1
|
Núñez-Martínez M, Dong J, García I, Liz-Marzán LM. Chiroptical hybrid nanomaterials based on metal nanoparticles and biomolecules. Adv Colloid Interface Sci 2025; 341:103501. [PMID: 40184778 DOI: 10.1016/j.cis.2025.103501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 03/26/2025] [Accepted: 03/27/2025] [Indexed: 04/07/2025]
Abstract
Chirality at the nanoscale has recently attracted renewed attention from the scientific community. As a result, various strategies have been proposed to develop chiral nanomaterials based on metal nanoparticles and chiral biomolecules such as DNA, amino acids, or proteins. We review herein the past and recent literature related to the functionalization of metal nanoparticles with various chiral biomolecules and their assembly into biomaterials with chiroptical response. We divide the review into two main parts, according to the class of biomolecules. We first discuss mechanisms employed to obtain chiral bioconjugates based on metal nanoparticles and amino acids or their derivatives (peptides and proteins), including mechanisms for chirality transfer from chiral biomolecules to achiral nanoparticles. We also review the use of amino acids/peptides as either chiral inducers for the growth of chiral nanoparticles or templates for the chiral arrangement of achiral nanoparticles. In the second part we present an overview of methods to prepare bioconjugates comprising DNA and metal nanoparticles, as well as selected examples of helical nanoparticle arrangements that employ DNA as a chiral template.
Collapse
Affiliation(s)
- Manuel Núñez-Martínez
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, 20014 Donostia-San Sebastián, Spain
| | - Jinyi Dong
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, 20014 Donostia-San Sebastián, Spain
| | - Isabel García
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, 20014 Donostia-San Sebastián, Spain; Networking Biomedical Research Center, Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Paseo de Miramón 194, 20014 Donostia-San Sebastián, Spain
| | - Luis M Liz-Marzán
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, 20014 Donostia-San Sebastián, Spain; Networking Biomedical Research Center, Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Paseo de Miramón 194, 20014 Donostia-San Sebastián, Spain; Ikerbasque, 48009 Bilbao, Spain; CINBIO, Universidade de Vigo, 36310 Vigo, Spain.
| |
Collapse
|
2
|
Dutour R, Bruylants G. Gold Nanoparticles Coated with Nucleic Acids: An Overview of the Different Bioconjugation Pathways. Bioconjug Chem 2025. [PMID: 40396582 DOI: 10.1021/acs.bioconjchem.5c00098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
Gold-based nanomaterials have marked the last few decades with the emergence of new medical technologies presenting unique features. For instance, the conjugation of gold nanoparticles (AuNPs) and nucleic acids has allowed the creation of nanocarriers with immense promise for gene therapy applications. Although the use of lipid particles as RNA delivery vectors has been broadly explored, this review aims to focus on the limited models reported for the conjugation of RNA with AuNPs. This is nonetheless unexpected regarding the manifold strategies existing to conjugate DNA to gold nanoparticles, which are exhaustively listed in this paper. Furthermore, new processes such as fast microwave and freezing methods have been described very recently, and it therefore seemed necessary to review these recent but promising conjugation pathways and to pick out those applicable to RNA. Indeed, RNA is considerably more attractive than DNA for therapeutic purposes, but its low stability involves numerous difficulties in the construction of effective nanodevices. However, from the many approaches developed for DNA, it turns out that just two of them are frequently used for the building of RNA delivery platforms based on gold: the salt-aging method with thiolated RNA strands and physisorption. However, both approaches present strong limitations such as the low stability of the Au-S bond and the potential cytotoxicity of polycations. To conclude, this general assessment highlights that the exploration of innovating approaches implying different chemistries is needed for the creation of more robust and shapeable AuNPs-RNA conjugates.
Collapse
Affiliation(s)
- Raphaël Dutour
- Engineering of Molecular NanoSystems, Université libre de Bruxelles (ULB), B-1050 Brussels, Belgium
| | - Gilles Bruylants
- Engineering of Molecular NanoSystems, Université libre de Bruxelles (ULB), B-1050 Brussels, Belgium
| |
Collapse
|
3
|
Ye M, Li Y, Deng Z. Advanced Synthesis of Spherical Nucleic Acids: A Limit-Pursuing Game with Broad Implications. Chembiochem 2025; 26:e202400976. [PMID: 39714876 DOI: 10.1002/cbic.202400976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/17/2024] [Accepted: 12/18/2024] [Indexed: 12/24/2024]
Abstract
Spherical nucleic acids (SNAs) consist of DNA strands arranged radially and packed densely on the surface of nanoparticles. Due to their unique properties, which are not found in naturally occurring linear or circular DNA, SNAs have gained widespread attention in fields such as sensing, nanomedicine, and colloidal assembly. The rapidly evolving applications of SNAs have driven a modernization of their syntheses to meet different needs. Recently, several advanced approaches have emerged, enabling ultrafast, quantitative, and low-cost SNA synthesis with maximal DNA grafting through "counterintuitive" processes like freezing and dehydration. This concept paper discusses these critical developments from a synthetic perspective, focusing on their underlying mechanisms and broad implications, with a goal of inspiring future research in related fields.
Collapse
Affiliation(s)
- Meiyun Ye
- Hefei National Research Center for Physical Sciences at the Microscale, Center for Bioanalytical Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yulin Li
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China
| | - Zhaoxiang Deng
- Hefei National Research Center for Physical Sciences at the Microscale, Center for Bioanalytical Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
4
|
Yin M, Hu X, Chen Y, Liang H, Shen Y, Guo W. Oligoadenine Strand Functionalized Polyacrylamide Hydrogel Film Exhibiting pH-Triggered High-Degree Inverse Shape Deformations. Chembiochem 2025; 26:e202400816. [PMID: 39714364 DOI: 10.1002/cbic.202400816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/18/2024] [Accepted: 12/18/2024] [Indexed: 12/24/2024]
Abstract
Smart shape-memory DNA hydrogels, which can respond to various types of external stimuli and undergo macroscopic shape deformations, have shown great potential in various applications. By constructing free-standing films, the deformation and response properties of these hydrogels can be further enhanced, and visualized deformation can be achieved. However, DNA hydrogels that can exhibit rapid and high-degree shape deformations, such as the inverse shape deformations, are still lacking. Herein, free-standing oligoadenine strand-functionalized polyacrylamide hydrogel films were developed that can exhibit reversible and high degree of inverse shape deformation upon cyclic pH changes. The oligoadenine strands exhibit a pH-stimulated reversible conformational transition between a flexible single-stranded state and parallel duplex A-motif structures, resulting in their role change in the film from negatively charged side chains to "head-to-head" crosslinking structures, driving a high degree of inverse shape deformation with a relative bending angle change of 223.7 % of the film, which is more than 5 times that of a film driven by pH-responsive i-motif structures, facilitating the development of bilayer hydrogel film actuators with potential in flexible sensors and robots.
Collapse
Affiliation(s)
- Mengyuan Yin
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Xiaohong Hu
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Yu Chen
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Hanxue Liang
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Yuxin Shen
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Weiwei Guo
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
5
|
Enea M, Leite A, Franco R, Pereira E. Gold Nanoprobes for Robust Colorimetric Detection of Nucleic Acid Sequences Related to Disease Diagnostics. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1833. [PMID: 39591073 PMCID: PMC11597272 DOI: 10.3390/nano14221833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/08/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024]
Abstract
Gold nanoparticles (AuNPs) are highly attractive for applications in the field of biosensing, particularly for colorimetric nucleic acid detection. Their unique optical properties, which are highly sensitive to changes in their environment, make them ideal candidates for developing simple, rapid, and cost-effective assays. When functionalized with oligonucleotides (Au-nanoprobes), they can undergo aggregation or dispersion in the presence of complementary sequences, leading to distinct color changes that serve as a visual signal for detection. Aggregation-based assays offer significant advantages over other homogeneous assays, such as fluorescence-based methods, namely, label-free protocols, rapid interactions in homogeneous solutions, and detection by the naked eye or using low-cost instruments. Despite promising results, the application of Au-nanoprobe-based colorimetric assays in complex biological matrices faces several challenges. The most significant are related to the colloidal stability and oligonucleotide functionalization of the Au-nanoprobes but also to the mode of detection. The type of functionalization method, type of spacer, the oligo-AuNPs ratio, changes in pH, temperature, or ionic strength influence the Au-nanoprobe colloidal stability and thus the performance of the assay. This review elucidates characteristics of the Au-nanoprobes that are determined for colorimetric gold nanoparticles (AuNPs)-based nucleic acid detection, and how they influence the sensitivity and specificity of the colorimetric assay. These characteristics of the assay are fundamental to developing low-cost, robust biomedical sensors that perform effectively in biological fluids.
Collapse
Affiliation(s)
- Maria Enea
- LAQV/REQUIMTE-Laboratório Associado para a Química Verde/Rede de Química e Tecnologia, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua Campo Alegre, 687, 4169-007 Porto, Portugal (E.P.)
| | - Andreia Leite
- LAQV/REQUIMTE-Laboratório Associado para a Química Verde/Rede de Química e Tecnologia, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua Campo Alegre, 687, 4169-007 Porto, Portugal (E.P.)
| | - Ricardo Franco
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2819-516 Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2819-516 Caparica, Portugal
| | - Eulália Pereira
- LAQV/REQUIMTE-Laboratório Associado para a Química Verde/Rede de Química e Tecnologia, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua Campo Alegre, 687, 4169-007 Porto, Portugal (E.P.)
| |
Collapse
|
6
|
Hu Y, Willner I. Oligo-Adenine Derived Secondary Nucleic Acid Frameworks: From Structural Characteristics to Applications. Angew Chem Int Ed Engl 2024; 63:e202412106. [PMID: 39183707 DOI: 10.1002/anie.202412106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
Oligo-adenine (polyA) is primarily known for its critical role in mRNA stability, translational status, and gene regulation. Beyond its biological functions, extensive research has unveiled the diverse applications of polyA. In response to environmental stimuli, single polyA strands undergo distinctive structural transitions into diverse secondary configurations, which are reversible upon the introduction of appropriate counter-triggers. In this review, we systematically summarize recent advances of noncanonical structures derived from polyA, including A-motif duplex, A-cyanuric acid triplex, A-coralyne-A duplex, and T ⋅ A-T triplex. The structural characteristics and mechanisms underlying these conformations under specific external stimuli are addressed, followed by examples of their applications in stimuli-responsive DNA hydrogels, supramolecular fibre assembly, molecular electronics and switches, biosensing and bioengineering, payloads encapsulation and release, and others. A detailed comparison of these polyA-derived noncanonical structures is provided, highlighting their distinctive features. Furthermore, by integrating their stimuli-responsiveness and conformational characteristics, advanced material development, such as pH-cascaded DNA hydrogels and supramolecular fibres exhibiting dynamic structural transitions adapting environmental cues, are introduced. An outlook for future developments is also discussed. These polyA derived, stimuli-responsive, noncanonical structures enrich the arsenal of DNA "toolbox", offering dynamic DNA frameworks for diverse future applications.
Collapse
Affiliation(s)
- Yuwei Hu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, 138634, Singapore, Republic of Singapore
| | - Itamar Willner
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, 91904, Jerusalem, Israel
| |
Collapse
|
7
|
Fu W, Yang K, Wu M, Wang Y. Terminal deoxynucleotidyl transferase (TdT) based template-free signal amplification for the detection of exosomes in MUC1-positive cells. J Pharm Biomed Anal 2024; 253:116539. [PMID: 39454542 DOI: 10.1016/j.jpba.2024.116539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/15/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024]
Abstract
The Mucin1 (MUC1) protein, involved in cytoprotective and signaling pathways, is abnormally elevated in various cancers, making it a key cancer indicator. Exosomes, which reflect the status of their originating cells, offer potential for cancer diagnosis. Thus, developing a method to detect MUC1-positive exosomes is crucial for the early diagnosis of certain cancers. In this study, we developed a highly sensitive, specific, and simple UV-visible signal amplification method to detect MUC1-positive exosomes using terminal deoxynucleotidyl transferase (TdT). Initially, exosomes were captured on magnetic beads using a CD63 aptamer(apt). The Primer-AuNPs-MUC1 apt complex which we synthesized by low pH loading method was then attached MUC1 proteins on the surface of the exosomes to create a sandwich structure. TdT catalyzed the extension of Biotin-dATP at the 3' end of the primer, introducing multiple biotin sites into the sandwich structure. These sites subsequently bound multiple streptavidin-horseradish peroxidase (streptavidin-HRP), which catalyzed the oxidative color change of the substrate, which can be detected by colorimetric method. This method can detect A549 exosomes in the range of 1.4E+6 to 4.2E+8 particles/mL and shows high specificity for cell lines with different MUC1 expression. Additionally, it successfully distinguished cholangiocarcinoma (CCA) patients (n=11) from healthy individuals (n=7) in clinical serum assays, demonstrating good performance in real sample detection.
Collapse
Affiliation(s)
- Wenchang Fu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kaige Yang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mingyuan Wu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; Engineering Research Center of Cell and Therapeutic Antibody (Ministry of Education), School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yan Wang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
8
|
Yang Y, Mou Z, Liu Q, Wang B, Luo C, Xu Y, Huang Q, He B, Chang K, Wang G, You Z, Qian H. Sunflower Pollen-Derived Microspheres Selectively Absorb DNA for microRNA Detection. Chembiochem 2024; 25:e202400249. [PMID: 38819725 DOI: 10.1002/cbic.202400249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/28/2024] [Accepted: 05/31/2024] [Indexed: 06/01/2024]
Abstract
Herein, we report the finding that a naturally sunflower pollen-derived microspheres (HSECs) with hierarchical structures can selectively absorb polyC and polyA with high efficiency and affinity. HSECs exhibit the capability to selectively absorb polyC and polyA ssDNA under neutral and acidic conditions. It has been observed that the presence of metal cations, specifically Ca2+, enhances the absorption efficiency of HSECs. Mechanically, this absorption phenomenon can be attributed to both electrostatic interactions and cation-π interactions. Such an appealing property enables the functionalization of HSECs for broad potential biomedical applications, such as microRNA detection.
Collapse
Affiliation(s)
- Yao Yang
- Institute of Respiratory Diseases, Xinqiao Hospital, Chongqing Key Laboratory of Precision Medicine and Prevention of Major Respiratory Diseases, Third Military Medical University, Chongqing, 400037, China
| | - Ziye Mou
- Department of General Practice, Xinqiao Hospital, Third Military Medical University., Chongqing, 400037, China
| | - Qian Liu
- Laboratory of Pharmacy and Chemistry, Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China
| | - Bin Wang
- Institute of Respiratory Diseases, Xinqiao Hospital, Chongqing Key Laboratory of Precision Medicine and Prevention of Major Respiratory Diseases, Third Military Medical University, Chongqing, 400037, China
| | - Chenjing Luo
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, Chongqing, 400037, China
| | - Yuhang Xu
- Institute of Respiratory Diseases, Xinqiao Hospital, Chongqing Key Laboratory of Precision Medicine and Prevention of Major Respiratory Diseases, Third Military Medical University, Chongqing, 400037, China
| | - Qiuhong Huang
- Department of General Practice, Xinqiao Hospital, Third Military Medical University., Chongqing, 400037, China
| | - Binfeng He
- Department of General Practice, Xinqiao Hospital, Third Military Medical University., Chongqing, 400037, China
| | - Kai Chang
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Guansong Wang
- Institute of Respiratory Diseases, Xinqiao Hospital, Chongqing Key Laboratory of Precision Medicine and Prevention of Major Respiratory Diseases, Third Military Medical University, Chongqing, 400037, China
| | - Zaichun You
- Department of General Practice, Xinqiao Hospital, Third Military Medical University., Chongqing, 400037, China
| | - Hang Qian
- Institute of Respiratory Diseases, Xinqiao Hospital, Chongqing Key Laboratory of Precision Medicine and Prevention of Major Respiratory Diseases, Third Military Medical University, Chongqing, 400037, China
- Department of General Practice, Xinqiao Hospital, Third Military Medical University., Chongqing, 400037, China
| |
Collapse
|
9
|
Ye J, Huang W, Jia X, Song H, Zhou Y, Yuan R, Xu W. Short-stranded DNA segment-modulated LAMP/H + as signal transducer to guide CHA-cooperated amplifiable electrochemical biosensing. Anal Chim Acta 2024; 1295:342329. [PMID: 38355233 DOI: 10.1016/j.aca.2024.342329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/16/2024]
Abstract
BACKGROUND Modulating loop-mediated isothermal amplification (mLAMP) by short-stranded DNA segment trigger (T) to generate byproducts H+ ions (mLAMP/H+) as signal transducer is intriguing for developing catalytic hairpin assembly (CHA)-cooperated amplifiable electrochemical biosensors. This would be a big challenge for traditional LAMP that is basically suitable for amplifying long-stranded oligonucleotides up to 200-300 nt. To address this inherent limitation of traditional LAMP, many researchers have put in efforts to explore improvements in this that would allow LAMP to be used for a wider range of target species amplification. RESULTS Here in this work, we are inspired to explore two-step loop-mediated amplification, firstly forming T-activated double-loop dumbbell structure (DLDS) intermediate by a recognition hairpin and a hairpin precursor, and next DLDS-guided mLAMP process with the aid of two primers to yield mLAMP/H+ during successive DNA incorporation via nucleophilic attacking interaction. To manipulate the mLAMP/H+-directed transduction of input T, a pH-responsive triplex strand is designed with the ability of self-folding in Hoogsteen structure at slightly acidic conditions, resulting in the dehybridization of a fuel strand (FS) to participate in CHA between two hairpins on the modified electrode surface, in which FS is repetitively displaced and recycled to fuel the progressive CHA events. In the as-assembled dsDNA complexes, numerous electroactive ferrocene labels are immobilized in the electrode sensing interface, thereby generating significantly amplified electrochemical current signal that can sense the presented and varied T. SIGNIFICANCE It is clear that we have creatively constructed a unique electrochemical biosensor for disease detection. Benefited from the rational combination of mLAMP and CHA, our electrochemical strategy is highly sensitive, specific and simplified, and would provide a new paradigm to construct various mLAMP/H+-based biosensors for other short-stranded DNA or microRNAs markers.
Collapse
Affiliation(s)
- Jingjing Ye
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing Engineering Laboratory of Nanomaterials & Sensor Technologies, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Weixiang Huang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing Engineering Laboratory of Nanomaterials & Sensor Technologies, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Xinyue Jia
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing Engineering Laboratory of Nanomaterials & Sensor Technologies, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Honglin Song
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing Engineering Laboratory of Nanomaterials & Sensor Technologies, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Yifu Zhou
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing Engineering Laboratory of Nanomaterials & Sensor Technologies, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing Engineering Laboratory of Nanomaterials & Sensor Technologies, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China.
| | - Wenju Xu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing Engineering Laboratory of Nanomaterials & Sensor Technologies, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China.
| |
Collapse
|
10
|
Wang X, Yang Z, Li Y, Huang K, Cheng N. Towards rational design: Developing universal freezing routes for anchoring DNA onto gold nanoparticles. J Colloid Interface Sci 2024; 655:830-840. [PMID: 37979289 DOI: 10.1016/j.jcis.2023.11.041] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/02/2023] [Accepted: 11/07/2023] [Indexed: 11/20/2023]
Abstract
DNA-functionalized gold nanoparticles (AuNPs), also known as spherical nucleic acids, are widely used in the development of biosensors, resulting in anchoring DNA onto AuNPs being a crucial preparation step and a popular research topic. The latest freeze-anchoring method is a simple and time-saving alternative to traditional salt aging; however, its universal applicability remains limited. In this study, we explored the interfacial interaction between DNA and the AuNP surface and proposed various universal routes for promoting freezing anchoring. Among them, rational design has been considered as the core idea to overcome these limitations, particularly using non-thiolated DNA anchoring, which offers significant advantages such as being unmodified, cost-effective, and easily accessible. We emphasize the importance of sequence structure and preparation process optimization, which mainly considers differences in DNA conformation and electrostatic repulsion. Additionally, the prepared DNA-functionalized AuNPs exhibited complete biological hybridization capability, and the extreme limiting conditions for non-thiolated DNA freeze anchoring were clarified. In summary, this study enhances our understanding of the interfacial relationship between DNA and AuNPs in the freeze-anchoring process and can significantly advance the applications of DNA-functionalized AuNP-based biosensors.
Collapse
Affiliation(s)
- Xin Wang
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Zhansen Yang
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yunyi Li
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Kunlun Huang
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture and Rural Affairs, Beijing 100083, China.
| | - Nan Cheng
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture and Rural Affairs, Beijing 100083, China.
| |
Collapse
|
11
|
Liu B, Duan H, Liu Z, Liu Y, Chu H. DNA-functionalized metal or metal-containing nanoparticles for biological applications. Dalton Trans 2024; 53:839-850. [PMID: 38108230 DOI: 10.1039/d3dt03614f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
The conjugation of DNA molecules with metal or metal-containing nanoparticles (M/MC NPs) has resulted in a number of new hybrid materials, enabling a diverse range of novel biological applications in nanomaterial assembly, biosensor development, and drug/gene delivery. In such materials, the molecular recognition, gene therapeutic, and structure-directing functions of DNA molecules are coupled with M/MC NPs. In turn, the M/MC NPs have optical, catalytic, pore structure, or photodynamic/photothermal properties, which are beneficial for sensing, theranostic, and drug loading applications. This review focuses on the different DNA functionalization protocols available for M/MC NPs, including gold NPs, upconversion NPs, metal-organic frameworks, metal oxide NPs and quantum dots. The biological applications of DNA-functionalized M/MC NPs in the treatment or diagnosis of cancers are discussed in detail.
Collapse
Affiliation(s)
- Bei Liu
- College of Science, Minzu University of China, 27 Zhongguancun South Avenue, Beijing 100081, China
| | - Huijuan Duan
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China.
| | - Zechao Liu
- College of Science, Minzu University of China, 27 Zhongguancun South Avenue, Beijing 100081, China
| | - Yuechen Liu
- College of Science, Minzu University of China, 27 Zhongguancun South Avenue, Beijing 100081, China
| | - Hongqian Chu
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China.
| |
Collapse
|
12
|
Wang H, Shi L, Wang Q, Shi L, Li T. Robust noncovalent spherical nucleic acid enzymes (SNAzymes) for ultrasensitive unamplified electrochemiluminescence detection of endogenous myocardial MicroRNAs. Biosens Bioelectron 2023; 241:115687. [PMID: 37708686 DOI: 10.1016/j.bios.2023.115687] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/21/2023] [Accepted: 09/07/2023] [Indexed: 09/16/2023]
Abstract
Here we develop robust noncovalent spherical nucleic acid enzymes (SNAzymes) for direct electrochemiluminescence (ECL) detection of acute myocardial infarction (AMI) related endogenous microRNAs in both circulating blood and cardiomyocytes, which circumvents the need for time-consuming signal amplification widely used in previous counterparts. It mainly relies on the super peroxidase-like activity of the designed noncovalent SNAzymes, promoted by a few nucleotides flanking on the 3'-terminals of common parallel G-quadruplexes (G4). For this reason, an unmodified G4 with an A5T30 head is well chosen and then attached robustly onto bare AuNPs via microwave-assisted heating-drying. A probe strand is meanwhile attached onto SNAzymes, enabling the target microRNA-triggered formation of a Y-shaped junction together with a capture strand tethered to a DNA tetrahedron on the electrode surface. The utilization of this tetrahedral nanoscaffold favors the ECL readout and thereby contributes to high sensitivity of the sensing platform. In this way, an AMI-related microRNA, miR-499, can be probed in a wide linear range, with a detection limit of 33 aM and high selectivity over other analogues. Furthermore, our developed sensing platform is employed to analyze endogenous miR-499 in AMI patients' blood, revealing an apparently higher level than the mean value of the healthy. What it means to patients, heart injury, is elucidated by comparing the miR-499 levels of cardiomyocytes and other tissue cells, with endogenous miR-16 as an intrinsic reference.
Collapse
Affiliation(s)
- Han Wang
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Lin Shi
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Qiwei Wang
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Lili Shi
- Department of Chemistry, Anhui University, 111 Jiulong Road, Hefei, Anhui, 230601, China.
| | - Tao Li
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China.
| |
Collapse
|
13
|
Shang Z, Deng Z, Yi X, Yang M, Nong X, Lin M, Xia F. Construction and bioanalytical applications of poly-adenine-mediated gold nanoparticle-based spherical nucleic acids. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:5564-5576. [PMID: 37861233 DOI: 10.1039/d3ay01618h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Owing to the versatile photophysical and chemical properties, spherical nucleic acids (SNAs) have been widely used in biosensing. However, traditional SNAs are formed by self-assembly of thiolated DNA on the surface of a gold nanoparticle (AuNP), where it is challenging to precisely control the orientation and surface density of DNA. As a new SNA, a polyadenine (polyA)-mediated SNA using the high binding affinity of consecutive adenines to AuNPs shows controllable surface density and configuration of DNA, which can be used to improve the performance of a biosensor. Herein, we first introduce the properties of polyA-mediated SNAs and fundamental principles regarding the polyA-AuNP interaction. Then, we provide an overview of current representative synthesis methods of polyA-mediated SNAs and their advantages and disadvantages. After that, we summarize the application of polyA-mediated SNAs in biosensing based on fluorescence and colorimetric methods, followed by discussion and an outlook of future challenges in this field.
Collapse
Affiliation(s)
- Zhiwei Shang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
| | - Zixuan Deng
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
| | - Xiaoqing Yi
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, China
| | - Mengyu Yang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
| | - Xianliang Nong
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
| | - Meihua Lin
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
| |
Collapse
|
14
|
Hu Y, Ying JY. A Strong Acid-Induced DNA Hydrogel Based on pH-Reconfigurable A-Motif Duplex. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205909. [PMID: 36587983 DOI: 10.1002/smll.202205909] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Under a pH value lower than the pKa of adenine (3.5), adenine-rich sequences (A-strand) form a unique parallel A-motif duplex due to the protonation of A-strand. At a pH above 3.5, deprotonation of adenines leads to the dissolution of A-motif duplex to A-strand single coil. This pH-reconfigurable A-motif duplex has been developed as a novel pH-responsive DNA hydrogel, termed A-hydrogel. The hydrogel state is achieved at pH 1.2 by the A-motif duplex bridging units, which are cross-linked by both reverse Hoogsteen interaction and electrostatic attraction. Hydrogel-to-solution transition is triggered by pH 4.3 due to the deprotonation-induced separation of A-motif duplex. The A-hydrogel system undergoes reversible hydrogel-solution transitions by subjecting the system to cyclic pH shifts between 1.2 and 4.3. An anti-inflammatory medicine, sulfasalazine (SSZ), which intercalates into A-motif duplex, is loaded into A-hydrogel. Its pH-controlled release from A-hydrogel is successfully demonstrated. The strong acid-induced A-hydrogel may fill the gap that other mild acid-responsive DNA hydrogels cannot do, such as protection of orally delivered drug in hostile stomach environment against strong acid (pH ~ 1.2) and digestive enzymes.
Collapse
Affiliation(s)
- Yuwei Hu
- NanoBio Lab, Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, The Nanos, #09-01, Singapore, 138669, Singapore
| | - Jackie Y Ying
- NanoBio Lab, Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, The Nanos, #09-01, Singapore, 138669, Singapore
- NanoBio Lab, A*STAR Infectious Diseases Labs, A*STAR, 31 Biopolis Way, The Nanos, #09-01, Singapore, 138669, Singapore
| |
Collapse
|
15
|
Peng S, Chang Y, Zeng X, Lai R, Yang M, Wang D, Zhou X, Shao Y. Selectivity of natural isoquinoline alkaloid assembler in programming poly(dA) into parallel duplex by polyvalent synergy. Anal Chim Acta 2023; 1241:340777. [PMID: 36657870 DOI: 10.1016/j.aca.2022.340777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/04/2022] [Accepted: 12/31/2022] [Indexed: 01/03/2023]
Abstract
Ligand-induced assembly of disordered DNAs attracts much attention due to its potential action in transcription regulation and molecular switches-based sensors. Among natural isoquinoline alkaloids (NIAs), we screened out nitidine (NIT) as polyvalent-binding assembler to program poly(dA) into a parallel duplex assembly at neutral pH. The molecule planarity of NIAs was believed to be a determinant factor in programming the parallel poly(dA) assembly. Poly(dA) with more than six adenines can initiate the synergistic binding of NIT to generate the parallel assembly. It is expected that one A-A pair in duplex can bind one NIT molecule provided that poly(dA) is long enough, suggesting the pivotal role of the polyvalent synergy of NIT in programming the parallel poly(dA) assembly. A gold nanoparticles-based colorimetric method was also developed to screen NIT out of NIAs having the potential to construct the poly(dA) assembly. Our work will inspire more interest in developing polyadenine-based switches and sensors by concentrating NIT within the polyadenine parallel assembly.
Collapse
Affiliation(s)
- Shuzhen Peng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, Zhejiang, PR China
| | - Yun Chang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, Zhejiang, PR China
| | - Xingli Zeng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, Zhejiang, PR China
| | - Rong Lai
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, Zhejiang, PR China
| | - Mujing Yang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, Zhejiang, PR China
| | - Dandan Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, Zhejiang, PR China
| | - Xiaoshun Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, Zhejiang, PR China
| | - Yong Shao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, Zhejiang, PR China.
| |
Collapse
|
16
|
Luo Z, Cheng Y, He L, Feng Y, Tian Y, Chen Z, Feng Y, Li Y, Xie W, Huang W, Meng J, Li Y, He F, Wang X, Duan Y. T-Shaped Aptamer-Based LSPR Biosensor Using Ω-Shaped Fiber Optic for Rapid Detection of SARS-CoV-2. Anal Chem 2023; 95:1599-1607. [PMID: 36580626 PMCID: PMC9843628 DOI: 10.1021/acs.analchem.2c04709] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/19/2022] [Indexed: 12/31/2022]
Abstract
SARS-CoV-2, especially the variant strains, is rapidly spreading around the world. Rapid detection methods for the virus are crucial for controlling the COVID-19 epidemic. Herein, a localized surface plasmonic resonance (LSPR) biosensor based on Ω-shaped fiber optic (Ω-FO) was developed for dual assays of SARS-CoV-2 monitoring. Due to its strong ability to control the orientation and density, a new T-shaped aptamer exhibits enhanced binding affinity toward N proteins. After being combined on the fiber optic surface, the T-shaped aptamer sensitively captured N proteins of SARS-CoV-2 for a direct assay. Further, core-shell structured gold/silver nanoparticles functionalized with a T-shaped aptamer (apt-Ag@AuNPs) can amplify the signal of N protein detection for a sandwich assay. The real-time analytical feature of the dual assays endows time-dependent sensitivity enhancement behavior, which provides a guideline to save analytical time. With those characteristics, the LSPR biosensor has been successfully used to rapidly identify 39 healthy volunteers and 39 COVID-19 patients infected with the ancestral or variant SARS-CoV-2. With the help of simple pretreatment, we obtain a true negative rate of 100% and a true positive rate of 92.3% with a short analysis time of 45 min using the direct assay. Further, the LSPR biosensor could also broaden the detection application range to the surface of cold-chain foods using a sandwich assay. Thus, the LSPR biosensor based on Ω-FO was demonstrated to have broad application potential to detect SARS-CoV-2 rapidly.
Collapse
Affiliation(s)
- Zewei Luo
- Research
Center of Analytical Instrumentation, School of Mechanical Engineering, Sichuan University, Chengdu 610065, China
- Research
Center of Analytical Instrumentation, College of Chemistry & Materials
Science, Northwest University, Xi’an 710069, China
| | - Yue Cheng
- Chengdu
Workstation for Emerging Infectious Disease Control and Prevention, Chinese Academy of Medical Sciences, Chengdu, Sichuan 610041, China
- Chengdu
Center for Disease Control and Prevention, Chengdu 610041, China
| | - Lu He
- Research
Center of Analytical Instrumentation, College of Chemistry & Materials
Science, Northwest University, Xi’an 710069, China
| | - Yanting Feng
- Research
Center of Analytical Instrumentation, College of Chemistry & Materials
Science, Northwest University, Xi’an 710069, China
| | - Yonghui Tian
- Research
Center of Analytical Instrumentation, College of Chemistry & Materials
Science, Northwest University, Xi’an 710069, China
| | - Zhenhua Chen
- Chengdu
Workstation for Emerging Infectious Disease Control and Prevention, Chinese Academy of Medical Sciences, Chengdu, Sichuan 610041, China
- Chengdu
Center for Disease Control and Prevention, Chengdu 610041, China
| | - Yaqiang Feng
- Research
Center of Analytical Instrumentation, College of Chemistry & Materials
Science, Northwest University, Xi’an 710069, China
| | - Yongxin Li
- West
China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Wenjun Xie
- Chengdu
Workstation for Emerging Infectious Disease Control and Prevention, Chinese Academy of Medical Sciences, Chengdu, Sichuan 610041, China
- Chengdu
Center for Disease Control and Prevention, Chengdu 610041, China
| | - Weiwei Huang
- Chengdu
Workstation for Emerging Infectious Disease Control and Prevention, Chinese Academy of Medical Sciences, Chengdu, Sichuan 610041, China
- Chengdu
Center for Disease Control and Prevention, Chengdu 610041, China
| | - Jiantong Meng
- Chengdu
Workstation for Emerging Infectious Disease Control and Prevention, Chinese Academy of Medical Sciences, Chengdu, Sichuan 610041, China
- Chengdu
Center for Disease Control and Prevention, Chengdu 610041, China
| | - Yu Li
- Research
Center of Analytical Instrumentation, Key Laboratory of Bio-resource
and Eco-environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu 610065, China
| | - Fan He
- School
of Physics, Northwest University, Xi’an 710069, China
| | - Xu Wang
- Research
Center of Analytical Instrumentation, School of Mechanical Engineering, Sichuan University, Chengdu 610065, China
| | - Yixiang Duan
- Research
Center of Analytical Instrumentation, School of Mechanical Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
17
|
Liu X, Zhao Y, Ding Y, Wang J, Liu J. Stabilization of Gold Nanoparticles by Hairpin DNA and Implications for Label-Free Colorimetric Biosensors. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:5542-5549. [PMID: 35446580 DOI: 10.1021/acs.langmuir.2c00119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
With extremely high extinction coefficients and other unique optical properties, gold nanoparticles (AuNPs) have received growing interest in developing biosensors. DNA hairpin structures are very popular probes for the detection of not only complementary DNA or RNA but also aptamer targets. This work aims to understand the effect of the structure and sequence of hairpin DNA for the stabilization of AuNPs and its implications in AuNP-based label-free colorimetric biosensors. A series of hairpin DNA with various loop sizes from 4 to 26 bases and sequences (random sequences, poly-A and poly-T) were tested, but they showed similar abilities to protect AuNPs from aggregation. Using hairpin DNA with a tail under the same conditions, optimal protection was achieved with a six-base or longer tail. DNA hairpins are likely adsorbed via their tail regions or with their terminal bases if no tail is present. Molecular dynamics simulations showed that the rigidity of the hairpin loop region disfavored its adsorption to AuNPs, while the flexible tail region is favored. Finally, a DNA sensing assay was conducted using different structured DNA, where hairpin DNA with a tail doubled the sensitivity compared to the tail-free hairpin.
Collapse
Affiliation(s)
- Xun Liu
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Yu Zhao
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuzhe Ding
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Jianhua Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
18
|
Perets EA, Olesen KB, Yan ECY. Chiral Sum Frequency Generation Spectroscopy Detects Double-Helix DNA at Interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:5765-5778. [PMID: 35482888 DOI: 10.1021/acs.langmuir.2c00365] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Many DNA-based technologies involve the immobilization of DNA and therefore require a fundamental understanding of the DNA structure-function relationship at interfaces. We present three immobilization methods compatible with chiral sum frequency generation (SFG) spectroscopy at interfaces. They are the "anchor" method for covalently attaching DNA on a glass surface, the "island" method for dropcasting DNA on solid substrates, and the "buoy" method using a hydrocarbon moiety for localizing DNA at the air-water interface. Although SFG was previously used to probe DNA, the chiral and achiral SFG responses of single-stranded and double-stranded DNA have not been compared systemically. Using the three immobilization methods, we obtain the achiral and chiral C-H stretching spectra. The results introduce four potential applications of chiral SFG. First, chiral SFG gives null response from single-stranded DNA but prominent signals from double-stranded DNA, providing a simple binary readout for label-free detection of DNA hybridization. Second, with heterodyne detection, chiral SFG gives an opposite-signed spectral response useful for distinguishing native (D-) right-handed double helix from non-native (L-) left-handed double helix. Third, chiral SFG captures the aromatic C-H stretching modes of nucleobases that emerge upon hybridization, revealing the power of chiral SFG to probe highly localized molecular structures within DNA. Finally, chiral SFG is sensitive to macroscopic chirality but not local chiral centers and thus can detect not only canonical antiparallel double helix but also other DNA secondary structures, such as a poly-adenine parallel double helix. Our work benchmarks the SFG responses of DNA immobilized by the three distinct methods, building a basis for new chiral SFG applications to solve fundamental and biotechnological problems.
Collapse
Affiliation(s)
- Ethan A Perets
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Kristian B Olesen
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Elsa C Y Yan
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|
19
|
Ye Y, Hou S, Wu X, Cheng X, He S. Freeze-Driven Adsorption of Poly-A DNA on Gold Nanoparticles: From a Stable Biointerface to Plasmonic Dimers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:4625-4632. [PMID: 35403423 PMCID: PMC9022424 DOI: 10.1021/acs.langmuir.2c00007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 03/29/2022] [Indexed: 06/14/2023]
Abstract
Increasing attention is paid to poly-adenine (poly-A) DNA-functionalized gold nanoparticles due to the high cost of thiols. Freezing is an effective approach for immobilizing poly-A DNA on gold nanoparticles, but its mechanism remains elusive. To cope with this issue, in this paper, some experimental insights are provided. It is shown that (1) the DNA loading density is independent of the length of poly-A. (2) DNA is densely packed on gold nanoparticles, and the biointerface is peculiarly stable, which is not in line with the existing "wrapping" model. (3) Using a DNA-staining dye, thiazole orange, it is shown that poly-A duplex structures are formed on the surface of gold nanoparticles, with evidence given by fluorescence and Raman measurements. An alternative model involving stable poly-A duplexes anchored by finite terminal adenines is proposed. Based on it, a strategy for constructing plasmonic dimers is developed, using freeze-driven adsorption of a DNA sequence with poly-adenine at both ends. This work provides insights into the reaction between poly-A DNA and AuNPs upon freezing and is expected to facilitate related research in biosensor development and nanotechnology.
Collapse
Affiliation(s)
- Yang Ye
- National Engineering Centre for Optical Instrumentations, State Key Laboratory of Modern Optical Instrumentation, Centre for Optical and Electromagnetic Research, Zhejiang University, Hangzhou 310058, China
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Saimei Hou
- National Engineering Centre for Optical Instrumentations, State Key Laboratory of Modern Optical Instrumentation, Centre for Optical and Electromagnetic Research, Zhejiang University, Hangzhou 310058, China
| | - Xiaomo Wu
- Dermatology Hospital of Fuzhou, Xihong Road 243, Fuzhou 350025, China
| | - Xiaoyu Cheng
- National Engineering Centre for Optical Instrumentations, State Key Laboratory of Modern Optical Instrumentation, Centre for Optical and Electromagnetic Research, Zhejiang University, Hangzhou 310058, China
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Sailing He
- National Engineering Centre for Optical Instrumentations, State Key Laboratory of Modern Optical Instrumentation, Centre for Optical and Electromagnetic Research, Zhejiang University, Hangzhou 310058, China
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| |
Collapse
|
20
|
Hu Y, Gao S, Lu H, Ying JY. Acid-Resistant and Physiological pH-Responsive DNA Hydrogel Composed of A-Motif and i-Motif toward Oral Insulin Delivery. J Am Chem Soc 2022; 144:5461-5470. [PMID: 35312303 DOI: 10.1021/jacs.1c13426] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An acid-resistant DNA hydrogel that is stable in an extremely acidic environment with pH as low as 1.2 has not been reported before, largely due to the instability of DNA-hybridized structures. To achieve this, adenine (A)-rich and cytosine (C)-rich oligonucleotides are rationally designed and integrated to form copolymers with acrylamide monomers via free-radical polymerization. In an acidic environment (pH 1.2-6.0), the generated copolymers form a hydrogel state, which is cross-linked by parallel A-motif duplex configurations (pH 1.2-3.0) and quadruplex i-motif structures (pH 4.0-6.0) due to the protonation of A and C bases, respectively. Specifically, the protonated A-rich sequences under pH 1.2-3.0 form a stable parallel A-motif duplex cross-linking unit through reverse Hoogsteen interaction and electrostatic attraction. Hemi-protonated C bases under mildly acidic pH (4.0-6.0) form quadruplex i-motif cross-linking configuration via Hoogsteen interaction. Under physiological pH, both A and C bases deprotonated, resulting in the separation of A-motif and i-motif to A-rich and C-rich single strands, respectively, and thereby the dissociation of the DNA hydrogel into the solution state. The acid-resistant and physiological pH-responsive DNA hydrogel was further developed for oral drug delivery to the hostile acidic environment in the stomach (pH 1.2), duodenum (pH 5.0), and small intestine (pH 7.2), where the drug would be released and absorbed. As a proof of concept, insulin was encapsulated in the DNA hydrogel and orally administered to diabetic rats. In vitro and in vivo studies demonstrated the potential usage of the DNA hydrogel for oral drug delivery.
Collapse
Affiliation(s)
- Yuwei Hu
- NanoBio Lab, Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, The Nanos, #09-01, Singapore 138669, Singapore
| | - Shujun Gao
- NanoBio Lab, Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, The Nanos, #09-01, Singapore 138669, Singapore
| | - Hongfang Lu
- NanoBio Lab, Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, The Nanos, #09-01, Singapore 138669, Singapore
| | - Jackie Y Ying
- NanoBio Lab, Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, The Nanos, #09-01, Singapore 138669, Singapore.,NanoBio Lab, A*STAR Infectious Diseases Labs, Agency for Science, Technology and Research, 31 Biopolis Way, The Nanos, #09-01, Singapore 138669, Singapore
| |
Collapse
|
21
|
Kruchinin NY, Kucherenko MG. Molecular Dynamics Simulation of the Conformational Structure of Uniform Polypeptides on the Surface of a Polarized Metal Prolate Nanospheroid with Varying pH. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2022. [DOI: 10.1134/s0036024422030141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Cascade i-motifs-dependent reversible electrochemical impedance strategy-oriented pH and terminal deoxynucleotidyl transferase biosensing. Bioelectrochemistry 2022; 145:108085. [DOI: 10.1016/j.bioelechem.2022.108085] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/29/2022] [Accepted: 02/07/2022] [Indexed: 01/21/2023]
|
23
|
Jouha J, Xiong H. DNAzyme-Functionalized Nanomaterials: Recent Preparation, Current Applications, and Future Challenges. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2105439. [PMID: 34802181 DOI: 10.1002/smll.202105439] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/14/2021] [Indexed: 06/13/2023]
Abstract
DNAzyme-nanomaterial bioconjugates are a popular hybrid and have received major attention for diverse biomedical applications, such as bioimaging, biosensor development, cancer therapy, and drug delivery. Therefore, significant efforts are made to develop different strategies for the preparation of inorganic and organic nanoparticles (NPs) with specific morphologies and properties. DNAzymes functionalized with metal-organic frameworks (MOFs), gold nanoparticles (AuNPs), graphene oxide (GO), and molybdenum disulfide (MoS2 ) are introduced and summarized in detail in this review. Moreover, the focus is on representative examples of applications of DNAzyme-nanomaterials over recent years, especially in bioimaging, biosensing, phototherapy, and stimulation response delivery in living systems, with their several advantages and drawbacks. Finally, the perspective regarding the future directions of research addressing these challenges is also discussed and highlighted.
Collapse
Affiliation(s)
- Jabrane Jouha
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Hai Xiong
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
24
|
Jiao K, Yan Q, Guo L, Qu Z, Cao S, Chen X, Li Q, Zhu Y, Li J, Wang L, Fan C, Wang F. Poly‐Adenine‐Based Spherical Nucleic Acids for Efficient Live‐Cell MicroRNA Capture. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202017039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Kai Jiao
- Division of Physical Biology CAS Key Laboratory of Interfacial Physics and Technology Shanghai Institute of Applied Physics Chinese Academy of Sciences Shanghai 201800 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Qinglong Yan
- Division of Physical Biology CAS Key Laboratory of Interfacial Physics and Technology Shanghai Institute of Applied Physics Chinese Academy of Sciences Shanghai 201800 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Linjie Guo
- Division of Physical Biology CAS Key Laboratory of Interfacial Physics and Technology Shanghai Institute of Applied Physics Chinese Academy of Sciences Shanghai 201800 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Zhibei Qu
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine Shanghai Jiao Tong University Shanghai 200240 China
| | - Shuting Cao
- Division of Physical Biology CAS Key Laboratory of Interfacial Physics and Technology Shanghai Institute of Applied Physics Chinese Academy of Sciences Shanghai 201800 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Xiaoliang Chen
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine Shanghai Jiao Tong University Shanghai 200240 China
| | - Qian Li
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine Shanghai Jiao Tong University Shanghai 200240 China
| | - Ying Zhu
- Division of Physical Biology CAS Key Laboratory of Interfacial Physics and Technology Shanghai Institute of Applied Physics Chinese Academy of Sciences Shanghai 201800 China
- Bioimaging Center Shanghai Synchrotron Radiation Facility Zhangjiang Laboratory The Interdisciplinary Research Center Shanghai Advanced Research Institute Chinese Academy of Sciences Shanghai 201210 China
| | - Jiang Li
- Division of Physical Biology CAS Key Laboratory of Interfacial Physics and Technology Shanghai Institute of Applied Physics Chinese Academy of Sciences Shanghai 201800 China
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine Shanghai Jiao Tong University Shanghai 200240 China
- Bioimaging Center Shanghai Synchrotron Radiation Facility Zhangjiang Laboratory The Interdisciplinary Research Center Shanghai Advanced Research Institute Chinese Academy of Sciences Shanghai 201210 China
| | - Lihua Wang
- Bioimaging Center Shanghai Synchrotron Radiation Facility Zhangjiang Laboratory The Interdisciplinary Research Center Shanghai Advanced Research Institute Chinese Academy of Sciences Shanghai 201210 China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine Shanghai Jiao Tong University Shanghai 200240 China
- Institute of Molecular Medicine Shanghai Key Laboratory for Nucleic Acids Chemistry and Nanomedicine Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Fei Wang
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine Shanghai Jiao Tong University Shanghai 200240 China
| |
Collapse
|
25
|
Jiao K, Yan Q, Guo L, Qu Z, Cao S, Chen X, Li Q, Zhu Y, Li J, Wang L, Fan C, Wang F. Poly-Adenine-Based Spherical Nucleic Acids for Efficient Live-Cell MicroRNA Capture. Angew Chem Int Ed Engl 2021; 60:14438-14445. [PMID: 33851770 DOI: 10.1002/anie.202017039] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/27/2021] [Indexed: 11/11/2022]
Abstract
Direct delivery of exogenous non-coding nucleic acids into living cells has attracted intense interest in biological applications. However, the cell entry efficiency and target capture ability remain to be improved. Herein, we report a method for compartmenting the nucleic acids on the surface of poly-adenine-based spherical nucleic acids (polyA-SNAs) for efficient capture of oncogenic microRNAs (miRNAs) in living cells. We find that polyA-SNAs exhibit high cell entry efficiency, which is insensitive to the configuration of the anti-miRNA sequences. By programming the length of polyAs, we precisely engineered the spatial configuration of the anti-miRNA sequences in polyA-SNAs. Compartmentalized polyA-SNAs bind to miRNAs with improved capture ability as compared to densely compacted SNAs. We further demonstrate that polyA-SNAs serve as high-efficacy miRNA sponges for capturing oncogenic miRNAs both in living cells and in mice. The efficient inhibition of miRNAs results in significant suppression of tumor growth.
Collapse
Affiliation(s)
- Kai Jiao
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qinglong Yan
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Linjie Guo
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhibei Qu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shuting Cao
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoliang Chen
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qian Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ying Zhu
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China.,Bioimaging Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, The Interdisciplinary Research Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Jiang Li
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China.,School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China.,Bioimaging Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, The Interdisciplinary Research Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Lihua Wang
- Bioimaging Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, The Interdisciplinary Research Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China.,Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acids Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Fei Wang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
26
|
Hou Y, Hou J, Liu X. Comparison of Two DNA Aptamers for Dopamine Using Homogeneous Binding Assays. Chembiochem 2021; 22:1948-1954. [PMID: 33783945 DOI: 10.1002/cbic.202100006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/26/2021] [Indexed: 12/30/2022]
Abstract
Dopamine is an essential neurotransmitter and its detection is important for bioanalytical chemistry. Two very different DNA aptamers have been reported for dopamine, one derived from an RNA aptamer (named Apt1) and other obtained via direct aptamer selection (named Apt2). In this study, we used four homogeneous binding assays to compare these two DNA dopamine aptamers. Thiazole orange (TO) fluorescence assay indicated that the Apt2 specifically bound with dopamine with a Kd of 2.37 μM, which was consistent with that from the isothermal titration calorimetry (ITC) assay. However, Apt1 had much less TO fluorescence change and also no signal from ITC. By labeling the two ends of the two aptamers by a fluorophore and a quencher, the aptamer beacons showed binding of dopamine only for Apt2. Finally, the label-free AuNP-based colorimetric assay showed no difference between these two aptamer sequences, and even non-binding random DNA showed the same response, indicating that AuNPs were not a good probe for detecting dopamine. According to the data, Apt1 does not appear to be able to bind dopamine specifically, while Apt2 showed specific binding and could be used for developing related biosensors.
Collapse
Affiliation(s)
- Yaoyao Hou
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, Hubei province, 435002, China.,Hubei Engineering Research Center of Special Wild Vegetables Breeding and, Comprehensive Utilization Technology, Hubei Normal University, Huangshi, 435002, China
| | - Jianjun Hou
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, Hubei province, 435002, China.,Hubei Engineering Research Center of Special Wild Vegetables Breeding and, Comprehensive Utilization Technology, Hubei Normal University, Huangshi, 435002, China
| | - Xixia Liu
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, Hubei province, 435002, China.,Hubei Engineering Research Center of Special Wild Vegetables Breeding and, Comprehensive Utilization Technology, Hubei Normal University, Huangshi, 435002, China
| |
Collapse
|
27
|
Sutter E, Zhang B, Sutter P. Single-strand DNA-nanorod conjugates - tunable anisotropic colloids for on-demand self-assembly. J Colloid Interface Sci 2021; 586:847-854. [PMID: 33198983 DOI: 10.1016/j.jcis.2020.11.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/01/2020] [Accepted: 11/03/2020] [Indexed: 02/09/2023]
Abstract
Directed self-assembly uses different stimuli to initiate and control the interaction between nanocrystals. Protonation at reduced pH represents a convenient stimulus for initiating self-assembly. Prior work has focused on protonation-induced hydrogen bonding between peptide or amino acid functionalized nanocrystals for reversible cycling between dispersed and aggregated states. Here, we discuss a fundamentally different approach, in which changes in pH modify the nonspecific interparticle interaction between Au nanorods conjugated with single-stranded (ss) DNA. While electrostatic repulsion stabilizes dispersed suspensions at neutral pH, protonation in acidic solution modifies the DNA corona, turning the interaction between the rods attractive and triggering their self-assembly. Analysis of in-situ electron microscopy of ssDNA-Au nanorods in solution is consistent with a van der Waals attraction of charge-neutral monomers at acidic pH. The results demonstrate ssDNA-conjugated anisotropic nanostructures as versatile building blocks with stimuli-programmable interactions for on-demand self-assembly.
Collapse
Affiliation(s)
- Eli Sutter
- Department of Mechanical & Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, United States.
| | - Bo Zhang
- Department of Mechanical & Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, United States
| | - Peter Sutter
- Department of Electrical & Computer Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, United States.
| |
Collapse
|
28
|
Li D, Yang E, Luo Z, Xie Q, Duan Y. An enzyme-mediated universal fluorescent biosensor template for pathogen detection based on a three-dimensional DNA walker and catalyzed hairpin assembly. NANOSCALE 2021; 13:2492-2501. [PMID: 33471006 DOI: 10.1039/d0nr07593k] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
An enzyme-mediated universal fluorescent biosensor template for rapid detection of pathogens was developed based on the strategy of a three-dimensional (3D) DNA walker and catalyzed hairpin assembly (CHA) reaction. In the bacterial recognition step, a strand displacement reaction between bacteria and the double-stranded complex caused the release of the walker strand. The walker strand triggered the DNA walker to produce an enzyme fragment, and the DNA walker used gold nanoparticles (AuNPs) as the track to provide an excellent DNA ligand anchoring area. In the CHA step, the enzyme fragment induced the CHA cycle to yield fluorescence signals, which greatly enhanced the conversion ratio of trigger DNA and the sensitivity of the fluorescent biosensor. The effect of the distance and density of the DNA ligand was studied by adjusting the length of poly-adenine (PolyA), and was further explored by its reaction kinetics. By comparing the maximum reaction rate (Vmax), Michaelis constant (Km) and turnover number (Kcat), the optimized PolyA probe was assessed and identified. In this work, the optimized PolyA-DNA probe exhibited an outstanding sensitivity in Salmonella typhimurium (S. ty) detection, which is 11.9 times and 4.6 times higher than those of the SH-DNA and the MCH treated SH-DNA. Meanwhile, a detection limit of 28.1 CFU mL-1 was achieved in Escherichia coli (E. coli) detection. Furthermore, the biosensor achieved good selectivity and high repeatability with recoveries of 91%-115% for real sample detection. Considering these advantages, this template has great potential as a routine tool for pathogen detection and has wide applications in the field of global public health and food safety.
Collapse
Affiliation(s)
- Dan Li
- Research Center of Analytical Instrumentation, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, P.R. China.
| | - Enlai Yang
- Research Center of Analytical Instrumentation, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, P.R. China.
| | - Zewei Luo
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, Shaanxi, P.R. China
| | - Qiyue Xie
- Research Center of Analytical Instrumentation, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, P.R. China.
| | - Yixiang Duan
- Research Center of Analytical Instrumentation, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, P.R. China.
| |
Collapse
|
29
|
Sutter P, Sutter E. Real-Time Electron Microscopy of Nanocrystal Synthesis, Transformations, and Self-Assembly in Solution. Acc Chem Res 2021; 54:11-21. [PMID: 33315389 DOI: 10.1021/acs.accounts.0c00678] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Solution-phase processes such as colloidal synthesis and transformations have enabled the formation of nanocrystals with exquisite control over size, shape, and composition. Self-assembly, in solution or at phase boundaries, can arrange such nanocrystal building blocks into ordered superlattices and dynamically reconfigurable "smart" materials. Ultimately, continued improvements in our ability to direct nanocrystal matter depend on progress in understanding colloidal chemistry and self-assembly in solution. The traditional approach for investigating the underlying, inherently dynamic processes involves sampling at different stages combined with ex situ characterization, for example, using electron microscopy. In situ studies have been restricted to a few methods capable of measuring in bulk liquids, either in reciprocal space by diffraction or scattering or using spatially averaging (e.g., optical) measurements. These strategies face clear limitations in obtaining mechanistic information, and they are unable to address heterogeneous systems that may harbor rich sets of configurations with different local properties. The development of microfabricated cells that hermetically encapsulate bulk solutions between ultrathin (electron transparent) membranes has paved the way for studying processes in liquids in real time by electron microscopy at resolution down to the atomic scale. Electrons interact much more strongly with matter than other probes, for example, X-rays. In ordinary inorganic samples, the main effects are atom displacements and defect formation via knock-on and ionization damage. In liquid-cell electron microscopy, the interaction of the beam with both the suspended nanostructures and the solution creates more diverse effects, so the straightforward scenario of imaging unperturbed nanocrystal chemistry in solution is rarely realized.In this Account, we discuss applications of real-time electron microscopy to the analysis of nanocrystal synthesis, transformations, and self-assembly in solution. While in the simplest case the effects of the electron beam are negligible, the interaction with high-energy electrons often provides excitation or stimulus for solution-phase processes or opens up competing chemical pathways. Real-time observations of self-assembly demonstrate particularly clearly the power of in situ microscopy in identifying key nucleation and growth mechanisms and providing information about preferred structural motifs that can be analyzed to quantify the balance of forces and the role of entropy in stabilizing ordered assemblies. Modifications of the solution by the electron beam can provide stimuli for on-demand self-assembly, for example, via an acid spike due to water radiolysis that locally lowers the pH in the imaged area. While in this and other cases (e.g., colloidal synthesis), beam-induced radicals become part of the experimental design, in imaging redox reactions such as galvanic transformations of nanocrystal templates, radicals need to be managed and if possible eliminated by suitable scavengers. Finally, excitation by the imaging electron beam can transfer energy to individual nanocrystals in solution, thus driving nonthermal (e.g., plasmon-mediated) synthesis or other chemistry while following the reaction progress with high resolution. Overall, with validation by ex situ control experiments, the unique ability of observing processes in solution at the nanometer scale should make liquid-cell electron microscopy an integral part of the toolkit for designing novel inorganic nanocrystal architectures.
Collapse
Affiliation(s)
- Peter Sutter
- Department of Electrical & Computer Engineering, University of Nebraska—Lincoln, Lincoln, Nebraska 68588, United States
| | - Eli Sutter
- Department of Mechanical & Materials Engineering, University of Nebraska—Lincoln, Lincoln, Nebraska 68588, United States
| |
Collapse
|
30
|
Huang Z, Zhao Y, Liu B, Guan S, Liu J. Stronger Adsorption of Phosphorothioate DNA Oligonucleotides on Graphene Oxide by van der Waals Forces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:13708-13715. [PMID: 33161721 DOI: 10.1021/acs.langmuir.0c02761] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Finding DNA sequences that can adsorb strongly on nanomaterials is critical for bioconjugate and biointerface chemistry. In most previous work, unmodified DNA with a phosphodiester backbone (PO DNA) were screened or selected for adsorption on inorganic surfaces. In this work, the adsorption of phosphorothioate (PS)-modified DNA (PS DNA) on graphene oxide (GO) is studied. By use of fluorescently labeled oligonucleotides as probes, all the tested PS DNA strands are adsorbed more strongly on GO compared to the PO DNA of the same sequence. The adsorption mechanism is probed by washing the adsorbed DNA with proteins, surfactants, and urea. Molecular dynamics simulations show that van der Waals forces are responsible for the tighter adsorption of PS DNA. Polycytosine (poly-C) DNA, in general, has a high affinity for the GO surface, and PS poly-C DNA can adsorb even stronger, making it an ideal anchoring sequence on GO. With this knowledge, noncovalent functionalization of GO with a diblock DNA is demonstrated, where a PS poly-C block is used to anchor on the surface. This conjugate achieves better hybridization than the PO DNA of the same sequence for hybridization with the complementary DNA.
Collapse
Affiliation(s)
- Zhicheng Huang
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Yu Zhao
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Biwu Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Shaokang Guan
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
31
|
He Z, Yin H, Chang CC, Wang G, Liang X. Interfacing DNA with Gold Nanoparticles for Heavy Metal Detection. BIOSENSORS 2020; 10:E167. [PMID: 33172098 PMCID: PMC7694790 DOI: 10.3390/bios10110167] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/02/2020] [Accepted: 11/04/2020] [Indexed: 12/12/2022]
Abstract
The contamination of heavy metals (e.g., Hg, Pb, Cd and As) poses great risks to the environment and human health. Rapid and simple detection of heavy metals of considerable toxicity in low concentration levels is an important task in biological and environmental analysis. Among the many convenient detection methods for heavy metals, DNA-inspired gold nanoparticles (DNA-AuNPs) have become a well-established approach, in which assembly/disassembly of AuNPs is used for colorimetric signaling of the recognition event between DNA and target heavy metals at the AuNP interface. This review focuses on the recent efforts of employing DNA to manipulate the interfacial properties of AuNPs, as well as the major advances in the colorimetric detection of heavy metals. Beginning with the introduction of the fundamental aspects of DNA and AuNPs, three main strategies of constructing DNA-AuNPs with DNA binding-responsive interface are discussed, namely, crosslinking, electrostatic interaction and base pair stacking. Then, recent achievements in colorimetric biosensing of heavy metals based on manipulation of the interface of DNA-AuNPs are surveyed and compared. Finally, perspectives on challenges and opportunities for future research in this field are provided.
Collapse
Affiliation(s)
- Zhiyu He
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; (Z.H.); (H.Y.); (X.L.)
| | - Huiling Yin
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; (Z.H.); (H.Y.); (X.L.)
| | - Chia-Chen Chang
- Department of Medical Biotechnology and Laboratory Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
- Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, Taoyuan 33302, Taiwan
| | - Guoqing Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; (Z.H.); (H.Y.); (X.L.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Xingguo Liang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; (Z.H.); (H.Y.); (X.L.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| |
Collapse
|
32
|
Kushalkar MP, Liu B, Liu J. Promoting DNA Adsorption by Acids and Polyvalent Cations: Beyond Charge Screening. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:11183-11195. [PMID: 32881531 DOI: 10.1021/acs.langmuir.0c02122] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Adsorbing DNA oligonucleotides onto nanoparticles is the first step in developing DNA-based biosensors, drug delivery systems, and smart materials. Since DNA is a polyanion, it is repelled by negatively charged nanoparticles, which constitute the majority of commonly used nanomaterials. Adding salt such as NaCl to screen charge repulsion is a standard method of promoting DNA adsorption. However, Na+ does not supply additional attractive forces. In addition, adding a high concentration of NaCl can cause the aggregation of nanomaterials. In this feature article, we mainly summarize the methods developed in our laboratory to promote DNA adsorption by lowering the pH and by adding polyvalent metal ions, especially transition-metal ions. Various materials including noble metals (gold, silver, and platinum), 2D materials (graphene oxide, MoS2, WS2, and MXene), polydopamine, and several metal oxides are discussed. In general, low pH can protonate DNA bases and nanoparticle surfaces, reducing charge repulsion and even leading to attraction, although DNA folding at low pH can sometimes be detrimental to adsorption. Polyvalent metal ions can bridge additional interactions to achieve otherwise impossible adsorption. On the basis of the current understanding, a few future research directions are proposed to further improve DNA adsorption.
Collapse
Affiliation(s)
- Mehal P Kushalkar
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Biwu Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
33
|
Wang C, Zhang D, Tang Y, Wei W, Liu Y, Liu S. Label-Free Imaging of Flap Endonuclease 1 in Living Cells by Assembling Original and Multifunctional Nanoprobe. ACS APPLIED BIO MATERIALS 2020; 3:4573-4580. [DOI: 10.1021/acsabm.0c00494] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Chenchen Wang
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Duoduo Zhang
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Yunfei Tang
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Wei Wei
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Yong Liu
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Songqin Liu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
34
|
Interfacing DNA with nanoparticles: Surface science and its applications in biosensing. Int J Biol Macromol 2020; 151:757-780. [DOI: 10.1016/j.ijbiomac.2020.02.217] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/19/2020] [Accepted: 02/19/2020] [Indexed: 12/17/2022]
|
35
|
Hu L, Fu X, Kong G, Yin Y, Meng HM, Ke G, Zhang XB. DNAzyme–gold nanoparticle-based probes for biosensing and bioimaging. J Mater Chem B 2020; 8:9449-9465. [DOI: 10.1039/d0tb01750g] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The design and applications of DNAzyme–gold nanoparticle-based probes in biosensing and bioimaging are summarized here.
Collapse
Affiliation(s)
- Ling Hu
- Molecular Sciences and Biomedicine Laboratory
- State Key Laboratory for Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
| | - Xiaoyi Fu
- Molecular Sciences and Biomedicine Laboratory
- State Key Laboratory for Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
| | - Gezhi Kong
- Molecular Sciences and Biomedicine Laboratory
- State Key Laboratory for Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
| | - Yao Yin
- Molecular Sciences and Biomedicine Laboratory
- State Key Laboratory for Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
| | - Hong-Min Meng
- College of Chemistry
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| | - Guoliang Ke
- Molecular Sciences and Biomedicine Laboratory
- State Key Laboratory for Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
| | - Xiao-Bing Zhang
- Molecular Sciences and Biomedicine Laboratory
- State Key Laboratory for Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
| |
Collapse
|
36
|
Li J, Koo KM, Wang Y, Trau M. Native MicroRNA Targets Trigger Self-Assembly of Nanozyme-Patterned Hollowed Nanocuboids with Optimal Interparticle Gaps for Plasmonic-Activated Cancer Detection. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1904689. [PMID: 31724319 DOI: 10.1002/smll.201904689] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/19/2019] [Indexed: 05/28/2023]
Abstract
The modernized use of nucleic acid (NA) sequences to drive nanostructure self-assembly has given rise to a new class of designed nanomaterials with controllable plasmonic functionalities for broad surface-enhanced Raman scattering (SERS)-based bioanalysis applications. Herein, dual usage of microRNAs (miRNAs) as both valuable cancer biomarkers and direct self-assembly triggers is identified and capitalized upon for custom-designed plasmonic nanostructures. Through strict NA hybridization of miRNA targets, Au nanospheres selectively self-assemble onto hollowed Au/Ag alloy nanocuboids with ideal interparticle distances (≈2.3 nm) for optimal SERS signaling. The intrinsic material properties of the self-assembled nanostructures further elevate miRNA detection performance via nanozyme catalytic SERS signaling cascades. This enables fM-level miR-107 detection limit within a clinically-relevant range without any molecular target amplification. The miRNA-triggered nanostructure self-assembly approach is further applied in clinical patient samples, and showcases the potential of miR-107 as a non-invasive prostate cancer diagnostic biomarker. The use of miRNA targets to drive nanostructure self-assembly holds great promise as a practical tool for miRNA detection in disease applications.
Collapse
Affiliation(s)
- Junrong Li
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Kevin M Koo
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Yuling Wang
- Department of Molecular Sciences, Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, 2109, Australia
| | - Matt Trau
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| |
Collapse
|
37
|
Dong Y, Yao C, Wang Z, Luo D, Yang D. Target-Triggered Polymerization of Branched DNA Enables Enzyme-free and Fast Discrimination of Single-Base Changes. iScience 2019; 21:228-240. [PMID: 31675552 PMCID: PMC6838547 DOI: 10.1016/j.isci.2019.10.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/24/2019] [Accepted: 10/14/2019] [Indexed: 01/05/2023] Open
Abstract
Single-base changes lead to important biological and biomedical implications; however, the discrimination of single-base changes from normal DNA always remains a grand challenge. Herein we developed a DNA recognition and amplification system based on artificial branched DNA, namely, target-triggered polymerization (TTP), to realize enzyme-free and fast discrimination of single-base changes. Branched DNA as monomers rapidly polymerized into DNA nanospheres only with the trigger of specific DNA. Our TTP system worked reliably over a wide range of conditions. Remarkably, our TTP system was capable of discriminating base-changing DNA from normal DNA, including distinguishing 1-4 nucleotide changes and positions of single base, which was attributed to the significant amplification of small differences in hybridization thermodynamics and kinetics. We further proposed a theoretical method for calculating the hybridization probability of nucleic acids, which performed highly consistent with experimental results.
Collapse
Affiliation(s)
- Yuhang Dong
- Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Chi Yao
- Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Zhi Wang
- Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Dan Luo
- Department of Biological & Environmental Engineering, Cornell University, Ithaca, NY 14853, USA; CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, P. R. China
| | - Dayong Yang
- Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China.
| |
Collapse
|
38
|
Wu R, Jiang LP, Zhu JJ, Liu J. Effects of Small Molecules on DNA Adsorption by Gold Nanoparticles and a Case Study of Tris(2-carboxyethyl)phosphine (TCEP). LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:13461-13468. [PMID: 31536371 DOI: 10.1021/acs.langmuir.9b02652] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
DNA-functionalized gold nanoparticles (AuNPs) often encounter various small molecules and ions such as backfilling agents, bifunctional cross-linkers, stabilizers, and molecules from biological fluids both during and after the DNA conjugation process. Small molecules and ions can influence the stability and property of the conjugate, but such interactions are yet to be fully explored. In this work, eight important molecules were studied and compared, including tris(2-carboxyethyl)phosphine hydrochloride (TCEP), 3-(2-pyridyldithio)propionic acid N-hydroxysuccinimide ester (SPDP), 4-maleimidobutyric acid N-hydroxysuccinimide ester (GMBS), 6-hydroxy-1-hexanethiol (MCH), l-glutathione (GSH), bromide (Br-), bis(p-sulfonatophenyl)phenylphosphine (BSPP), and thiocyanate (SCN-). Depending on the size, charge, and adsorption affinity on the AuNPs, they can either stabilize or destabilize the AuNPs. Their ability to displace thiolated DNA from AuNPs follows the order of MCH > SPDP > GSH > SCN- > TCEP > Br- > BSPP > GMBS. BSPP has the best stabilization effect for the colloidal stability of AuNPs, while it does not displace the adsorbed DNA. TCEP can be adsorbed on AuNPs and enhance the adsorption of A/C rich DNA in low-salt conditions. This work indicates that the effects of small molecules and ions cannot be ignored when studying the DNA-functionalized AuNPs, which ensures optimal applications and correct interpretation of the data.
Collapse
Affiliation(s)
- Rong Wu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
- Department of Chemistry, Waterloo Institute for Nanotechnology , University of Waterloo , Waterloo , Ontario N2L 3G1 , Canada
| | - Li-Ping Jiang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , China
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology , University of Waterloo , Waterloo , Ontario N2L 3G1 , Canada
| |
Collapse
|
39
|
Xiao M, Lai W, Man T, Chang B, Li L, Chandrasekaran AR, Pei H. Rationally Engineered Nucleic Acid Architectures for Biosensing Applications. Chem Rev 2019; 119:11631-11717. [DOI: 10.1021/acs.chemrev.9b00121] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Mingshu Xiao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Wei Lai
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Tiantian Man
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Binbin Chang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Li Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| | - Arun Richard Chandrasekaran
- The RNA Institute, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Hao Pei
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P. R. China
| |
Collapse
|
40
|
Liu B, Liu J. Freezing-Driven DNA Adsorption on Gold Nanoparticles: Tolerating Extremely Low Salt Concentration but Requiring High DNA Concentration. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:6476-6482. [PMID: 31008607 DOI: 10.1021/acs.langmuir.9b00746] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Attaching thiolated DNA to gold nanoparticles (AuNPs) is a highly important and useful reaction for many applications. Various methods such as adding salts, acids, polymers, and surfactants have been developed to facilitate the reaction. Recently, it was reported that a very high DNA density can be achieved simply by freezing AuNPs with the DNA without any other reagents. DNA oligonucleotides are also known to stretch and align upon freezing. In this work, a set of experiments were performed with a fluorophore and thiol dual-labeled DNA, and the DNA loading density and colloidal stability of AuNPs were measured. The initial salt concentration was unimportant, and even 0.1 mM Na+ allowed around 100 DNA attached to each 13 nm AuNPs. On the other hand, a high DNA concentration of 3 μM was needed to achieve the high DNA density and good colloidal stability of AuNPs. When the thiolated DNA was forced in stable secondary structures, the attachment was low, and preadsorbed DNA also inhibited the DNA attachment by the freezing method. Overall, nonstructured thiolated DNA strands need to align by freezing and quickly attached through the ends of the DNA. This work illustrates practical experiment design conditions and offers fundamental surface science insights for the DNA attachment by freezing.
Collapse
Affiliation(s)
- Biwu Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology , University of Waterloo , Waterloo , Ontario N2L 3G1 , Canada
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology , University of Waterloo , Waterloo , Ontario N2L 3G1 , Canada
| |
Collapse
|
41
|
Wang WW, Han X, Chu LQ. Polyadenine-mediated Immobilization of Aptamers on a Gold Substrate for the Direct Detection of Bacterial Pathogens. ANAL SCI 2019; 35:967-972. [PMID: 31080198 DOI: 10.2116/analsci.19p110] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Nucleic acid aptamers have been widely used as synthetic probes for bioanalytical applications. Herein, we carried out a detailed study on the immobilization of a series of aptamers ranging from 37 to 88 bases, which are specific to either Escherichia coli (E. coli) or Staphylococcus aureus (S. aureus), on a planar gold substrate via a polyadenine-mediated immobilization method. The resultant surfaces were characterized by both surface plasmon resonance spectroscopy (SPR) and X-ray photoelectron spectroscopy. The results clearly show that the aptamer solution at a lower ionic strength gives rise to a higher lateral density of the aptamer when compared to that at a higher ionic strength. The SPR aptasensors are then employed for detecting their corresponding bacteria (i.e., E. coli and S. aureus, respectively). The data indicate that the SPR aptasensor with a higher density of aptamer exhibits a better capture of target bacteria.
Collapse
Affiliation(s)
- Wen-Wen Wang
- College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology
| | - Xiao Han
- College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology
| | - Li-Qiang Chu
- College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology
| |
Collapse
|
42
|
Hu S, Huang PJJ, Wang J, Liu J. Phosphorothioate DNA Mediated Sequence-Insensitive Etching and Ripening of Silver Nanoparticles. Front Chem 2019; 7:198. [PMID: 31041302 PMCID: PMC6476897 DOI: 10.3389/fchem.2019.00198] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 03/14/2019] [Indexed: 01/06/2023] Open
Abstract
Many DNA-functionalized nanomaterials and biosensors have been reported, but most have ignored the influence of DNA on the stability of nanoparticles. We observed that cytosine-rich DNA oligonucleotides can etch silver nanoparticles (AgNPs). In this work, we showed that phosphorothioate (PS)-modified DNA (PS-DNA) can etch AgNPs independently of DNA sequence, suggesting that the thio-modifications are playing the major role in etching. Compared to unmodified DNA (e.g., poly-cytosine DNA), the concentration of required PS DNA decreases sharply, and the reaction rate increases. Furthermore, etching by PS-DNA occurs quite independent of pH, which is also different from unmodified DNA. The PS-DNA mediated etching could also be controlled well by varying DNA length and conformation, and the number and location of PS modifications. With a higher activity of PS-DNA, the process of etching, ripening, and further etching was taken place sequentially. The etching ability is inhibited by forming duplex DNA and thus etching can be used to measure the concentration of complementary DNA.
Collapse
Affiliation(s)
- Shengqiang Hu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, China
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, Canada
| | - Po-Jung Jimmy Huang
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, Canada
| | - Jianxiu Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, China
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|
43
|
Liu B, Wu T, Huang Z, Liu Y, Liu J. Freezing-directed Stretching and Alignment of DNA Oligonucleotides. Angew Chem Int Ed Engl 2019; 58:2109-2113. [PMID: 30589196 DOI: 10.1002/anie.201814352] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Indexed: 11/07/2022]
Abstract
Most single-stranded DNA oligonucleotides are random coils with a persistence length of below 1 nm. So far, no good methods are available to stretch oligonucleotides. Herein, it is shown that freezing can stretch DNA, as confirmed using fluorescence resonance energy transfer, thiazole-orange staining, and surface-enhanced Raman spectroscopy. Lateral inter-strand interactions are critical, and the stretched DNA oligonucleotides are aligned. This work also provides a set of methods for studying frozen oligonucleotides. Upon freezing, DNA oligonucleotides are readily adsorbed onto various nanomaterials, including gold nanoparticles, graphene oxide, iron oxide, and WS2 via the most thermodynamically stable conformation, leading to more stable conjugates.
Collapse
Affiliation(s)
- Biwu Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Tianyi Wu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Zhicheng Huang
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Yibo Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| |
Collapse
|
44
|
Liu B, Wu T, Huang Z, Liu Y, Liu J. Freezing-directed Stretching and Alignment of DNA Oligonucleotides. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201814352] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Biwu Liu
- Department of Chemistry; Waterloo Institute for Nanotechnology; University of Waterloo; Waterloo Ontario N2L 3G1 Canada
| | - Tianyi Wu
- Department of Chemistry; Waterloo Institute for Nanotechnology; University of Waterloo; Waterloo Ontario N2L 3G1 Canada
| | - Zhicheng Huang
- Department of Chemistry; Waterloo Institute for Nanotechnology; University of Waterloo; Waterloo Ontario N2L 3G1 Canada
| | - Yibo Liu
- Department of Chemistry; Waterloo Institute for Nanotechnology; University of Waterloo; Waterloo Ontario N2L 3G1 Canada
| | - Juewen Liu
- Department of Chemistry; Waterloo Institute for Nanotechnology; University of Waterloo; Waterloo Ontario N2L 3G1 Canada
| |
Collapse
|
45
|
Sutter E, Zhang B, Sutter S, Sutter P. In situ electron microscopy of the self-assembly of single-stranded DNA-functionalized Au nanoparticles in aqueous solution. NANOSCALE 2018; 11:34-44. [PMID: 30525151 DOI: 10.1039/c8nr08421a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Solution-phase self-assembly of DNA-functionalized nanoparticles into mesoscale structures is a promising strategy for creating functional materials from nanocrystal building blocks. The predominant approach has been the use of Watson-Crick base pairing between complementary bases in designated 'sticky ends' to trigger programmable self-assembly into ordered superlattices. Here we demonstrate the ordered self-assembly of Au nanoparticles conjugated with single-stranded (ss) DNA in acidic solutions. Au nanoparticles functionalized with thiolated ssDNA are protected against coalescence and the DNA conformation undergoes significant modifications at low pH, which can be associated with the protonation of adenine bases and the formation of a parallel poly-adenine duplex, which govern the interaction between ssDNA-Au nanoparticle conjugates. In situ liquid cell electron microscopy enables real-time imaging of the self-assembly process and the identification of key characteristics, such as the preferred structural motifs and interparticle separations in the native solution environment. Our results highlight alternatives to conventional base-pairing interactions for building DNA-directed nanoparticle superlattices.
Collapse
Affiliation(s)
- Eli Sutter
- Department of Mechanical & Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | | | | | | |
Collapse
|
46
|
Wang L, Zhang H, Wang C, Xu Y, Su J, Wang X, Liu X, Feng D, Wang L, Zuo X, Shi J, Ge Z, Fan C, Mi X. Poly-adenine-mediated spherical nucleic acids for strand displacement-based DNA/RNA detection. Biosens Bioelectron 2018; 127:85-91. [PMID: 30594078 DOI: 10.1016/j.bios.2018.12.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 11/29/2018] [Accepted: 12/05/2018] [Indexed: 01/08/2023]
Abstract
DNA-gold nanoparticles (AuNPs) conjugate is one of the most versatile bionanomaterials for biomedical and clinical diagnosis. However, to finely tune the hybridization ability and precisely control the orientation and conformation of surface-tethered oligonucleotides on AuNPs remains a hurdle. In this work, we developed a poly adenine-mediated spherical nucleic acid (polyA-mediated SNA) strategy by assembling di-block DNA probes on gold nanoparticles (AuNPs) to spatially control interdistance and hybridization ability of oligonucleotides on AuNPs. By modulating length of poly A bound on the SNA with different degrees of constructing, we presented significant improved biosensing performance including high hybridization efficiency, and expanded dynamic range of analytes with more sensitive detection limit. Furthermore, this polyA design could facilitate the programmable detection for DNA in serum environment and simultaneous multicolor detection of three different microRNAs associated with pancreatic carcinoma. The demonstration of the link between modulation of SNA assembly strategy and biodetection capability will increase the development of high performance diagnostic tools for translational biomedicine.
Collapse
Affiliation(s)
- Lu Wang
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201220, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huan Zhang
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201220, China
| | - Chenguang Wang
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201220, China
| | - Yi Xu
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201220, China
| | - Jing Su
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201220, China
| | - Xiao Wang
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201220, China
| | - Xinxin Liu
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201220, China
| | - Dezhi Feng
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201220, China
| | - Lihua Wang
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Xiaolei Zuo
- School of Chemistry and Chemical Engineering, Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiye Shi
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Zhilei Ge
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China; School of Chemistry and Chemical Engineering, Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Chunhai Fan
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China; School of Chemistry and Chemical Engineering, Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xianqiang Mi
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201220, China.
| |
Collapse
|
47
|
|
48
|
Srivastava S, Fukuto M, Gang O. Liquid interfaces with pH-switchable nanoparticle arrays. SOFT MATTER 2018; 14:3929-3934. [PMID: 29736540 DOI: 10.1039/c8sm00583d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Stimuli-responsive 2D nanoscale systems offer intriguing opportunities for creating switchable interfaces. At liquid interfaces, such systems can provide control over interfacial energies, surface structure, and rheological and transport characteristics, which is relevant, for example, to bio- and chemical reactors, microfluidic devices, and soft robotics. Here, we explore the formation of a pH-responsive membrane formed from gold nanoparticles grafted with DNA (DNA-NPs) at a liquid-vapor interface. A DNA-NP 2D hexagonal lattice can be reversibly switched by pH modulation between an expanded state of non-connected nanoparticles at neutral pH and a contracted state of linked nanoparticles at acidic pH due to the AH+-H+A base pairing between A-motifs. Our in situ surface X-ray scattering studies reveal that the reversible lattice contraction can be tuned by the length of pH-activated linkers, with up to ∼71% change in surface area.
Collapse
Affiliation(s)
- Sunita Srivastava
- Department of Physics, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | | | | |
Collapse
|
49
|
Convertible DNA ends-based silver nanoprobes for colorimetric detection human telomerase activity. Talanta 2018; 178:458-463. [DOI: 10.1016/j.talanta.2017.09.057] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 09/15/2017] [Accepted: 09/17/2017] [Indexed: 11/19/2022]
|
50
|
Liu S, Peng P, Wang H, Shi L, Li T. Thioflavin T binds dimeric parallel-stranded GA-containing non-G-quadruplex DNAs: a general approach to lighting up double-stranded scaffolds. Nucleic Acids Res 2017; 45:12080-12089. [PMID: 29059300 PMCID: PMC5716147 DOI: 10.1093/nar/gkx942] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 10/03/2017] [Indexed: 12/27/2022] Open
Abstract
A molecular rotor thioflavin T (ThT) is usually used as a fluorescent ligand specific for G-quadruplexes. Here, we demonstrate that ThT can tightly bind non-G-quadruplex DNAs with several GA motifs and dimerize them in a parallel double-stranded mode, accompanied by over 100-fold enhancement in the fluorescence emission of ThT. The introduction of reverse Watson–Crick T-A base pairs into these dimeric parallel-stranded DNA systems remarkably favors the binding of ThT into the pocket between G•G and A•A base pairs, where ThT is encapsulated thereby restricting its two rotary aromatic rings in the excited state. A similar mechanism is also demonstrated in antiparallel DNA duplexes where several motifs of two consecutive G•G wobble base pairs are incorporated and serve as the active pockets for ThT binding. The insight into the interactions of ThT with non-G-quadruplex DNAs allows us to introduce a new concept for constructing DNA-based sensors and devices. As proof-of-concept experiments, we design a DNA triplex containing GA motifs in its Hoogsteen hydrogen-bonded two parallel strands as a pH-driven nanoswitch and two GA-containing parallel duplexes as novel metal sensing platforms where C–C and T–T mismatches are included. This work may find further applications in biological systems (e.g. disease gene detection) where parallel duplex or triplex stretches are involved.
Collapse
Affiliation(s)
- Shuangna Liu
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Pai Peng
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Huihui Wang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Lili Shi
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Tao Li
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|