced Materials Group Co., LTD, Fusionopolis Link #06-07, Nexus One-North, Singapore, 138543, Singapore
| | - Tomasz Gancarz
- Institute of Metallurgy and Materials Science, Polish Academy of Sciences, ul. Reymonta 25, Krakow, 30-059, Poland
| | - Xiaorui Liu
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118, China
| | - Ben Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518055, China
| | - Bin He
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118, China
| | - Michael D Dickey
- Department of Chemical and Biomolecular Engineering, NC State University, Raleigh, NC, 27695, USA
| | - Georg W Wimmer
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118, China
| | - Florian J Stadler
- Interdisciplinary Research Center for Refining & Advanced Chemicals, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
- Department of Chemical Engineering, King Fahd University of Petroleum and Minerals, Dhahran, Kingdom of Saudi Arabia
| |
Collapse
|
8
|
Scott JA, Bishop J, Budnik G, Toth M. Hydrogen Plasma Inhibits Ion Beam Restructuring of GaP. ACS APPLIED MATERIALS & INTERFACES 2024; 16:53116-53122. [PMID: 39315410 DOI: 10.1021/acsami.4c06977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Focused ion beam (FIB) techniques are employed widely for nanofabrication and processing of materials and devices. However, ion irradiation often gives rise to severe damage due to atomic displacements that cause defect formation, migration, and clustering within the ion-solid interaction volume. The resulting restructuring degrades the functionality of materials and limits the utility of FIB ablation and nanofabrication techniques. Here we show that such restructuring can be inhibited by performing FIB irradiation in a hydrogen plasma environment via chemical pathways that modify defect binding energies and transport kinetics, as well as material ablation rates. The method is minimally invasive and has the potential to greatly expand the utility of FIB nanofabrication techniques in processing functional materials and devices.
Collapse
Affiliation(s)
- John A Scott
- Institute for Photonics and Optical Sciences (IPOS), School of Physics, The University of Sydney, Camperdown, New South Wales 2006, Australia
| | - James Bishop
- School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Garrett Budnik
- Advanced Technology, Thermo Fisher Scientific, NE Dawson Creek Dr., Hillsboro, Oregon 97124, United States
| | - Milos Toth
- School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
- ARC Centre of Excellence for Transformative Meta-Optical Systems, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| |
Collapse
|
9
|
Patil D, Liu S, Ravichandran D, Thummalapalli SV, Zhu Y, Tang T, Golan Y, Miquelard-Garnier G, Asadi A, Li X, Chen X, Song K. Versatile Patterning of Liquid Metal via Multiphase 3D Printing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402432. [PMID: 38850181 DOI: 10.1002/smll.202402432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/13/2024] [Indexed: 06/10/2024]
Abstract
This paper presents a scalable and straightforward technique for the immediate patterning of liquid metal/polymer composites via multiphase 3D printing. Capitalizing on the polymer's capacity to confine liquid metal (LM) into diverse patterns. The interplay between distinctive fluidic properties of liquid metal and its self-passivating oxide layer within an oxidative environment ensures a resilient interface with the polymer matrix. This study introduces an inventive approach for achieving versatile patterns in eutectic gallium indium (EGaIn), a gallium alloy. The efficacy of pattern formation hinges on nozzle's design and internal geometry, which govern multiphase interaction. The interplay between EGaIn and polymer within the nozzle channels, regulated by variables such as traverse speed and material flow pressure, leads to periodic patterns. These patterns, when encapsulated within a dielectric polymer polyvinyl alcohol (PVA), exhibit an augmented inherent capacitance in capacitor assemblies. This discovery not only unveils the potential for cost-effective and highly sensitive capacitive pressure sensors but also underscores prospective applications of these novel patterns in precise motion detection, including heart rate monitoring, and comprehensive analysis of gait profiles. The amalgamation of advanced materials and intricate patterning techniques presents a transformative prospect in the domains of wearable sensing and comprehensive human motion analysis.
Collapse
Affiliation(s)
- Dhanush Patil
- School of Manufacturing Systems and Networks (MSN), Ira Fulton Schools of Engineering, Arizona State University, Mesa, AZ, 85212, USA
| | - Siying Liu
- School of Manufacturing Systems and Networks (MSN), Ira Fulton Schools of Engineering, Arizona State University, Mesa, AZ, 85212, USA
| | - Dharneedar Ravichandran
- School of Manufacturing Systems and Networks (MSN), Ira Fulton Schools of Engineering, Arizona State University, Mesa, AZ, 85212, USA
| | | | - Yuxiang Zhu
- School of Manufacturing Systems and Networks (MSN), Ira Fulton Schools of Engineering, Arizona State University, Mesa, AZ, 85212, USA
| | - Tengteng Tang
- The School for Engineering of Matter, Transport and Energy (SEMTE), Ira Fulton Schools of Engineering, Arizona State University, Tempe, AZ, 85281, USA
| | - Yuval Golan
- Department of Materials Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Guillaume Miquelard-Garnier
- Laboratoire PIMM, CNRS, Arts at Métiers Institute of Technology, Cnam, HESAM Universite, 151 Boulevard de l'Hopital, Paris, 75013, France
| | - Amir Asadi
- Department of Engineering Technology and Industrial Distribution, Texas A&M University, College Station, TX, 77843-3367, USA
| | - Xiangjia Li
- The School for Engineering of Matter, Transport and Energy (SEMTE), Ira Fulton Schools of Engineering, Arizona State University, Tempe, AZ, 85281, USA
| | - Xiangfan Chen
- School of Manufacturing Systems and Networks (MSN), Ira Fulton Schools of Engineering, Arizona State University, Mesa, AZ, 85212, USA
| | - Kenan Song
- School of Manufacturing Systems and Networks (MSN), Ira Fulton Schools of Engineering, Arizona State University, Mesa, AZ, 85212, USA
- School of Environmental, Civil, Agricultural and Mechanical (ECAM), University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
10
|
Motovilova E, Ching T, Vincent J, Tan ET, Taracila V, Robb F, Hashimoto M, Sneag DB, Winkler SA. Design and Dynamic In Vivo Validation of a Multi-Channel Stretchable Liquid Metal Coil Array. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3325. [PMID: 38998405 PMCID: PMC11243347 DOI: 10.3390/ma17133325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 07/14/2024]
Abstract
Recent developments in the field of radiofrequency (RF) coils for magnetic resonance imaging (MRI) offer flexible and patient-friendly solutions. Previously, we demonstrated a proof-of-concept single-element stretchable coil design based on liquid metal and a self-tuning smart geometry. In this work, we numerically analyze and experimentally study a multi-channel stretchable coil array and demonstrate its application in dynamic knee imaging. We also compare our flexible coil array to a commonly used commercial rigid coil array. Our numerical analysis shows that the proposed coil array maintains its resonance frequency (<1% variation) and sensitivity (<6%) at various stretching configurations from 0% to 30%. We experimentally demonstrate that the signal-to-noise ratio (SNR) of the acquired MRI images is improved by up to four times with the stretchable coil array due to its conformal and therefore tight-fitting nature. This stretchable array allows for dynamic knee imaging at different flexion angles, infeasible with traditional, rigid coil arrays. These findings are significant as they address the limitations of current rigid coil technology, offering a solution that enhances patient comfort and image quality, particularly in applications requiring dynamic imaging.
Collapse
Affiliation(s)
- Elizaveta Motovilova
- Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA
- Department of Radiology and Imaging, Hospital for Special Surgery, New York, NY 10021, USA
| | - Terry Ching
- Pillar of Engineering Product Development, Singapore University of Technology and Design, Singapore 487372, Singapore
- Digital Manufacturing and Design (DManD) Centre, Singapore University of Technology and Design, Singapore 487372, Singapore
- Department of Biomedical Engineering, National University of Singapore, Singapore 117583, Singapore
| | | | - Ek Tsoon Tan
- Department of Radiology and Imaging, Hospital for Special Surgery, New York, NY 10021, USA
| | | | | | - Michinao Hashimoto
- Pillar of Engineering Product Development, Singapore University of Technology and Design, Singapore 487372, Singapore
- Digital Manufacturing and Design (DManD) Centre, Singapore University of Technology and Design, Singapore 487372, Singapore
| | - Darryl B. Sneag
- Department of Radiology and Imaging, Hospital for Special Surgery, New York, NY 10021, USA
| | | |
Collapse
|
11
|
Zhu J, Li J, Tong Y, Hu T, Chen Z, Xiao Y, Zhang S, Yang H, Gao M, Pan T, Cheng H, Lin Y. Recent progress in multifunctional, reconfigurable, integrated liquid metal-based stretchable sensors and standalone systems. PROGRESS IN MATERIALS SCIENCE 2024; 142:101228. [PMID: 38745676 PMCID: PMC11090487 DOI: 10.1016/j.pmatsci.2023.101228] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Possessing a unique combination of properties that are traditionally contradictory in other natural or synthetical materials, Ga-based liquid metals (LMs) exhibit low mechanical stiffness and flowability like a liquid, with good electrical and thermal conductivity like metal, as well as good biocompatibility and room-temperature phase transformation. These remarkable properties have paved the way for the development of novel reconfigurable or stretchable electronics and devices. Despite these outstanding properties, the easy oxidation, high surface tension, and low rheological viscosity of LMs have presented formidable challenges in high-resolution patterning. To address this challenge, various surface modifications or additives have been employed to tailor the oxidation state, viscosity, and patterning capability of LMs. One effective approach for LM patterning is breaking down LMs into microparticles known as liquid metal particles (LMPs). This facilitates LM patterning using conventional techniques such as stencil, screening, or inkjet printing. Judiciously formulated photo-curable LMP inks or the introduction of an adhesive seed layer combined with a modified lift-off process further provide the micrometer-level LM patterns. Incorporating porous and adhesive substrates in LM-based electronics allows direct interfacing with the skin for robust and long-term monitoring of physiological signals. Combined with self-healing polymers in the form of substrates or composites, LM-based electronics can provide mechanical-robust devices to heal after damage for working in harsh environments. This review provides the latest advances in LM-based composites, fabrication methods, and their novel and unique applications in stretchable or reconfigurable sensors and resulting integrated systems. It is believed that the advancements in LM-based material preparation and high-resolution techniques have opened up opportunities for customized designs of LM-based stretchable sensors, as well as multifunctional, reconfigurable, highly integrated, and even standalone systems.
Collapse
Affiliation(s)
- Jia Zhu
- School of Material and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Jiaying Li
- School of Material and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Yao Tong
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215011, PR China
| | - Taiqi Hu
- School of Electrical Engineering and Automation, Jiangxi University of Science and Technology, Ganzhou 341000, P. R. China
| | - Ziqi Chen
- School of Physical Sciences, University of Science and Technology of China, Hefei 230026, PR China
| | - Yang Xiao
- School of Material and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Senhao Zhang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215011, PR China
| | - Hongbo Yang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215011, PR China
| | - Min Gao
- School of Material and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Taisong Pan
- School of Material and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Huanyu Cheng
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Yuan Lin
- School of Material and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
- Medico-Engineering Cooperation on Applied Medicine Research Center, University of Electronics Science and Technology of China, Chengdu 610054, China
| |
Collapse
|
12
|
Lu G, Ni E, Jiang Y, Wu W, Li H. Room-Temperature Liquid Metals for Flexible Electronic Devices. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304147. [PMID: 37875665 DOI: 10.1002/smll.202304147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/26/2023] [Indexed: 10/26/2023]
Abstract
Room-temperature gallium-based liquid metals (RT-GaLMs) have garnered significant interest recently owing to their extraordinary combination of fluidity, conductivity, stretchability, self-healing performance, and biocompatibility. They are ideal materials for the manufacture of flexible electronics. By changing the composition and oxidation of RT-GaLMs, physicochemical characteristics of the liquid metal can be adjusted, especially the regulation of rheological, wetting, and adhesion properties. This review highlights the advancements in the liquid metals used in flexible electronics. Meanwhile related characteristics of RT-GaLMs and underlying principles governing their processing and applications for flexible electronics are elucidated. Finally, the diverse applications of RT-GaLMs in self-healing circuits, flexible sensors, energy harvesting devices, and epidermal electronics, are explored. Additionally, the challenges hindering the progress of RT-GaLMs are discussed, while proposing future research directions and potential applications in this emerging field. By presenting a concise and critical analysis, this paper contributes to the advancement of RT-GaLMs as an advanced material applicable for the new generation of flexible electronics.
Collapse
Affiliation(s)
- Guixuan Lu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, Shandong, 250061, China
| | - Erli Ni
- The Institute for Advanced Studies of Wuhan University, Wuhan University, Wuhan, Hubei, 430072, China
| | - Yanyan Jiang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, Shandong, 250061, China
| | - Weikang Wu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, Shandong, 250061, China
| | - Hui Li
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, Shandong, 250061, China
| |
Collapse
|
13
|
Cao Y, Fan L, Gao J, Zhu X, Wu B, Wang H, Wang B, Shi J, Liu J. Magnetic and injectable Fe-doped liquid metals for controlled movement and photothermal/electromagnetic therapy. J Mater Chem B 2024; 12:2313-2323. [PMID: 38268450 DOI: 10.1039/d3tb02501b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
As a multifunctional material, gallium-based liquid metal (LM) mixtures with metal particles dispersed in the LM environment display many excellent and intriguing properties. In this study, biomaterials were prepared by mixing Fe particles with LM for easily manageable photothermal or electromagnetic therapy and evaluated. Clinically, the fabricated 5%Fe/LM sample was injectable and radiopaque, which allowed its smooth delivery through a syringe to the target tissues, where it could help achieve clear imaging under CT. Meanwhile, because of the loading of Fe particles, the 5%Fe/LM possessed a magnetic property, implying a high manipulation capability. According to the experiments, the capsule containing 5%Fe/LM when placed in an isolated pig large intestine could move as desired to the designated position through an external magnet. Further, the biosafety and low toxicity of the 5%Fe/LM were confirmed by cytotoxicity tests in vitro, and the temperature changes at the interface between the 5%Fe/LM and intestinal tissue after near-infrared (NIR) laser irradiation were determined through theoretical modeling and numerical simulation data analysis. Due to the excellent photothermal and magnetothermal effects of LM, the temperature of the 5%Fe/LM injected into the rabbit abdominal cavity could significantly increase under NIR laser or alternating magnetic field (AMF) administration. As a novel functional biomaterial, the 5%Fe/LM exhibited promising potential for designated position movement and photothermal or magnetothermal therapy in the near future.
Collapse
Affiliation(s)
- Yingjie Cao
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China.
| | - Linlin Fan
- Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing 100035, China.
| | - Jianye Gao
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China.
| | - Xiyu Zhu
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China.
| | - Bingjie Wu
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China.
| | - Hongzhang Wang
- Center of Double Helix, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China
| | - Bo Wang
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Jun Shi
- Hepatopancreatobiliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China.
| | - Jing Liu
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
14
|
Pyun KR, Kwon K, Yoo MJ, Kim KK, Gong D, Yeo WH, Han S, Ko SH. Machine-learned wearable sensors for real-time hand-motion recognition: toward practical applications. Natl Sci Rev 2024; 11:nwad298. [PMID: 38213520 PMCID: PMC10776364 DOI: 10.1093/nsr/nwad298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/23/2023] [Accepted: 11/01/2023] [Indexed: 01/13/2024] Open
Abstract
Soft electromechanical sensors have led to a new paradigm of electronic devices for novel motion-based wearable applications in our daily lives. However, the vast amount of random and unidentified signals generated by complex body motions has hindered the precise recognition and practical application of this technology. Recent advancements in artificial-intelligence technology have enabled significant strides in extracting features from massive and intricate data sets, thereby presenting a breakthrough in utilizing wearable sensors for practical applications. Beyond traditional machine-learning techniques for classifying simple gestures, advanced machine-learning algorithms have been developed to handle more complex and nuanced motion-based tasks with restricted training data sets. Machine-learning techniques have improved the ability to perceive, and thus machine-learned wearable soft sensors have enabled accurate and rapid human-gesture recognition, providing real-time feedback to users. This forms a crucial component of future wearable electronics, contributing to a robust human-machine interface. In this review, we provide a comprehensive summary covering materials, structures and machine-learning algorithms for hand-gesture recognition and possible practical applications through machine-learned wearable electromechanical sensors.
Collapse
Affiliation(s)
- Kyung Rok Pyun
- Department of Mechanical Engineering, Seoul National University, Seoul08826, South Korea
| | - Kangkyu Kwon
- Department of Mechanical Engineering, Seoul National University, Seoul08826, South Korea
- IEN Center for Human-Centric Interfaces and Engineering, Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA30332, USA
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA30332, USA
| | - Myung Jin Yoo
- Department of Mechanical Engineering, Seoul National University, Seoul08826, South Korea
| | - Kyun Kyu Kim
- Department of Chemical Engineering, Stanford University, Stanford, CA94305, USA
| | - Dohyeon Gong
- Department of Mechanical Engineering, Ajou University, Suwon-si16499, South Korea
| | - Woon-Hong Yeo
- IEN Center for Human-Centric Interfaces and Engineering, Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA30332, USA
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA30332, USA
| | - Seungyong Han
- Department of Mechanical Engineering, Ajou University, Suwon-si16499, South Korea
| | - Seung Hwan Ko
- Department of Mechanical Engineering, Seoul National University, Seoul08826, South Korea
- Institute of Advanced Machinery and Design (SNU-IAMD), Seoul National University, Seoul08826, South Korea
| |
Collapse
|
15
|
Hurtado C, Andreoli T, Le Brun AP, MacGregor M, Darwish N, Ciampi S. Galinstan Liquid Metal Electrical Contacts for Monolayer-Modified Silicon Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:201-210. [PMID: 38101331 DOI: 10.1021/acs.langmuir.3c02340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Galinstan is the brand name for a low-melting gallium-based alloy, which is a promising nontoxic alternative to mercury, the only elemental metal found in the liquid state at room temperature. Liquid alloys such as Galinstan have found applications as electromechanical actuators, sensors, and soft contacts for molecular electronics. In this work, we validate the scope of Galinstan top contacts to probe the electrical characteristics of Schottky junctions made on Si(111) and Si(211) crystals modified with Si-C-bound organic monolayers. We show that the surface-to-volume ratio of the Galinstan drop used as a macroscopic contact defines the junction stability. Further, we explore chemical strategies to increase Galinstan surface tension to obtain control over the junction area, hence improving the repeatability and reproducibility of current-voltage (I-V) measurements. We explore Galinstan top contacts as a means to monitor changes in rectification ratios caused by surface reactions and use these data, most notably the static junction leakage, toward making qualitative predictions on the DC outputs recorded when these semiconductor systems are incorporated in Schottky-based triboelectric nanogenerators. We found that the introduction of iron particles leads to poor data repeatability for capacitance-voltage (C-V) measurements but has only a small negative impact in a dynamic current measurement (I-V).
Collapse
Affiliation(s)
- Carlos Hurtado
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia 6102, Australia
| | - Tony Andreoli
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia 6102, Australia
| | - Anton P Le Brun
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organization, Lucas Heights, New South Wales 2234, Australia
| | - Melanie MacGregor
- Flinders Institute for Nanoscale Science and Technology, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Nadim Darwish
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia 6102, Australia
| | - Simone Ciampi
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia 6102, Australia
| |
Collapse
|
16
|
Yao B, Xu X, Han Z, Xu W, Yang G, Guo J, Li G, Wang Q, Wang H. Cephalopod-inspired polymer composites with mechanically tunable infrared properties. Sci Bull (Beijing) 2023; 68:2962-2972. [PMID: 37940450 DOI: 10.1016/j.scib.2023.10.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/24/2023] [Accepted: 10/27/2023] [Indexed: 11/10/2023]
Abstract
Cephalopods have evolved an all-soft skin that can rapidly display colors for protection, predation, or communication. Development of synthetic analogs to mimic such color-changing abilities in the infrared (IR) region is pivotal to a variety of technologies ranging from soft robotics, flexible displays, dynamic thermoregulatory systems, to adaptive IR disguise platforms. However, the integration of tissue-like mechanical properties and rapid IR modulation ability into smart materials remains challenging. Here, by drawing inspiration from cephalopod skin, we develop an all-soft adaptive IR composite that can dynamically change its IR appearance upon equiaxial stretching. The biomimetic composite is built entirely from soft materials of liquid metal droplets and elastic elastomer, which are analogs of chromatophores and dermal layer of cephalopod skin, respectively. Driven by externally applied strains, the liquid metal inclusions transition between a contracted droplet state with corrugated surface and an expanded platelet state with relatively smooth surface, enabling dynamic variations in the IR reflectance/emissivity of the composite and ultimately resulting in reversible IR adaption. Strain-actuated flexible IR displays and pneumatically-driven soft devices that can dynamically manipulate their IR appearance are demonstrated as examples of the applicability of this material in emerging adaptive soft electronics.
Collapse
Affiliation(s)
- Bin Yao
- School of Aerospace Science and Technology, Xidian University, Xi'an 710071, China; State Key Laboratory for Mechanical Behavior of Materials, School of Material Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China; Department of Materials Science and Engineering, The Pennsylvania State University, University Park PA 16802, USA
| | - Xinwei Xu
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhubing Han
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park PA 16802, USA
| | - Wenhan Xu
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park PA 16802, USA
| | - Guang Yang
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park PA 16802, USA
| | - Jing Guo
- State Key Laboratory for Mechanical Behavior of Materials, School of Material Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Guixin Li
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provisional Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology, Shenzhen 518055, China
| | - Qing Wang
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park PA 16802, USA.
| | - Hong Wang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provisional Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
17
|
Monnens W, Zhang B, Zhou Z, Snels L, Binnemans K, Molina-Lopez F, Fransaer J. Scalable Electrodeposition of Liquid Metal from an Acetonitrile-Based Electrolyte for Highly Integrated Stretchable Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2305967. [PMID: 37703420 DOI: 10.1002/adma.202305967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/14/2023] [Indexed: 09/15/2023]
Abstract
The advancement of highly integrated stretchable electronics requires the development of scalable sub-micrometer conductor patterning. Eutectic gallium indium (EGaIn) is an attractive conductor for stretchable electronics, as its liquid metallic character grants it high electrical conductivity upon deformation. However, its high surface tension makes its patterning with sub-micrometer resolution challenging. In this work, this limitation is overcome by way of the electrodeposition of EGaIn. A non-aqueous acetonitrile-based electrolyte that exhibits high electrochemical stability and chemical orthogonality is used. The electrodeposited material leads to low-resistance lines that remain stable upon (repeated) stretching to a 100% strain. Because electrodeposition benefits from the resolution of mature nanofabrication methods used to pattern the base metal, the proposed "bottom-up" approach achieves a record-high density integration of EGaIn regular lines of 300 nm half-pitch on an elastomer substrate by plating on a gold seed layer prepatterned by nanoimprinting. Moreover, vertical integration is enabled by filling high-aspect-ratio vias. This capability is conceptualized by the fabrication of an omnidirectionally stretchable 3D electronic circuit, and demonstrates a soft-electronic analog of the stablished damascene process used to fabricate microchip interconnects. Overall, this work proposes a simple route to address the challenge of metallization in highly integrated (3D) stretchable electronics.
Collapse
Affiliation(s)
- Wouter Monnens
- Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, P. O. box 2450, Leuven, B-3001, Belgium
| | - Bokai Zhang
- Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, P. O. box 2450, Leuven, B-3001, Belgium
| | - Zhenyu Zhou
- Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, P. O. box 2450, Leuven, B-3001, Belgium
| | - Laurens Snels
- Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, P. O. box 2450, Leuven, B-3001, Belgium
| | - Koen Binnemans
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, P. O. box 2404, Leuven, B-3001, Belgium
| | - Francisco Molina-Lopez
- Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, P. O. box 2450, Leuven, B-3001, Belgium
| | - Jan Fransaer
- Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, P. O. box 2450, Leuven, B-3001, Belgium
| |
Collapse
|
18
|
Dai L, Wu X, Hu Z, Hou H, Gao S, Lin Y, Yuan Z. An Oscillation System Based on a Liquid Metal Droplet and Pillars under a Direct Current Electric Field. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37377336 DOI: 10.1021/acs.langmuir.3c00622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Gallium-based liquid metal is a new class of material that has attracted extensive attention due to its excellent deformation characteristics and great potential in applications. Based on the deformation characteristics of liquid metal droplets, researchers have developed many oscillation systems composed of gallium indium tin alloy (GaInSn) droplet and graphite, or aluminum-doped gallium indium alloy (Al-GaIn24.5) droplet and iron, and so on. Rather than the oxidation and deoxidation mechanisms used in previous systems, an oscillation system that can achieve gallium indium alloy (EGaIn) droplet oscillation with the frequency of 0-29 Hz is designed depending on the interactions between the electric field, pillars, sodium hydroxide, and the droplet. The forces on the droplet are analyzed specifically, which have a great influence on droplet deformation. Additionally, the effects of factors such as voltage, the concentration of sodium hydroxide (NaOH) solution, and droplet size on the droplet oscillation are elucidated based on the force analysis, enabling the flexible control of the oscillation frequency and amplitude of the droplet. This work provides a new perspective on the design of oscillation systems and further enhances our understanding of the deformation of gallium-based liquid metal droplets.
Collapse
Affiliation(s)
- Liyu Dai
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China
| | - Xiaomin Wu
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China
| | - Zhifeng Hu
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China
| | - Huimin Hou
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China
| | - Sihang Gao
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China
| | - Yukai Lin
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China
| | - Zhiping Yuan
- Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| |
Collapse
|
19
|
Manyuan N, Otsuki T, Tsumura Y, Fujii S, Kawasaki H. Dry liquid metals stabilized by silica particles: Synthesis and application in photothermoelectric power generation. J Colloid Interface Sci 2023; 649:581-590. [PMID: 37364458 DOI: 10.1016/j.jcis.2023.06.137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/02/2023] [Accepted: 06/19/2023] [Indexed: 06/28/2023]
Abstract
HYPOTHESIS Gallium-based room-temperature liquid metals (LMs) have unique physicochemical properties; however, their high surface tension, low flowability, and high corrosiveness to other materials limit their advanced processing (including precise shaping) and application. Consequently, LM-rich free-flowing powders, named "dry LMs" that offer the inherent advantages of dry powders, should play a critical role in expanding the application scope of LMs. EXPERIMENTS A general method of preparing silica-nanoparticle-stabilized LMs in the form of LM-rich powders (>95 wt% LM) is developed. FINDINGS Dry LMs can be simply prepared by mixing LMs with silica nanoparticles in a planetary centrifugal mixer in the absence of solvents. As a sustainable dry-process route alternative to wet-process routes, this ecofriendly and simple method of dry LM fabrication has several advantages, e.g., high throughput, scalability, and low toxicity owing to the lack of organic dispersion agents and milling media. Moreover, the unique photothermal properties of dry LMs are used for photothermal electric power generation. Thus, dry LMs not only pave the way for the use of LMs in powder form but also provide a new opportunity for expanding their application scope in energy conversion systems.
Collapse
Affiliation(s)
- Nichayanan Manyuan
- Department of Chemistry and Materials Engineering, Kansai University, 3-3-35, Yamate-cho, Suita, Osaka 564-8680, Japan
| | - Tomoko Otsuki
- Department of Chemistry and Materials Engineering, Kansai University, 3-3-35, Yamate-cho, Suita, Osaka 564-8680, Japan
| | - Yusuke Tsumura
- Department of Applied Chemistry, Faculty of Engineering Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Syuji Fujii
- Department of Applied Chemistry, Faculty of Engineering Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Hideya Kawasaki
- Department of Chemistry and Materials Engineering, Kansai University, 3-3-35, Yamate-cho, Suita, Osaka 564-8680, Japan.
| |
Collapse
|
20
|
Dai Y, Li M, Ji B, Wang X, Yang S, Yu P, Wang S, Hao C, Wang Z. Liquid metal droplets bouncing higher on thicker water layer. Nat Commun 2023; 14:3532. [PMID: 37316489 PMCID: PMC10267135 DOI: 10.1038/s41467-023-39348-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 06/08/2023] [Indexed: 06/16/2023] Open
Abstract
Liquid metal (LM) has gained increasing attention for a wide range of applications, such as flexible electronics, soft robots, and chip cooling devices, owing to its low melting temperature, good flexibility, and high electrical and thermal conductivity. In ambient conditions, LM is susceptible to the coverage of a thin oxide layer, resulting in unwanted adhesion with underlying substrates that undercuts its originally high mobility. Here, we discover an unusual phenomenon characterized by the complete rebound of LM droplets from the water layer with negligible adhesion. More counterintuitively, the restitution coefficient, defined as the ratio between the droplet velocities after and before impact, increases with water layer thickness. We reveal that the complete rebound of LM droplets originates from the trapping of a thinly low-viscosity water lubrication film that prevents droplet-solid contact with low viscous dissipation, and the restitution coefficient is modulated by the negative capillary pressure in the lubrication film as a result of the spontaneous spreading of water on the LM droplet. Our findings advance the fundamental understanding of complex fluids' droplet dynamics and provide insights for fluid control.
Collapse
Affiliation(s)
- Yuhang Dai
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, 999077, China
- Department of Mechanical and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Minfei Li
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Bingqiang Ji
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Xiong Wang
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Siyan Yang
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Peng Yu
- Department of Mechanical and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Steven Wang
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, 999077, China.
| | - Chonglei Hao
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, 518055, China.
| | - Zuankai Wang
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, 999077, China.
- Department of Mechanical Engineering, Hong Kong Polytechnic University, Hong Kong, 999077, China.
| |
Collapse
|
21
|
Zhou Z, Xing Z, Wang Q, Liu J. Electrochemical Oxidation to Fabricate Micro-Nano-Scale Surface Wrinkling of Liquid Metals. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207327. [PMID: 36866492 DOI: 10.1002/smll.202207327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/13/2023] [Indexed: 05/25/2023]
Abstract
Constructing wrinkled structures on the surface of materials to obtain new functions has broad application prospects. Here a generalized method is reported to fabricate multi-scale and diverse-dimensional oxide wrinkles on liquid metal surfaces by an electrochemical anodization method. The oxide film on the surface of the liquid metal is successfully thickened to hundreds of nanometers by electrochemical anodization, and then the micro-wrinkles with height differences of several hundred nanometers are obtained by the growth stress. It is succeeded in altering the distribution of growth stress by changing the substrate geometry to induce different wrinkle morphologies, such as one-dimensional striped wrinkles and two-dimensional labyrinth wrinkles. Further, radial wrinkles are obtained under the hoop stress induced by the difference in surface tensions. These hierarchical wrinkles of different scales can exist on the liquid metal surface simultaneously. Surface wrinkles of liquid metal may have potential applications in the future for flexible electronics, sensors, displays, and so on.
Collapse
Affiliation(s)
- Zhuquan Zhou
- CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zerong Xing
- CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Qian Wang
- CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jing Liu
- CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
22
|
Wang S, Zhang Y, Wang J, Ren D, Yu Z. Electrically driven heartbeat effect of gallium-based liquid metal on a ratchet. Front Bioeng Biotechnol 2023; 10:1094482. [PMID: 36714632 PMCID: PMC9877452 DOI: 10.3389/fbioe.2022.1094482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/28/2022] [Indexed: 01/13/2023] Open
Abstract
The realization of the liquid metal heartbeat effect shows better controllability under non-periodic stimuli than spontaneous oscillation or periodic stimuli. However, adjusting the liquid metal heartbeat performance, drop spreading area, and frequency, solely by the magnitude of the voltage, has great limitations. Here, we demonstrate that the eGaIn drop can beat inside graphite ring electrodes under DC voltage in alkaline solutions on ratchet substrates. These sawtooth structures provide asymmetric textures which influence liquid metal deformation during the beating of the heart. We achieved heartbeat frequencies from 2.7 to 4.8 Hz, a 100% increase in the tunable frequency range compared to that on a flat surface. The oxidative spreading of the eGaIn drop on the ratchet substrate shows that the drop penetrates into the grooves of the sawtooth structure. Moreover, we investigated the physical mechanisms affecting the eGaIn heartbeat frequency and the influence on the spreading area of the eGaIn drop at various sawtooth sizes and orientations. These findings not only enhance our understanding of droplet manipulation on sawtooth-structured surfaces but also facilitate the design of microfluidic pump systems.
Collapse
Affiliation(s)
- Shutong Wang
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China,College of Chemistry and Materials Engineering, Bohai University, Jinzhou, China
| | - Yue Zhang
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Jiuyang Wang
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Dongmei Ren
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, China
| | - Zhenwei Yu
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China,Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, China,*Correspondence: Zhenwei Yu,
| |
Collapse
|
23
|
Zhang J, Ma B, Chen G, Chen Y, Xu C, Hao Q, Zhao C, Liu H. Surface-Embedded Liquid Metal Electrodes with Abrasion Resistance via Direct Magnetic Printing. ACS APPLIED MATERIALS & INTERFACES 2022; 14:53405-53412. [PMID: 36382935 DOI: 10.1021/acsami.2c15282] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Gallium-based liquid metals (LMs) featuring both high conductivity and fluidity are ideal conductors for soft and stretchable electronics. However, their liquid nature is a double-edged sword in many key applications since LMs are inherently prone to mechanical damage. Although additional encapsulation is frequently used for the protection of delicate LM electrodes, it hinders the electrical interfacing with other objects for interconnection, sensing, and stimulation. Here, different from conventional patterning methods that deposit LM on or inside substrates, we for the first time report a simple strategy to create surface-embedded LM of eutectic gallium-indium (EGaIn) circuits with mechanical damage endurance. This was achieved by using direct magnetic printing to overcome the high surface tension of LM, allowing it to be passively filled into the laser-patterned microgrooves on soft substrates. We show that the surface-embedded LM circuits are resistant to mechanical erasure, washing, and peeling. We also show the applications of our surface-embedded LM electrodes in respiration monitoring and electrical stimulation of nerves. This work provides a simple and efficient way to create mechanically reliable LM microelectrodes, holding great promise for wearable and implantable bioelectronics.
Collapse
Affiliation(s)
- Jin Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Biao Ma
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Gangsheng Chen
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yi Chen
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Chengtao Xu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Qing Hao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Chao Zhao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Hong Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
24
|
Gan T, Handschuh-Wang S, Shang W, Zhou X. GaOOH Crystallite Growth on Liquid Metal Microdroplets in Water: Influence of the Local Environment. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:14475-14484. [PMID: 36383709 DOI: 10.1021/acs.langmuir.2c02539] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Gallium-based liquid metals form alloys with a melting point close to or below room temperature. On the surface of these liquid metals, a thin oxide skin is formed once in contact with oxygen, and this oxide skin can be leveraged to stabilize liquid metal micro- and nanodroplets in a liquid. During sonication and storage of these droplets in aqueous solution, gallium oxide hydroxide (GaOOH) forms on these droplets, and given enough time or treatment with heat, a full shape transition and dealloying are observed. In this article, we show that GaOOH can be grown at room temperature and that the growth is dependent on both the local environment and temperature. GaOOH growth on liquid metal microdroplets located at the air/water interface is considerably faster than in the bulk phase. Interestingly, hydrolysis to GaOOH is hampered and stops at 15 °C in bulk water after 6 h. In contrast, hydrolysis commences even at 15 °C for liquid metal microdroplets located at the air/water interface, and full surface coverage is obtained after around 24 h (compared to 12 h at 25 °C at the air/water interface). The X-ray photoelectron spectroscopy (XPS) measurement suggests that gallium oxide is dissolved and Ga(OH)3 is formed as a precursor that reacts in a downstream reaction toward GaOOH. This improved understanding of the GaOOH formation can be leveraged to control the liquid metal micro- and nanodroplet shape and composition (i.e., for biomedical applications).
Collapse
Affiliation(s)
- Tiansheng Gan
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen518060, People's Republic of China
| | - Stephan Handschuh-Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen518060, People's Republic of China
| | - Wenhui Shang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen518060, People's Republic of China
| | - Xuechang Zhou
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen518060, People's Republic of China
| |
Collapse
|
25
|
Tao Y, Shi C, Han F, Yang R, Xue R, Ge Z, Guo W, Liu W, Ren Y. Liquid metal droplet motion transferred from an alkaline solution by a robot arm. LAB ON A CHIP 2022; 22:4621-4631. [PMID: 36326042 DOI: 10.1039/d2lc00712f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The excellent motion performance of gallium-based liquid metals (LMs) upon the application of a modest electric field has provided a new opportunity for the development of autonomous soft robots. However, the locomotion of LMs often appears in an alkaline solution, which hampers the application under other different conditions. In this work, a novel robot arm is designed to transfer the motion of the LM from an alkaline solution in a synchronous drive mode. The liquid metal droplet (LMD) at the bottom of the robot arm is actuated using a DC voltage to provide the driving force for the system. By introducing an end effector at the center of the robot arm, the synchronous motion of the system is replicated and can be applied to different situations. The theoretical understanding of continuous electrowetting (CEW) at the LM interface is explained, and then the motion performance of the robot arm against the function of the applied voltage and driving direction is investigated. Moreover, several applications using this robot arm, such as pattern drawing, cargo transportation, and drug concentration detection, are demonstrated. The presented robot arm has the potential to observably expand the application fields of the LM.
Collapse
Affiliation(s)
- Ye Tao
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, West Da-zhi Street 92, Harbin, Heilongjiang 150001, People's Republic of China.
| | - Changrui Shi
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, West Da-zhi Street 92, Harbin, Heilongjiang 150001, People's Republic of China.
| | - Feiyang Han
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, West Da-zhi Street 92, Harbin, Heilongjiang 150001, People's Republic of China.
| | - Ruizhe Yang
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, West Da-zhi Street 92, Harbin, Heilongjiang 150001, People's Republic of China.
| | - Rui Xue
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, West Da-zhi Street 92, Harbin, Heilongjiang 150001, People's Republic of China.
| | - Zhenyou Ge
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, West Da-zhi Street 92, Harbin, Heilongjiang 150001, People's Republic of China.
| | - Wenshang Guo
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, West Da-zhi Street 92, Harbin, Heilongjiang 150001, People's Republic of China.
| | - Weiyu Liu
- Chang'an University, Middle-Section of Nan'er Huan Road, Xi'an 710000, China
| | - Yukun Ren
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, West Da-zhi Street 92, Harbin, Heilongjiang 150001, People's Republic of China.
| |
Collapse
|
26
|
Wang L, Lai R, Zhang L, Zeng M, Fu L. Emerging Liquid Metal Biomaterials: From Design to Application. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201956. [PMID: 35545821 DOI: 10.1002/adma.202201956] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/08/2022] [Indexed: 06/15/2023]
Abstract
Liquid metals (LMs) as emerging biomaterials possess unique advantages including their favorable biosafety, high fluidity, and excellent electrical and thermal conductivities, thus providing a unique platform for a wide range of biomedical applications ranging from drug delivery, tumor therapy, and bioimaging to biosensors. The structural design and functionalization of LMs endow them with enhanced functions such as enhanced targeting ability and stimuli responsiveness, enabling them to achieve better and even multifunctional synergistic therapeutic effects. Herein, the advantages of LMs in biomedicine are presented. The design of LM-based biomaterials with different scales ranging from micro-/nanoscale to macroscale and various components is explored in-depth to promote the understanding of structure-property relationships, guiding their performance optimization and applications. Furthermore, the related advanced progress in the development of LM-based biomaterials in biomedicine is summarized. Current challenges and prospects of LMs in the biomedical field are also discussed.
Collapse
Affiliation(s)
- Luyang Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Runze Lai
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Lichen Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Mengqi Zeng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Lei Fu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
- Renmin Hospital of Wuhan University, Wuhan, 410013, China
| |
Collapse
|
27
|
Ryu G, Park K, Kim H. Interfacial properties of liquid metal immersed in various liquids. J Colloid Interface Sci 2022; 621:285-294. [DOI: 10.1016/j.jcis.2022.04.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/29/2022] [Accepted: 04/06/2022] [Indexed: 11/15/2022]
|
28
|
Kim S, Kim S, Hong K, Dickey MD, Park S. Liquid-Metal-Coated Magnetic Particles toward Writable, Nonwettable, Stretchable Circuit Boards, and Directly Assembled Liquid Metal-Elastomer Conductors. ACS APPLIED MATERIALS & INTERFACES 2022; 14:37110-37119. [PMID: 35930688 DOI: 10.1021/acsami.2c07618] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Liquid metal is a promising conductor material for producing soft and stretchable circuit "boards" that can enable next-generation electronics by electrically connecting and mechanically supporting electronic components. While liquid metal in general can be used to fabricate soft and stretchable circuits, magnetic liquid metal is appealing because it can be used for self-healing electronics and actuators by external magnetic fields. Liquid metal can be rendered into particles that can then be used for sensors and catalysts through sonication. We used this feature to produce "novel" conductive and magnetic particles. Mixing ferromagnetic iron particles into the liquid metal (gallium) produces conductive ferrofluids that can be rendered into gallium-coated iron particles by sonication. The gallium shell of the particles is extremely soft, while the rigid iron core can induce high friction in response to mechanical pressure; thus, hand-sintering of the particles can be used to directly write the conductive traces when the particles are cast as a film on elastic substrates. The surface topography of the particles can be manipulated by forming GaOOH crystals through sonication in DI water, thus resulting in nonwettable circuit boards. These gallium-coated iron particles dispersed in uncured elastomer can be assembled to form conductive microwires with the application of magnetic fields.
Collapse
Affiliation(s)
- Seoyeon Kim
- Department of Polymer-Nano Science and Technology, Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju 54896, Korea
| | - Sihyun Kim
- Department of Polymer-Nano Science and Technology, Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju 54896, Korea
| | - Kyeongmin Hong
- Department of Polymer-Nano Science and Technology, Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju 54896, Korea
| | - Michael D Dickey
- Department of Chemical Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, North Carolina 27695, United States
| | - Sungjune Park
- Department of Polymer-Nano Science and Technology, Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju 54896, Korea
| |
Collapse
|
29
|
Handschuh-Wang S, Gancarz T, Uporov S, Wang T, Gao E, Stadler FJ, Zhou X. A Short History on Fusible Metals and Alloys ‐ Towards Room Temperature Liquid Metals. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Stephan Handschuh-Wang
- Shenzhen University Department of Chemistry and Environmental Engineering Xueyuan Rd., Xili, Nanshan District, 518055 Shenzhen CHINA
| | - Tomasz Gancarz
- Polish Academy of Sciences: Polska Akademia Nauk Institute of Metallurgy and Materials Science POLAND
| | - Sergey Uporov
- Russian Academy of Sciences Institute of Metallurgy RUSSIAN FEDERATION
| | - Tao Wang
- Chinese Academy of Sciences Shenzhen Institutes of Advanced Technology Functional Thin Films Research Center CHINA
| | - Eryuan Gao
- Shenzhen Aerospace Dongfanghong Satellite Ltd Shenzhen Aerospace Dongfanghong Satellite. Ltd CHINA
| | | | - Xuechang Zhou
- Shenzhen University College of Chemistry and Environmental Engineering CHINA
| |
Collapse
|
30
|
Self-Healable and Recyclable Dual-Shape Memory Liquid Metal–Elastomer Composites. Polymers (Basel) 2022; 14:polym14112259. [PMID: 35683935 PMCID: PMC9182922 DOI: 10.3390/polym14112259] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 02/01/2023] Open
Abstract
Liquid metal (LM)–polymer composites that combine the thermal and electrical conductivity of LMs with the shape-morphing capability of polymers are attracting a great deal of attention in the fields of reconfigurable electronics and soft robotics. However, investigation of the synergetic effect between the shape-changing properties of LMs and polymer matrices is lacking. Herein, a self-healable and recyclable dual-shape memory composite, comprising an LM (gallium) and a Diels–Alder (DA) crosslinked crystalline polyurethane (PU) elastomer, is reported. The composite exhibits a bilayer structure and achieves excellent shape programming abilities, due to the phase transitions of the LM and the crystalline PU elastomers. To demonstrate these shape-morphing abilities, a heat-triggered soft gripper, which can grasp and release objects according to the environmental temperature, is designed and built. Similarly, combining the electrical conductivity and the dual-shape memory effect of the composite, a light-controlled reconfigurable switch for a circuit is produced. In addition, due to the reversible nature of DA bonds, the composite is self-healable and recyclable. Both the LM and PU elastomer are recyclable, demonstrating the extremely high recycling efficiency (up to 96.7%) of the LM, as well as similar mechanical properties between the reprocessed elastomers and the pristine ones.
Collapse
|
31
|
Li X, Ding X, Du Y, Xiao C, Zheng K, Liu X, Tian X, Zhang X. Controlled Transformation of Liquid Metal Microspheres in Aqueous Solution Triggered by Growth of GaOOH. ACS OMEGA 2022; 7:7912-7919. [PMID: 35284708 PMCID: PMC8908526 DOI: 10.1021/acsomega.1c06897] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
Liquid metals (LMs) are playing an increasingly important role in the fields of flexible devices, electronics, and thermal management due to their low melting point and excellent thermal and electrical conductivity, and the transformation of LMs in deionized water has recently received much attention. In this paper, we investigate the transformation process of EGaIn microspheres in deionized water and propose a two-step process of microspherical transformation, whereby the microspheres are first deformed into a spindle shape and then into lamellar nanorods. It is also shown that the growth of GaOOH crystals drives the transformation. Based on this result, EGaIn microspheres with controllable transformation could be prepared, such as spindle or lamellar rod shapes, extending the application area of LMs.
Collapse
Affiliation(s)
- Xiaofei Li
- Key
Laboratory of Photovoltaic and Energy Conservation Materials, Institute
of Solid State Physics, HFIPS, Chinese Academy
of Sciences, Hefei 230031, China
- University
of Science and Technology of China, Hefei 230026, People’s
Republic of China
| | - Xin Ding
- Key
Laboratory of Photovoltaic and Energy Conservation Materials, Institute
of Solid State Physics, HFIPS, Chinese Academy
of Sciences, Hefei 230031, China
| | - Yuhang Du
- Key
Laboratory of Photovoltaic and Energy Conservation Materials, Institute
of Solid State Physics, HFIPS, Chinese Academy
of Sciences, Hefei 230031, China
- University
of Science and Technology of China, Hefei 230026, People’s
Republic of China
| | - Chao Xiao
- Key
Laboratory of Photovoltaic and Energy Conservation Materials, Institute
of Solid State Physics, HFIPS, Chinese Academy
of Sciences, Hefei 230031, China
| | - Kang Zheng
- Key
Laboratory of Photovoltaic and Energy Conservation Materials, Institute
of Solid State Physics, HFIPS, Chinese Academy
of Sciences, Hefei 230031, China
| | - Xianglan Liu
- Key
Laboratory of Photovoltaic and Energy Conservation Materials, Institute
of Solid State Physics, HFIPS, Chinese Academy
of Sciences, Hefei 230031, China
| | - Xingyou Tian
- Key
Laboratory of Photovoltaic and Energy Conservation Materials, Institute
of Solid State Physics, HFIPS, Chinese Academy
of Sciences, Hefei 230031, China
- University
of Science and Technology of China, Hefei 230026, People’s
Republic of China
| | - Xian Zhang
- Key
Laboratory of Photovoltaic and Energy Conservation Materials, Institute
of Solid State Physics, HFIPS, Chinese Academy
of Sciences, Hefei 230031, China
- University
of Science and Technology of China, Hefei 230026, People’s
Republic of China
| |
Collapse
|
32
|
Aukarasereenont P, Goff A, Nguyen CK, McConville CF, Elbourne A, Zavabeti A, Daeneke T. Liquid metals: an ideal platform for the synthesis of two-dimensional materials. Chem Soc Rev 2022; 51:1253-1276. [PMID: 35107468 DOI: 10.1039/d1cs01166a] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The surfaces of liquid metals can serve as a platform to synthesise two-dimensional materials. By exploiting the self-limiting Cabrera-Mott oxidation reaction that takes place at the surface of liquid metals exposed to ambient air, an ultrathin oxide layer can be synthesised and isolated. Several synthesis approaches based on this phenomenon have been developed in recent years, resulting in a diverse family of functional 2D materials that covers a significant fraction of the periodic table. These straightforward and inherently scalable techniques may enable the fabrication of novel devices and thus harbour significant application potential. This review provides a brief introduction to liquid metals and their alloys, followed by detailed guidance on each developed synthesis technique, post-growth processing methods, integration processes, as well as potential applications of the developed materials.
Collapse
Affiliation(s)
| | - Abigail Goff
- School of Engineering, RMIT University, Melbourne, VIC, 3001, Australia.
| | - Chung Kim Nguyen
- School of Engineering, RMIT University, Melbourne, VIC, 3001, Australia.
| | - Chris F McConville
- Institute for Frontier Materials, Deakin University, Geelong, VIC, 3216, Australia
| | - Aaron Elbourne
- School of Science, RMIT University, Melbourne, VIC, 3001, Australia
| | - Ali Zavabeti
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Torben Daeneke
- School of Engineering, RMIT University, Melbourne, VIC, 3001, Australia.
| |
Collapse
|
33
|
Ernst OC, Böttcher K, Fischer D, Uebel D, Teubner T, Boeck T. Morphogenesis of Liquid Indium Microdroplets on Solid Molybdenum Surfaces during Solidification at Normal Pressure and under Vacuum Conditions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:762-768. [PMID: 34985893 DOI: 10.1021/acs.langmuir.1c02744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Electrical and optical applications based on micro- and nanoparticles have specific demands on their interfacial properties. These properties are strongly related to atmospheric conditions to which the particles were exposed during their formation. In this study, metallic In microparticles are synthesized by solidification of In droplets on an amorphous Mo substrate at normal pressure and under vacuum conditions. The influence of ambient pressure on the interface and surface shape is investigated. While solidification at atmospheric pressure leads to collapsed particles with undisturbed contact to the substrate, low pressures result in smooth spherical particles but with cavities inside. Numerical simulations with COMSOL Multiphysics reveal different temperature profiles and heat flux in particles during solidification for both cases. This indicates different starting conditions of the solidification, which leads to the described phenomenon eventually. The investigation of the varying process conditions on the particle shape in combination with the calculated and measured temperature curves over time gives valuable insights into new approaches to synthesize micro- and nanoparticles with defined interfacial properties. Both ambient pressure and cooling rate provide well-controllable and reliable parameters for the realization of different interfacial shapes.
Collapse
Affiliation(s)
- Owen C Ernst
- Leibniz-Institut für Kristallzüchtung (IKZ), Max-Born-Straße 2, 12489 Berlin, Germany
| | - Klaus Böttcher
- Leibniz-Institut für Kristallzüchtung (IKZ), Max-Born-Straße 2, 12489 Berlin, Germany
| | - Daniel Fischer
- Bundesanstalt für Materialforschung und-prüfung (BAM), Unter den Eichen 87, 12205 Berlin, Germany
| | - David Uebel
- Leibniz-Institut für Kristallzüchtung (IKZ), Max-Born-Straße 2, 12489 Berlin, Germany
| | - Thomas Teubner
- Leibniz-Institut für Kristallzüchtung (IKZ), Max-Born-Straße 2, 12489 Berlin, Germany
| | - Torsten Boeck
- Leibniz-Institut für Kristallzüchtung (IKZ), Max-Born-Straße 2, 12489 Berlin, Germany
| |
Collapse
|
34
|
Wang X, Liu L, Zhao L, Huang Y, Dong X, Yang X. Sessile droplet evaporation on the surface of liquid metal. NEW J CHEM 2022. [DOI: 10.1039/d2nj02505a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sessile droplet evaporation on liquid gallium surface is reported. Liquid gallium has super smooth flexible surface, but it is easy to form oxide film in ambient air. Two methods were...
Collapse
|
35
|
Handschuh‐Wang S, Rauf M, Gan T, Shang W, Zhou X. On the Interaction of Surfactants with Gallium‐Based Liquid Metals. ChemistrySelect 2021. [DOI: 10.1002/slct.202103343] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Stephan Handschuh‐Wang
- College of Chemistry and Environmental Engineering Shenzhen University Shenzhen 518060 P. R. China
- The International School of Advanced Materials School of Materials Science and Engineering South China University of Technology Guangzhou 510640 China
| | - Muhammad Rauf
- College of Chemistry and Environmental Engineering Shenzhen University Shenzhen 518060 P. R. China
| | - Tiansheng Gan
- College of Chemistry and Environmental Engineering Shenzhen University Shenzhen 518060 P. R. China
| | - Wenhui Shang
- College of Chemistry and Environmental Engineering Shenzhen University Shenzhen 518060 P. R. China
| | - Xuechang Zhou
- College of Chemistry and Environmental Engineering Shenzhen University Shenzhen 518060 P. R. China
| |
Collapse
|