1
|
Chicea D, Nicolae-Maranciuc A. Metal Nanocomposites as Biosensors for Biological Fluids Analysis. MATERIALS (BASEL, SWITZERLAND) 2025; 18:1809. [PMID: 40333451 PMCID: PMC12028469 DOI: 10.3390/ma18081809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/04/2025] [Accepted: 04/09/2025] [Indexed: 05/09/2025]
Abstract
Metal nanocomposites are rapidly emerging as a powerful platform for biosensing applications, particularly in the analysis of biological fluids. This review paper examines the recent advancements in the development and application of metal nanocomposites as biosensors for detecting various analytes in complex biological matrices such as blood, serum, urine, and saliva. We discuss the unique physicochemical properties of metal nanocomposites, including their high surface area, enhanced conductivity, and tunable optical and electrochemical characteristics, which contribute to their superior sensing capabilities. The review will cover various fabrication techniques, focusing on their impact on the sensitivity, selectivity, and stability of the resulting biosensors. Furthermore, we will analyze the diverse applications of these biosensors in the detection of disease biomarkers, environmental toxins, and therapeutic drugs within biological fluids. Finally, we will address the current challenges and future perspectives of this field, highlighting the potential for improved diagnostic tools and personalized medicine through the continued development of advanced metal nanocomposite-based biosensors.
Collapse
Affiliation(s)
- Dan Chicea
- Research Center for Complex Physical Systems, Faculty of Sciences, Lucian Blaga University of Sibiu, 550012 Sibiu, Romania
| | - Alexandra Nicolae-Maranciuc
- Research Center for Complex Physical Systems, Faculty of Sciences, Lucian Blaga University of Sibiu, 550012 Sibiu, Romania
- Institute for Interdisciplinary Studies and Research (ISCI), Lucian Blaga University of Sibiu, 550024 Sibiu, Romania
| |
Collapse
|
2
|
Zhang A, Wu M, Lu J, Peng L, Zhang Y, Ma S. Surfactant-Free Emulsion Polymerization of Styrene in Ethanol-Water Mixtures: The Role of Mesostructures in the Formation of Polystyrene. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:4388-4400. [PMID: 39927480 DOI: 10.1021/acs.langmuir.5c00080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
Although the synthesis of monodisperse polystyrene nanoparticles (MPSPs) in surfactant-free systems has been widely investigated, the role of mesostructures in forming MPSPs is still unclear. Herein, the styrene/ethanol-water (St/EtOH-H2O) ternary system with certain mesostructures was employed as a model to investigate the correlation between the mesostructure of systems and the properties of polystyrene products. The mesostructures of the ternary system, including styrene droplets, a sponge-like structure, and water droplets, were investigated by transmission electron microscope (TEM) with negative staining, dynamic light scattering (DLS), and nanoparticle tracking analysis (NTA). Classical molecular dynamics (MD) simulations showed the spontaneous aggregation of ethanol at the styrene-water interface, which may be one of the factors stabilizing the mesostructures. We demonstrated that the formation of MPSPs can only occur in the systems containing styrene droplets. Cooling the reactants of styrene droplet systems in the early stages of polymerization resulted in incomplete polystyrene nanospheres (PSNSs), indicating that the formation of MPSPs originated from the interface of styrene droplets. Subsequently, the MPSPs were gradually formed through self-templating polymerization. This study offers valuable insights into the preparation and understanding of the formation process of polymer nanoparticles in other similar surfactant-free systems.
Collapse
Affiliation(s)
- Ao Zhang
- Research Center for Water Resources and Interface Science, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Min Wu
- Research Center for Water Resources and Interface Science, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Jiahan Lu
- Research Center for Water Resources and Interface Science, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Longhua Peng
- Research Center for Water Resources and Interface Science, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Ying Zhang
- Research Center for Water Resources and Interface Science, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Shiyu Ma
- Research Center for Water Resources and Interface Science, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| |
Collapse
|
3
|
Spitzmüller L, Berson J, Nitschke F, Kohl T, Schimmel T. Titania-mediated stabilization of fluorescent dye encapsulation in mesoporous silica nanoparticles. NANOSCALE ADVANCES 2024; 6:3450-3461. [PMID: 38933859 PMCID: PMC11197426 DOI: 10.1039/d4na00242c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024]
Abstract
Mesoporous silica nanoparticles hosting guest molecules are a versatile tool with applications in various fields such as life and environmental sciences. Current commonly applied pore blocking strategies are not universally applicable and are often not robust enough to withstand harsh ambient conditions (e.g. geothermal). In this work, a titania layer is utilized as a robust pore blocker, with a test-case where it is used for the encapsulation of fluorescent dyes. The layer is formed by a hydrolysis process of a titania precursor in an adapted microemulsion system and demonstrates effective protection of both the dye payload and the silica core from disintegration under otherwise damaging external conditions. The produced dye-MSN@TiO2 particles are characterized by means of electron microscopy, elemental mapping, ζ-potential, X-ray diffraction (XRD), nitrogen adsorption, Thermogravimetric analysis (TGA), fluorescence and absorbance spectroscopy and Fourier Transform Infrared Spectroscopy - Total Attenuated Reflectance (FT-IR ATR). Finally, the performance of the titania-encapsulated MSNs is demonstrated in long-term aqueous stability and in flow-through experiments, where owing to improved dispersion encapsulated dye results in improved flow properties compared to free dye properties. This behavior exemplifies the potential advantage of carrier-borne marker molecules over free dye molecules in applications where accessibility or targeting are a factor, thus this encapsulation method increases the variety of fields of application.
Collapse
Affiliation(s)
- Laura Spitzmüller
- Geothermal Energy and Reservoir Technology, Institute of Applied Geosciences, Karlsruhe Institute of Technology Karlsruhe Germany
- Institute of Nanotechnology, Karlsruhe Institute of Technology Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
- Institute of Applied Physics, Karlsruhe Institute of Technology Wolfgang-Gaede-Straße 1 76131 Karlsruhe Germany
| | - Jonathan Berson
- Institute of Nanotechnology, Karlsruhe Institute of Technology Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
- Institute of Applied Physics, Karlsruhe Institute of Technology Wolfgang-Gaede-Straße 1 76131 Karlsruhe Germany
| | - Fabian Nitschke
- Geothermal Energy and Reservoir Technology, Institute of Applied Geosciences, Karlsruhe Institute of Technology Karlsruhe Germany
| | - Thomas Kohl
- Geothermal Energy and Reservoir Technology, Institute of Applied Geosciences, Karlsruhe Institute of Technology Karlsruhe Germany
| | - Thomas Schimmel
- Institute of Nanotechnology, Karlsruhe Institute of Technology Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
- Institute of Applied Physics, Karlsruhe Institute of Technology Wolfgang-Gaede-Straße 1 76131 Karlsruhe Germany
| |
Collapse
|
4
|
Zhang Z, Song Q, Zhao Z, Chang K, Shu P, Wang J, Yan H, Zhang Y. Cosmetically Approved Short-Chain Alcohol/Triethyl Citrate/Water Surfactant-Free Microemulsions and Potential Application to Transdermal Penetration of α-Arbutin. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:11011-11022. [PMID: 38739267 DOI: 10.1021/acs.langmuir.4c00382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Surfactant-free microemulsions (SFMEs) exhibited remarkable advantages and potential, attributed to their similarity to traditional surfactant-based microemulsions and the absence of surfactants. Herein, a novel SFME was developed utilizing cosmetically approved materials, such as short-chain alcohol as an amphi-solvent, triethyl citrate (TEC) as the nonpolar phase, and water as the polar phase. 1,2-Pentanediol (PtDO)/TEC/water combination can form the largest monophasic zone, accounting for ∼74% of the total phase diagram area, due to an optimal hydrophilic (water)-lipophilic (TEC) balance. Comparable to surfactant-based microemulsion, PtDO/TEC/water SFME can also be categorized into three types: water-in-oil, discontinuous, and oil-in-water. As TEC or water is increased, or PtDO is decreased, the nanoaggregates in PtDO/TEC/water SFME grow from <5 nm to tens of nanometers. The addition of α-arbutin (ABN) does not disrupt PtDO/TEC/water SFME, but rather enhances its formation, resulting in a larger monophasic area and consistent size (2.8-3.8 nm) through participating in interface assembly. Furthermore, ABN-loaded PtDO/TEC/water SFME exhibits remarkable resistance to dilution, exceptional stability, and minimal irritation. Notably, PtDO/TEC/water SFME significantly boosts ABN's solubility in water by 2 times, its percutaneous penetration rate by 3-4 times, and enables a slow-release DPPH• radical scavenging effect. This SFME serves as a safe and cosmetically suitable nanoplatform for the delivery of bioactive substances.
Collapse
Affiliation(s)
- Zhiqin Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, JNU-HBN Cosmetic Functional Molecular Innovation Joint Laboratory, School of Chemical & Materials Engineering, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, China
| | - Qingle Song
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, JNU-HBN Cosmetic Functional Molecular Innovation Joint Laboratory, School of Chemical & Materials Engineering, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, China
- HBN Research Institute and Biological Laboratory, Shenzhen Hujia Technology Co., Ltd., Shenzhen 518000, China
| | - Zhen Zhao
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Kuan Chang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, JNU-HBN Cosmetic Functional Molecular Innovation Joint Laboratory, School of Chemical & Materials Engineering, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, China
| | - Peng Shu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, JNU-HBN Cosmetic Functional Molecular Innovation Joint Laboratory, School of Chemical & Materials Engineering, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, China
- HBN Research Institute and Biological Laboratory, Shenzhen Hujia Technology Co., Ltd., Shenzhen 518000, China
| | - Jing Wang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, JNU-HBN Cosmetic Functional Molecular Innovation Joint Laboratory, School of Chemical & Materials Engineering, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, China
| | - Hui Yan
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Yongmin Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, JNU-HBN Cosmetic Functional Molecular Innovation Joint Laboratory, School of Chemical & Materials Engineering, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, China
| |
Collapse
|
5
|
Zhang Y, Mu M, Zhou Y, Xie H, Zhao S. Redox-responsive microemulsion: Fabrication and application to curcumin encapsulation. J Colloid Interface Sci 2023; 647:384-394. [PMID: 37269735 DOI: 10.1016/j.jcis.2023.05.129] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 04/20/2023] [Accepted: 05/18/2023] [Indexed: 06/05/2023]
Abstract
HYPOTHESIS Stimulus-responsive microemulsions have aroused significant attention because of their versatile and reversible switchability between stable and unstable states. However, most stimuli-responsive microemulsions are based on stimuli-responsive surfactants. We posit that the change in the hydrophilicity of a selenium-containing alcohol triggered by a mild redox reaction could also influence the stability of microemulsions and provide a new nanoplatform for the delivery of bioactive substances. EXPERIMENTS A selenium-containing diol (3,3'-selenobis(propan-1-ol), PSeP) was designed and used as a co-surfactant in a microemulsion with ethoxylated hydrogenated castor oil (HCO40), diethylene glycol monohexyl ether (DGME), 2-n-octyl-1-dodecanol (ODD) and water. The redox-induced transition in PSeP was characterized by 1H NMR, 77Se NMR, and MS. The redox-responsiveness of the ODD/HCO40/DGME/PSeP/water microemulsion was investigated through determination of a pseudo-ternary phase diagram, analysis by dynamic light scattering, and electrical conductivity, and its encapsulation performance was evaluated by determination of the solubility, stability, antioxidant activity, and skin penetrability of encapsulated curcumin. FINDINGS The redox conversion of PSeP enabled efficient switching of ODD/HCO40/DGME/PSeP/water microemulsions. Addition of oxidant (H2O2), oxidized PSeP into more hydrophilic PSeP-Ox (selenoxide), disrupting the emulsifying capacity of the combination of HCO40/DGME/PSeP, markedly reducing the monophasic microemulsion region in the phase diagram, and inducing phase separation in some formulations. Addition of reductant (N2H4·H2O), reduced PSeP-Ox and restored the emulsifying capacity of the combination of HCO40/DGME/PSeP. In addition, PSeP-based microemulsions can significantly enhance the solubility in oil (by 23 times), stability, antioxidant capacity (DPPH∙ radical scavenging by 91.74 %), and skin penetrability of curcumin, showing clear potential for encapsulation and delivery of curcumin and other bioactive substances.
Collapse
Affiliation(s)
- Yongmin Zhang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical & Materials Engineering, Jiangnan University, Wuxi 214122, PR China; Key Laboratory of Green Cleaning Technology and Detergents of Zhejiang Province, Hangzhou 310056, PR China.
| | - Meng Mu
- Petroleum Engineering Technology Research Institute of Shengli Oilfield, SINOPEC, Dongying, Shandong 257067, China
| | - Yue Zhou
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical & Materials Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Huan Xie
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical & Materials Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Shanjuan Zhao
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical & Materials Engineering, Jiangnan University, Wuxi 214122, PR China
| |
Collapse
|
6
|
Muñana-González S, Veloso-Fernández A, Ruiz-Rubio L, Pérez-Álvarez L, Vilas-Vilela JL. Covalent Cross-Linking as a Strategy to Prepare Water-Dispersible Chitosan Nanogels. Polymers (Basel) 2023; 15:polym15020434. [PMID: 36679313 PMCID: PMC9863238 DOI: 10.3390/polym15020434] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/08/2023] [Accepted: 01/12/2023] [Indexed: 01/15/2023] Open
Abstract
Due to the environmental problems generated by petroleum derivative polymers as mentioned in Agenda 2030, the use of natural polymers is increasing. Among them, cellulose and chitin are the most widespread biopolymers available in nature. Chitosan, obtained from chitin, is a really good candidate to develop nanocarriers due to its polyelectrolyte nature and ease of chemical modification. However, chitosan presents a solubility drawback in an aqueous medium at physiological pH (pH = 7.4), which restricts its applicability in biomedicine. In this work, nanogels were successfully synthesized from chitosan systems with different water solubilities (chitosan, oligosaccharide chitosan, and quaternized chitosan) using the reverse microemulsion method and polyethylene glycol diacid (PEGBCOOH) as a covalent cross-linking agent. Cross-linking with PEGBCOOH was analyzed by proton nuclear magnetic resonance (1H-NMR), which allowed for nanogels to be prepared whose size and swelling were comparatively studied by transmission electron microscopy (TEM) and dynamic light scattering (DLS) and zeta potential, respectively. The particle size of the swollen nanogels showed a different pH-responsive behavior that decreased for chitosan, increased for oligosaccharide chitosan, and remained constant for quaternized chitosan. Nevertheless, a drastic reduction was observed in all cases in the culture medium. Along the same line, the dispersibility of the synthesized nanogels in different media was comparatively evaluated, showing similar values for the nanogels prepared from soluble chitosans than for water insoluble chitosan as a consequence of the cross-linking with PEGBCOOH. After 6 months of storage of the dried nanogels, the water dispersibility values remained constant in all cases, demonstrating the stabilizing effect of the employed cross-linking agent and the potential use of synthesized nanogels as substrates for drug delivery.
Collapse
Affiliation(s)
- Sara Muñana-González
- Grupo de Química Macromolecular (LABQUIMAC), Departamento de Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco UPV/EHU, 48940 Leioa, Spain
| | - Antonio Veloso-Fernández
- Grupo de Química Macromolecular (LABQUIMAC), Departamento de Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco UPV/EHU, 48940 Leioa, Spain
| | - Leire Ruiz-Rubio
- Grupo de Química Macromolecular (LABQUIMAC), Departamento de Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco UPV/EHU, 48940 Leioa, Spain
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| | - Leyre Pérez-Álvarez
- Grupo de Química Macromolecular (LABQUIMAC), Departamento de Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco UPV/EHU, 48940 Leioa, Spain
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
- Correspondence: ; Tel.: +34-946-01-2709
| | - José Luis Vilas-Vilela
- Grupo de Química Macromolecular (LABQUIMAC), Departamento de Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco UPV/EHU, 48940 Leioa, Spain
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| |
Collapse
|
7
|
Sergeevich Popovetskiy P, Victorovich Kasyanov A, Anatolievich Maximovskiy E, Eugenievich Plyusnin P. Electrophoretic mobility of silver nanoparticles stabilized with nonionic surfactant Ecosurf SA4: origin of charged particles, concentration by electrophoresis and production of conductive coatings. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
8
|
Magnetic Iron Nanoparticles: Synthesis, Surface Enhancements, and Biological Challenges. Processes (Basel) 2022. [DOI: 10.3390/pr10112282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
This review focuses on the role of magnetic nanoparticles (MNPs), their physicochemical properties, their potential applications, and their association with the consequent toxicological effects in complex biologic systems. These MNPs have generated an accelerated development and research movement in the last two decades. They are solving a large portion of problems in several industries, including cosmetics, pharmaceuticals, diagnostics, water remediation, photoelectronics, and information storage, to name a few. As a result, more MNPs are put into contact with biological organisms, including humans, via interacting with their cellular structures. This situation will require a deeper understanding of these particles’ full impact in interacting with complex biological systems, and even though extensive studies have been carried out on different biological systems discussing toxicology aspects of MNP systems used in biomedical applications, they give mixed and inconclusive results. Chemical agencies, such as the Registration, Evaluation, Authorization, and Restriction of Chemical substances (REACH) legislation for registration, evaluation, and authorization of substances and materials from the European Chemical Agency (ECHA), have held meetings to discuss the issue. However, nanomaterials (NMs) are being categorized by composition alone, ignoring the physicochemical properties and possible risks that their size, stability, crystallinity, and morphology could bring to health. Although several initiatives are being discussed around the world for the correct management and disposal of these materials, thanks to the extensive work of researchers everywhere addressing the issue of related biological impacts and concerns, and a new nanoethics and nanosafety branch to help clarify and bring together information about the impact of nanoparticles, more questions than answers have arisen regarding the behavior of MNPs with a wide range of effects in the same tissue. The generation of a consolidative framework of these biological behaviors is necessary to allow future applications to be manageable.
Collapse
|
9
|
Conductive coatings based on concentrated silver organosols stabilized with Tergitol NP4/Aerosol OT mixture. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Ornelas-Hernández LF, Garduno-Robles A, Zepeda-Moreno A. A Brief Review of Carbon Dots-Silica Nanoparticles Synthesis and their Potential Use as Biosensing and Theragnostic Applications. NANOSCALE RESEARCH LETTERS 2022; 17:56. [PMID: 35661270 PMCID: PMC9167377 DOI: 10.1186/s11671-022-03691-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
Carbon dots (CDs) are carbon nanoparticles with sizes below 10 nm and have attracted attention due to their relatively low toxicity, great biocompatibility, water solubility, facile synthesis, and exceptional photoluminescence properties. Accordingly, CDs have been widely exploited in different sensing and biomedical applications, for example, metal sensing, catalysis, biosensing, bioimaging, drug and gene delivery, and theragnostic applications. Similarly, the well-known properties of silica, such as facile surface functionalization, good biocompatibility, high surface area, and tunable pore volume, have allowed the loading of diverse inorganic and organic moieties and nanoparticles, creating complex hybrid nanostructures that exploit distinct properties (optical, magnetic, metallic, mesoporous, etc.) for sensing, biosensing, bioimaging, diagnosis, and gene and drug delivery. In this context, CDs have been successfully grafted into diverse silica nanostructures through various synthesis methods (e.g., solgel chemistry, inverse microemulsion, surfactant templating, and molecular imprinting technology (MIT)), imparting hybrid nanostructures with multimodal properties for distinct objectives. This review discusses the recently employed synthesis methods for CDs and silica nanoparticles and their typical applications. Then, we focus on combined synthesis techniques of CD-silica nanostructures and their promising biosensing operations. Finally, we overview the most recent potential applications of these materials as innovative smart hybrid nanocarriers and theragnostic agents for the nanomedical field.
Collapse
Affiliation(s)
- Luis Fernando Ornelas-Hernández
- Onkogenetik/Mexicana de Investigación Y Biotectogía SA. de C.V., Av. Miguel Hidalgo y Costilla 1966, Guadalajara, Jalisco, México
| | - Angeles Garduno-Robles
- Onkogenetik/Mexicana de Investigación Y Biotectogía SA. de C.V., Av. Miguel Hidalgo y Costilla 1966, Guadalajara, Jalisco, México
| | - Abraham Zepeda-Moreno
- Onkogenetik/Mexicana de Investigación Y Biotectogía SA. de C.V., Av. Miguel Hidalgo y Costilla 1966, Guadalajara, Jalisco, México.
- Unidad de Biología Molecular, Investigación Y Diagnóstico SA de CV, Hospital San Javier, Pablo Casals 640, Guadalajara, Jalisco, México.
- Departamento de Clínicas Médicas, Centro Universitario de Ciencias de La Salud, Universidad de Guadalajara, Sierra Mojada 950, Guadalajara, Jalisco, México.
| |
Collapse
|
11
|
Choi JH, Kumari N, Koo JH, Kumar A, Lee C, Shim JH, Wang Z, Oh SH, Lee IS. Ghost-Template-Faceted Synthesis of Tunable Amorphous Hollow Silica Nanostructures and Their Ordered Mesoscale Assembly. NANO LETTERS 2022; 22:1159-1166. [PMID: 35088595 DOI: 10.1021/acs.nanolett.1c04268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Despite the enormous applications of and fundamental scientific interest in amorphous hollow-silica nanostructures (h-SiNSs), their synthesis in crystal-like nonspherical polygonal architectures is challenging. Herein, we present a facile one-shot synthetic procedure for various unconventional h-SiNSs with controllable surface curvatures (concave, convex, or angular), symmetries (spherical, polygonal, or Janus), and interior architectures (open or closed walls) by the addition of a metal salt and implementing kinetic handles of silica precursor (silanes/ammonia) concentrations and reverse-micellar volume. During the silica growth, we identified the key role of transiently in situ crystallized metal coordination complexes as a nanopolyhedral "ghost template", which provides facet-selective interactions with amino-silica monomers and guides the differential silica growth that produces different h-SiNSs. Additionally, crystal-like well-defined polygonal h-SiNSs with flat surfaces, assembled as highly ordered close-packed octahedral mesoscale materials (ca. 3 μm) where h-SiNSs with different nanoarchitectures act as building units (ca. 150 nm) to construct customizable cavities and nanospaces, differ from conventionally assembled materials.
Collapse
Affiliation(s)
- Jeong Hun Choi
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR), Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Nitee Kumari
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR), Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Jung Hun Koo
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR), Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Amit Kumar
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR), Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Changhoon Lee
- Max Planck POSTECH Center for Complex Phase of Materials, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Ji Hoon Shim
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Zhipeng Wang
- Department of Energy Science, Sungkyunkwan University (SKKU), Suwon 16419, Korea
| | - Sang Ho Oh
- Department of Energy Science, Sungkyunkwan University (SKKU), Suwon 16419, Korea
| | - In Su Lee
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR), Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
- Institute for Convergence Research and Education in Advanced Technology (I-CREATE), Yonsei University, Seoul 03722, Korea
| |
Collapse
|
12
|
Sánchez M JF, Sánchez MD, Falcone RD, Ritacco HA. Production of Pd nanoparticles in microemulsions. Effect of reaction rates on the particle size. Phys Chem Chem Phys 2022; 24:1692-1701. [PMID: 34982075 DOI: 10.1039/d1cp05049d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the synthesis of metallic nanoparticles in microemulsions, we hypothesized that the particle size is controlled by the reaction rate and not by the microemulsion size. Thus, the changes observed in the particle sizes as reaction conditions, such as concentrations, temperatures, the type of surfactant used, etc., are varied which should not be correlated directly to the modification of these conditions but indirectly to the changes they produce in the reaction rates. In this work, the microemulsions were formulated with benzene and water as continuous and dispersed phases, respectively, using n-dodecyltrimethylammonium bromide (DTAB) and n-octanol as the surfactant and cosurfactant. Using time-resolved UV-vis spectroscopy, we measured the reaction rates in the production of palladium (Pd) nanoparticles inside the microemulsions at different reactant concentrations and temperatures, keeping all the other parameters constant. The measured reaction rates were then correlated with the particle sizes measured by transmission electron microscopy (TEM). We found that the nanoparticle size increases linearly as the reaction rate increases, independently of the actual reactant concentration or temperature. We proposed a simple model for the observed kinetics where the reaction rate is controlled mainly by the diffusion of the reducing agent. With this model, we predicted that the particle size should depend indirectly, via the reaction kinetics, on the micelle radius, the water volume and the total microemulsion volume. Some of these predictions were indeed observed and reported in the literature.
Collapse
Affiliation(s)
- Jhon F Sánchez M
- Instituto de Física del Sur (IFISUR), Departamento de Física, Universidad Nacional del Sur (UNS), CONICET, Av. L. N. Alem 1253, B8000CPB - Bahía Blanca, Argentina.
| | - Miguel D Sánchez
- Instituto de Física del Sur (IFISUR), Departamento de Física, Universidad Nacional del Sur (UNS), CONICET, Av. L. N. Alem 1253, B8000CPB - Bahía Blanca, Argentina.
| | - R Dario Falcone
- Departamento de Química, Universidad Nacional de Río Cuarto (UNRC). Instituto para el Desarrollo Agroindustrial y de la Salud (IDAS), CONICET-UNRC, Agencia Postal No. 3, X5804BYA Río Cuarto, Argentina
| | - Hernán A Ritacco
- Instituto de Física del Sur (IFISUR), Departamento de Física, Universidad Nacional del Sur (UNS), CONICET, Av. L. N. Alem 1253, B8000CPB - Bahía Blanca, Argentina.
| |
Collapse
|
13
|
Liu W, Yin SY, Hu Y, Deng T, Li J. Microemulsion-Confined Assembly of Magnetic Nanoclusters for pH/H 2O 2 Dual-Responsive T 2-T 1 Switchable MRI. ACS APPLIED MATERIALS & INTERFACES 2022; 14:2629-2637. [PMID: 35000378 DOI: 10.1021/acsami.1c22747] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In this work, a T2-T1 switchable superparamagnetic iron oxide nanoprobe with a pH/H2O2 dual response was obtained using a microemulsion method. This novel method for the controllable assembly of small iron clusters followed by their independent modification was reported, which could not be prepared by common synthetic methods. The size of the assembled nanoprobe was uniform and controllable, with a stable T2 magnetic resonance imaging (MRI) signal under a single condition. When the nanoprobe was exposed to the tumor environment, the higher H+ and H2O2 concentrations at the tumor site could dissociate the nanoprobe and redisperse into small iron clusters. When this occurred, the T2 MRI signal was converted into a T1 MRI signal, achieving specific detection of tumors by a pH/H2O2 dual-response T2-T1 MRI.
Collapse
Affiliation(s)
- Wei Liu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Sheng-Yan Yin
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yingcai Hu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Ting Deng
- Institute of Applied Chemistry, School of Science, Central South University of Forestry and Technology, Changsha 410004, P. R. China
| | - Jishan Li
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
14
|
Khan ST, Adil SF, Shaik MR, Alkhathlan HZ, Khan M, Khan M. Engineered Nanomaterials in Soil: Their Impact on Soil Microbiome and Plant Health. PLANTS (BASEL, SWITZERLAND) 2021; 11:109. [PMID: 35009112 PMCID: PMC8747355 DOI: 10.3390/plants11010109] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 05/27/2023]
Abstract
A staggering number of nanomaterials-based products are being engineered and produced commercially. Many of these engineered nanomaterials (ENMs) are finally disposed into the soil through various routes in enormous quantities. Nanomaterials are also being specially tailored for their use in agriculture as nano-fertilizers, nano-pesticides, and nano-based biosensors, which is leading to their accumulation in the soil. The presence of ENMs considerably affects the soil microbiome, including the abundance and diversity of microbes. In addition, they also influence crucial microbial processes, such as nitrogen fixation, mineralization, and plant growth promoting activities. ENMs conduct in soil is typically dependent on various properties of ENMs and soil. Among nanoparticles, silver and zinc oxide have been extensively prepared and studied owing to their excellent industrial properties and well-known antimicrobial activities. Therefore, at this stage, it is imperative to understand how these ENMs influence the soil microbiome and related processes. These investigations will provide necessary information to regulate the applications of ENMs for sustainable agriculture and may help in increasing agrarian production. Therefore, this review discusses several such issues.
Collapse
Affiliation(s)
- Shams Tabrez Khan
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh 2002002, UP, India
| | - Syed Farooq Adil
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (S.F.A.); (M.R.S.); (H.Z.A.); (M.K.)
| | - Mohammed Rafi Shaik
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (S.F.A.); (M.R.S.); (H.Z.A.); (M.K.)
| | - Hamad Z. Alkhathlan
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (S.F.A.); (M.R.S.); (H.Z.A.); (M.K.)
| | - Merajuddin Khan
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (S.F.A.); (M.R.S.); (H.Z.A.); (M.K.)
| | - Mujeeb Khan
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (S.F.A.); (M.R.S.); (H.Z.A.); (M.K.)
| |
Collapse
|
15
|
Cho KW, Sunwoo SH, Hong YJ, Koo JH, Kim JH, Baik S, Hyeon T, Kim DH. Soft Bioelectronics Based on Nanomaterials. Chem Rev 2021; 122:5068-5143. [PMID: 34962131 DOI: 10.1021/acs.chemrev.1c00531] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Recent advances in nanostructured materials and unconventional device designs have transformed the bioelectronics from a rigid and bulky form into a soft and ultrathin form and brought enormous advantages to the bioelectronics. For example, mechanical deformability of the soft bioelectronics and thus its conformal contact onto soft curved organs such as brain, heart, and skin have allowed researchers to measure high-quality biosignals, deliver real-time feedback treatments, and lower long-term side-effects in vivo. Here, we review various materials, fabrication methods, and device strategies for flexible and stretchable electronics, especially focusing on soft biointegrated electronics using nanomaterials and their composites. First, we summarize top-down material processing and bottom-up synthesis methods of various nanomaterials. Next, we discuss state-of-the-art technologies for intrinsically stretchable nanocomposites composed of nanostructured materials incorporated in elastomers or hydrogels. We also briefly discuss unconventional device design strategies for soft bioelectronics. Then individual device components for soft bioelectronics, such as biosensing, data storage, display, therapeutic stimulation, and power supply devices, are introduced. Afterward, representative application examples of the soft bioelectronics are described. A brief summary with a discussion on remaining challenges concludes the review.
Collapse
Affiliation(s)
- Kyoung Won Cho
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,Interdisciplinary Program for Bioengineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Sung-Hyuk Sunwoo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Yongseok Joseph Hong
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Ja Hoon Koo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
| | - Jeong Hyun Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
| | - Seungmin Baik
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,Interdisciplinary Program for Bioengineering, Seoul National University, Seoul 08826, Republic of Korea.,School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Dae-Hyeong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,Interdisciplinary Program for Bioengineering, Seoul National University, Seoul 08826, Republic of Korea.,School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea.,Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
16
|
Teunissen AJP, Burnett ME, Prévot G, Klein ED, Bivona D, Mulder WJM. Embracing nanomaterials' interactions with the innate immune system. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1719. [PMID: 33847441 PMCID: PMC8511354 DOI: 10.1002/wnan.1719] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/12/2021] [Accepted: 03/21/2021] [Indexed: 12/17/2022]
Abstract
Immunotherapy has firmly established itself as a compelling avenue for treating disease. Although many clinically approved immunotherapeutics engage the adaptive immune system, therapeutically targeting the innate immune system remains much less explored. Nanomedicine offers a compelling opportunity for innate immune system engagement, as many nanomaterials inherently interact with myeloid cells (e.g., monocytes, macrophages, neutrophils, and dendritic cells) or can be functionalized to target their cell-surface receptors. Here, we provide a perspective on exploiting nanomaterials for innate immune system regulation. We focus on specific nanomaterial design parameters, including size, form, rigidity, charge, and surface decoration. Furthermore, we examine the potential of high-throughput screening and machine learning, while also providing recommendations for advancing the field. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Diagnostic Tools > In Vivo Nanodiagnostics and Imaging Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Abraham J. P. Teunissen
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Marianne E. Burnett
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Geoffrey Prévot
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Emma D. Klein
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Daniel Bivona
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Willem J. M. Mulder
- Department of Internal Medicine, Radboud Institute of Molecular Life Sciences (RIMLS) and Radboud Center for Infectious Diseases (RCI), Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
- Laboratory of Chemical Biology, Department of Biochemical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
17
|
Kale AR, Barai DP, Bhanvase BA, Sonawane SH. An Ultrasound-Assisted Minireactor System for Continuous Production of TiO2 Nanoparticles in a Water-in-Oil Emulsion. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c02413] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Akshay R. Kale
- Department of Chemical Engineering, Laxminarayan Institute of Technology, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, MS 440033, India
| | - Divya P. Barai
- Department of Chemical Engineering, Laxminarayan Institute of Technology, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, MS 440033, India
| | - Bharat A. Bhanvase
- Department of Chemical Engineering, Laxminarayan Institute of Technology, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, MS 440033, India
| | - Shirish H. Sonawane
- Department of Chemical Engineering, National Institute of Technology, Warangal, Telangana 506004, India
| |
Collapse
|
18
|
Wu Y, Ta HT. Different approaches to synthesising cerium oxide nanoparticles and their corresponding physical characteristics, and ROS scavenging and anti-inflammatory capabilities. J Mater Chem B 2021; 9:7291-7301. [PMID: 34355717 DOI: 10.1039/d1tb01091c] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The biological applications of cerium oxide nanoparticles (nanoceria) have received extensive attention in recent decades. The coexistence of trivalent cerium and tetravalent cerium on the surface of nanoceria allows the scavenging of reactive oxygen species (ROS). The regeneratable changes between Ce3+ and Ce4+ make nanoceria a suitable therapeutic agent for treating ROS-related diseases and inflammatory diseases. The size, morphology and Ce3+/Ce4+ state of cerium oxide nanoparticles are affected by the synthesis method. This review focuses on various synthesis methods of cerium oxide nanoparticles and discusses their corresponding physical characteristics, and anti-ROS and anti-inflammatory properties.
Collapse
Affiliation(s)
- Yuao Wu
- Queensland Micro- and Nanotechnology, Griffith University, Nathan, Queensland 4111, Australia.
| | - Hang T Ta
- Queensland Micro- and Nanotechnology, Griffith University, Nathan, Queensland 4111, Australia. and School of Environment and Science, Griffith University, Nathan, Queensland 4111, Australia and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia
| |
Collapse
|
19
|
Zavanelli N, Kim J, Yeo WH. Recent Advances in High-Throughput Nanomaterial Manufacturing for Hybrid Flexible Bioelectronics. MATERIALS (BASEL, SWITZERLAND) 2021; 14:2973. [PMID: 34072779 PMCID: PMC8197924 DOI: 10.3390/ma14112973] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/27/2021] [Accepted: 05/27/2021] [Indexed: 12/02/2022]
Abstract
Hybrid flexible bioelectronic systems refer to integrated soft biosensing platforms with tremendous clinical impact. In this new paradigm, electrical systems can stretch and deform with the skin while previously hidden physiological signals can be continuously recorded. However, hybrid flexible bioelectronics will not receive wide clinical adoption until these systems can be manufactured at industrial scales cost-effectively. Therefore, new manufacturing approaches must be discovered and studied under the same innovative spirit that led to the adoption of novel materials and soft structures. Recent works have taken mature manufacturing approaches from the graphics industry, such as gravure, flexography, screen, and inkjet printing, and applied them to fully printed bioelectronics. These applications require the cohesive study of many disparate parts. For instance, nanomaterials with optimal properties for each specific application must be dispersed in printable inks with rheology suited to each printing method. This review summarizes recent advances in printing technologies, key nanomaterials, and applications of the manufactured hybrid bioelectronics. We also discuss the existing challenges of the available nanomanufacturing methods and the areas that need immediate technological improvements.
Collapse
Affiliation(s)
- Nathan Zavanelli
- George W. Woodruff School of Mechanical Engineering, Center for Human-Centric Interfaces and Engineering at the Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA 30332, USA; (N.Z.); (J.K.)
| | - Jihoon Kim
- George W. Woodruff School of Mechanical Engineering, Center for Human-Centric Interfaces and Engineering at the Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA 30332, USA; (N.Z.); (J.K.)
| | - Woon-Hong Yeo
- George W. Woodruff School of Mechanical Engineering, Center for Human-Centric Interfaces and Engineering at the Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA 30332, USA; (N.Z.); (J.K.)
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Neural Engineering Center, Institute for Materials, Institute for Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
20
|
Zhang X, Han Y, Liu W, Pan N, Li D, Chai J. A novel synthesis of hexagonal cylinder-like ZnO with an excellent performance by a surfactant-free microemulsion-hydrothermal method. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.02.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
21
|
Ridley RE, Fathi-Kelly H, Kelly JP, Vasquez VR, Graeve OA. Predicting the size of salt-containing aqueous Na-AOT reverse micellar water-in-oil microemulsions with consideration for specific ion effects. J Colloid Interface Sci 2021; 586:830-835. [PMID: 33220955 DOI: 10.1016/j.jcis.2020.11.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 11/01/2020] [Accepted: 11/02/2020] [Indexed: 11/19/2022]
Abstract
HYPOTHESIS Reverse micellar solutions are thermodynamically stable systems in which surfactant molecules surround water droplets within a continuous organic phase. Among their many applications, they can be used for the synthesis of nanoparticles of controlled agglomeration. Here, we consider the role specific ion effects play in reverse micelle size reduction. EXPERIMENTS Dynamic light scattering measurements and the Gouy-Chapman electrical double layer model were combined to study water/AOT/isooctane reverse micellar systems (wo = 10). Linear relationships between the solvodynamic diameter (D) of reverse micelles containing various concentrations of FeSO4, Mg(NO3)2, CuCl2, Al(NO3)3, Fe(NO3)3, Y(NO3)3, NaBH4, ZrOCl2, and NH4OH, and their calculated Debye screening lengths, κ-1, were observed with decreasing D and increasing salt concentration (c). FINDINGS By comparing the linear fits for reverse micelle size as a function of c-1/2, we determined the size can be described as a function of the Debye screening length, cation valency (z), and specific anion hydrated radius (ran), where D = 3.1z κ-1 + bi, and bi is linearly related to ran. Our model accurately predicts reverse micelle sizes with the addition of monovalent, divalent, and trivalent salts for which the primary hydrolyzed cation species has a charge that is equal to the cation valency.
Collapse
Affiliation(s)
- Robyn E Ridley
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, 9500 Gilman Drive - MC 0411, La Jolla, CA 92093-0411, United States
| | - Hoorshad Fathi-Kelly
- Kazuo Inamori School of Engineering, Alfred University, 2 Pine Street, Alfred, NY 14802, United States
| | - James P Kelly
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, 9500 Gilman Drive - MC 0411, La Jolla, CA 92093-0411, United States
| | - Victor R Vasquez
- Department of Chemical and Materials Engineering, University of Nevada, Reno, 1664 N. Virginia Street - MS 388, Reno, NV 89557, United States
| | - Olivia A Graeve
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, 9500 Gilman Drive - MC 0411, La Jolla, CA 92093-0411, United States.
| |
Collapse
|
22
|
Zhou Y, He S, Li H, Zhang Y. CO 2 and Temperature Control over Nanoaggregates in Surfactant-Free Microemulsion. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:1983-1990. [PMID: 33512168 DOI: 10.1021/acs.langmuir.0c03527] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Smart microemulsions (MEs) recently have attracted significant interests. However, MEs, especially surfactant-free MEs (SFMEs) that respond to more than one stimulus, are rarely reported to date. Here, we reported the first example of dual-responsive SFME in which a CO2-sensitive hydroxyethylamine was used as an amphisolvent. This SFME was investigated utilizing ternary phase diagram, dynamic light scattering, and UV-visible spectrum techniques. It was found that three hydroxyethylamines could stabilize the octanol-water mixture to form transparent and isotropic SFMEs including nanoaggregates-rich pre-ouzo zone, regardless of the number of the hydroxyl group. Among them, 2-(dimethyl amino) ethanol (DMEA)-based SFME possesses the largest single-phase region and most sensitive to CO2 and the changes in temperature. With bubbling of CO2/N2 or decreasing/increasing temperature, both the single-phase region and pre-ouzo zone reversibly shrink and expand, as well as with breathing. However, CO2/N2-induced change is more significant than that induced by temperature. The former is mainly ascribed to the reversible protonation and deprotonation of DMEA, while the latter is generally interpreted as the effects of temperature on hydrogen bond interaction. Note that CO2 leads to a thorough demusification from Winsor IV ME to oil-rich and water-rich two phases without nanoaggregates, while cooling only causes to a particular phase separation, producing two new MEs phases, not typical Winsor I or II MEs. Such a unique dual-responsive SFME can not only be applied in the remediation of contaminated soil, drug delivery, and nanoparticles preparation but also opens a new door to switchable emulsion.
Collapse
Affiliation(s)
- Yue Zhou
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical & Materials Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Shuai He
- College of Chemistry and Environmental Protection Engineering, Southwest Minzu University, Chengdu 610041, P. R. China
| | - Huanhuan Li
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical & Materials Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Yongmin Zhang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical & Materials Engineering, Jiangnan University, Wuxi 214122, P. R. China
| |
Collapse
|
23
|
Bryant K, Hammond-Pereira E, Saunders SR. Ionic Liquid Aggregation Mechanism for Nanoparticle Synthesis. J Phys Chem B 2021; 125:253-263. [PMID: 33378194 DOI: 10.1021/acs.jpcb.0c08908] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nanoparticle synthesis with silylamine reversible ionic liquids (RevILs) has been previously demonstrated to offer unique alternatives to traditional nanoparticle syntheses, allowing for size control and facile deposition onto support surfaces via the switchable nature of the IL. However, the mechanism of nanoparticle synthesis remains uncharacterized. The use of RevILs facilitates the synthesis of size-controlled nanoparticles without the use of additional stabilizing agents (i.e., surfactants, ligands, and polymers) that passivate the nanoparticle surface, which are traditionally required to control the nanoparticle size. Traditional techniques often require harsh activation steps that ultimately impact nanoparticle size and morphology. While RevIL syntheses offer an excellent alternative, as they do not require additional activation steps, the mechanism through which nanoparticles are synthesized in these systems has not been studied previously. Preceding work hypothesized nanoparticles prepared with RevILs are formed via a reverse micelle mechanism, in which nanoparticles are stabilized and templated within the aqueous core of the organized micelle structures. In this work, DOSY-NMR is used to demonstrate that nanoparticles synthesized with 3-aminopropyltriethylsilane RevIL are not formed through a reverse micelle mechanism but rather a switchable aggregation mechanism that affords control over the nanoparticle size via manipulation of the RevIL structure and concentration. Furthermore, it is shown that the addition of water to RevIL systems has detrimental effects on the aggregation behavior of the ionic liquid molecules in solution, causing disassembly of the ion pairs. However, because nanoparticle reduction likely occurs faster than the disassembly of the ion pairs, nanoparticle size is unaffected by the addition of water during nanoparticle reduction.
Collapse
Affiliation(s)
- Kristin Bryant
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington 99164, United States
| | - Ellis Hammond-Pereira
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington 99164, United States
| | - Steven R Saunders
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington 99164, United States.,Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
| |
Collapse
|
24
|
Microemulsion Synthesis of Superparamagnetic Nanoparticles for Bioapplications. Int J Mol Sci 2021; 22:ijms22010427. [PMID: 33406682 PMCID: PMC7795751 DOI: 10.3390/ijms22010427] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 12/28/2020] [Accepted: 12/30/2020] [Indexed: 12/13/2022] Open
Abstract
Superparamagnetic nanoparticles have seen increased potential in medical and environmental applications. Their preparation is traditionally made by the coprecipitation method, with limited control over the particle size distribution. Microemulsion methods could be advantageous due to the efficient control of the size, shape, and composition of the nanoparticles obtained. Water-in-oil (W/O) microemulsions consist of aqueous microdomains dispersed in a continuous oil phase, stabilized by surfactant molecules. These work as nanoreactors where the synthesis of the desired nanoparticles takes place through a co-precipitation chemical reaction. In this work, superparamagnetic magnetite nanoparticles with average diameters between 5.4 and 7.2 nm and large monodispersity have been synthesized through precipitation in a W/O microemulsion, with Cetyl Trimethyl Ammonium Bromide (CTAB) as a main surfactant, 1-butanol as a cosurfactant, and with 1-hexanol as the continuous oily phase. The optimization of the corresponding washing protocol has also been established since a strict control is required when using these materials for bioapplications. Their applicability in those has been proved by their encapsulation in liposomes, being tested as signal enhancers for lateral flow immunoassays by using the affinity neutravidin-biotin model system. Due to their magnetic behaviour, they were also tested for magnetic separation. These novel materials have been found to be useful for analytical applications requiring high sensitivity and the removal of interferences.
Collapse
|
25
|
Bezza FA, Tichapondwa SM, Chirwa EMN. Fabrication of monodispersed copper oxide nanoparticles with potential application as antimicrobial agents. Sci Rep 2020; 10:16680. [PMID: 33028867 PMCID: PMC7541485 DOI: 10.1038/s41598-020-73497-z] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 09/15/2020] [Indexed: 12/23/2022] Open
Abstract
Cuprous oxide nanoparticles (Cu2O NPs) were fabricated in reverse micellar templates by using lipopeptidal biosurfactant as a stabilizing agent. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive x-ray spectrum (EDX) and UV-Vis analysis were carried out to investigate the morphology, size, composition and stability of the nanoparticles synthesized. The antibacterial activity of the as-synthesized Cu2O NPs was evaluated against Gram-positive B. subtilis CN2 and Gram-negative P. aeruginosa CB1 strains, based on cell viability, zone of inhibition and minimal inhibitory concentration (MIC) indices. The lipopeptide stabilized Cu2O NPs with an ultra-small size of 30 ± 2 nm diameter exhibited potent antimicrobial activity against both Gram-positive and Gram-negative bacteria with a minimum inhibitory concentration of 62.5 µg/mL at pH5. MTT cell viability assay displayed a median inhibition concentration (IC50) of 21.21 μg/L and 18.65 μg/mL for P. aeruginosa and B. subtilis strains respectively. Flow cytometric quantification of intracellular reactive oxygen species (ROS) using 2,7-dichlorodihydrofluorescein diacetate staining revealed a significant ROS generation up to 2.6 to 3.2-fold increase in the cells treated with 62.5 µg/mL Cu2O NPs compared to the untreated controls, demonstrating robust antibacterial activity. The results suggest that lipopeptide biosurfactant stabilized Cu2O NPs could have promising potential for biocompatible bactericidal and therapeutic applications.
Collapse
Affiliation(s)
- Fisseha A Bezza
- Water Utilization and Environmental Engineering Division, Department of Chemical Engineering, University of Pretoria, Pretoria, 0002, South Africa
| | - Shepherd M Tichapondwa
- Water Utilization and Environmental Engineering Division, Department of Chemical Engineering, University of Pretoria, Pretoria, 0002, South Africa
| | - Evans M N Chirwa
- Water Utilization and Environmental Engineering Division, Department of Chemical Engineering, University of Pretoria, Pretoria, 0002, South Africa.
| |
Collapse
|
26
|
Tartaro G, Mateos H, Schirone D, Angelico R, Palazzo G. Microemulsion Microstructure(s): A Tutorial Review. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1657. [PMID: 32846957 PMCID: PMC7558136 DOI: 10.3390/nano10091657] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/05/2020] [Accepted: 08/18/2020] [Indexed: 11/16/2022]
Abstract
Microemulsions are thermodynamically stable, transparent, isotropic single-phase mixtures of two immiscible liquids stabilized by surfactants (and possibly other compounds). The assortment of very different microstructures behind such a univocal macroscopic definition is presented together with the experimental approaches to their determination. This tutorial review includes a necessary overview of the microemulsion phase behavior including the effect of temperature and salinity and of the features of living polymerlike micelles and living networks. Once these key learning points have been acquired, the different theoretical models proposed to rationalize the microemulsion microstructures are reviewed. The focus is on the use of these models as a rationale for the formulation of microemulsions with suitable features. Finally, current achievements and challenges of the use of microemulsions are reviewed.
Collapse
Affiliation(s)
- Giuseppe Tartaro
- Department of Chemistry, and CSGI (Center for Colloid and Surface Science), University of Bari, via Orabona 4, 70125 Bari, Italy; (G.T.); (H.M.); (D.S.)
| | - Helena Mateos
- Department of Chemistry, and CSGI (Center for Colloid and Surface Science), University of Bari, via Orabona 4, 70125 Bari, Italy; (G.T.); (H.M.); (D.S.)
| | - Davide Schirone
- Department of Chemistry, and CSGI (Center for Colloid and Surface Science), University of Bari, via Orabona 4, 70125 Bari, Italy; (G.T.); (H.M.); (D.S.)
| | - Ruggero Angelico
- Department of Agricultural, Environmental and Food Sciences (DIAAA), University of Molise, I-86100 Campobasso, Italy;
| | - Gerardo Palazzo
- Department of Chemistry, and CSGI (Center for Colloid and Surface Science), University of Bari, via Orabona 4, 70125 Bari, Italy; (G.T.); (H.M.); (D.S.)
| |
Collapse
|
27
|
Saleem MA, Yasir Siddique M, Nazar MF, Khan SUD, Ahmad A, Khan R, Hussain SZ, Mat Lazim A, Azfaralariff A, Mohamed M. Formation of Antihyperlipidemic Nano-Ezetimibe from Volatile Microemulsion Template for Enhanced Dissolution Profile. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:7908-7915. [PMID: 32551692 DOI: 10.1021/acs.langmuir.0c01016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Nanostructures play an important role in targeting sparingly water-soluble drugs to specific sites. Because of the structural flexibility and stability, the use of template microemulsions (μEs) can produce functional nanopharmaceuticals of different sizes, shapes, and chemical properties. In this article, we report a new volatile oil-in-water (o/w) μE formulation comprising ethyl acetate/ethanol/brij-35/water to obtain the highly water-dispersible nanoparticles of an antihyperlipidemic agent, ezetimibe (EZM-NPs), to enhance its dissolution profile. A pseudoternary phase diagram was delineated in a specified brij-35/ethanol ratio (1:1) to describe the transparent, optically isotropic domain of the as-formulated μE. The water-dilutable μE formulation, comprising an optimum composition of ethyl acetate (18.0%), ethanol (25.0%), brij-35 (25.0%), and water (32.0%), showed a good dissolvability of EZM around 4.8 wt % at pH 5.2. Electron micrographs showed a fine monomodal collection of EZM-loaded μE droplets (∼45 nm) that did not coalesce even after lyophilization, forming small spherical EZM-NPs (∼60 nm). However, the maturity of nanodrug droplets observed through dynamic light scattering suggests the affinity of EZM to the nonpolar microenvironment, which was further supported through peak-to-peak correlation of infrared analysis and fluorescence measurements. Moreover, the release profile of the as-obtained EZM-nanopowder increased significantly >98% in 30 min, which indicates that a reduced drug concentration will be needed for capsules or tablets in the future and can be simply incorporated into the multidosage formulation of EZM.
Collapse
Affiliation(s)
| | | | | | - Salah Ud-Din Khan
- Sustainable Energy Technologies (SET) Center, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia
| | - Ashfaq Ahmad
- Department of Chemistry, College of Science, King Saud University Riyadh, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Rawaiz Khan
- Engineer Abdullah Bugshan Research Chair for Dental and Oral Rehabilitation, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia
| | - Syed Zajif Hussain
- Department of Chemistry and Chemical Engineering, Syed Babar Ali School of Science and Engineering (SBASSE), Lahore University of Management Sciences (LUMS), Lahore 54792, Pakistan
| | - Azwan Mat Lazim
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor 43600, Malaysia
| | - Ahmad Azfaralariff
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor 43600, Malaysia
| | - Mazlan Mohamed
- Faculty of Bioenginering and Technology, Universiti Malaysia Kelantan, Jeli, Kelantan 17600, Malaysia
| |
Collapse
|
28
|
Zhu H, Yin J. Study on cloud point pressure of [Emim][Tf2N] in supercritical carbon dioxide microemulsions based on non-ionic surfactant and role of solubilized water. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113299] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
29
|
Lombardo D, Calandra P, Pasqua L, Magazù S. Self-assembly of Organic Nanomaterials and Biomaterials: The Bottom-Up Approach for Functional Nanostructures Formation and Advanced Applications. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E1048. [PMID: 32110877 PMCID: PMC7084717 DOI: 10.3390/ma13051048] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 02/17/2020] [Accepted: 02/20/2020] [Indexed: 12/11/2022]
Abstract
In this paper, we survey recent advances in the self-assembly processes of novel functional platforms for nanomaterials and biomaterials applications. We provide an organized overview, by analyzing the main factors that influence the formation of organic nanostructured systems, while putting into evidence the main challenges, limitations and emerging approaches in the various fields of nanotechology and biotechnology. We outline how the building blocks properties, the mutual and cooperative interactions, as well as the initial spatial configuration (and environment conditions) play a fundamental role in the construction of efficient nanostructured materials with desired functional properties. The insertion of functional endgroups (such as polymers, peptides or DNA) within the nanostructured units has enormously increased the complexity of morphologies and functions that can be designed in the fabrication of bio-inspired materials capable of mimicking biological activity. However, unwanted or uncontrollable effects originating from unexpected thermodynamic perturbations or complex cooperative interactions interfere at the molecular level with the designed assembly process. Correction and harmonization of unwanted processes is one of the major challenges of the next decades and requires a deeper knowledge and understanding of the key factors that drive the formation of nanomaterials. Self-assembly of nanomaterials still remains a central topic of current research located at the interface between material science and engineering, biotechnology and nanomedicine, and it will continue to stimulate the renewed interest of biologist, physicists and materials engineers by combining the principles of molecular self-assembly with the concept of supramolecular chemistry.
Collapse
Affiliation(s)
- Domenico Lombardo
- Consiglio Nazionale delle Ricerche, Istituto per i Processi Chimico-Fisici, 98158 Messina, Italy
| | - Pietro Calandra
- Consiglio Nazionale delle Ricerche, Istituto Studio Materiali Nanostrutturati, 00015 Roma, Italy;
| | - Luigi Pasqua
- Department of Environmental and Chemical Engineering, University of Calabria, 87036 Rende, Italy;
| | - Salvatore Magazù
- Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra, Università di Messina, 98166 Messina, Italy;
| |
Collapse
|
30
|
Nyoka M, Choonara YE, Kumar P, Kondiah PPD, Pillay V. Synthesis of Cerium Oxide Nanoparticles Using Various Methods: Implications for Biomedical Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E242. [PMID: 32013189 PMCID: PMC7075153 DOI: 10.3390/nano10020242] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 12/12/2022]
Abstract
Cerium oxide nanoparticles have been used in a number of non-medical products over the years. The therapeutic application of these nanoparticles has mainly been due to their oxidative stress ameliorating abilities. Their enzyme-mimetic catalytic ability to change between the Ce3+ and Ce4+ species makes them ideal for a role as free-radical scavengers for systemic diseases as well as neurodegenerative diseases. In this review, we look at various methods of synthesis (including the use of stabilizing/capping agents and precursors), and how the synthesis method affects the physicochemical properties, their behavior in biological environments, their catalytic abilities as well as their reported toxicity.
Collapse
Affiliation(s)
| | | | | | | | - Viness Pillay
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutics Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa; (M.N.); (Y.E.C.); (P.K.); (P.P.D.K.)
| |
Collapse
|
31
|
Abstract
The use of nanoparticulate systems for pulmonary drug delivery offers a number of advantages including significantly improved delivery efficiency to deep lung and the improved bioavailability. The traditional nanoparticle manufacturing process such as ball/jet milling often yields large aggregates, which could detrimentally inhibit the effective delivery of drug particles to the lower respiratory tract. Here we report an alternative technique of spray-drying the microemulsions to produce nanoparticles (<100 nm) that can be dispersed homogenously in the propellant to form an extremely stable pressurized metered-dose inhaler (pMDI) formulations. Such nanoparticulate formulations provide an ideal tool for pulmonary drug delivery.
Collapse
Affiliation(s)
- Hao-Ying Li
- Biomanufacturing Research Centre, School of Mechanical and Electronic Engineering, Soochow University, Suzhou, China.
| | - Fan Zhang
- Laboratory of Molecular Biology, Medical Research Council, Cambridge, UK
| |
Collapse
|
32
|
Razumkova IA, Denisenko YG, Boyko AN, Ikonnikov DA, Aleksandrovsky AS, Azarapin NO, Andreev OV. Synthesis and Upconversion Luminescence in LaF
3
:Yb
3+
, Ho
3+
, GdF
3
: Yb
3+
, Tm
3+
and YF
3
:Yb
3+
, Er
3+
obtained from Sulfide Precursors. Z Anorg Allg Chem 2019. [DOI: 10.1002/zaac.201900204] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Illariia A. Razumkova
- Department of Inorganic and Physical Chemistry Tyumen State University 6, Volodarskogo Street 625003 Tyumen Russia
| | - Yuriy G. Denisenko
- Department of Inorganic and Physical Chemistry Tyumen State University 6, Volodarskogo Street 625003 Tyumen Russia
- Department of General and Special Chemistry Industrial University of Tyumen 38, Volodarskogo Street 625000 Tyumen Russia
| | - Andrey N. Boyko
- Department of Inorganic and Physical Chemistry Tyumen State University 6, Volodarskogo Street 625003 Tyumen Russia
| | - Denis A. Ikonnikov
- Laboratory of Coherent Optics Kirensky Institute of Physics Federal Research Center KSC SB RAS 660036 Krasnoyarsk Russia
| | - Aleksandr S. Aleksandrovsky
- Laboratory of Coherent Optics Kirensky Institute of Physics Federal Research Center KSC SB RAS 660036 Krasnoyarsk Russia
- Department of Photonics and Laser Technology Siberian Federal University 660041 Krasnoyarsk Russia
| | - Nikita O. Azarapin
- Department of Inorganic and Physical Chemistry Tyumen State University 6, Volodarskogo Street 625003 Tyumen Russia
| | - Oleg V. Andreev
- Department of Inorganic and Physical Chemistry Tyumen State University 6, Volodarskogo Street 625003 Tyumen Russia
| |
Collapse
|
33
|
Demirkurt B, Cakan-Akdogan G, Akdogan Y. Preparation of albumin nanoparticles in water-in-ionic liquid microemulsions. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111713] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
34
|
Winkler R, Ré E, Arrachart G, Pellet-Rostaing S. Impact of Solvent Structuring in Water/ tert-Butanol Mixtures on the Assembly of Silica Nanoparticles to Aerogels. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:7905-7915. [PMID: 31088054 DOI: 10.1021/acs.langmuir.9b00655] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Soft matter structuring is a useful tool for the preparation of well-structured inorganic materials. Here, we report a strategy using a structured solvent based on binary mixtures as a directing agent for silica nanoparticles in aerogel elaboration. Binary mixtures involving water/ethanol and water/ tert-butanol have been respectively chosen as representatives of unstructured and structured solvents. The water/alcohol/TEOS systems were effectively characterized as surfactant-free microemulsions. The enhanced solvent structuring, however, disappears upon the reaction with TEOS, and assembly is directed by solvent structuring found in the binary mixtures. For the first time, the influence of solvent composition on the sol-gel reaction was investigated with respect to the reaction rate and the structuring behavior thanks to dynamic light scattering (DLS), small- and wide-angle X-ray scattering (SWAXS), and transmission electron microscopy (TEM) experiments. The silica nanoparticles aggregate in a different manner depending on the solvent composition, which allows the change in the morphology, the degree of interconnection, and the surface area of the resulting material. Silica nanoparticles with a very high surface area of up to 2000 m2/g can be obtained by this approach.
Collapse
Affiliation(s)
- Robert Winkler
- ICSM, CEA, CNRS, ENSCM , Univ Montpellier , Marcoule , France
| | - Elisa Ré
- ICSM, CEA, CNRS, ENSCM , Univ Montpellier , Marcoule , France
| | | | | |
Collapse
|
35
|
Influence of organic solvents in the Pt nanoparticle synthesis on MWCNT for the methanol oxidation reaction. J Solid State Electrochem 2019. [DOI: 10.1007/s10008-018-04178-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
36
|
Yin Y, Lee MS, Lee JE, Lim SY, Kim ES, Jeong J, Kim D, Kim J, Lee DS, Jeong JH. Effective systemic siRNA delivery using dual-layer protected long-circulating nanohydrogel containing an inorganic core. Biomater Sci 2019; 7:3297-3306. [DOI: 10.1039/c9bm00369j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PEG-dex-dopa nanohydrogel containing a CaP/siRNA core could achieve extended circulation with reduced RES accumulation, resulting in increased tumor accumulation.
Collapse
|
37
|
Sun B, Chai J, Chai Z, Zhang X, Cui X, Lu J. A surfactant-free microemulsion consisting of water, ethanol, and dichloromethane and its template effect for silica synthesis. J Colloid Interface Sci 2018; 526:9-17. [DOI: 10.1016/j.jcis.2018.04.072] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 04/12/2018] [Accepted: 04/17/2018] [Indexed: 02/06/2023]
|
38
|
Kopanichuk IV, Vedenchuk EA, Koneva AS, Vanin AA. Structural Properties of Span 80/Tween 80 Reverse Micelles by Molecular Dynamics Simulations. J Phys Chem B 2018; 122:8047-8055. [DOI: 10.1021/acs.jpcb.8b03945] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Ilia V. Kopanichuk
- Institute of Chemistry, St. Petersburg State University, 7-9 Universitetskaya nab., St. Petersburg 199034, Russia
| | - Ekaterina A. Vedenchuk
- Institute of Chemistry, St. Petersburg State University, 7-9 Universitetskaya nab., St. Petersburg 199034, Russia
| | - Alina S. Koneva
- Institute of Chemistry, St. Petersburg State University, 7-9 Universitetskaya nab., St. Petersburg 199034, Russia
| | - Aleksandr A. Vanin
- Institute of Chemistry, St. Petersburg State University, 7-9 Universitetskaya nab., St. Petersburg 199034, Russia
| |
Collapse
|
39
|
Darvasiová D, Barberiková Z, Eibel A, Schmallegger M, Gescheidt G, Zalibera M, Neshchadin D. Probing the first steps of photoinduced free radical polymerization at water–oil interfaces. Polym Chem 2017. [DOI: 10.1039/c7py01414g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Oil-soluble photoinitiators can initiate free radical polymerization in the aqueous phase of microemulsions with high efficiency.
Collapse
Affiliation(s)
- Denisa Darvasiová
- Institute of Physical Chemistry and Chemical Physics
- Slovak University of Technology
- 812 37 Bratislava 1
- Slovakia
| | - Zuzana Barberiková
- Institute of Physical Chemistry and Chemical Physics
- Slovak University of Technology
- 812 37 Bratislava 1
- Slovakia
| | - Anna Eibel
- Institute of Physical and Theoretical Chemistry
- Graz University of Technology
- 8010 Graz
- Austria
| | - Max Schmallegger
- Institute of Physical and Theoretical Chemistry
- Graz University of Technology
- 8010 Graz
- Austria
| | - Georg Gescheidt
- Institute of Physical and Theoretical Chemistry
- Graz University of Technology
- 8010 Graz
- Austria
| | - Michal Zalibera
- Institute of Physical Chemistry and Chemical Physics
- Slovak University of Technology
- 812 37 Bratislava 1
- Slovakia
| | - Dmytro Neshchadin
- Institute of Physical and Theoretical Chemistry
- Graz University of Technology
- 8010 Graz
- Austria
| |
Collapse
|