1
|
Walters SH, Signorelli RL, Payne AG, Hojjatian A, Fuglestad B. Compositional versatility enables biologically inspired reverse micelles for study of protein-membrane interactions. SOFT MATTER 2025; 21:3547-3557. [PMID: 40208197 PMCID: PMC11984498 DOI: 10.1039/d5sm00033e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 04/02/2025] [Indexed: 04/11/2025]
Abstract
The study of membranes and their associated proteins is critical for understanding cellular processes. In vitro investigations utilizing membrane models often have limitations in their biological relevance due to the dissimilarity of experimentally compatible membrane mimetics to biological membranes. Development of membrane models that better mimic cellular membranes enables more biologically accurate observations of membrane associated proteins. In this work, we present upper tolerance concentrations for a range of lipids incorporated into reverse micelles (RMs), confirmed with dynamic light scattering (DLS). A breadth of lipid incorporation enabled biologically inspired RMs to be formulated based on the molar ratios of lipids present in eukaryotic membrane leaflets. Three systems were formulated matching lipid compositions of the inner leaflet of the plasma membrane (PM-RM), the outer mitochondrial membrane leaflet (MI-RM), and the outer rough endoplasmic reticulum membrane leaflet (ER-RM). The biologically-inspired RM formulations were characterized using DLS and cryo-electron microscopy (cryo-EM) and were found to have favorable properties for protein encapsulation. All three biologically inspired RM formulations effectively encapsulated fatty acid binding protein 4 (FABP4), a protein which shuttles fatty acids between membranes, confirmed by NMR. Also presented in this work is the first known high-resolution observation of the membrane-bound state of sterol carrier protein 2 (SCP2), a protein responsible for transporting an array of lipids between membranes. SCP2 was successfully encapsulated within all three RM systems, enabling NMR observation of the membrane interface of SCP2. The tolerances and formulations reported here allow for tailoring of RMs to mimic specific cellular membranes and will enhance studies of protein interactions with lipids and membranes among other investigations.
Collapse
Affiliation(s)
- Sara H Walters
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia, USA.
| | - Rachel L Signorelli
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia, USA.
| | - Allyson G Payne
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia, USA.
| | - Alimohammad Hojjatian
- Office of the Vice President for Research and Innovation, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Brian Fuglestad
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia, USA.
- The Center for Drug Discovery, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
2
|
Walters SH, Birchfield AS, Fuglestad B. Advances in utilizing reverse micelles to investigate membrane proteins. Biochem Soc Trans 2024; 52:2499-2511. [PMID: 39508380 DOI: 10.1042/bst20240830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/02/2024] [Accepted: 10/08/2024] [Indexed: 11/15/2024]
Abstract
Reverse micelles (RMs) have emerged as useful tools for the study of membrane associated proteins. With a nanoscale water core surrounded by surfactant and solubilized in a non-polar solvent, RMs stand apart as a unique membrane model. While RMs have been utilized as tools to investigate the physical properties of membranes and their associated water, RMs also effectively house membrane associated proteins for a variety of studies. High-resolution protein NMR revealed a need for development of improved RM formulations, which greatly enhanced the use of RMs for aqueous proteins. Protein-optimized RM formulations enabled encapsulation of challenging membrane associated protein types, including lipidated proteins, transmembrane proteins, and peripheral membrane proteins. Improvements in biological accuracy of RMs using phospholipid-based surfactants has advanced their utility as a membrane mimetic even further, better matching the chemistry of the most common cellular membrane lipids. Natural lipid extracts may also be used to construct RMs and house proteins, resulting in a membrane model that better represents the complexity of biological membranes. Recent applications in high-resolution investigations of protein-membrane interactions and inhibitor design of membrane associated proteins have demonstrated the usefulness of these systems in addressing this difficult category of protein. Further developments of RMs as membrane models will enhance the breadth of investigations facilitated by these systems and will enhance their use in biophysical, structural, and drug discovery pursuits of membrane associated proteins. In this review, we present the development of RMs as membrane models and their application to structural and biophysical study of membrane proteins.
Collapse
Affiliation(s)
- Sara H Walters
- Department of Chemistry, Virginia Commonwealth University, Richmond, VA 23284, U.S.A
| | - Aaron S Birchfield
- Department of Chemistry, Virginia Commonwealth University, Richmond, VA 23284, U.S.A
| | - Brian Fuglestad
- Department of Chemistry, Virginia Commonwealth University, Richmond, VA 23284, U.S.A
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA 23219, U.S.A
| |
Collapse
|
3
|
Stackhouse CI, Pierson KN, Labrecque CL, Mawson C, Berg J, Fuglestad B, Nucci NV. Characterization of 10MAG/LDAO reverse micelles: Understanding versatility for protein encapsulation. Biophys Chem 2024; 311:107269. [PMID: 38815545 PMCID: PMC11225088 DOI: 10.1016/j.bpc.2024.107269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/01/2024]
Abstract
Reverse micelles (RMs) are spontaneously organizing nanobubbles composed of an organic solvent, surfactants, and an aqueous phase that can encapsulate biological macromolecules for various biophysical studies. Unlike other RM systems, the 1-decanoyl-rac-glycerol (10MAG) and lauryldimethylamine-N-oxide (LDAO) surfactant system has proven to house proteins with higher stability than other RM mixtures with little sensitivity to the water loading (W0, defined by the ratio of water to surfactant). We investigated this unique property by encapsulating three model proteins - cytochrome c, myoglobin, and flavodoxin - in 10MAG/LDAO RMs and applying a variety of experimental methods to characterize this system's behavior. We found that this surfactant system differs greatly from the traditional, spherical, monodisperse RM population model. 10MAG/LDAO RMs were discovered to be oblate ellipsoids at all conditions, and as W0 was increased, surfactants redistributed to form a greater number of increasingly spherical ellipsoidal particles with pools of more bulk-like water. Proteins distinctively influence the thermodynamics of the mixture, encapsulating at their optimal RM size and driving protein-free RM sizes to scale accordingly. These findings inform the future development of similarly malleable encapsulation systems and build a foundation for application of 10MAG/LDAO RMs to analyze biological and chemical processes under nanoscale confinement.
Collapse
Affiliation(s)
- Crystal I Stackhouse
- Department of Physics and Astronomy, Rowan University, 201 Mullica Hill Rd, Glassboro, NJ 08028, United States; Department of Biomedical and Biological Sciences, Rowan University, 201 Mullica Hill Rd, Glassboro, NJ 08028, United States.
| | - Kali N Pierson
- Department of Physics and Astronomy, Rowan University, 201 Mullica Hill Rd, Glassboro, NJ 08028, United States; Department of Biomedical and Biological Sciences, Rowan University, 201 Mullica Hill Rd, Glassboro, NJ 08028, United States.
| | - Courtney L Labrecque
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States.
| | - Cara Mawson
- Department of Physics and Astronomy, Rowan University, 201 Mullica Hill Rd, Glassboro, NJ 08028, United States; Department of Biomedical and Biological Sciences, Rowan University, 201 Mullica Hill Rd, Glassboro, NJ 08028, United States.
| | - Joshua Berg
- Department of Physics and Astronomy, Rowan University, 201 Mullica Hill Rd, Glassboro, NJ 08028, United States; Department of Biomedical and Biological Sciences, Rowan University, 201 Mullica Hill Rd, Glassboro, NJ 08028, United States
| | - Brian Fuglestad
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States; Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23219, United States.
| | - Nathaniel V Nucci
- Department of Physics and Astronomy, Rowan University, 201 Mullica Hill Rd, Glassboro, NJ 08028, United States; Department of Biomedical and Biological Sciences, Rowan University, 201 Mullica Hill Rd, Glassboro, NJ 08028, United States.
| |
Collapse
|
4
|
Higuchi Y, Saleh MA, Anada T, Tanaka M, Hishida M. Rotational Dynamics of Water near Osmolytes by Molecular Dynamics Simulations. J Phys Chem B 2024; 128:5008-5017. [PMID: 38728154 DOI: 10.1021/acs.jpcb.3c08470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
The behavior of water molecules around organic molecules has attracted considerable attention as a crucial factor influencing the properties and functions of soft matter and biomolecules. Recently, it has been suggested that the change in protein stability upon the addition of small organic molecules (osmolytes) is dominated by the change in the water dynamics caused by the osmolyte, where the dynamics of not only the directly interacting water molecules but also the long-range hydration layer affect the protein stability. However, the relation between the long-range structure of hydration water in various solutions and the water dynamics remains unclear at the molecular level. We performed density-functional tight-binding molecular dynamics simulations to elucidate the varying rotational dynamics of water molecules in 15 osmolyte solutions. A positive correlation was observed between the rotational relaxation time and our proposed normalized parameter obtained by dividing the number of hydrogen bonds between water molecules by the number of nearest-neighbor water molecules. For the 15 osmolyte solutions, an increase or a decrease in the value of the normalized parameter for the second hydration shell tended to result in water molecules with slow and fast rotational dynamics, respectively, thus illustrating the importance of the second hydration shell for the rotational dynamics of water molecules. Our simulation results are anticipated to advance the current understanding of water dynamics around organic molecules and the long-range structure of water molecules.
Collapse
Affiliation(s)
- Yuji Higuchi
- Research Institute for Information Technology, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Md Abu Saleh
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Takahisa Anada
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Fukuoka 819-0395, Japan
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Masaru Tanaka
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Fukuoka 819-0395, Japan
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Mafumi Hishida
- Department of Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 162-8601, Japan
| |
Collapse
|
5
|
Higuchi Y, Bohinc K, Reščič J, Shimokawa N, Ito H. Coarse-grained molecular dynamics simulation of cation distribution profiles on negatively charged lipid membranes during phase separation. SOFT MATTER 2023; 19:3640-3651. [PMID: 37162535 DOI: 10.1039/d3sm00222e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Revealing the ion distributions on a charged lipid membrane in aqueous solution under the influence of long-range interactions is essential for understanding the origin of the stability of the bilayer structure and the interaction between biomembranes and various electrolytes. However, the ion distributions and their dynamics associated with the phase separation process of the lipid bilayer membrane are still unclear. We perform coarse-grained molecular dynamics simulations to reveal the Na+ and Cl- distributions on charged phospholipid bilayer membranes during phase separation. During the phase separation, cations closely follow the position of negatively charged lipids on a microsecond timescale and are rapidly redistributed parallel to the lipid bilayer. In the homogenous mixture of zwitterionic and negatively charged lipids, cations weakly follow negatively charged lipids, indicating the strong interaction between cations and negatively charged lipids. We also compare cation concentrations as a function of surface charge density obtained by our simulation with those obtained by a modified Poisson-Boltzmann theory. Including the ion finite size makes the statistical results consistent, suggesting the importance of the ion-ion interactions in aqueous solution. Our simulation results advance our understanding of ion distribution during phase separation.
Collapse
Affiliation(s)
- Yuji Higuchi
- Research Institute for Information Technology, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
| | - Klemen Bohinc
- Faculty of Health Sciences, University of Ljubljana, Zdravstvena 5, SI 1000 Ljubljana, Slovenia
| | - Jurij Reščič
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Vecna pot 113, 1000 Ljubljana, Slovenia
| | - Naofumi Shimokawa
- School of Materials Science, Japan Advanced Institute of Science and Technology, Ishikawa 923-1292, Japan
| | - Hiroaki Ito
- Department of Physics, Graduate School of Science, Chiba University, Chiba 263-8522, Japan
| |
Collapse
|
6
|
Monteiro H, Paiva A, Duarte ARC, Galamba N. Structure and Dynamic Properties of a Glycerol-Betaine Deep Eutectic Solvent: When Does a DES Become an Aqueous Solution? ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2022; 10:3501-3512. [PMID: 35371624 PMCID: PMC8941986 DOI: 10.1021/acssuschemeng.1c07461] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/27/2021] [Indexed: 05/25/2023]
Abstract
Deep eutectic solvents (DESs) are an emerging class of green solvents with a wide spectrum of potential applications whose properties may be further tailored through the addition of water. Here, we study, through molecular dynamics, the influence of water on the properties of a betaine-glycerol-water (B:G:W) DES (1:2:ζ; ζ = 0 to 100), aiming at getting insight into the structural and dynamic crossover between a DES and an aqueous solution. The density, shear viscosity, and diffusion coefficients are found to exhibit a non-linear dependence of ζ, similar to that observed for the solvation layers' composition. Each Gly and Bet are replaced, respectively, by ∼3 and ∼5 water molecules, with the highest rates of depletion being found for Gly around Bet and Gly around Gly. Above ζ = 7 (70 mol %; 29.5 wt %), a major structural transformation occurs, with the complete disruption of the second Bet-Gly solvation layer and the formation of a new second layer at a shorter distance, accompanied by a sudden change in the rate of increase of the components' diffusion. Nonetheless, opposite to other DES, our results indicate a smooth crossover between a DES and an aqueous solution.
Collapse
Affiliation(s)
- Hugo Monteiro
- LAQV,
REQUIMTE, Departamento de Química, Nova School of Science and Technology, 2829-516 Caparica, Portugal
| | - Alexandre Paiva
- LAQV,
REQUIMTE, Departamento de Química, Nova School of Science and Technology, 2829-516 Caparica, Portugal
| | - Ana Rita C. Duarte
- LAQV,
REQUIMTE, Departamento de Química, Nova School of Science and Technology, 2829-516 Caparica, Portugal
| | - Nuno Galamba
- Biosystems
and Integrative Sciences Institute, Faculty
of Sciences of the University of Lisbon, C8, Campo Grande, 1749-016 Lisbon, Portugal
| |
Collapse
|
7
|
Parchekani J, Allahverdi A, Taghdir M, Naderi-Manesh H. Design and simulation of the liposomal model by using a coarse-grained molecular dynamics approach towards drug delivery goals. Sci Rep 2022; 12:2371. [PMID: 35149771 PMCID: PMC8837752 DOI: 10.1038/s41598-022-06380-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/27/2022] [Indexed: 12/19/2022] Open
Abstract
The simulated liposome models provide events in molecular biological science and cellular biology. These models may help to understand the cell membrane mechanisms, biological cell interactions, and drug delivery systems. In addition, the liposomes model may resolve specific issues such as membrane transports, ion channels, drug penetration in the membrane, vesicle formation, membrane fusion, and membrane protein function mechanism. One of the approaches to investigate the lipid membranes and the mechanism of their formation is by molecular dynamics (MD) simulations. In this study, we used the coarse-grained MD simulation approach and designed a liposome model system. To simulate the liposome model, we used phospholipids that are present in the structure of natural cell membranes (1,2-Dioleoyl-sn-glycero-3-phosphocholine (DOPC) and 1,2-Dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE)). Simulation conditions such as temperature, ions, water, lipid concentration were performed based on experimental conditions. Our results showed a liposome model (ellipse vesicle structure) during the 2100 ns was formed. Moreover, the analysis confirmed that the stretched and ellipse structure is the best structure that could be formed. The eukaryotic and even the bacterial cells have elliptical and flexible structures. Usually, an elliptical structure is more stable than other assembled structures. The results indicated the assembly of the lipids is directed through short-range interactions (electrostatic interactions and, van der Waals interactions). Total energy (Van der Waals and electrostatic interaction energy) confirmed the designed elliptical liposome structure has suitable stability at the end of the simulation process. Our findings confirmed that phospholipids DOPC and DOPE have a good tendency to form bilayer membranes (liposomal structure) based on their geometric shapes and chemical-physical properties. Finally, we expected the simulated liposomal structure as a simple model to be useful in understanding the function and structure of biological cell membranes. Furthermore, it is useful to design optimal, suitable, and biocompatible liposomes as potential drug carriers.
Collapse
Affiliation(s)
- Jalil Parchekani
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, 14115-154, Iran
| | - Abdollah Allahverdi
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, 14115-154, Iran
| | - Majid Taghdir
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, 14115-154, Iran.
| | - Hossein Naderi-Manesh
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, 14115-154, Iran.
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, 14115-154, Iran.
| |
Collapse
|
8
|
Cui H, Vedder M, Schwaneberg U, Davari MD. Using Molecular Simulation to Guide Protein Engineering for Biocatalysis in Organic Solvents. Methods Mol Biol 2022; 2397:179-202. [PMID: 34813065 DOI: 10.1007/978-1-0716-1826-4_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Biocatalysis in organic solvents (OSs) is very appealing for the industry in producing bulk and/or fine chemicals, such as pharmaceuticals, biodiesel, and fragrances. The poor performance of enzymes in OSs (e.g., reduced activity, insufficient stability, and deactivation) negates OSs' excellent solvent properties. Molecular dynamics (MD) simulations provide a complementary method to study the relationship between enzymes dynamics and the stability in OSs. Here we describe computational procedure for MD simulation of enzymes in OSs with an example of Bacillus subtilis lipase A (BSLA) in dimethyl sulfoxide (DMSO) cosolvent with software GROMACS. We discuss main essential practical issues considered (such as choice of force field, parameterization, simulation setup, and trajectory analysis). The core part of this protocol (enzyme-OS system setup, analysis of structural-based and solvation-based observables) is transferable to other enzymes and any OS systems. Combining with experimental studies, the obtained molecular knowledge is most likely to guide researchers to access rational protein engineering approaches to tailor OS resistant enzymes and expand the scope of biocatalysis in OS media. Finally, we discuss potential solutions to overcome the remaining challenges of computational biocatalysis in OSs and briefly draw future directions for further improvement in this field.
Collapse
Affiliation(s)
- Haiyang Cui
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Aachen, Germany
- DWI-Leibniz Institute for Interactive Materials, Aachen, Germany
| | - Markus Vedder
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Aachen, Germany
| | - Ulrich Schwaneberg
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Aachen, Germany
- DWI-Leibniz Institute for Interactive Materials, Aachen, Germany
| | - Mehdi D Davari
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
9
|
Vuorte M, Kuitunen S, Sammalkorpi M. Physisorption of bio oil nitrogen compounds onto montmorillonite. Phys Chem Chem Phys 2021; 23:21840-21851. [PMID: 34554171 DOI: 10.1039/d1cp01880a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We assess computationally the adsorption of a series of nitrogen containing heterocycles and fatty acid amides from bio-oil on a model clay surface, Na-montmorillonite. The adsorption energies and conformations predicted by atomistic detail molecular dynamics (MD) simulations are compared against density functional theory (DFT) based molecular electrostatic potentials (MEP) and Hirshfeld, AIM, Merz-Singh-Kollman, and ChelpG charges. MD predicts systematically adsorption via cation bridging with adsorption strength of the heterocycles following purine > pyridine > imidazole > pyrrole > indole > quinoline. The fatty acid amides adsorption strength follows the steric availability and bulkiness of the head group. A comparison against the DFT calculations shows that MEP predicts adsorption geometries and the MD simulations reproduce the conformations for single adsorption site species. However, the DFT derived charge distibutions show that MD force-fields with non-polarizable fixed partial charge representations parametrized for aqueous environments cannot be used in apolar solvent environments without careful accuracy considerations. The overall trends in adsorption energies are reproduced by the Charmm GenFF employed in the MD simulations but the adsorption energies are systematically overestimated in this apolar solvent environment. The work has significance both for revealing nitrogen compound adsorption trends in technologically relevant bio oil environments but also as a methodological assessment revealing the limits of state of the art biomolecular force-fields and simulation protocols in apolar bioenvironments.
Collapse
Affiliation(s)
- Maisa Vuorte
- Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland.
| | - Susanna Kuitunen
- Neste Engineering Solutions Oy, P.O. Box 310, FI-06101 Porvoo, Finland
| | - Maria Sammalkorpi
- Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland. .,Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland
| |
Collapse
|
10
|
Higuchi Y, Asano Y, Kuwahara T, Hishida M. Rotational Dynamics of Water at the Phospholipid Bilayer Depending on the Head Groups Studied by Molecular Dynamics Simulations. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:5329-5338. [PMID: 33881324 DOI: 10.1021/acs.langmuir.1c00417] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Hydration states are a crucial factor that affect the self-assembly and properties of soft materials and biomolecules. Although previous experiments have revealed that the hydration state strongly depends on the chemical structure of lipid molecules, the mechanisms at the molecular level remain unknown. Classical and density-functional tight-binding (DFTB) molecular dynamics (MD) simulations are employed to determine the mechanisms underlying dissimilar water dynamics between lipid membranes with phosphatidylcholine (PC) and phosphatidylethanolamine (PE) head groups. The classical MD simulation shows that rotational relaxations of water are faster on the PE lipid than on the PC lipid, which is consistent with a previous experimental study using terahertz spectroscopy. Furthermore, DFTB-MD simulation of N(CH3)4+ and NH4+ ions, which correspond to the different head groups in PC and PE, respectively, shows qualitative agreement with the classical MD simulation. Remarkably, the PE lipids and the NH4+ ions break hydrogen bonds between water molecules in the secondary hydration shell. In contrast, the PC lipids and the N(CH3)4+ ions bind water molecules weakly in both the primary and secondary hydration shells and increase hydrogen bonds between water. Our atomistic simulations show that these changes in the hydrogen-bond network of water molecules cause the different rotational relaxation of water molecules between the two lipids.
Collapse
Affiliation(s)
- Yuji Higuchi
- Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan
| | - Yuta Asano
- Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan
| | - Takuya Kuwahara
- MicroTribology Center μTC, Fraunhofer IWM, Wöhlerstraße 11, Freiburg 79108, Germany
| | - Mafumi Hishida
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8571, Ibaraki, Japan
| |
Collapse
|
11
|
Harada M, Sakai H, Fukunaga Y, Okada T. Hydration of bromide at reverse micelle interfaces studied by X-ray absorption fine structure. J Colloid Interface Sci 2021; 599:79-87. [PMID: 33933799 DOI: 10.1016/j.jcis.2021.04.070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 10/21/2022]
Abstract
Nanoconfined water exhibits various interesting properties, which are not only of fundamental importance but also of practical use. Because reverse micelles (RMs) provide versatile ways to prepare nanoconfined water, the understanding of their physicochemical properties is essential for developing efficient applications. Although the water properties in the RMs could be affected by its interaction with the RM interface, the details have not been well understood. This study focuses on the local structures of Br- in hexadecyltrimethylammonium bromide (HTAB) RMs formed in chloroform and 10% hexanol/heptane. The dependence in Br- hydration on the molar ratio of water to HTAB (w) is investigated using X-ray absorption fine structure (XAFS). These systems cover a wide range of w values (0-30) and allow us to study the impact of this parameter on the local structure of Br- at the RM interface, which comprises water, surfactant headgroups, and organic solvent components. The presence of multiple scattering paths complicates the XAFS spectra and makes it difficult to analyze them using standard fitting methods. The linear combination of the spectra corresponding to the individual scattering paths captures the molecular processes that occur at the RM interface upon increasing w. The maximum hydration number of Br- is found to be 4.5 at w > 15, suggesting that although most of the ions remain at the interface as partly hydrated ions, some of them dissociate as completely hydrated ones.
Collapse
Affiliation(s)
- Makoto Harada
- Department of Chemistry, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8551, Japan.
| | - Hinako Sakai
- Department of Chemistry, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8551, Japan
| | - Yu Fukunaga
- Department of Chemistry, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8551, Japan
| | - Tetsuo Okada
- Department of Chemistry, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8551, Japan.
| |
Collapse
|
12
|
Abel S, Marchi M. Deciphering the Structure of the Gramicidin A Channel in the Presence of AOT Reverse Micelles in Pentane Using Molecular Dynamics Simulations. J Phys Chem B 2020; 124:11802-11818. [PMID: 33346653 DOI: 10.1021/acs.jpcb.0c08902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Structural studies of proteins and, in particular, integral membrane proteins (IMPs) using solution NMR spectroscopy approaches are challenging due to not only their inherent structural complexities but also the fact that they need to be solubilized in biomimetic environments (such as micelles), which enhances the slow molecular reorientation. To deal with these difficulties and increase the effective rate of molecular reorientation, the encapsulation of IMPs in the aqueous core of the reverse micelle (RM) dissolved in a low-viscosity solvent has been proven to be a viable approach. However, the effect of the reverse micelle (RM) environment on the IMP structure and function is little known. To gain insight into these aspects, this article presents a series of atomistic unconstrained molecular dynamics (MD) of a model ion channel (gramicidin A, gA) with RMs formed with anionic surfactant diacyl chain bis(2-ethylhexyl) sodium succinate (AOT) in pentane at a water-to-surfactant molar ratio (W0) of 6. The simulations were carried out with different protocols and starting conditions for a total of 2.4 μs and were compared with other MDs used with the gA channel inserted in models of the SDS micelle or the DMPC membrane. We show here that in the presence of AOT RMs the gA dimer did not look like the "dumbbell-like" model anticipated by experiments, where the C-terminal parts of the gA are capped with two RMs and the rest of the dimer is protected from the oil solvent by the AOT acyl chains. In contrast, the MD simulations reveal that the AOT, Na+, and water formed two well-defined and elongated RMs attached to the C-terminal ends of the gA dimer, while the rest is in direct contact with the pentane. The initial β6.3 secondary structure of the gA is well conserved and filled with 6-9 waters, as in SDS micelles or the DMPC membrane. Finally, the water movement inside the gA is strongly affected by the presence of RMs at each extremity, and no passage of water molecules through the gA channel is observed even after a long simulation period, whereas the opposite was found for gA in SDS and DMPC.
Collapse
Affiliation(s)
- Stéphane Abel
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Massimo Marchi
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| |
Collapse
|
13
|
Cui H, Zhang L, Eltoukhy L, Jiang Q, Korkunç SK, Jaeger KE, Schwaneberg U, Davari MD. Enzyme Hydration Determines Resistance in Organic Cosolvents. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03233] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Haiyang Cui
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, Aachen 52074, Germany
| | - Lingling Zhang
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, Aachen 52074, Germany
| | - Lobna Eltoukhy
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, Aachen 52074, Germany
| | - Qianjia Jiang
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, Aachen 52074, Germany
| | - Seval Kübra Korkunç
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, Aachen 52074, Germany
| | - Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Wilhelm Johnen Strasse, Jülich 52426, Germany
- Institute of Bio-and Geosciences IBG 1: Biotechnology, Forschungszentrum Jülich GmbH, Wilhelm Johnen Strasse, Jülich 52426, Germany
| | - Ulrich Schwaneberg
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, Aachen 52074, Germany
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstrasse 50, Aachen 52074, Germany
| | - Mehdi D. Davari
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, Aachen 52074, Germany
| |
Collapse
|
14
|
Hoffmann MM, Too MD, Vogel M, Gutmann T, Buntkowsky G. Breakdown of the Stokes-Einstein Equation for Solutions of Water in Oil Reverse Micelles. J Phys Chem B 2020; 124:9115-9125. [PMID: 32924487 DOI: 10.1021/acs.jpcb.0c06124] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An experimental study is presented for the reverse micellar system of 15% by mass polydisperse hexaethylene glycol monodecylether (C10E6) in cyclohexane with varying amounts of added water up to 4% by mass. Measurements of viscosity and self-diffusion coefficients were taken as a function of temperature between 10 and 45 °C at varying sample water loads but fixed C10E6/cyclohexane composition. The results were used to inspect the validity of the Stokes-Einstein equation for this system. Unreasonably small reverse average micelle radii and aggregation numbers were obtained with the Stokes-Einstein equation, but reasonable values for these quantities were obtained using the ratio of surfactant-to-cyclohexane self-diffusion coefficients. While bulk viscosity increased with increasing water load, a concurrent expected decrease of self-diffusion coefficient was only observed for the surfactant and water but not for cyclohexane, which showed independence of water load. Moreover, a spread of self-diffusion coefficients was observed for the protons associated with the ethylene oxide repeat unit in samples with polydisperse C10E6 but not in a sample with monodisperse C10E6. These findings were interpreted by the presence of reverse micelle to reverse micelle hopping motions that with higher water load become increasingly selective toward C10E6 molecules with short ethylene oxide repeat units, while those with long ethylene oxide repeat units remain trapped within the reverse micelle because of the increased hydrogen bonding interactions with the water inside the growing core of the reverse micelle. Despite the observed breakdown of the Stokes-Einstein equation, the temperature dependence of the viscosities and self-diffusion coefficients was found to follow Arrhenius behavior over the investigated range of temperatures.
Collapse
Affiliation(s)
- Markus M Hoffmann
- Department of Chemistry and Biochemistry, State University of New York College at Brockport, Brockport, New York 14420, United States
| | - Matthew D Too
- Department of Chemistry and Biochemistry, State University of New York College at Brockport, Brockport, New York 14420, United States
| | - Michael Vogel
- Institute of Condensed Matter Physics, Technical University Darmstadt, Hochschulstraße 6, Darmstadt 64289, Germany
| | - Torsten Gutmann
- Institute of Physical Chemistry, Technical University Darmstadt, Alarich-Weiss-Straße 8, Darmstadt D-64287, Germany
| | - Gerd Buntkowsky
- Institute of Physical Chemistry, Technical University Darmstadt, Alarich-Weiss-Straße 8, Darmstadt D-64287, Germany
| |
Collapse
|
15
|
Spatially dependent H-bond dynamics at interfaces of water/biomimetic self-assembled lattice materials. Proc Natl Acad Sci U S A 2020; 117:23385-23392. [PMID: 32907936 DOI: 10.1073/pnas.2001861117] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Understanding hydrogen-bond interactions in self-assembled lattice materials is crucial for preparing such materials, but the role of hydrogen bonds (H bonds) remains unclear. To gain insight into H-bond interactions at the materials' intrinsic spatial scale, we investigated ultrafast H-bond dynamics between water and biomimetic self-assembled lattice materials (composed of sodium dodecyl sulfate and β-cyclodextrin) in a spatially resolved manner. To accomplish this, we developed an infrared pump, vibrational sum-frequency generation (VSFG) probe hyperspectral microscope. With this hyperspectral imaging method, we were able to observe that the primary and secondary OH groups of β-cyclodextrin exhibit markedly different dynamics, suggesting distinct H-bond environments, despite being separated by only a few angstroms. We also observed another ultrafast dynamic reflecting a weakening and restoring of H bonds between bound water and the secondary OH of β-cyclodextrin, which exhibited spatial uniformity within self-assembled domains, but heterogeneity between domains. The restoration dynamics further suggest heterogeneous hydration among the self-assembly domains. The ultrafast nature and meso- and microscopic ordering of H-bond dynamics could contribute to the flexibility and crystallinity of the material--two critically important factors for crystalline lattice self-assemblies--shedding light on engineering intermolecular interactions for self-assembled lattice materials.
Collapse
|
16
|
Piskulich ZA, Laage D, Thompson WH. Activation energies and the extended jump model: How temperature affects reorientation and hydrogen-bond exchange dynamics in water. J Chem Phys 2020; 153:074110. [DOI: 10.1063/5.0020015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Zeke A. Piskulich
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, USA
| | - Damien Laage
- PASTEUR, Départment de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, Paris 75005, France
| | - Ward H. Thompson
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, USA
| |
Collapse
|
17
|
Vuorte M, Vierros S, Kuitunen S, Sammalkorpi M. Adsorption of impurities in vegetable oil: A molecular modelling study. J Colloid Interface Sci 2020; 571:55-65. [PMID: 32179309 DOI: 10.1016/j.jcis.2020.03.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/22/2020] [Accepted: 03/04/2020] [Indexed: 12/27/2022]
Abstract
Here, the adsorption of impurity species from triglyceride solvent representing a model vegetable oil is studied using atomistic molecular dynamics simulations. We compare the adsorption of water, glycerol, oleic acid, monoolein, and two types of phospholipids on model silica adsorbents differing in their OH-group density, i.e. hydrogen bonding ability, quartz and cristobalite. We find that the species containing charged groups, phospholipids DOPC and DOPE, adsorb significantly stronger than the nonionic impurities. Secondary contribution to adsorption arises from hydrogen bonding capability of the impurity species, the silica surface, and also the triglyceride solvent: in general, more hydrogen bonding sites in impurity species leads to enhanced adsorption but hydrogen bonding with solvent competes for the available sites. Interestingly, adsorption is weaker on cristobalite even though it has a higher hydrogen bonding site density than quartz. This is because the hydrogen bonds can saturate each other on the adsorbent. The finding demonstrates that optimal adsorption response is obtained with intermediate adsorbent hydrogen bonding site densities. Additionally, we find that monoolein and oleic acid show a concentration driven adsorption response and reverse micelle like aggregate formation in bulk triglyceride solvent even in the absence of water. The findings offer insight into adsorption phenomena at inorganic adsorbent - apolar solvent interfaces and provide guidelines for enhanced design of adsorbent materials for example for vegetable oil purification.
Collapse
Affiliation(s)
- Maisa Vuorte
- Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland
| | - Sampsa Vierros
- Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland; Neste Engineering Solutions Oy, P.O. Box 310, FI-06101 Porvoo, Finland
| | - Susanna Kuitunen
- Neste Engineering Solutions Oy, P.O. Box 310, FI-06101 Porvoo, Finland
| | - Maria Sammalkorpi
- Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland; Department of Bioproducts and Biomaterials, School of Chemical Engineering, Aalto University, P.O. Box 16300, FI-00076 Aalto, Finland.
| |
Collapse
|
18
|
de Souza RM, Ratochinski RH, Karttunen M, Dias LG. Self-Assembly of Phosphocholine Derivatives Using the ELBA Coarse-Grained Model: Micelles, Bicelles, and Reverse Micelles. J Chem Inf Model 2020; 60:522-536. [PMID: 31714768 DOI: 10.1021/acs.jcim.9b00790] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The ELBA coarse-grained force field was originally developed for lipids, and its water model is described as a single-site Lennard-Jones particle with electrostatics modeled by an embedded point-dipole, while other molecules in this force field have a three (or four)-to-one mapping scheme. Here, ELBA was applied to investigate the self-assembly processes of dodecyl-phosphocholine (DPC) micelle, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine/1,2-dihexaoyl-sn-glycero-3-phosphocholine (DPPC/DHPC) bicelles, and DPPC/cyclohexane/water reverse micelles through coarse-grained molecular dynamics (MD) simulations. New parameters were obtained using a simplex algorithm-based calibration procedure to determine the Lennard-Jones parameters for cyclohexane, dodecane, and cyclohexane-dodecane cross-interactions. Density, self-diffusion coefficient, surface tension, and mixture excess volume were found to be in fair agreement with experimental data. These new parameters were used in the simulations, and the obtained structures were analyzed for shape, size, volume, and surface area. Except for the shape of DPC micelles, all other properties match well with available experimental data and all-atom simulations. Remarkably, in agreement with experiments the rodlike shape of the DPPC reverse micelle is well described by ELBA, while all-atom data in the literature predicts a disclike shape. To further check the consistency of the force field in reproducing the correct shapes of reverse micelles, additional simulations were performed doubling the system size. Two distinct reverse micelles were obtained both presenting the rodlike shape and correct aggregation number.
Collapse
Affiliation(s)
- R M de Souza
- Department of Chemistry , The University of Western Ontario , London , Ontario , Canada N6A 3K7.,Departamento de Química, FFCLRP , Universidade de São Paulo , Avenida Bandeirantes 3900 , 14040-901 Ribeirão Preto , SP , Brazil.,The Center for Advanced Materials and Biomaterials Research , The University of Western Ontario , London , Ontario , Canada N6K 3K7
| | - R H Ratochinski
- Departamento de Química, FFCLRP , Universidade de São Paulo , Avenida Bandeirantes 3900 , 14040-901 Ribeirão Preto , SP , Brazil
| | - Mikko Karttunen
- Department of Chemistry , The University of Western Ontario , London , Ontario , Canada N6A 3K7.,The Center for Advanced Materials and Biomaterials Research , The University of Western Ontario , London , Ontario , Canada N6K 3K7.,Department of Applied Mathematics , The University of Western Ontario , London , Ontario , Canada N6A 5B7
| | - L G Dias
- Departamento de Química, FFCLRP , Universidade de São Paulo , Avenida Bandeirantes 3900 , 14040-901 Ribeirão Preto , SP , Brazil
| |
Collapse
|
19
|
Śliwa P, Śliwa K, Sikora E, Ogonowski J, Oszmiański J, Nowicka P. Incorporation of bioflavonoids from Bidens tripartite into micelles of non-ionic surfactants - experimental and theoretical studies. Colloids Surf B Biointerfaces 2019; 184:110553. [PMID: 31627100 DOI: 10.1016/j.colsurfb.2019.110553] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 09/12/2019] [Accepted: 10/02/2019] [Indexed: 02/07/2023]
Abstract
Classical extraction methods used for an isolation of active substances from the plant material are expensive, complicated and often environmentally unfriendly. The ultrasonic assistance micelle-mediated extraction method (UAMME) seems to be an interesting alternative. The aim of this work was to compare an efficiency of water solutions of three non-ionic surfactants: C9-11 Pareth-5, PPG-6 Steareth-7 and PPG-4 Laureth-5 in UAMME of Bidens tripartita. Subsequently, the obtained extracts were separated into two immiscible phases, a polyphenols rich surfactants phase and an aqueous phase by its heating above surfactants cloud points (CPC) or by salting out with NaCl. Along with decreasing the Hydrophilic/Lipophilic Balance (HLB) factor value of surfactants, i.e. increase of the hydrophobicity, a significant decreasing of the flavonoid content was observed. While polyphenols content and antioxidant activity increased. The good surface properties of all surfactants correspond to the high content of phenolic compounds in extracts and both concentration methods resulted in even a 50-fold increase of polyphenols content. Dynamic light scattering measurements (DLS) provided that solubilization of polyphenols, i.e. their incorporation into surfactants' micelles, occurred with significant enlarging of particle size. Based on the molecular dynamic simulations, the mechanism of polyphenols incorporation into micelles was discussed.
Collapse
Affiliation(s)
- Paweł Śliwa
- Faculty of Chemical Engineering and Technology, Cracow University of Technology, 24 Warszawska St., Cracow 31-155, Poland.
| | - Karolina Śliwa
- Faculty of Chemical Engineering and Technology, Cracow University of Technology, 24 Warszawska St., Cracow 31-155, Poland
| | - Elżbieta Sikora
- Faculty of Chemical Engineering and Technology, Cracow University of Technology, 24 Warszawska St., Cracow 31-155, Poland
| | - Jan Ogonowski
- Faculty of Chemical Engineering and Technology, Cracow University of Technology, 24 Warszawska St., Cracow 31-155, Poland
| | - Jan Oszmiański
- Department of Fruit, Vegetable and Grain Technology, Wrocław University of Environmental and Life Sciences, 37 Chełmońskiego Str., Wrocław 51-630, Poland
| | - Paulina Nowicka
- Department of Fruit, Vegetable and Grain Technology, Wrocław University of Environmental and Life Sciences, 37 Chełmońskiego Str., Wrocław 51-630, Poland
| |
Collapse
|
20
|
Wang H, Chen W, Wagner JC, Xiong W. Local Ordering of Lattice Self-Assembled SDS@2β-CD Materials and Adsorbed Water Revealed by Vibrational Sum Frequency Generation Microscope. J Phys Chem B 2019; 123:6212-6221. [DOI: 10.1021/acs.jpcb.9b04928] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Haoyuan Wang
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, MC 0358, La Jolla, California 92093-0358, United States
| | - Wenfan Chen
- Material Science and Engineering Program, University of California, San Diego, 9500 Gilman Drive, MC 0418, La Jolla, California 92093-0418, United States
| | - Jackson C. Wagner
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, MC 0358, La Jolla, California 92093-0358, United States
| | - Wei Xiong
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, MC 0358, La Jolla, California 92093-0358, United States
- Material Science and Engineering Program, University of California, San Diego, 9500 Gilman Drive, MC 0418, La Jolla, California 92093-0418, United States
| |
Collapse
|
21
|
Penttilä PA, Vierros S, Utriainen K, Carl N, Rautkari L, Sammalkorpi M, Österberg M. Phospholipid-Based Reverse Micelle Structures in Vegetable Oil Modified by Water Content, Free Fatty Acid, and Temperature. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:8373-8382. [PMID: 31141381 PMCID: PMC6750831 DOI: 10.1021/acs.langmuir.9b01135] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Colloidal assemblies of phospholipids in oil are known to be highly sensitive to changes in system composition and temperature. Despite the fundamental biological and high industrial relevance of these aggregates, the mechanisms behind the structural changes, especially in real oils, are not well understood. In this work, small-angle X-ray scattering (SAXS) was combined with molecular dynamics simulations to characterize the effects of oleic acid, water, and temperature on self-assembled structures formed by lecithin in rapeseed oil. SAXS showed that adding water to the mixtures caused the precipitation of liquid-crystalline phases with lamellar or hexagonal geometry. The combination of SAXS and molecular dynamics simulations revealed that stable spherical reverse micelles in oil had a core radius of about 2 nm and consisted of approximately 60 phospholipids centered around a core containing water and sugars. The presence of oleic acid improved the stability of reverse micelles against precipitation due to the increase in the water concentration in oil by allowing the reverse micelle cores to expand and accommodate more water. The shape and size of the reverse micelles changed at high temperatures, and irreversible elongation was observed, especially in the presence of oleic acid. The findings show the interdependency of the structure of the reverse micellar aggregates on system composition, in particular, oleic acid and water, as well as temperature. The revealed characteristics of the self-assembled structures have significance in understanding and tuning the properties of vegetable oil-based emulsions, food products, oil purification, and drug delivery systems.
Collapse
Affiliation(s)
- Paavo A. Penttilä
- Department
of Bioproducts and Biosystems and Department of Chemistry and Materials
Science, Aalto University, P.O. Box 16300, FI-00076 Espoo, Finland
- Large-Scale
Structures Group, Institut Laue-Langevin, 71 Avenue des Martyrs, F-38000 Grenoble, France
- E-mail: . Phone: +358 (0)50 476 6800
| | - Sampsa Vierros
- Department
of Bioproducts and Biosystems and Department of Chemistry and Materials
Science, Aalto University, P.O. Box 16300, FI-00076 Espoo, Finland
| | - Katja Utriainen
- Department
of Bioproducts and Biosystems and Department of Chemistry and Materials
Science, Aalto University, P.O. Box 16300, FI-00076 Espoo, Finland
| | - Nico Carl
- Large-Scale
Structures Group, Institut Laue-Langevin, 71 Avenue des Martyrs, F-38000 Grenoble, France
| | - Lauri Rautkari
- Department
of Bioproducts and Biosystems and Department of Chemistry and Materials
Science, Aalto University, P.O. Box 16300, FI-00076 Espoo, Finland
| | - Maria Sammalkorpi
- Department
of Bioproducts and Biosystems and Department of Chemistry and Materials
Science, Aalto University, P.O. Box 16300, FI-00076 Espoo, Finland
| | - Monika Österberg
- Department
of Bioproducts and Biosystems and Department of Chemistry and Materials
Science, Aalto University, P.O. Box 16300, FI-00076 Espoo, Finland
| |
Collapse
|
22
|
Škulj S, Vazdar M. Calculation of apparent pK a values of saturated fatty acids with different lengths in DOPC phospholipid bilayers. Phys Chem Chem Phys 2019; 21:10052-10060. [PMID: 31046041 DOI: 10.1039/c9cp01204d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We performed all-atom molecular dynamics simulations and calculated free energy profiles and apparent pKa values for neutral and anionic forms of single myristic (C14:0), palmitic (C16:0) and stearic (C18:0) fatty acid embedded in a DOPC bilayer and explicit water solvent. We showed that the neutral forms of the fatty acids are stabilized inside the bilayer by hydrogen bonding of a fatty acid carboxylic group with DOPC phosphate and carbonyl groups. In contrast to the neutral form, the anionic forms of the fatty acids are shifted towards the water-membrane interface and are instead stabilized by hydrogen bonding to interfacial water. By using umbrella sampling simulations, we calculated free energies of stabilization and revealed that the free energy of stabilization inside the bilayer increases with the chain length for both the neutral and deprotonated forms. On the other hand, the free energies of flip-flop of both the neutral and anionic forms are constant upon the prolongation of the fatty acid. Based on the free energy curves, we also calculated apparent fatty acid pKa,app values in the bilayer, which are 7.0, 7.2 and 6.3 for myristic, palmitic and stearic acid and are increased by several pKa units compared to the corresponding pKa values in water. By further analysis of the calculated curves we found that spontaneous protonation of fatty acid anions takes place in the bilayer interior at ca. 1.4 nm from the bilayer center for all studied fatty acids.
Collapse
Affiliation(s)
- Sanja Škulj
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička 54, HR-10000 Zagreb, Croatia.
| | | |
Collapse
|
23
|
Honegger P, Steinhauser O. Towards capturing cellular complexity: combining encapsulation and macromolecular crowding in a reverse micelle. Phys Chem Chem Phys 2019; 21:8108-8120. [DOI: 10.1039/c9cp00053d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This paper studies the orientational structure and dynamics of multi-protein systems under confinement and discusses the implications on biological cells.
Collapse
Affiliation(s)
- Philipp Honegger
- University of Vienna
- Faculty of Chemistry
- Department of Computational Biological Chemistry
- A-1090 Vienna
- Austria
| | - Othmar Steinhauser
- University of Vienna
- Faculty of Chemistry
- Department of Computational Biological Chemistry
- A-1090 Vienna
- Austria
| |
Collapse
|
24
|
Affiliation(s)
- Ward H. Thompson
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, USA
| |
Collapse
|
25
|
Piskulich ZA, Thompson WH. The activation energy for water reorientation differs between IR pump-probe and NMR measurements. J Chem Phys 2018; 149:164504. [DOI: 10.1063/1.5050203] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Zeke A. Piskulich
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, USA
- Center for Environmentally Beneficial Catalysis, University of Kansas, Lawrence, Kansas 66047, USA
| | - Ward H. Thompson
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, USA
- Center for Environmentally Beneficial Catalysis, University of Kansas, Lawrence, Kansas 66047, USA
| |
Collapse
|
26
|
Kopanichuk IV, Vedenchuk EA, Koneva AS, Vanin AA. Structural Properties of Span 80/Tween 80 Reverse Micelles by Molecular Dynamics Simulations. J Phys Chem B 2018; 122:8047-8055. [DOI: 10.1021/acs.jpcb.8b03945] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Ilia V. Kopanichuk
- Institute of Chemistry, St. Petersburg State University, 7-9 Universitetskaya nab., St. Petersburg 199034, Russia
| | - Ekaterina A. Vedenchuk
- Institute of Chemistry, St. Petersburg State University, 7-9 Universitetskaya nab., St. Petersburg 199034, Russia
| | - Alina S. Koneva
- Institute of Chemistry, St. Petersburg State University, 7-9 Universitetskaya nab., St. Petersburg 199034, Russia
| | - Aleksandr A. Vanin
- Institute of Chemistry, St. Petersburg State University, 7-9 Universitetskaya nab., St. Petersburg 199034, Russia
| |
Collapse
|
27
|
Dahanayake JN, Mitchell-Koch KR. How Does Solvation Layer Mobility Affect Protein Structural Dynamics? Front Mol Biosci 2018; 5:65. [PMID: 30057902 PMCID: PMC6053501 DOI: 10.3389/fmolb.2018.00065] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 06/20/2018] [Indexed: 11/18/2022] Open
Abstract
Solvation is critical for protein structural dynamics. Spectroscopic studies have indicated relationships between protein and solvent dynamics, and rates of gas binding to heme proteins in aqueous solution were previously observed to depend inversely on solution viscosity. In this work, the solvent-compatible enzyme Candida antarctica lipase B, which functions in aqueous and organic solvents, was modeled using molecular dynamics simulations. Data was obtained for the enzyme in acetonitrile, cyclohexane, n-butanol, and tert-butanol, in addition to water. Protein dynamics and solvation shell dynamics are characterized regionally: for each α-helix, β-sheet, and loop or connector region. Correlations are seen between solvent mobility and protein flexibility. So, does local viscosity explain the relationship between protein structural dynamics and solvation layer dynamics? Halle and Davidovic presented a cogent analysis of data describing the global hydrodynamics of a protein (tumbling in solution) that fits a model in which the protein's interfacial viscosity is higher than that of bulk water's, due to retarded water dynamics in the hydration layer (measured in NMR τ2 reorientation times). Numerous experiments have shown coupling between protein and solvation layer dynamics in site-specific measurements. Our data provides spatially-resolved characterization of solvent shell dynamics, showing correlations between regional solvation layer dynamics and protein dynamics in both aqueous and organic solvents. Correlations between protein flexibility and inverse solvent viscosity (1/η) are considered across several protein regions and for a rather disparate collection of solvents. It is seen that the correlation is consistently higher when local solvent shell dynamics are considered, rather than bulk viscosity. Protein flexibility is seen to correlate best with either the local interfacial viscosity or the ratio of the mobility of an organic solvent in a regional solvation layer relative to hydration dynamics around the same region. Results provide insight into the function of aqueous proteins, while also suggesting a framework for interpreting and predicting enzyme structural dynamics in non-aqueous solvents, based on the mobility of solvents within the solvation layer. We suggest that Kramers' theory may be used in future work to model protein conformational transitions in different solvents by incorporating local viscosity effects.
Collapse
|
28
|
Hoffmann MM, Bothe S, Gutmann T, Buntkowsky G. Combining Freezing Point Depression and Self-Diffusion Data for Characterizing Aggregation. J Phys Chem B 2018; 122:4913-4921. [PMID: 29668278 DOI: 10.1021/acs.jpcb.8b03456] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The colligative property freezing point depression is evaluated as a means for estimating the extent of aggregation for solutions of poly(ethylene oxide) alcohol (C10E6) nonionic surfactant in cyclohexane. Combined with additional measurements of self-diffusion coefficients, it is shown that both unaggregated C10E6 as well as reverse micelles are significantly present for the entire range of measured C10E6 concentration (0.048-2.35 mol kg-1). A change in speciation near 0.2 mol kg-1 is indicated by the results from both freezing point depression and self-diffusion coefficient measurements. It is shown that average reverse micelle radii and aggregation numbers obtained from the ratio of solvent and C10E6 self-diffusion coefficients are consistent with prior reported results. However, unreasonably small radii for the reverse micelles as well as for the cyclohexane were obtained from analysis of the results by the Stokes-Einstein equation using additional measured solution viscosities. The concentration of reverse micelles and unaggregated C10E6 was calculated from the freezing point depression results using the aggregation numbers obtained from ratio of self-diffusion coefficients. These concentrations indicate that the reverse micelles become smaller in average size and increase in number with increasing temperature without an increase in unaggregated C10E6.
Collapse
Affiliation(s)
- Markus M Hoffmann
- Department of Chemistry and Biochemistry , The College at Brockport, State University of New York , Brockport , New York 14420 , United States
| | - Sarah Bothe
- Institute of Physical Chemistry , Technical University Darmstadt , Alarich-Weiss-Straße 8 , D-64287 Darmstadt , Germany
| | - Torsten Gutmann
- Institute of Physical Chemistry , Technical University Darmstadt , Alarich-Weiss-Straße 8 , D-64287 Darmstadt , Germany
| | - Gerd Buntkowsky
- Institute of Physical Chemistry , Technical University Darmstadt , Alarich-Weiss-Straße 8 , D-64287 Darmstadt , Germany
| |
Collapse
|
29
|
Sommerling JH, de Matos MBC, Hildebrandt E, Dessy A, Kok RJ, Nirschl H, Leneweit G. Instability Mechanisms of Water-in-Oil Nanoemulsions with Phospholipids: Temporal and Morphological Structures. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:572-584. [PMID: 29220188 DOI: 10.1021/acs.langmuir.7b02852] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Many food preparations, pharmaceuticals, and cosmetics use water-in-oil (W/O) emulsions stabilized by phospholipids. Moreover, recent technological developments try to produce liposomes or lipid coated capsules from W/O emulsions, but are faced with colloidal instabilities. To explore these instability mechanisms, emulsification by sonication was applied in three cycles, and the sample stability was studied for 3 h after each cycle. Clearly identifiable temporal structures of instability provide evidence about the emulsion morphology: an initial regime of about 10 min is shown to be governed by coalescence after which Ostwald ripening dominates. Transport via molecular diffusion in Ostwald ripening is commonly based on the mutual solubility of the two phases and is therefore prohibited in emulsions composed of immiscible phases. However, in the case of water in oil emulsified by phospholipids, these form water-loaded reverse micelles in oil, which enable Ostwald ripening despite the low solubility of water in oil, as is shown for squalene. As is proved for the phospholipid dipalmitoylphosphatidylcholine (DPPC), concentrations below the critical aggregation concentration (CAC) form monolayers at the interfaces and smaller droplet sizes. In contrast, phospholipid concentrations above the CAC create complex multilayers at the interface with larger droplet sizes. The key factors for stable W/O emulsions in classical or innovative applications are first, the minimization of the phospholipids' capacity to form reversed micelles, and second, the adaption of the initial phospholipid concentration to the water content to enable an optimized coverage of phospholipids at the interfaces for the intended drop size.
Collapse
Affiliation(s)
- Jan-Hendrik Sommerling
- Institute for Mechanical Engineering and Mechanics, Karlsruhe Institute of Technology , Straße am Forum 8, 76131 Karlsruhe, Germany
- Abnoba GmbH , Hohenzollernstraße 16, 75177 Pforzheim, Germany
| | - Maria B C de Matos
- Abnoba GmbH , Hohenzollernstraße 16, 75177 Pforzheim, Germany
- Utrecht Institute for Pharmaceutical Sciences, Department of Pharmaceutics, Utrecht University , 3512 JE Utrecht, The Netherlands
| | - Ellen Hildebrandt
- Institute for Mechanical Engineering and Mechanics, Karlsruhe Institute of Technology , Straße am Forum 8, 76131 Karlsruhe, Germany
- Abnoba GmbH , Hohenzollernstraße 16, 75177 Pforzheim, Germany
| | - Alberto Dessy
- Abnoba GmbH , Hohenzollernstraße 16, 75177 Pforzheim, Germany
| | - Robbert Jan Kok
- Utrecht Institute for Pharmaceutical Sciences, Department of Pharmaceutics, Utrecht University , 3512 JE Utrecht, The Netherlands
| | - Hermann Nirschl
- Institute for Mechanical Engineering and Mechanics, Karlsruhe Institute of Technology , Straße am Forum 8, 76131 Karlsruhe, Germany
| | - Gero Leneweit
- Abnoba GmbH , Hohenzollernstraße 16, 75177 Pforzheim, Germany
- Carl Gustav Carus-Institute, Association for the Advancement of Cancer Therapy , Am Eichhof 30, 75223 Niefern-Öschelbronn, Germany
| |
Collapse
|
30
|
Biswas R, Bagchi B. Anomalous water dynamics at surfaces and interfaces: synergistic effects of confinement and surface interactions. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:013001. [PMID: 29205175 DOI: 10.1088/1361-648x/aa9b1d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In nature, water is often found in contact with surfaces that are extended on the scale of molecule size but small on a macroscopic scale. Examples include lipid bilayers and reverse micelles as well as biomolecules like proteins, DNA and zeolites, to name a few. While the presence of surfaces and interfaces interrupts the continuous hydrogen bond network of liquid water, confinement on a mesoscopic scale introduces new features. Even when extended on a molecular scale, natural and biological surfaces often have features (like charge, hydrophobicity) that vary on the scale of the molecular diameter of water. As a result, many new and exotic features, which are not seen in the bulk, appear in the dynamics of water close to the surface. These different behaviors bear the signature of both water-surface interactions and of confinement. In other words, the altered properties are the result of the synergistic effects of surface-water interactions and confinement. Ultrafast spectroscopy, theoretical modeling and computer simulations together form powerful synergistic approaches towards an understanding of the properties of confined water in such systems as nanocavities, reverse micelles (RMs), water inside and outside biomolecules like proteins and DNA, and also between two hydrophobic walls. We shall review the experimental results and place them in the context of theory and simulations. For water confined within RMs, we discuss the possible interference effects propagating from opposite surfaces. Similar interference is found to give rise to an effective attractive force between two hydrophobic surfaces immersed and kept fixed at a separation of d, with the force showing an exponential dependence on this distance. For protein and DNA hydration, we shall examine a multitude of timescales that arise from frustration effects due to the inherent heterogeneity of these surfaces. We pay particular attention to the role of orientational correlations and modification of the same due to interaction with the surfaces.
Collapse
|
31
|
Vierros S, Österberg M, Sammalkorpi M. Aggregation response of triglyceride hydrolysis products in cyclohexane and triolein. Phys Chem Chem Phys 2018; 20:27192-27204. [DOI: 10.1039/c8cp05104f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aggregation mechanism and the existence of cmc depend on apolar solvent quality and surfactant head group polarity.
Collapse
Affiliation(s)
- Sampsa Vierros
- Department of Chemistry and Materials Science
- Aalto University
- 00076 Aalto
- Finland
| | - Monika Österberg
- Department of Bioproducts and Biotechnology
- Aalto University
- 00076 Aalto
- Finland
| | - Maria Sammalkorpi
- Department of Chemistry and Materials Science
- Aalto University
- 00076 Aalto
- Finland
| |
Collapse
|
32
|
Lehtinen OP, Nugroho RWN, Lehtimaa T, Vierros S, Hiekkataipale P, Ruokolainen J, Sammalkorpi M, Österberg M. Effect of temperature, water content and free fatty acid on reverse micelle formation of phospholipids in vegetable oil. Colloids Surf B Biointerfaces 2017; 160:355-363. [PMID: 28961543 DOI: 10.1016/j.colsurfb.2017.09.050] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 08/28/2017] [Accepted: 09/21/2017] [Indexed: 10/18/2022]
Abstract
The self-assembly of phospholipids in oil, specifically lecithin in rapeseed oil, was investigated by combining experimental and computational methods The influence of temperature, water, and free fatty acids on the onset of lecithin aggregation in the rapeseed oil was determined using the 7,7,8,8 -tetracyanoquinodimethane dye (TCNQ) solubilization method and the size and shape of the self-assembled lecithin structures were investigated by small-angle X-ray scattering and cryogenic transmission electron microscopy. In the absence of excess water in the system (0.03wt-% water in oil), stable cylindrical lecithin reverse micelles were observed above the critical micelle concentration (CMC). Comparing the aggregation response in room temperature and at 70°C revealed that CMC decreased with increasing temperature. Furthermore, already a modest amount of added water (0.3wt-% water in oil) was sufficient to induce the formation of lamellar lecithin structures, that phase separated from the oil. In low water content, oleic acid suppressed the formation of lecithin reverse micelles whereas in the presence of more water, the oleic acid stabilized the reverse micelles. Consequently, more water was needed to induce phase separation in the presence of oleic acid. Molecular dynamics simulations indicated that the stabilizing effect of oleic acid resulted from oleic acid enhancing phospholipid solubilization in the oil by forming a solvating shell around the phosphate head group. The findings showed that the response of the mixed surfactant system is a delicate interplay of the different components and variables. The significance of the observations is that multiple parameters need to be controlled for desired system response, for example towards vegetable oil purification or phospholipid based microemulsions.
Collapse
Affiliation(s)
- Olli-Pekka Lehtinen
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, 00076 Aalto, Finland
| | - Robertus Wahyu N Nugroho
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, 00076 Aalto, Finland
| | - Tuula Lehtimaa
- NESTE Oyj, Technology Centre, Kilpilahti, 06101 Porvoo, Finland
| | - Sampsa Vierros
- Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, 00076 Aalto, Finland
| | - Panu Hiekkataipale
- Department of Applied Physics, School of Science, Aalto University, 00076 Aalto, Finland
| | - Janne Ruokolainen
- Department of Applied Physics, School of Science, Aalto University, 00076 Aalto, Finland
| | - Maria Sammalkorpi
- Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, 00076 Aalto, Finland
| | - Monika Österberg
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, 00076 Aalto, Finland
| |
Collapse
|
33
|
Folpini G, Siebert T, Woerner M, Abel S, Laage D, Elsaesser T. Water Librations in the Hydration Shell of Phospholipids. J Phys Chem Lett 2017; 8:4492-4497. [PMID: 28858510 DOI: 10.1021/acs.jpclett.7b01942] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The hydrophilic phosphate moiety in the headgroup of phospholipids forms strong hydrogen bonds with water molecules in the first hydration layer. Time-domain terahertz spectroscopy in a range from 100 to 1000 cm-1 reveals the influence of such interactions on rotations of water molecules. We determine librational absorption spectra of water nanopools in phospholipid reverse micelles for a range from w0 = 2 to 16 waters per phospholipid molecule. A pronounced absorption feature with maximum at 830 cm-1 is superimposed on a broad absorption band between 300 and 1000 cm-1. Molecular dynamics simulations of water in the reverse micelles suggest that the feature at 830 cm-1 arises from water molecules forming one or two strong hydrogen bonds with phosphate groups, while the broad component comes from bulk-like environments. This behavior is markedly different from water interacting with less polar surfaces.
Collapse
Affiliation(s)
- Giulia Folpini
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie , D-12489 Berlin, Germany
| | - Torsten Siebert
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie , D-12489 Berlin, Germany
| | - Michael Woerner
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie , D-12489 Berlin, Germany
| | - Stephane Abel
- Institut de Biologie Intégrative de la Cellule (I2BC), Institut Frédéric Joliot, CEA, CNRS, Univ Paris-Sud Université Paris-Saclay, 91405 Gif-Sur-Yvette Cedex, France
| | - Damien Laage
- École Normale Supérieure, PSL Research University, UPMC Univ Paris 06, CNRS, Département de Chimie, PASTEUR, 24 rue Lhomond, 75005 Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, ENS, CNRS, PASTEUR, 75005 Paris, France
| | - Thomas Elsaesser
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie , D-12489 Berlin, Germany
| |
Collapse
|
34
|
Abstract
The structure and function of biomolecules are strongly influenced by their hydration shells. Structural fluctuations and molecular excitations of hydrating water molecules cover a broad range in space and time, from individual water molecules to larger pools and from femtosecond to microsecond time scales. Recent progress in theory and molecular dynamics simulations as well as in ultrafast vibrational spectroscopy has led to new and detailed insight into fluctuations of water structure, elementary water motions, electric fields at hydrated biointerfaces, and processes of vibrational relaxation and energy dissipation. Here, we review recent advances in both theory and experiment, focusing on hydrated DNA, proteins, and phospholipids, and compare dynamics in the hydration shells to bulk water.
Collapse
Affiliation(s)
- Damien Laage
- École
Normale Supérieure, PSL Research University, UPMC Univ Paris
06, CNRS, Département de Chimie,
PASTEUR, 24 rue Lhomond, 75005 Paris, France
- Sorbonne
Universités, UPMC Univ Paris 06, ENS, CNRS, PASTEUR, 75005 Paris, France
| | - Thomas Elsaesser
- Max-Born-Institut
für Nichtlineare Optik und Kurzzeitspektroskopie, D-12489 Berlin, Germany
| | - James T. Hynes
- École
Normale Supérieure, PSL Research University, UPMC Univ Paris
06, CNRS, Département de Chimie,
PASTEUR, 24 rue Lhomond, 75005 Paris, France
- Sorbonne
Universités, UPMC Univ Paris 06, ENS, CNRS, PASTEUR, 75005 Paris, France
- Department
of Chemistry and Biochemistry, University
of Colorado, Boulder, Colorado 80309, United
States
| |
Collapse
|
35
|
Chatzidaki MD, Papavasileiou KD, Papadopoulos MG, Xenakis A. Reverse Micelles As Antioxidant Carriers: An Experimental and Molecular Dynamics Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:5077-5085. [PMID: 28481539 DOI: 10.1021/acs.langmuir.7b00213] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Water-in-oil microemulsions with biocompatible components were formulated to be used as carriers of natural antioxidants, such as hydroxytyrosol (HT) and gallic acid (GA). The system was composed of a mixture of natural surfactants, lecithin and monoglycerides, medium chain triglycerides, and aqueous phase. A dual approach was undertaken to study the structure and dynamics of these complicated systems. First, experimental data were collected by using adequate techniques, such as dynamic light scattering (DLS) and electron paramagnetic resonance (EPR) spectroscopy. Following this, a coarse-grained molecular dynamics (CGMD) study based on the experimental composition using the MARTINI force field was conducted. The simulations revealed the spontaneous formation of reverse micelles (RMs) starting from completely random initial conformations, underlying their enhanced thermodynamic stability. The location of the bioactive molecules, as well as the structure of the RM, were in accordance with the experimental findings. Furthermore, GA molecules were found to be located inside the water core, in contrast to the HT ones, which seem to lie at the surfactant interfacial layer. The difference in the antioxidants' molecular location was only revealed in detail from the computational analysis and explains the RM's swelling observed by GA in DLS measurements.
Collapse
Affiliation(s)
- Maria D Chatzidaki
- Institute of Biology, Medicinal Chemistry & Biotechnology, National Hellenic Research Foundation , 116 35 Athens, Greece
| | - Konstantinos D Papavasileiou
- Institute of Biology, Medicinal Chemistry & Biotechnology, National Hellenic Research Foundation , 116 35 Athens, Greece
- National Center for Scientific Research "Demokritos", Institute of Nanoscience and Nanotechnology , Aghia Paraskevi Attikis, 153 10 Athens, Greece
| | - Manthos G Papadopoulos
- Institute of Biology, Medicinal Chemistry & Biotechnology, National Hellenic Research Foundation , 116 35 Athens, Greece
| | - Aristotelis Xenakis
- Institute of Biology, Medicinal Chemistry & Biotechnology, National Hellenic Research Foundation , 116 35 Athens, Greece
| |
Collapse
|
36
|
Yuan R, Yan C, Nishida J, Fayer MD. Dynamics in a Water Interfacial Boundary Layer Investigated with IR Polarization-Selective Pump–Probe Experiments. J Phys Chem B 2017; 121:4530-4537. [DOI: 10.1021/acs.jpcb.7b01028] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Rongfeng Yuan
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Chang Yan
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Jun Nishida
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Michael D. Fayer
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|