1
|
Yu Y, Zhang W, Song Y, Cui Y, Liu S, Fei T, Zhang T. Application of partially zwitterionic poly(ionic liquid)s in humidity sensors. J Colloid Interface Sci 2025; 684:192-200. [PMID: 39793427 DOI: 10.1016/j.jcis.2025.01.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/03/2025] [Accepted: 01/05/2025] [Indexed: 01/13/2025]
Abstract
Polyelectrolytes have shown promise as sensitive material for high-performance humidity sensors in recent years. How to obtain fast recovery and high sensitivity polyelectrolyte humidity sensors is a great challenge. A kind of poly(ionic liquid)s (PILs) humidity sensors modified by zwitterionic polymers (partially zwitterionic PILs, named PZPILs) were prepared in this work. The PZPILs can transform between PILs and zwitterionic polymers in different humidity sensitive processes. In the adsorption process of water molecules, characteristics of PZPILs are similar to those of PILs. When desorbing water molecules, the characteristics of PZPILs trend to those of sulfobetaine (SB) type zwitterionic polymers. This design endowed the humidity sensors high response and fast response/recovery characteristics. The optimized PZPILs sensor shows high response (4862.8) in a wide relative humidity (RH) range of 11 %-95 %, with short response/recovery time (1.0 s/15.0 s) and small humidity hysteresis about 0.6 % RH. The PZPILs shortened the recovery time of the PILs humidity sensors (from 143.4 s to 15.0 s), and improved the response (from 1980.8 to 4862.8).
Collapse
Affiliation(s)
- Yunlong Yu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012 PR China
| | - Wei Zhang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012 PR China
| | - Yaping Song
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012 PR China
| | - Yanyu Cui
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012 PR China
| | - Sen Liu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012 PR China
| | - Teng Fei
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012 PR China.
| | - Tong Zhang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012 PR China.
| |
Collapse
|
2
|
Karthäuser JF, Ademmer K, Zimmermann R, Rosenhahn A. Effect of Interfacial Charge Distribution in Mixed Charge-Equilibrated SAMs on the Attachment of Pathogens. ACS APPLIED MATERIALS & INTERFACES 2025; 17:16145-16155. [PMID: 40019159 DOI: 10.1021/acsami.4c20789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Zwitterions consisting of positively and negatively charged groups confer hydrophilicity while retaining overall charge neutrality. Both properties were identified as decisive prerequisites for protein-resistant coatings. In this work, we studied the electrostatic contributions to the bacterial attachment process by altering the interfacial charge distribution of the two charges and correlated the results with bacterial adhesion data. Therefore, we generated a set of well-defined, quasi-zwitterionic, charge-equilibrated self-assembled monolayers on gold-coated substrates. As cationic component (11-mercaptoundecyl)-N,N,N-trimethylammonium was combined in a 1:1 ratio with anionic thiols of varying alkyl spacer lengths. By embedding 8-mercaptooctanoic acid, 12-mercaptododecanoic acid, or 16-mercaptohexadecanoic acid, the distance of the anionic moiety to the surface could be varied while maintaining the distance of the cationic moiety to the substrate. Thereby, the interfacial charge distribution and thus the average orientation of the zwitterionic dipoles of the charge-equilibrated mixed self-assembled monolayers have been systematically varied. The resistance against the nonspecific adsorption of the blood-related proteins human serum albumin and fibronectin as well as the attachment-inhibiting effect against the pathogenic bacteria Escherichia coli, Pseudomonas fluorescens, and Bacillus subtilis was tested. It turned out that the change in dipole orientation affected the proteins and the bacteria in different ways with an equilibrated charge distribution within the surface plane being in total the superior one. The results are further discussed based on streaming current data revealing net surface charge of the self-assembled monolayers and the apparent zeta potential of the bacteria to understand to what degree electrostatic interactions contribute to the attachment process.
Collapse
Affiliation(s)
- Jana F Karthäuser
- Analytical Chemistry - Biointerfaces, Ruhr-University Bochum, Bochum 44801, Germany
| | - Katrin Ademmer
- Analytical Chemistry - Biointerfaces, Ruhr-University Bochum, Bochum 44801, Germany
| | - Ralf Zimmermann
- Division Polymer Biomaterials Science, Leibniz Institute of Polymer Research Dresden, Dresden 01069, Germany
- Max Bergmann Center of Biomaterials Dresden, Dresden 01069, Germany
| | - Axel Rosenhahn
- Analytical Chemistry - Biointerfaces, Ruhr-University Bochum, Bochum 44801, Germany
| |
Collapse
|
3
|
Singh M, Srivastava A, Mandal M. Unravelling the Potential of Zwitterionic Polymers in Molecular Imprinting. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:5687-5704. [PMID: 40019294 DOI: 10.1021/acs.langmuir.4c04560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Molecularly imprinted polymers (MIPs) are a class of molecular receptors that are the closest imitation of biological receptors. They are often called "artificial enzymes". The capability of the MIPs to bind bioactive molecules under specific conditions creates molecular imprinting technology as having considerable potential for customized applications. Polymerization in the presence of a "template" molecule with the assistance of monomers, cross-linkers, and initiators leads to MIPs on extraction of the template molecule from the polymeric matrices. Conventionally neutral monomers were utilized for molecular imprinting. Recently, zwitterionic polymers, having innumerable advantages over nonionic polymers, were realized to be an advantageous choice as a polymeric matrix for imprinting. This review article presents an overview of sulfobetaine, carbobetaine, and phosphobetaine polymers as imprinting matrices for a range of template(s). Zwitterionic polymers are accomplished with biocompatibility, low cytotoxicity, negligible immunogenicity, systematic stability, and long circulation time, and can alleviate quick recognition by the immune system and delayed blood clearance from the body. They can be a fitting candidate for imprinting, especially of biomolecules. The molecular imprinting work on zwitterionic polymers is presented here, which will encourage researchers working in this area.
Collapse
Affiliation(s)
- Meenakshi Singh
- Department of Chemistry, MMV, Banaras Hindu University, Varanasi 221005, India
| | - Akriti Srivastava
- Department of Chemistry, MMV, Banaras Hindu University, Varanasi 221005, India
| | - Moumita Mandal
- Department of Chemistry, MMV, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
4
|
Karthäuser JF, Hansen J, Smajlji A, Hunsucker K, Yeshi T, Braga C, Patschorke T, Swain G, Rosenhahn A, Laschewsky A. Enhanced Resistance of Zwitterionic Hydrogels against Marine Fouling Using a Zwitterionic Photo Cross-Linker. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:4545-4559. [PMID: 39957142 DOI: 10.1021/acs.langmuir.4c04351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Abstract
Polyzwitterions have great potential as fouling-resistant materials for biomedical and environmental products, in particular, in the form of hydrogel coatings. While typically these are soft materials, for many applications it is also necessary to achieve sufficient mechanical stability. This may be accomplished by high degrees of cross-linking, which, however, will impair the overall hydrophilicity of the gels for the commonly used hydrophobic cross-linkers. To mitigate this dilemma, a zwitterionic methacrylate monomer was developed that contains a benzophenone moiety as a photo-cross-linkable unit and a hydrophilic zwitterionic sulfobetaine moiety. Copolymers of the standard sulfobetaine methacrylate 3-[N-(2'-methacryloyloxyethyl)-N,N-dimethylammonio] propane-1-sulfonate (SPe) with contents of the new photo cross-linker of up to about 50 mol % were realized, and their films were photocured and analyzed. Subsequently, the resistance against the nonspecific adsorption of model proteins was determined in laboratory assays by surface plasmon resonance spectroscopy. Moreover, the attachment of marine fouling organisms was investigated in laboratory assays under dynamic conditions as well as in short-term field exposures in the sea. Copolymers with sufficiently high cross-linker contents of about 30 mol % were able to maintain a high hydration capability and to substantially reduce marine biofouling even in field tests in the ocean.
Collapse
Affiliation(s)
| | - Jasper Hansen
- Institute of Chemistry─University of Potsdam, Potsdam 14476, Germany
| | - Arben Smajlji
- Analytical Chemistry─Ruhr University Bochum, Bochum 44801, Germany
| | - Kelli Hunsucker
- Center for Corrosion and Biofouling Control─Florida Institute of Technology, Melbourne, Florida 32901, United States
| | - Tenzin Yeshi
- Center for Corrosion and Biofouling Control─Florida Institute of Technology, Melbourne, Florida 32901, United States
| | - Cierra Braga
- Center for Corrosion and Biofouling Control─Florida Institute of Technology, Melbourne, Florida 32901, United States
| | - Tim Patschorke
- Center for Corrosion and Biofouling Control─Florida Institute of Technology, Melbourne, Florida 32901, United States
| | - Geoffrey Swain
- Center for Corrosion and Biofouling Control─Florida Institute of Technology, Melbourne, Florida 32901, United States
| | - Axel Rosenhahn
- Analytical Chemistry─Ruhr University Bochum, Bochum 44801, Germany
| | - André Laschewsky
- Institute of Chemistry─University of Potsdam, Potsdam 14476, Germany
- Fraunhofer Institute of Applied Polymer Research, Potsdam 14476, Germany
| |
Collapse
|
5
|
Zheng K, Ouyang X, Xie H, Peng S. Responsive Zwitterionic Materials for Enhanced Drug Delivery. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:3744-3756. [PMID: 39907524 DOI: 10.1021/acs.langmuir.4c04809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Zwitterionic materials have traditionally been recognized as exceptional antifouling agents, imparting nanocarriers with extended circulation times in vivo. Despite much studies on antifouling ability, the responsive zwitterionic materials that change physicochemical properties stimulated by mild signals are much less explored. As is known, there are multiple biological barriers in antitumor drug delivery, including the blood circulation barrier, non-specific organ distribution, elevated tumor interstitial pressure, tumor cytomembrane barrier, and lysosomal barrier. Multiple biological barriers restrict the delivery efficiency of nanocarriers to tumors, leading to a reduced therapeutic effect and increased side effects. Therefore, it is far from satisfactory to overcome the blood circulation barrier alone for classical zwitterionic antitumor materials. To address this challenge, recently developed responsive zwitterionic materials have been engineered to overcome multiple biological barriers, thereby enabling more effective antitumor drug delivery. Furthermore, responsive zwitterionic materials could respond to signals by themselves without the need of incorporating extra stimuli-responsive groups, which maintains the simplicity of the molecular structure. In this mini-review, the recent progress of antitumor zwitterionic materials responding to pH, temperature, enzyme, or reactive oxygen species is summarized. Furthermore, prospects and challenges of responsive zwitterionic materials are provided to promote better development of this field.
Collapse
Affiliation(s)
- Ke Zheng
- School of Materials Science and Engineering, Dongguan University of Technology, Dongguan, Guangdong 523808, China
| | - Xumei Ouyang
- Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai, Guangdong 519000, China
| | - Hong Xie
- Department of Veterinary Medicine, Faculty of Animal Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Shaojun Peng
- Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, Guangdong 519087, China
| |
Collapse
|
6
|
Du W, Sun S, Zhao Z, Zhao B, Zhang X. Controllable transformation of UCST and LCST behaviors in polyampholyte hydrogels enabled by an association-disassociation theory-based switch mechanism. MATERIALS HORIZONS 2025; 12:587-598. [PMID: 39503364 DOI: 10.1039/d4mh01128g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
The potential temperature-sensitive characteristics of polyampholyte hydrogels have not been explored yet, despite their excellent mechanical properties and universality as supramolecular materials. Here, polyampholyte hydrogels were prepared with anionic and cationic monomers at high concentrations and their thermosensitive behaviors were investigated systematically. The results of this study break through the traditional understanding that hydrogels prepared from zwitterionic copolymers could only exhibit UCST characteristics. Moreover, the "association-disassociation" theory was presented to explain the abnormal phenomenon, which could endow a controllable switch for transforming UCST and LCST in polyampholyte hydrogels; the thermosensitive properties of the polyampholyte hydrogels arise from the competition of "association force" and "disassociation force", based on which the polyampholyte hydrogels could be endowed opposite thermosensitive properties by regulating the monomer concentration and monomer ratio. Accordingly, essential conditions required to form physically crosslinked UCST hydrogels could be concluded: satisfactory solubility of monomers; high-enough monomer concentration; appropriate hydrophilicity of ion pairs and suitable monomer ratio.
Collapse
Affiliation(s)
- Wenhao Du
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, People's Republic of China.
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People's Republic of China.
- Dezhou Industrial Technology Research Institute of North University of China, Dezhou 253034, China
| | - Shixiong Sun
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, People's Republic of China.
- Dezhou Industrial Technology Research Institute of North University of China, Dezhou 253034, China
| | - Zhixin Zhao
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People's Republic of China.
- School of Material Science and Engineering, Xihua University, Chengdu 610039, People's Republic of China
| | - Benbo Zhao
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, People's Republic of China.
- Dezhou Industrial Technology Research Institute of North University of China, Dezhou 253034, China
| | - Xi Zhang
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People's Republic of China.
| |
Collapse
|
7
|
Zaghari P, Özcan O, Islam MD, Black B, Liu S, Shovon SMN, Ware HOT, Rosenhahn A, Ryu JE. Fabrication and anti-fouling performance assessment of micro-textured CNT-PDMS nanocomposites through the scalable roll-coating process. BIOFOULING 2024; 40:1012-1025. [PMID: 39654354 DOI: 10.1080/08927014.2024.2438694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/08/2024] [Accepted: 11/30/2024] [Indexed: 12/13/2024]
Abstract
This study investigates the micro-topographic surfaces as a benign anti-fouling/fouling-release method. The bio-inspired engineered surfaces were manufactured by controlling the viscoelastic instabilities of carbon nanotubes (CNTs) and polydimethylsiloxane (PDMS) nanocomposites using a customized, scalable two-roll coating process. The effects of manufacturing conditions, i.e., roller speed and roller radius-to-gap ratio, on surface properties, such as Wenzel roughness factor, peak density, water contact angle, and the tensile testing of the nanocomposite, were studied. The results showed that decreasing roller gap distance would significantly increase the hydrophobicity of the samples. Moreover, a positive correlation was observed between surface peak density and roughness factor. A textured sample was manufactured that significantly outperformed the non-textured CNT-PDMS, indicating a correlation between surface roughness and diatom attachment density. The dynamic diatom attachment assay showed up to 35% reduction in surface coverage of textured samples by the Navicula perminuta diatom compared to the non-textured CNT-PDMS control samples.
Collapse
Affiliation(s)
- Pouria Zaghari
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, USA
| | - Onur Özcan
- Analytical Chemistry-Biointerfaces, Ruhr University Bochum, Bochum, Germany
| | - Md Didarul Islam
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, USA
| | - Benjamin Black
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, USA
| | - Sipan Liu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, USA
| | - S M Naser Shovon
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, USA
| | - Henry Oliver T Ware
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, USA
| | - Axel Rosenhahn
- Analytical Chemistry-Biointerfaces, Ruhr University Bochum, Bochum, Germany
| | - Jong Eun Ryu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
8
|
Tagad H, Marin A, Hlushko R, Andrianov AK. Hydrolytically Degradable Zwitterionic Polyphosphazene Containing HEPES Moieties as Side Groups. Biomacromolecules 2024; 25:6791-6800. [PMID: 39315416 PMCID: PMC11480972 DOI: 10.1021/acs.biomac.4c01008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 09/25/2024]
Abstract
Zwitterionic polymers, ampholytic macromolecules containing ionic moieties of opposite sign on the same pendant groups, exhibit strong protein-repulsive properties and an inherent biological inertness. For that reason, these highly hydrated inner salt macromolecules have emerged as some of the most viable alternatives to poly(ethylene glycol) (PEG), a gold standard in enabling stealth behavior in life science applications. However, the structural diversity of polymer zwitterions remains limited, and currently available macromolecules do not possess an intrinsic ability to undergo hydrolytical degradation, an important prerequisite for use in drug delivery applications. The present paper reports on the synthesis of a zwitterionic polymer, a multimerized form (two thousand copies), of a biologically benign buffering agent, HEPES, which is covalently assembled on a polyphosphazene backbone. The polymer exhibits typical polyzwitterionic solution behavior, an environmentally dependent hydrolytic degradation pattern, and excellent in vitro compatibility, features that highlight its potential utility for life science applications.
Collapse
Affiliation(s)
- Harichandra
D. Tagad
- Institute for Bioscience
and Biotechnology Research, University of
Maryland, Rockville, Maryland 20850, United States
| | - Alexander Marin
- Institute for Bioscience
and Biotechnology Research, University of
Maryland, Rockville, Maryland 20850, United States
| | - Raman Hlushko
- Institute for Bioscience
and Biotechnology Research, University of
Maryland, Rockville, Maryland 20850, United States
| | - Alexander K. Andrianov
- Institute for Bioscience
and Biotechnology Research, University of
Maryland, Rockville, Maryland 20850, United States
| |
Collapse
|
9
|
Barz M, Parak WJ, Zentel R. Concepts and Approaches to Reduce or Avoid Protein Corona Formation on Nanoparticles: Challenges and Opportunities. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402935. [PMID: 38976560 PMCID: PMC11425909 DOI: 10.1002/advs.202402935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/19/2024] [Indexed: 07/10/2024]
Abstract
This review describes the formation of a protein corona (or its absence) on different classes of nanoparticles, its basic principles, and its consequences for nanomedicine. For this purpose, it describes general concepts to control (guide/minimize) the interaction between artificial nanoparticles and plasma proteins to reduce protein corona formation. Thereafter, methods for the qualitative or quantitative determination of protein corona formation are presented, as well as the properties of nanoparticle surfaces, which are relevant for protein corona prevention (or formation). Thereby especially the role of grafting density of hydrophilic polymers on the surface of the nanoparticle is discussed to prevent the formation of a protein corona. In this context also the potential of detergents (surfactants) for a temporary modification as well as grafting-to and grafting-from approaches for a permanent modification of the surface are discussed. The review concludes by highlighting several promising avenues. This includes (i) the use of nanoparticles without protein corona for active targeting, (ii) the use of synthetic nanoparticles without protein corona formation to address the immune system, (iii) the recollection of nanoparticles with a defined protein corona after in vivo application to sample the blood proteome and (iv) further concepts to reduce protein corona formation.
Collapse
Affiliation(s)
- Matthias Barz
- Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, NL-2333 CC, Netherlands
| | - Wolfgang J Parak
- Institut für Nanostruktur- und Festkörperphysik, Universität Hamburg, Luruper Chaussee 149, D-22761, Hamburg, Germany
| | - Rudolf Zentel
- Department of Chemistry, Johannes Gutenberg-University of Mainz, Duesbergweg 10-14, D-55128, Mainz, Germany
| |
Collapse
|
10
|
Karthäuser JF, Gruhn D, Martínez Guajardo A, Kopecz R, Babel N, Stervbo U, Laschewsky A, Viebahn R, Salber J, Rosenhahn A. In vitro biocompatibility analysis of protein-resistant amphiphilic polysulfobetaines as coatings for surgical implants in contact with complex body fluids. Front Bioeng Biotechnol 2024; 12:1403654. [PMID: 39086500 PMCID: PMC11288920 DOI: 10.3389/fbioe.2024.1403654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/19/2024] [Indexed: 08/02/2024] Open
Abstract
The fouling resistance of zwitterionic coatings is conventionally explained by the strong hydrophilicity of such polymers. Here, the in vitro biocompatibility of a set of systematically varied amphiphilic, zwitterionic copolymers is investigated. Photocrosslinkable, amphiphilic copolymers containing hydrophilic sulfobetaine methacrylate (SPe) and butyl methacrylate (BMA) were systematically synthesized in different ratios (50:50, 70:30, and 90:10) with a fixed content of photo-crosslinker by free radical copolymerization. The copolymers were spin-coated onto substrates and subsequently photocured by UV irradiation. Pure pBMA and pSPe as well as the prepared amphiphilic copolymers showed BMA content-dependent wettability in the dry state, but overall hydrophilic properties a fortiori in aqueous conditions. All polysulfobetaine-containing copolymers showed high resistance against non-specific adsorption (NSA) of proteins, platelet adhesion, thrombocyte activation, and bacterial accumulation. In some cases, the amphiphilic coatings even outperformed the purely hydrophilic pSPe coatings.
Collapse
Affiliation(s)
- Jana F. Karthäuser
- Analytical Chemistry—Biointerfaces, Ruhr University Bochum, Bochum, Germany
| | - Dierk Gruhn
- Experimental Surgery, Ruhr University Bochum, Bochum, Germany
- Department of Surgery, Knappschaftskrankenhaus Bochum, University Hospital of the Ruhr University Bochum, Bochum, Germany
| | | | - Regina Kopecz
- Analytical Chemistry—Biointerfaces, Ruhr University Bochum, Bochum, Germany
| | - Nina Babel
- Centre for Translational Medicine, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr University Bochum, Herne, Germany
| | - Ulrik Stervbo
- Centre for Translational Medicine, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr University Bochum, Herne, Germany
| | - André Laschewsky
- Institute of Chemistry, Universität Potsdam, Potsdam, Germany
- Fraunhofer Institute of Applied Polymer Research IAP, Potsdam, Germany
| | - Richard Viebahn
- Department of Surgery, Knappschaftskrankenhaus Bochum, University Hospital of the Ruhr University Bochum, Bochum, Germany
| | - Jochen Salber
- Experimental Surgery, Ruhr University Bochum, Bochum, Germany
- Department of Surgery, Knappschaftskrankenhaus Bochum, University Hospital of the Ruhr University Bochum, Bochum, Germany
| | - Axel Rosenhahn
- Analytical Chemistry—Biointerfaces, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
11
|
Jia Y, Zhao Y, Zhang H. Bioinspired Self-Adhesive Multifunctional Lubricated Coating for Biomedical Implant Applications. ACS APPLIED BIO MATERIALS 2024; 7:4307-4322. [PMID: 38954747 DOI: 10.1021/acsabm.4c00144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
In the realm of clinical applications, the concern surrounding biomedical device-related infections (BDI) is paramount. To mitigate the risk associated with BDI, enhancing surface characteristics such as lubrication and antibacterial efficacy is considered as a strategic approach. This study delineated the synthesis of a multifunctional copolymer, embodying self-adhesive, lubricating, and antibacterial properties, achieved through free radical polymerization and a carbodiimide coupling reaction. The copolymer was adeptly modified on the surface of stainless steel 316L (SS316L) substrates by employing a facile dip-coating technique. Comprehensive characterizations were performed by using an array of analytical techniques including Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, optical interferometry, scanning electron microscopy, and atomic force microscopy. Nanoscale tribological assessments revealed a notable reduction in the value of the friction coefficient of the copolymer-coated SS316L substrates compared to bare SS316L samples. The coating demonstrated exceptional resistance to protein adsorption, as evidenced in protein contamination models employing bovine serum albumin and fibrinogen. The bactericidal efficacy of the copolymer-modified surfaces was significantly improved against pathogenic strains such as Staphylococcus aureus and Escherichia coli. Additionally, in vitro evaluations of blood compatibility and cellular compatibility underscored the remarkable anticoagulant performance and biocompatibility. Collectively, these findings indicated that the developed copolymer coating represented a promising candidate, with its facile modification approach, for augmenting lubrication and antifouling properties in the field of biomedical implant applications.
Collapse
Affiliation(s)
- Yiran Jia
- Joint Diseases Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China
- State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Yanlong Zhao
- State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Hongyu Zhang
- Joint Diseases Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China
- State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
12
|
Alsaedi MK, Like BD, Wieck KW, Panzer MJ. Zwitterionic Materials for Enhanced Battery Electrolytes. Chempluschem 2024; 89:e202300731. [PMID: 38252804 DOI: 10.1002/cplu.202300731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/22/2024] [Accepted: 01/22/2024] [Indexed: 01/24/2024]
Abstract
Zwitterions (ZIs), which are molecules bearing an equal number of positive and negative charges and typically possessing large dipole moments, can play an important role in improving the characteristics of a wide variety of novel battery electrolytes. Significant Coulombic interactions among ZI charged groups and any mobile ions present can lead to several beneficial phenomena within electrolytes, such as increased salt dissociation, the formation of ordered pathways for ion transport, and enhanced mechanical robustness. In some cases, ZI additives can also boost electrochemical stability at the electrolyte/electrode interface and enable longer battery cycling. Here, a brief summary of selected key historical and recent advances in the use of ZI materials to enrich the performance of three distinct classes of battery electrolytes is presented. These include: ionic liquid-based, conventional solvent-based, and solid matrix-based (non-ceramic) electrolytes. Exploring a greater chemical diversity of ZI types and electrolyte pairings will likely lead to more discoveries that can empower next-generation battery designs in the years to come.
Collapse
Affiliation(s)
- Mossab K Alsaedi
- Department of Chemical & Biological Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Bricker D Like
- Department of Chemical & Biological Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Karl W Wieck
- Department of Chemical & Biological Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Matthew J Panzer
- Department of Chemical & Biological Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| |
Collapse
|
13
|
Yan J, Li W, Yu Y, Huang G, Peng J, Lv D, Chen X, Wang X, Liu Z. A Polyzwitterionic@MOF Hydrogel with Exceptionally High Water Vapor Uptake for Efficient Atmospheric Water Harvesting. Molecules 2024; 29:1851. [PMID: 38675671 PMCID: PMC11054390 DOI: 10.3390/molecules29081851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/29/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Atmospheric water harvesting (AWH) is considered a promising strategy for sustainable freshwater production in landlocked and arid regions. Hygroscopic salt-based composite sorbents have attracted widespread attention for their water harvesting performance, but suffer from aggregation and leakage issues due to the salting-out effect. In this study, we synthesized a PML hydrogel composite by incorporating zwitterionic hydrogel (PDMAPS) and MIL-101(Cr) as a host for LiCl. The PML hydrogel was characterized using various techniques including X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared (FTIR), and thermogravimetric analysis (TGA). The swelling properties and water vapor adsorption-desorption properties of the PML hydrogel were also assessed. The results demonstrate that the MIL-101(Cr) was uniformly embedded into PDMAP hydrogel, and the PML hydrogel exhibits a swelling ratio of 2.29 due to the salting-in behavior. The PML hydrogel exhibited exceptional water vapor sorption capacity of 0.614 g/g at 298 K, RH = 40% and 1.827 g/g at 298 K, RH = 90%. It reached 80% of its saturated adsorption capacity within 117 and 149 min at 298 K, RH = 30% and 90%, respectively. Additionally, the PML hydrogel showed excellent reversibility in terms of water vapor adsorption after ten consecutive cycles of adsorption-desorption. The remarkable adsorption capacity, favorable adsorption-desorption rate, and regeneration stability make the PML hydrogel a potential candidate for AWH. This polymer-MOF synergistic strategy for immobilization of LiCl in this work offers new insights into designing advanced materials for AWH.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xun Wang
- School of Environment and Chemical Engineering, Foshan University, Foshan 528000, China; (J.Y.); (W.L.); (Y.Y.); (G.H.); (J.P.); (D.L.); (X.C.)
| | - Zewei Liu
- School of Environment and Chemical Engineering, Foshan University, Foshan 528000, China; (J.Y.); (W.L.); (Y.Y.); (G.H.); (J.P.); (D.L.); (X.C.)
| |
Collapse
|
14
|
Lin CH, Wu JG, Lin HH, Luo SC. Electrified Interactions of Polyzwitterions with Charged Surfaces: Role of Dipole Orientation and Surface Potentials. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:7653-7660. [PMID: 38532553 PMCID: PMC11008249 DOI: 10.1021/acs.langmuir.4c00343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/07/2024] [Accepted: 03/15/2024] [Indexed: 03/28/2024]
Abstract
The zwitterionic groups possess strong dipole moments, leading to inter- or intrachain interactions among zwitterionic polymers. This study aims to demonstrate the interaction of polyzwitterions poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC), and poly(carboxybetaine methacrylate) (PCBMA) with electrified surfaces, despite their electrically neutral nature. We studied the adsorption of polyzwitterions and their monomers on electrified surfaces by using an electrochemical quartz crystal microbalance with dissipation (EQCM-D). The interaction between zwitterionic molecules and charged surfaces is explored by adjusting the surface potentials. Interestingly, the adsorption of polyzwitterions can be influenced by external potential, primarily due to the formation of polyzwitterions restricting the mobility of zwitterionic groups, affecting the adsorption behavior of polyzwitterions based on the surface potential. The impact is determined by the arrangement of positive and negative ions within the zwitterionic groups, which are the dipole orientation. Additionally, surface potentials determine the adsorption rate, amount, and chain conformation of the adsorbed thin polyzwitterion layers. The effect of ionic strength was investigated by introducing electrolytes into the aqueous solutions to assess the range of influenced surface potentials.
Collapse
Affiliation(s)
- Chia-Hsuan Lin
- Department
of Materials Science and Engineering, National
Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Jhih-Guang Wu
- Department
of Materials Science and Engineering, National
Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Hsun-Hao Lin
- Department
of Materials Science and Engineering, National
Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Shyh-Chyang Luo
- Department
of Materials Science and Engineering, National
Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
- Institute
of Biomedical Engineering and Nanomedicine, National Health Research Institutes (NHRI), Miaoli County 35053, Taiwan
| |
Collapse
|
15
|
Zhou Y, Yao Y, Zhai Z, Mohamed MA, Mazzini F, Qi Q, Bortner MJ, Taylor LS, Edgar KJ. Reductive amination of oxidized hydroxypropyl cellulose with ω-aminoalkanoic acids as an efficient route to zwitterionic derivatives. Carbohydr Polym 2024; 328:121699. [PMID: 38220336 DOI: 10.1016/j.carbpol.2023.121699] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 12/02/2023] [Accepted: 12/13/2023] [Indexed: 01/16/2024]
Abstract
Zwitterionic polymers, with their equal amounts of cationic and anionic functional groups, have found widespread utility including as non-fouling coatings, hydrogel materials, stabilizers, antifreeze materials, and drug carriers. Polysaccharide-derived zwitterionic polymers are attractive because of their sustainable origin, potential for lower toxicity, and possible biodegradability, but previous methods for synthesis of zwitterionic polysaccharide derivatives have been limited in terms of flexibility and attainable degree of substitution (DS) of charged entities. We report herein successful design and synthesis of zwitterionic polysaccharide derivatives, in this case based on cellulose, by reductive amination of oxidized 2-hydroxypropyl cellulose (Ox-HPC) with ω-aminoalkanoic acids. Reductive amination products could be readily obtained with DS(cation) (= DS(anion)) up to 1.6. Adduct hydrophilic/hydrophobic balance (amphiphilicity) can be influenced by selecting the appropriate chain length of the ω-aminoalkanoic acid. This strategy is shown to produce a range of amphiphilic, water-soluble, moderately high glass transition temperature (Tg) polysaccharide derivatives in just a couple of efficient steps from commercially available building blocks. The adducts were evaluated as crystallization inhibitors. They are strong inhibitors of crystallization even for the challenging, poorly soluble, fast-crystallizing prostate cancer drug enzalutamide, as supported by surface tension and Flory-Huggins interaction parameter results.
Collapse
Affiliation(s)
- Yang Zhou
- Department of Sustainable Biomaterials, Virginia Tech, Blacksburg, VA 24061, United States; Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, United States; Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, United States.
| | - Yimin Yao
- Department of Chemical Engineering, Virginia Tech, Blacksburg, VA 24061, United States; Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, United States
| | - Zhenghao Zhai
- Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, United States
| | - Mennatallah A Mohamed
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, IN 47907, United States
| | - Fiorella Mazzini
- Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, United States
| | - Qingqing Qi
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, IN 47907, United States
| | - Michael J Bortner
- Department of Chemical Engineering, Virginia Tech, Blacksburg, VA 24061, United States; Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, United States
| | - Lynne S Taylor
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, IN 47907, United States
| | - Kevin J Edgar
- Department of Sustainable Biomaterials, Virginia Tech, Blacksburg, VA 24061, United States; Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, United States
| |
Collapse
|
16
|
Verma C, Dubey S, Bose R, Alfantazi A, Ebenso EE, Rhee KY. Zwitterions and betaines as highly soluble materials for sustainable corrosion protection: Interfacial chemistry and bonding with metal surfaces. Adv Colloid Interface Sci 2024; 324:103091. [PMID: 38281394 DOI: 10.1016/j.cis.2024.103091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/04/2024] [Accepted: 01/21/2024] [Indexed: 01/30/2024]
Abstract
The primary requirements for interfacial adsorption and corrosion inhibition are solubility and the existence of polar functional groups, particularly charges. Traditional organic inhibitors have a solubility issue due to the hydrophobic moieties they incorporate. Most documented organic inhibitors have aromatic rings, hydrocarbon chains, and a few functional groups. The excellent solubility and high efficacy of zwitterions and betaines make them the perfect replacements for insoluble corrosion inhibitors. Zwitterions and betaines are more easily soluble because of interactions between their positive and negative charges (-COO-, -PO3-, -NH3, -NHR2, -NH2R, -SO3- etc.) and the polar solvents. The positive and negative charges also aid these molecules' physical and chemical adsorption at the metal-electrolyte interfaces. They develop a corrosion-inhibiting layer through their adsorption. After becoming adsorbed at the metal-electrolyte interface, they act as mixed-type inhibitors, slowing both cathodic and anodic processes. They usually adsorb according to the Langmuir adsorption isotherm. In this article, the corrosion inhibition potential of zwitterions and betaines in the aqueous phase, as well as their mode of action, are reviewed. This article details the advantages and disadvantages of utilizing zwitterions and betaines for sustainable corrosion protection.
Collapse
Affiliation(s)
- Chandrabhan Verma
- Department of Chemical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
| | - Shikha Dubey
- Department of Chemistry, School of Sciences, Hemvati Nandan Bahuguna Garhwal University, Srinagar 246174, Garhwal, India
| | - Ranjith Bose
- Department of Chemical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Akram Alfantazi
- Department of Chemical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Eno E Ebenso
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Johannesburg 1710, South Africa
| | - Kyong Yop Rhee
- Department of Mechanical Engineering, College of Engineering, Kyung Hee University, Yongin 445-701, South Korea.
| |
Collapse
|
17
|
Witzdam L, Vosberg B, Große-Berkenbusch K, Stoppelkamp S, Wendel HP, Rodriguez-Emmenegger C. Tackling the Root Cause of Surface-Induced Coagulation: Inhibition of FXII Activation to Mitigate Coagulation Propagation and Prevent Clotting. Macromol Biosci 2024; 24:e2300321. [PMID: 37742317 DOI: 10.1002/mabi.202300321] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/01/2023] [Indexed: 09/26/2023]
Abstract
Factor XII (FXII) is a zymogen present in blood that tends to adsorb onto the surfaces of blood-contacting medical devices. Once adsorbed, it becomes activated, initiating a cascade of enzymatic reactions that lead to surface-induced coagulation. This process is characterized by multiple redundancies, making it extremely challenging to prevent clot formation and preserve the properties of the surface. In this study, a novel modulatory coating system based on C1-esterase inhibitor (C1INH) functionalized polymer brushes, which effectively regulates the activation of FXII is proposed. Using surface plasmon resonance it is demonstrated that this coating system effectively repels blood plasma proteins, including FXII, while exhibiting high activity against activated FXII and plasma kallikrein under physiological conditions. This unique property enables the modulation of FXII activation without interfering with the overall hemostasis process. Furthermore, through dynamic Chandler loop studies, it is shown that this coating significantly improves the hemocompatibility of polymeric surfaces commonly used in medical devices. By addressing the root cause of contact activation, the synergistic interplay between the antifouling polymer brushes and the modulatory C1INH is expected to lay the foundation to enhance the hemocompatibility of medical device surfaces.
Collapse
Affiliation(s)
- Lena Witzdam
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Carrer de Baldiri Reixac, 10, 12, Barcelona, 08028, Spain
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52074, Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Berlind Vosberg
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52074, Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Katharina Große-Berkenbusch
- Clinic for Thoracic and Cardiovascular Surgery, University Hospital Tuebingen, Calwerstr, 7/1, 72076, Tuebingen, Germany
| | - Sandra Stoppelkamp
- Clinic for Thoracic and Cardiovascular Surgery, University Hospital Tuebingen, Calwerstr, 7/1, 72076, Tuebingen, Germany
| | - Hans Peter Wendel
- Clinic for Thoracic and Cardiovascular Surgery, University Hospital Tuebingen, Calwerstr, 7/1, 72076, Tuebingen, Germany
| | - Cesar Rodriguez-Emmenegger
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Carrer de Baldiri Reixac, 10, 12, Barcelona, 08028, Spain
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52074, Aachen, Germany
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, Barcelona, 08010, Spain
- Biomedical Research Networking, Center in Bioengineering, Biomaterials and Nanomedicine, The Institute of Health Carlos III, Barcelona, Madrid, 28029, Spain
| |
Collapse
|
18
|
Zhang J, Wang C, Zhao H. Dynamic surfaces of latex films and their antifouling applications. J Colloid Interface Sci 2024; 654:1281-1292. [PMID: 37907007 DOI: 10.1016/j.jcis.2023.10.138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/02/2023] [Accepted: 10/25/2023] [Indexed: 11/02/2023]
Abstract
Latex polymer particles have been widely used in industry and everyday life. For decades the fabrication of "smart" latex film from latex particles has been a great challenge due to the difficulty in the synthesis of the functional latex particles by traditional emulsion polymerization using small molecular surfactants. In this manuscript, a simple and environmentally-friendly approach to the fabrication of "smart" latex films with dynamic surfaces is reported. Latex particles with poly(n-butyl methacrylate) (PnBMA) in the cores and zwitterionic poly-3-[dimethyl-[2-(2-methylprop-2-enoyloxy) ethyl]azaniumyl]propane-1-sulfonate (PDMAPS) in the shells are synthesized by reversible addition-fragmentation chain transfer (RAFT) mediated surfactant-free emulsion polymerization. The kinetics for the emulsion polymerization is studied, and the latex particles are analyzed by transmission electron microscopy (TEM), scanning electron microscopy (SEM) and dynamic light scattering (DLS). Latex films are prepared by casting aqueous solutions of the latex particles at temperatures above the glass transition temperature (Tg) of PnBMA. On the dried latex film, the hydrophobic PnBMA blocks occupy the top surface; after water treatment, the hydrophilic PDMAPS blocks migrate to the surface. A change in the surface hydrophilicity results in a change in the water contact angle of the latex film. A mechanism for the formation of the dynamic surface structure is proposed in this research. Antifouling applications of the latex films are investigated. Experimental results indicate that the water-treated latex film is able to efficiently inhibit protein adsorption and resist bacterial adhesion.
Collapse
Affiliation(s)
- Jie Zhang
- Key Laboratory of Functional Polymer Materials, Ministry of Education, College of Chemistry, Nankai University, PR China
| | - Chen Wang
- Key Laboratory of Functional Polymer Materials, Ministry of Education, College of Chemistry, Nankai University, PR China
| | - Hanying Zhao
- Key Laboratory of Functional Polymer Materials, Ministry of Education, College of Chemistry, Nankai University, PR China.
| |
Collapse
|
19
|
Lim J, Matsuoka H, Kinoshita Y, Yusa SI, Saruwatari Y. The Effect of Block Ratio and Structure on the Thermosensitivity of Double and Triple Betaine Block Copolymers. Molecules 2024; 29:390. [PMID: 38257304 PMCID: PMC10820771 DOI: 10.3390/molecules29020390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/29/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
AB-type and BAB-type betaine block copolymers composed of a carboxybetaine methacrylate and a sulfobetaine methacrylate, PGLBT-b-PSPE and PSPE-b-PGLBT-b-PSPE, respectively, were synthesized by one-pot RAFT polymerization. By optimizing the concentration of the monomer, initiator, and chain transfer agent, block extension with precise ratio control was enabled and a full conversion (~99%) of betaine monomers was achieved at each step. Two sets (total degree of polymerization: ~300 and ~600) of diblock copolymers having four different PGLBT:PSPE ratios were prepared to compare the influence of block ratio and molecular weight on the temperature-responsive behavior in aqueous solution. A turbidimetry and dynamic light scattering study revealed a shift to higher temperatures of the cloud point and micelle formation by increasing the ratio of PSPE, which exhibit upper critical solution temperature (UCST) behavior. PSPE-dominant diblocks created spherical micelles stabilized by PGLBT motifs, and the transition behavior diminished by decreasing the PSPE ratio. No particular change was found in the diblocks that had an identical AB ratio. This trend reappeared in the other set whose entire molecular weight approximately doubled, and each transition point was not recognizably impacted by the total molecular weight. For triblocks, the PSPE double ends provided a higher probability of interchain attractions and resulted in a more turbid solution at higher temperatures, compared to the diblocks which had similar block ratios and molecular weights. The intermediates assumed as network-like soft aggregates eventually rearranged to monodisperse flowerlike micelles. It is expected that the method for obtaining well-defined betaine block copolymers, as well as the relationship of the block ratio and the chain conformation to the temperature-responsive behavior, will be helpful for designing betaine-based polymeric applications.
Collapse
Affiliation(s)
- Jongmin Lim
- Department of Polymer Chemistry, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan;
| | - Hideki Matsuoka
- Department of Polymer Chemistry, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan;
| | - Yusuke Kinoshita
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji 671-2280, Hyogo, Japan; (Y.K.); (S.-i.Y.)
| | - Shin-ichi Yusa
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji 671-2280, Hyogo, Japan; (Y.K.); (S.-i.Y.)
| | - Yoshiyuki Saruwatari
- Osaka Organic Chemical Industry Ltd., 7-20 Azuchi-machi, 1chome, Chuo-ku, Osaka 541-0052, Japan;
| |
Collapse
|
20
|
Fan X, Ou Y, Yang H, Yang H, Qu T, Zhang Q, Cheng F, Hu F, Liu H, Xu Z, Gong C. Composite proton exchange membrane for fuel cells based on chitosan modified by acid-base amphoteric nanoparticles. Int J Biol Macromol 2024; 254:127796. [PMID: 37923030 DOI: 10.1016/j.ijbiomac.2023.127796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/26/2023] [Accepted: 10/29/2023] [Indexed: 11/07/2023]
Abstract
Currently, achieving a simultaneous improvement in proton conductivity and mechanical properties is a key challenge in using chitosan (CS) as a proton exchange membrane (PEM) substrate in direct methanol fuel cells (DMFCs). Herein, a novel nanofiller-zwitterionic molecule, (3-(3-aminopropyl) dimethylammonio) propane-1-sulfonate, ADPS)-modified polydopamine (PDA) (PDA-ADPS) was synthesized by the Michael addition reaction and was incorporated into a CS matrix to prepare CS/PDA-ADPS composite membranes. PDA-ADPS, which contains an acid-based ion pair can create new proton conduction channels in the composite membrane, improving proton conductivity. The proton conductivity of the CS/PDA-ADPS composite membrane was as high as 38.4 mS cm-1 at 80 °C. Moreover, due to the excellent compatibility and dispersibility of PDA-ADPS in the CS matrix, the obtained CS/PDA-ADPS composite membranes exhibited favorable mechanical properties. Such outstanding proton conductivity and mechanical properties guarantee good performance of the composite membranes in fuel cells. The peak power density of the CS/PDA-ADPS composite membranes was 30.2 mW cm-2 at 70 °C. This work provides a new strategy for fabricating high-performance CS based PEMs for DMFCs.
Collapse
Affiliation(s)
- Xiangjian Fan
- Hubei Engineering & Technology Research Center for Functional Materials from Biomass, School of Chemistry and Material Science, Hubei Engineering University, Xiaogan, Hubei 432000, China; Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Ying Ou
- Hubei Engineering & Technology Research Center for Functional Materials from Biomass, School of Chemistry and Material Science, Hubei Engineering University, Xiaogan, Hubei 432000, China.
| | - Huiyu Yang
- Hubei Engineering & Technology Research Center for Functional Materials from Biomass, School of Chemistry and Material Science, Hubei Engineering University, Xiaogan, Hubei 432000, China
| | - Haiyang Yang
- Hubei Engineering & Technology Research Center for Functional Materials from Biomass, School of Chemistry and Material Science, Hubei Engineering University, Xiaogan, Hubei 432000, China
| | - Ting Qu
- Hubei Engineering & Technology Research Center for Functional Materials from Biomass, School of Chemistry and Material Science, Hubei Engineering University, Xiaogan, Hubei 432000, China
| | - Quanyuan Zhang
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Fan Cheng
- Hubei Engineering & Technology Research Center for Functional Materials from Biomass, School of Chemistry and Material Science, Hubei Engineering University, Xiaogan, Hubei 432000, China
| | - Fuqiang Hu
- Hubei Engineering & Technology Research Center for Functional Materials from Biomass, School of Chemistry and Material Science, Hubei Engineering University, Xiaogan, Hubei 432000, China
| | - Hai Liu
- Hubei Engineering & Technology Research Center for Functional Materials from Biomass, School of Chemistry and Material Science, Hubei Engineering University, Xiaogan, Hubei 432000, China
| | - Zushun Xu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Chunli Gong
- Hubei Engineering & Technology Research Center for Functional Materials from Biomass, School of Chemistry and Material Science, Hubei Engineering University, Xiaogan, Hubei 432000, China.
| |
Collapse
|
21
|
Yin X, Zhao C, Zhao Y, Zhu Y. Parallel Monitoring of Glucose, Free Amino Acids, and Vitamin C in Fruits Using a High-Throughput Paper-Based Sensor Modified with Poly(carboxybetaine acrylamide). BIOSENSORS 2023; 13:1001. [PMID: 38131761 PMCID: PMC10741689 DOI: 10.3390/bios13121001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/18/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023]
Abstract
Herein, a cost-effective and portable microfluidic paper-based sensor is proposed for the simultaneous and rapid detection of glucose, free amino acids, and vitamin C in fruit. The device was constructed by embedding a poly(carboxybetaine acrylamide) (pCBAA)-modified cellulose paper chip within a hydrophobic acrylic plate. We successfully showcased the capabilities of a filter paper-based microfluidic sensor for the detection of fruit nutrients using three distinct colorimetric analyses. Within a single paper chip, we simultaneously detected glucose, free amino acids, and vitamin C in the vivid hues of cyan blue, purple, and Turnbull's blue, respectively, in three distinctive detection zones. Notably, we employed more stable silver nanoparticles for glucose detection, replacing the traditional peroxidase approach. The detection limits for glucose reached a low level of 0.049 mmol/L. Meanwhile, the detection limits for free amino acids and vitamin C were found to be 0.236 mmol/L and 0.125 mmol/L, respectively. The feasibility of the proposed sensor was validated in 13 different practical fruit samples using spectrophotometry. Cellulose paper utilizes capillary action to process trace fluids in tiny channels, and combined with pCBAA, which has superior hydrophilicity and anti-pollution properties, it greatly improves the sensitivity and practicality of paper-based sensors. Therefore, the paper-based colorimetric device is expected to provide technical support for the nutritional value assessment of fruits in the field of rapid detection.
Collapse
Affiliation(s)
- Xinru Yin
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (X.Y.); (C.Z.)
| | - Cheng Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (X.Y.); (C.Z.)
- Henan Railway Food Safety Management Engineering Technology Research Center, Zhengzhou Railway Vocational & Technical College, Zhengzhou 451460, China
| | - Yong Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (X.Y.); (C.Z.)
| | - Yongheng Zhu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (X.Y.); (C.Z.)
| |
Collapse
|
22
|
Wang Z, Meng F, Zhang Y, Guo H. Low-Friction Hybrid Hydrogel with Excellent Mechanical Properties for Simulating Articular Cartilage Movement. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:2368-2379. [PMID: 36725688 DOI: 10.1021/acs.langmuir.2c03109] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Hydrogels, which can withstand large deformations and have stable chemical properties, are considered a potential material for cartilage repair. However, hydrogels still face some challenges regarding their mechanical properties, tribological behavior, and biocompatibility. Thus, we synthesized a hybrid hydrogel by means of chemical cross-linking and transesterification using glycerol ethoxylate (GE) and zwitterionic polysulfobetaine methacrylate (PSBMA) as raw materials. The hybrid hydrogel showed excellent compressive stress at approximately 3.50 MPa and low loss factors (0.023-0.049). Moreover, because GE has good water binding properties, helping to form a stable hydration layer and maintain low energy dissipation, a low friction coefficient (μ ≈ 0.028) was obtained with the "soft-soft contact mode" of a hydrogel hemisphere and hydrogel disc under reciprocating motion. In vitro cytotoxicity, skin sensitization, and irritation reaction tests were carried out to show good biocompatibility of the GE-PSBMA hybrid hydrogel. In this study, a hybrid hydrogel with no potential cytotoxicity, strong compressive capacity, and excellent lubricity was obtained to provide a potential alternative for developing polymer hybrids, as well as demonstrating an idea for the application of hybrid hydrogels in cartilage replacement.
Collapse
Affiliation(s)
- Zhongnan Wang
- School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing100044, China
| | - Fanjie Meng
- School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing100044, China
| | - Yue Zhang
- School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing100044, China
| | - Hui Guo
- School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing100044, China
| |
Collapse
|
23
|
Brown MU, Seong HG, Russell TP, Emrick T. Zwitterionic Sulfonium Sulfonate Polymers: Impacts of Substituents and Inverted Dipole. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Marcel U. Brown
- Polymer Science and Engineering Department, Conte Center for Polymer Research, University of Massachusetts, 120 Governors Drive, Amherst, Massachusetts 01003, United States
| | - Hong-Gyu Seong
- Polymer Science and Engineering Department, Conte Center for Polymer Research, University of Massachusetts, 120 Governors Drive, Amherst, Massachusetts 01003, United States
| | - Thomas P. Russell
- Polymer Science and Engineering Department, Conte Center for Polymer Research, University of Massachusetts, 120 Governors Drive, Amherst, Massachusetts 01003, United States
| | - Todd Emrick
- Polymer Science and Engineering Department, Conte Center for Polymer Research, University of Massachusetts, 120 Governors Drive, Amherst, Massachusetts 01003, United States
| |
Collapse
|
24
|
Khakzad F, Dewangan NK, Li TH, Safi Samghabadi F, Herrera Monegro R, Robertson ML, Conrad JC. Fouling Resistance and Release Properties of Poly(sulfobetaine) Brushes with Varying Alkyl Chain Spacer Lengths and Molecular Weights. ACS APPLIED MATERIALS & INTERFACES 2023; 15:2009-2019. [PMID: 36533943 DOI: 10.1021/acsami.2c16417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
We examined the effects of alkyl carbon spacer length (CSL) and molecular weight on fouling resistance and release properties of zwitterionic poly(sulfobetaine methacrylate) brushes. Using surface-initiated atom transfer radical polymerization, we synthesized two series of brushes with CSL = 3 and 4 and molecular weight from 19 to 1500 kg ·mol-1, corresponding to dry brush thickness from around 6 to 180 nm. The brush with CSL = 3 was nearly completely wet with water (independent of molecular weight), whereas the brush with CSL = 4 exhibited a strong increase in water contact angle with molecular weight. Though the two-brush series had distinct wetting properties, both series of brushes exhibited similarly great resistance against fouling by Staphylococcus epidermidis bacteria and Aspergillus niger fungi spores when submerged in water, indicating that neither molecular weight nor CSL strongly affected the antifouling behavior. We also compared the efficacy of brushes against fouling by fungi and silicon oil in air. Brushes grafted to filter paper were strongly fouled by fungi and silicon oil in air. Grafting the polymers to the filter paper, however, greatly enhanced removal of the foulant upon rinsing. The removal of fungi and silicon oil when rinsed with a salt solution was enhanced by 219 and 175%, respectively, as compared to a blank filter paper control. Thus, our results indicate that these zwitterionic brushes can promote foulant removal for dry applications in addition to their well-known fouling resistance in submerged conditions.
Collapse
Affiliation(s)
- Fahimeh Khakzad
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas77204, United States
| | - Narendra K Dewangan
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas77204, United States
| | - Tzu-Han Li
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas77204, United States
| | - Farshad Safi Samghabadi
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas77204, United States
| | - Ronard Herrera Monegro
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas77204, United States
| | - Megan L Robertson
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas77204, United States
| | - Jacinta C Conrad
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas77204, United States
| |
Collapse
|
25
|
Investigation on Filtration Control of Zwitterionic Polymer AADN in High Temperature High Pressure Water-Based Drilling Fluids. Gels 2022; 8:gels8120826. [PMID: 36547350 PMCID: PMC9777865 DOI: 10.3390/gels8120826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022] Open
Abstract
With the exploration and development of high-temperature and high-salt deep oil and gas, more rigorous requirements are warranted for the performance of water-based drilling fluids (WBDFs). In this study, acrylamide, 2-acrylamide-2-methylpropanesulfonic acid, diallyl dimethyl ammonium chloride, and N-vinylpyrrolidone were synthesized by free radical copolymerization in an aqueous solution to form a temperature and salt-resistant zwitterionic polymer gel filtration loss reducer (AADN). The zwitterionic polymer had excellent adsorption and hydration groups, which could effectively combine with bentonite through hydrogen bonds and electrostatic attraction, strengthening the hydration film thickness on the surface of bentonite, and promoting the stable dispersion of drilling fluid. In addition, the reverse polyelectrolyte effect of zwitterionic polymers strengthened the drilling fluid’s ability to resist high-temperature and high-salt. The AADN-based drilling fluid showed excellent rheological and filtration control properties (FLAPI < 8 mL, FLHTHP < 29.6 mL) even after aging at high-temperature (200 °C) and high-salt (20 wt% NaCl) conditions. This study provides a new strategy for simultaneously improving the high-temperature and high-salt tolerance of WBDFs, presenting the potential for application in drilling in high-temperature and high-salt deep formations.
Collapse
|
26
|
Eickenscheidt A, Lavaux V, Paschke S, Martínez AG, Schönemann E, Laschewsky A, Lienkamp K, Staszewski O. Effect of Poly(Oxanorbonene)- and Poly(Methacrylate)-Based Polyzwitterionic Surface Coatings on Cell Adhesion and Gene Expression of Human Keratinocytes. Macromol Biosci 2022; 22:e2200225. [PMID: 36200655 DOI: 10.1002/mabi.202200225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 09/21/2022] [Indexed: 12/25/2022]
Abstract
Polyzwitterions are generally known for their anti-adhesive properties, including resistance to protein and cell adhesion, and overall high bio-inertness. Yet there are a few polyzwitterions to which mammalian cells do adhere. To understand the structural features of this behavior, a panel of polyzwitterions with different functional groups and overall degrees of hydrophobicity is analyzed here, and their physical and biological properties are correlated to these structural differences. Cell adhesion is focused on, which is the basic requirement for cell viability, proliferation, and growth. With the here presented polyzwitterion panel, three different types of cell-surface interactions are observed: adhesion, slight attachment, and cell repellency. Using immunofluorescence methods, it is found that human keratinocytes (HaCaT) form focal adhesions on the cell-adhesive polyzwitterions, but not on the sample that has only slight cell attachment. Gene expression analysis indicates that HaCaT cells cultivated in the presence of a non-adhesive polyzwitterion have up-regulated inflammatory and apoptosis-related cell signaling pathways, while the gene expression of HaCaT cells grown on a cell-adhesive polyzwitterion does not differ from the gene expression of the growth control, and thus can be defined as fully cell-compatible.
Collapse
Affiliation(s)
- Alice Eickenscheidt
- Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Köhler-Allee 103, 79110, Freiburg, Germany.,Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, 79110, Freiburg, Germany
| | - Valentine Lavaux
- Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Köhler-Allee 103, 79110, Freiburg, Germany.,Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, 79110, Freiburg, Germany
| | - Stefan Paschke
- Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Köhler-Allee 103, 79110, Freiburg, Germany.,Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, 79110, Freiburg, Germany
| | | | - Eric Schönemann
- Institut für Chemie, Universität Potsdam, Karl-Liebknecht Str. 25, 14476, Potsdam-Golm, Germany
| | - André Laschewsky
- Institut für Chemie, Universität Potsdam, Karl-Liebknecht Str. 25, 14476, Potsdam-Golm, Germany.,Fraunhofer Institut für Angewandte Polymerforschung, 14476, Potsdam-Golm, Germany
| | - Karen Lienkamp
- Department of Materials Science, Saarland University, Campus, 66123, Saarbrücken, Germany
| | - Ori Staszewski
- Institute for Neuropathology, Medical Center of the University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| |
Collapse
|
27
|
Synthesis of a new high temperature and salt resistant zwitterionic filtrate reducer and its application in water-based drilling fluid. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
28
|
Olejnik A, Ficek M, Szkodo M, Stanisławska A, Karczewski J, Ryl J, Dołęga A, Siuzdak K, Bogdanowicz R. Tailoring Diffusional Fields in Zwitterion/Dopamine Copolymer Electropolymerized at Carbon Nanowalls for Sensitive Recognition of Neurotransmitters. ACS NANO 2022; 16:13183-13198. [PMID: 35868019 PMCID: PMC9413423 DOI: 10.1021/acsnano.2c06406] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
The importance of neurotransmitter sensing in the diagnosis and treatment of many psychological illnesses and neurodegenerative diseases is non-negotiable. For electrochemical sensors to become widespread and accurate, a long journey must be undertaken for each device, from understanding the materials at the molecular level to real applications in biological fluids. We report a modification of diamondized boron-doped carbon nanowalls (BCNWs) with an electropolymerized polydopamine/polyzwitterion (PDA|PZ) coating revealing tunable mechanical and electrochemical properties. Zwitterions are codeposited with PDA and noncovalently incorporated into a structure. This approach causes a specific separation of the diffusion fields generated by each nanowall during electrochemical reactions, thus increasing the contribution of the steady-state currents in the amperometric response. This phenomenon has a profound effect on the sensing properties, leading to a 4-fold enhancement of the sensitivity (3.1 to 14.3 μA cm-2 μM-1) and a 5-fold decrease of the limit of detection (505 to 89 nM) in comparison to the pristine BCNWs. Moreover, as a result of the antifouling capabilities of the incorporated zwitterions, this enhancement is preserved in bovine serum albumin (BSA) with a high protein concentration. The presence of zwitterion facilitates the transport of dopamine in the direction of the electrode by intermolecular interactions such as cation-π and hydrogen bonds. On the other hand, polydopamine units attached to the surface form molecular pockets driven by hydrogen bonds and π-π interactions. As a result, the intermediate state of dopamine-analyte oxidation is stabilized, leading to the enhancement of the sensing properties.
Collapse
Affiliation(s)
- Adrian Olejnik
- Department
of Metrology and Optoelectronics, Faculty of Electronics, Telecommunications
and Informatics, Gdańsk University
of Technology, Narutowicza
11/12 St., 80-233 Gdańsk, Poland
- Centre
for Plasma and Laser Engineering, The Szewalski Institute of Fluid-Flow
Machinery, Polish Academy of Sciences, Fiszera 14 St., 80-231 Gdańsk, Poland
| | - Mateusz Ficek
- Department
of Metrology and Optoelectronics, Faculty of Electronics, Telecommunications
and Informatics, Gdańsk University
of Technology, Narutowicza
11/12 St., 80-233 Gdańsk, Poland
| | - Marek Szkodo
- Institute
of Manufacturing and Materials Technology, Faculty of Mechanical Engineering
and Ship Technology, Gdańsk University
of Technology, Narutowicza
11/12 St., 80-233 Gdańsk, Poland
| | - Alicja Stanisławska
- Institute
of Manufacturing and Materials Technology, Faculty of Mechanical Engineering
and Ship Technology, Gdańsk University
of Technology, Narutowicza
11/12 St., 80-233 Gdańsk, Poland
| | - Jakub Karczewski
- Institute
of Nanotechnology and Materials Engineering and Advanced Materials
Center, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland
| | - Jacek Ryl
- Institute
of Nanotechnology and Materials Engineering and Advanced Materials
Center, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland
| | - Anna Dołęga
- Department
of Inorganic Chemistry, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12 St., 80-233 Gdańsk, Poland
| | - Katarzyna Siuzdak
- Centre
for Plasma and Laser Engineering, The Szewalski Institute of Fluid-Flow
Machinery, Polish Academy of Sciences, Fiszera 14 St., 80-231 Gdańsk, Poland
| | - Robert Bogdanowicz
- Department
of Metrology and Optoelectronics, Faculty of Electronics, Telecommunications
and Informatics, Gdańsk University
of Technology, Narutowicza
11/12 St., 80-233 Gdańsk, Poland
| |
Collapse
|
29
|
Javan Nikkhah S, Vandichel M. Modeling Polyzwitterion-Based Drug Delivery Platforms: A Perspective of the Current State-of-the-Art and Beyond. ACS ENGINEERING AU 2022; 2:274-294. [PMID: 35996394 PMCID: PMC9389590 DOI: 10.1021/acsengineeringau.2c00008] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Drug delivery platforms are anticipated to have biocompatible and bioinert surfaces. PEGylation of drug carriers is the most approved method since it improves water solubility and colloid stability and decreases the drug vehicles' interactions with blood components. Although this approach extends their biocompatibility, biorecognition mechanisms prevent them from biodistribution and thus efficient drug transfer. Recent studies have shown (poly)zwitterions to be alternatives for PEG with superior biocompatibility. (Poly)zwitterions are super hydrophilic, mainly stimuli-responsive, easy to functionalize and they display an extremely low protein adsorption and long biodistribution time. These unique characteristics make them already promising candidates as drug delivery carriers. Furthermore, since they have highly dense charged groups with opposite signs, (poly)zwitterions are intensely hydrated under physiological conditions. This exceptional hydration potential makes them ideal for the design of therapeutic vehicles with antifouling capability, i.e., preventing undesired sorption of biologics from the human body in the drug delivery vehicle. Therefore, (poly)zwitterionic materials have been broadly applied in stimuli-responsive "intelligent" drug delivery systems as well as tumor-targeting carriers because of their excellent biocompatibility, low cytotoxicity, insignificant immunogenicity, high stability, and long circulation time. To tailor (poly)zwitterionic drug vehicles, an interpretation of the structural and stimuli-responsive behavior of this type of polymer is essential. To this end, a direct study of molecular-level interactions, orientations, configurations, and physicochemical properties of (poly)zwitterions is required, which can be achieved via molecular modeling, which has become an influential tool for discovering new materials and understanding diverse material phenomena. As the essential bridge between science and engineering, molecular simulations enable the fundamental understanding of the encapsulation and release behavior of intelligent drug-loaded (poly)zwitterion nanoparticles and can help us to systematically design their next generations. When combined with experiments, modeling can make quantitative predictions. This perspective article aims to illustrate key recent developments in (poly)zwitterion-based drug delivery systems. We summarize how to use predictive multiscale molecular modeling techniques to successfully boost the development of intelligent multifunctional (poly)zwitterions-based systems.
Collapse
Affiliation(s)
- Sousa Javan Nikkhah
- Department
of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Republic of Ireland
| | - Matthias Vandichel
- Department
of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Republic of Ireland
| |
Collapse
|
30
|
Higaki Y, Furusawa R, Otsu T, Yamada NL. Zwitterionic Poly(carboxybetaine) Brush/Albumin Conjugate Films: Structure and Lubricity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:9278-9284. [PMID: 35866870 DOI: 10.1021/acs.langmuir.2c01040] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Artificial cartilages build up a highly lubricious system with the harmony of biomacromolecules and water. Bioconjugate thin films composed of a zwitterionic poly(carboxybetaine methacrylate) (PCB) brush platform and bovine serum albumin (BSA) were designed. BSA conjugation to the PCB brush chains was achieved by carbodiimide chemistry to give PCB brush/BSA conjugate films. The PCB brush/BSA conjugate films exhibited adaptable interfacial properties due to the amphiphilic nature of BSA. Neutron reflectivity showed that BSAs were localized at the liquid side of the conjugate films in PBS and the BSA conjugation slightly reduced the water content of the top layer, while the swollen state of the carpet PCB brush layer remained unchanged. The PCB brush/BSA conjugate films showed improved lubricity in the boundary lubrication mode but slightly worse fluid lubrication induction properties. This conjugate film could be a model system for the investigation of zwitterion/protein composite interfaces and is worth developing biomaterials that require lubrication in vivo.
Collapse
Affiliation(s)
- Yuji Higaki
- Department of Integrated Science and Technology, Faculty of Science and Technology, Oita University, 700 Dannoharu, Oita 870-1192, Japan
| | - Riku Furusawa
- Graduate School of Engineering, Oita University, 700 Dannoharu, Oita 870-1192, Japan
| | - Takefumi Otsu
- Department of Innovative Engineering, Faculty of Science and Technology, Oita University, 700 Dannoharu, Oita 870-1192, Japan
| | - Norifumi L Yamada
- Institute of Materials Structure Science, High Energy Accelerator Research Organization, Ibaraki 305-0801, Japan
| |
Collapse
|
31
|
Vallet-Regí M, Schüth F, Lozano D, Colilla M, Manzano M. Engineering mesoporous silica nanoparticles for drug delivery: where are we after two decades? Chem Soc Rev 2022; 51:5365-5451. [PMID: 35642539 PMCID: PMC9252171 DOI: 10.1039/d1cs00659b] [Citation(s) in RCA: 157] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Indexed: 12/12/2022]
Abstract
The present review details a chronological description of the events that took place during the development of mesoporous materials, their different synthetic routes and their use as drug delivery systems. The outstanding textural properties of these materials quickly inspired their translation to the nanoscale dimension leading to mesoporous silica nanoparticles (MSNs). The different aspects of introducing pharmaceutical agents into the pores of these nanocarriers, together with their possible biodistribution and clearance routes, would be described here. The development of smart nanocarriers that are able to release a high local concentration of the therapeutic cargo on-demand after the application of certain stimuli would be reviewed here, together with their ability to deliver the therapeutic cargo to precise locations in the body. The huge progress in the design and development of MSNs for biomedical applications, including the potential treatment of different diseases, during the last 20 years will be collated here, together with the required work that still needs to be done to achieve the clinical translation of these materials. This review was conceived to stand out from past reports since it aims to tell the story of the development of mesoporous materials and their use as drug delivery systems by some of the story makers, who could be considered to be among the pioneers in this area.
Collapse
Affiliation(s)
- María Vallet-Regí
- Chemistry in Pharmaceutical Sciences, School of Pharmacy, Universidad Complutense de Madrid, Research Institute Hospital 12 de Octubre (i + 12), Pz/Ramón y Cajal s/n, Madrid 28040, Spain.
- Networking Research Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
| | - Ferdi Schüth
- Department of Heterogeneous Catalysis, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Daniel Lozano
- Chemistry in Pharmaceutical Sciences, School of Pharmacy, Universidad Complutense de Madrid, Research Institute Hospital 12 de Octubre (i + 12), Pz/Ramón y Cajal s/n, Madrid 28040, Spain.
- Networking Research Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
| | - Montserrat Colilla
- Chemistry in Pharmaceutical Sciences, School of Pharmacy, Universidad Complutense de Madrid, Research Institute Hospital 12 de Octubre (i + 12), Pz/Ramón y Cajal s/n, Madrid 28040, Spain.
- Networking Research Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
| | - Miguel Manzano
- Chemistry in Pharmaceutical Sciences, School of Pharmacy, Universidad Complutense de Madrid, Research Institute Hospital 12 de Octubre (i + 12), Pz/Ramón y Cajal s/n, Madrid 28040, Spain.
- Networking Research Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
| |
Collapse
|
32
|
Lin CH, Luo SC. Zwitterionic Conducting Polymers: From Molecular Design, Surface Modification, and Interfacial Phenomenon to Biomedical Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:7383-7399. [PMID: 35675211 DOI: 10.1021/acs.langmuir.2c00448] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Conducting polymers (CPs) have gained attention as electrode materials in bioengineering mainly because of their mechanical softness compared to conventional inorganic materials. To achieve better performance and broaden bioelectronics applications, the surface modification of soft zwitterionic polymers with antifouling properties represents a facile approach to preventing unwanted nonspecific protein adsorption and improving biocompatibility. This feature article emphasizes the antifouling properties of zwitterionic CPs, accompanied by their molecular synthesis and surface modification methods and an analysis of the interfacial phenomenon. Herein, commonly used methods for zwitterionic functionalization on CPs are introduced, including the synthesis of zwitterionic moieties on CP molecules and postsurface modification, such as the grafting of zwitterionic polymer brushes. To analyze the chain conformation, the structure of bound water in the vicinity of zwitterionic CPs and biomolecule behavior, such as protein adsorption or cell adhesion, provide critical insights into the antifouling properties. Integrating these characterization techniques offers general guidelines and paves the way for designing new zwitterionic CPs for advanced biomedical applications. Recent advances in newly designed zwitterionic CP-based electrodes have demonstrated outstanding potential in modern biomedical applications.
Collapse
Affiliation(s)
- Chia-Hsuan Lin
- Department of Materials Science and Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Shyh-Chyang Luo
- Department of Materials Science and Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes (NHRI), Miaoli County 35053, Taiwan
| |
Collapse
|
33
|
Berret JF, Graillot A. Versatile Coating Platform for Metal Oxide Nanoparticles: Applications to Materials and Biological Science. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:5323-5338. [PMID: 35483044 DOI: 10.1021/acs.langmuir.2c00338] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In this feature article, we provide an overview of our research on statistical copolymers as a coating material for metal oxide nanoparticles and surfaces. These copolymers contain functional groups enabling noncovalent binding to oxide surfaces and poly(ethylene glycol) (PEG) polymers for colloidal stability and stealthiness. The functional groups are organic derivatives of phosphorous acid compounds R-H2PO3, also known as phosphonic acids that have been screened for their strong affinity to metals and for their multidentate binding ability. Herein we develop a polymer-based coating platform that shares features with the self-assembled monolayer (SAM) and layer-by-layer (L-b-L) deposition techniques. The milestones of this endeavor are the synthesis of PEG-based copolymers containing multiple phosphonic acid groups, the implementation of simple protocols combining versatility with high particle production yields, and the experimental evidence of the colloidal stability of the coated particles. As a demonstration, coating studies are conducted on cerium (CeO2), iron (γ-Fe2O3), aluminum (Al2O3), and titanium (TiO2) oxides of different sizes and morphologies. We finally discuss applications in the domain of nanomaterials and nanomedicine. We evaluate the beneficial effects of coatings on redispersible nanopowders, contrast agents for in vitro/vivo assays, and stimuli-responsive particles.
Collapse
Affiliation(s)
| | - Alain Graillot
- Specific Polymers, ZAC Via Domitia, 150 Avenue des Cocardières, 34160 Castries, France
| |
Collapse
|
34
|
Ahmed ST, Leckband DE. Forces between mica and end-grafted statistical copolymers of sulfobetaine and oligoethylene glycol in aqueous electrolyte solutions. J Colloid Interface Sci 2022; 608:1857-1867. [PMID: 34752975 DOI: 10.1016/j.jcis.2021.09.175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 11/17/2022]
Abstract
This study quantified the interfacial forces associated with end-grafted, statistical (AB) co-polymers of sulfobetaine methacrylate (SBMA) and oligoethylene glycol methacrylate (OEGMA) (poly(SBMA-co-OEGMA)). Surface force apparatus measurements compared forces between mica and end-grafted copolymers containing 0, 40, or 80 mol% SBMA. Studies compared forces measured at low grafting density (weakly overlapping chains) and at high density (brushes). At high density, the range of repulsive forces did not change significantly with increasing SBMA content. By contrast, at low density, both the range and the amplitude of the repulsion increased with the percentage of SBMA in the chains. The ionic strength dependence of the film thickness and repulsive forces increased similarly with SBMA content, reflecting the increasing influence of charged monomers and their interactions with ions in solution. The forces could be described by models of simple polymers in good solvent. However, the forces and fitted model parameters change continuously with the SBMA content. The latter behavior suggests that ethyene glycol and sulfobetaine behave as non-interacting, miscible monomers that contribute independently to the interfacial forces. The results suggest that molecular scale properties of statistical poly (SBMA-co-OEGMA) films can be readily tuned by simple variation of the monomer ratios.
Collapse
Affiliation(s)
- Syeda Tajin Ahmed
- Department of Chemical and Biomolecular Engineering, 600 South Mathews Avenue, Roger Adams Laboratory, Urbana, IL 61801, USA
| | - Deborah E Leckband
- Department of Chemical and Biomolecular Engineering, 600 South Mathews Avenue, Roger Adams Laboratory, Urbana, IL 61801, USA; Department of Chemistry, 600 South Mathews Avenue, Roger Adams Laboratory, Urbana, IL 61801, USA.
| |
Collapse
|
35
|
Nagy B, Campana M, Khaydukov YN, Ederth T. Structure and pH-Induced Swelling of Polymer Films Prepared from Sequentially Grafted Polyelectrolytes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:1725-1737. [PMID: 35081310 PMCID: PMC8830213 DOI: 10.1021/acs.langmuir.1c02784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/13/2022] [Indexed: 05/16/2023]
Abstract
We have prepared a series of ampholytic polymer films, using a self-initiated photografting and photopolymerization (SI-PGP) method to sequentially polymerize first anionic (deuterated methacrylic acid (dMAA)) and thereafter cationic (2-aminoethyl methacrylate (AEMA)) monomers to investigate the SI-PGP grafting process. Dry films were investigated by ellipsometry, X-ray, and neutron reflectometry, and their swelling was followed over a pH range from 4.5 to 10.5 with spectroscopic ellipsometry. The deuterated monomer allows us to separate the distributions of the two components by neutron reflectometry. Growth of both polymers proceeds via grafting of solution-polymerized fragments to the surface, and also the second layer is primarily grafted to the substrate and not as a continuation of the existing chains. The polymer films are stratified, with one layer of near 1:1 composition and the other layer enriched in one component and located either above or below the former layer. The ellipsometry results show swelling transitions at low and high pH but with no systematic variation in the pH values where these transitions occur. The results suggest that grafting density in SI-PGP-prepared homopolymers could be increased via repeated polymerization steps, but that this process does not necessarily increase the average chain length.
Collapse
Affiliation(s)
- Béla Nagy
- Division
of Biophysics and Bioengineering, Department of Physics, Chemistry
and Biology, Linköping University, SE-581 83 Linköping, Sweden
| | - Mario Campana
- ISIS
Facility, Rutherford Appleton Laboratory,
STFC, Chilton, Didcot, Oxon OX11
0QX, U.K.
| | - Yury N. Khaydukov
- Max-Planck-Institut
für Festkörperforschung, Heisenbergstraße 1, D-70569 Stuttgart, Germany
- Max
Planck Society Outstation at the Heinz Maier-Leibnitz Zentrum (MLZ), D-85748 Garching, Germany
| | - Thomas Ederth
- Division
of Biophysics and Bioengineering, Department of Physics, Chemistry
and Biology, Linköping University, SE-581 83 Linköping, Sweden
| |
Collapse
|
36
|
Ahmed ST, Madinya JJ, Leckband DE. Ionic strength dependent forces between end-grafted Poly(sulfobetaine) films and mica. J Colloid Interface Sci 2022; 606:298-306. [PMID: 34392027 DOI: 10.1016/j.jcis.2021.08.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/26/2021] [Accepted: 08/01/2021] [Indexed: 12/12/2022]
Abstract
The molecular surface properties of zwitterionic polymer coatings are central to their ultra-low fouling properties and effectiveness as steric stabilizers in concentrated salt solutions. Here, Surface Force Apparatus measurements quantified the molecular forces between end-grafted poly(sulfobetaine) methacrylate thin films and mica, as a function of the chain grafting density and ionic strength. These results demonstrate that, at the ionic strengths considered, end-grafted poly(sulfobetaine) films can be described by models for polymers in good solvent. Parameters determined from data fits to the Milner-Witten-Cates or Dolan and Edwards models for dense or dilute chains, respectively, varied with ionic strength, in ways that reflect poly(sulfobetaine) swelling and the increased excluded volume strength of chain segments. These force measurements provide new insight into how polymer coverage and salt cooperate to regulate repulsive poly(sulfobetaine) steric barriers. These findings have implications for the design of grafted poly(sulfobetaine) as colloidal stabilizers or nonfouling surface coatings.
Collapse
Affiliation(s)
- Syeda Tajin Ahmed
- Department of Chemical and Biomolecular Engineering, 600 South Mathews Avenue, Roger Adams Laboratory, Urbana, IL 61801, USA
| | - Jason J Madinya
- Department of Chemical and Biomolecular Engineering, 600 South Mathews Avenue, Roger Adams Laboratory, Urbana, IL 61801, USA
| | - Deborah E Leckband
- Department of Chemical and Biomolecular Engineering, 600 South Mathews Avenue, Roger Adams Laboratory, Urbana, IL 61801, USA; Department of Chemical and Biomolecular Engineering and Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Roger Adams Laboratory, Urbana, IL 61801, USA.
| |
Collapse
|
37
|
Zhang M, Yu P, Xie J, Li J. Recent advances of zwitterionic based topological polymers for biomedical applications. J Mater Chem B 2022; 10:2338-2356. [PMID: 35212331 DOI: 10.1039/d1tb02323c] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Zwitterionic polymers, comprising hydrophilic anionic and cationic groups with the same total number of positive and negative charges on the same monomer residue, have received increasing attention due to their...
Collapse
Affiliation(s)
- Miao Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer, Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Peng Yu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer, Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Jing Xie
- College of Polymer Science and Engineering, State Key Laboratory of Polymer, Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer, Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
- Med-X Center for Materials, Sichuan University, Chengdu 610041, P. R. China
| |
Collapse
|
38
|
Poulladofonou G, Neumann K. Poly(sulfur ylides): a new class of zwitterionic polymers with distinct thermal and solution behaviour. Polym Chem 2022. [DOI: 10.1039/d2py00851c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Readily available poly(sulfur ylides) are described as a new class of zwitterionic polymers that show distinct solution and thermal behavior.
Collapse
Affiliation(s)
- Georgia Poulladofonou
- Systems Chemistry Department, Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, Netherlands
| | - Kevin Neumann
- Systems Chemistry Department, Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, Netherlands
| |
Collapse
|
39
|
Fay JM, Kabanov AV. Interpolyelectrolyte Complexes as an Emerging Technology for Pharmaceutical Delivery of Polypeptides. REVIEWS AND ADVANCES IN CHEMISTRY 2022; 12. [PMCID: PMC9987408 DOI: 10.1134/s2634827622600177] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Polyelectrolyte complexes and the derivatives thereof comprise some of the most promising vehicles for the encapsulation and delivery of macromolecular therapeutics. In particular, protein therapeutics, which present a host of special considerations, can often be effectively packaged and delivered using interpolyelectrolyte complexes. While the technologies are still in the developmental phase, there are numerous examples of complexes where control is exerted over spacial and temporal delivery of a model protein cargo or candidate protein therapeutic agent. Here we provide a historical and practical background to promote a deeper understanding of interpolyelectrolyte complexes and the derivative technologies. Additionally, we review the physical principles underlying the association of polyelectrolyte complexes and the application of those principles to novel strategies and technologies driving interpolyelectrolyte complexation. Then, the application of polyelectrolyte complex technology to protein therapeutics is discussed in detail including discussions of several types of protein cargo with a special emphasis on Brain-Derived Neurotrophic Factor. Finally, we focus on the use of stealth polymers in block ionomer complexes, specifically PEG; its benefits, flaws, and possible alternatives. Comprehensive understanding of the field may promote the continued development of derivative technologies for the delivery of particularly intransigent protein therapeutics, much as has been accomplished for small molecule drugs. We also aim to link current advances to the historical developments which inaugurated the field. With consideration to the field, industrial and academic researchers can utilize the discussed technologies and continue to elucidate novel modalities for a myriad of therapeutic and commercial applications.
Collapse
Affiliation(s)
- James M. Fay
- Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina, NC 27599-7362 Chapel Hill, USA ,Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, NC 27599-7260 Chapel Hill, USA
| | - Alexander V. Kabanov
- Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina, NC 27599-7362 Chapel Hill, USA ,Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, NC 27599-7260 Chapel Hill, USA ,Faculty of Chemistry, Moscow State University, 119992 Moscow, Russia
| |
Collapse
|
40
|
Brown MU, Seong HG, Margossian KO, Bishop L, Russell TP, Muthukumar M, Emrick T. Zwitterionic Ammonium Sulfonate Polymers: Synthesis and Properties in Fluids. Macromol Rapid Commun 2021; 43:e2100678. [PMID: 34962321 DOI: 10.1002/marc.202100678] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/23/2021] [Indexed: 11/10/2022]
Abstract
Polymer zwitterions continue to emerge as useful materials for numerous applications, ranging from hydrophilic and antifouling coatings to electronic materials interfaces. While several polymer zwitterion compositions are now well established, interest in this field of soft materials science has grown rapidly in recent years due to the introduction of new structures that diversify their chemistry and architecture. Nonetheless, at present, the variation of the chemical composition of the anionic and cationic components of zwitterionic structures remains relatively limited to a few primary examples. In this article, we highlight the versatility of 4-vinylbenzyl sultone as a precursor to ammonium sulfonate zwitterionic monomers, which are then used in controlled free radical polymerization chemistry to afford "inverted sulfobetaine" polymer zwitterions. An evaluation of the solubility, interfacial activity, and solution configuration of the resultant polymers revealed the dependence of properties on the selection of tertiary amines used for nucleophilic ring-opening of the sultone precursor, as well as useful properties comparisons across different zwitterionic compositions. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Marcel U Brown
- M. U. Brown, H. Seong, K. O. Margossian, L. Bishop, Prof. T. P. Russell, Prof. M. Muthukumar, Prof. T. Emrick, Polymer Science and Engineering Department, University of Massachusetts Amherst, 120 Governors Drive, Amherst, Massachusetts, 01003, USA
| | - Hong-Gyu Seong
- M. U. Brown, H. Seong, K. O. Margossian, L. Bishop, Prof. T. P. Russell, Prof. M. Muthukumar, Prof. T. Emrick, Polymer Science and Engineering Department, University of Massachusetts Amherst, 120 Governors Drive, Amherst, Massachusetts, 01003, USA
| | - Khatcher O Margossian
- M. U. Brown, H. Seong, K. O. Margossian, L. Bishop, Prof. T. P. Russell, Prof. M. Muthukumar, Prof. T. Emrick, Polymer Science and Engineering Department, University of Massachusetts Amherst, 120 Governors Drive, Amherst, Massachusetts, 01003, USA.,K. O. Margossian, Rush Medical College, Rush University Medical Center, 600 S Paulina Street, Chicago, Illinois, 60612, USA
| | - Lauren Bishop
- M. U. Brown, H. Seong, K. O. Margossian, L. Bishop, Prof. T. P. Russell, Prof. M. Muthukumar, Prof. T. Emrick, Polymer Science and Engineering Department, University of Massachusetts Amherst, 120 Governors Drive, Amherst, Massachusetts, 01003, USA
| | - Thomas P Russell
- M. U. Brown, H. Seong, K. O. Margossian, L. Bishop, Prof. T. P. Russell, Prof. M. Muthukumar, Prof. T. Emrick, Polymer Science and Engineering Department, University of Massachusetts Amherst, 120 Governors Drive, Amherst, Massachusetts, 01003, USA
| | - Murugappan Muthukumar
- M. U. Brown, H. Seong, K. O. Margossian, L. Bishop, Prof. T. P. Russell, Prof. M. Muthukumar, Prof. T. Emrick, Polymer Science and Engineering Department, University of Massachusetts Amherst, 120 Governors Drive, Amherst, Massachusetts, 01003, USA
| | - Todd Emrick
- M. U. Brown, H. Seong, K. O. Margossian, L. Bishop, Prof. T. P. Russell, Prof. M. Muthukumar, Prof. T. Emrick, Polymer Science and Engineering Department, University of Massachusetts Amherst, 120 Governors Drive, Amherst, Massachusetts, 01003, USA
| |
Collapse
|
41
|
Yu Y, Ghalandari B, Shen G, Wang L, Liu X, Wang A, Li S, Xie H, Ding X. Poly (N-vinylpyrrolidone) modification mitigates plasma protein corona formation on phosphomolybdate-based nanoparticles. J Nanobiotechnology 2021; 19:445. [PMID: 34949196 PMCID: PMC8697440 DOI: 10.1186/s12951-021-01140-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/15/2021] [Indexed: 01/08/2023] Open
Abstract
Phosphomolybdate-based nanoparticles (PMo12-based NPs) have been commonly applied in nanomedicine. However, upon contact with biofluids, proteins are quickly adsorbed onto the NPs surface to form a protein corona, which induces the opsonization and facilitates the rapid clearance of the NPs by macrophage uptake. Herein, we introduce a family of structurally homologous PMo12-based NPs (CDS-PMo12@PVPx(x = 0 ~ 1) NPs) capping diverse content of zwitterionic polymer poly (N-vinylpyrrolidone) (PVP) to regulate the protein corona formation on PMo12-based NPs. The fluorescence quenching data indicate that the introduction of PVP effectively reduces the number of binding sites of proteins on PMo12-based NPs. Molecular docking simulations results show that the contact surface area and binding energy of proteins to CDS-PMo12@PVP1 NPs are smaller than the CDS-PMo12@PVP0 NPs. The liquid chromatography-tandem mass spectrometry (LC–MS/MS) is further applied to analyze and quantify the compositions of the human plasma corona formation on CDS-PMo12@PVPx(x = 0 ~ 1) NPs. The number of plasma protein groups adsorption on CDS-PMo12@PVP1 NPs, compared to CDS-PMo12@PVP0 NPs, decreases from 372 to 271. In addition, 76 differentially adsorption proteins are identified between CDS-PMo12@PVP0 and CDS-PMo12@PVP1 NPs, in which apolipoprotein is up-regulated in CDS-PMo12@PVP1 NPs. The apolipoprotein adsorption onto the NPs is proposed to have dysoponic activity and enhance the circulation time of NPs. Our findings demonstrate that PVP grafting on PMo12-based NPs is a promising strategy to improve the anti-biofouling property for PMo12-based nanodrug design. ![]()
Collapse
Affiliation(s)
- Youyi Yu
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Behafarid Ghalandari
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Guangxia Shen
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Liping Wang
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Xiao Liu
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Aiting Wang
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Sijie Li
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Haiyang Xie
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China.
| | - Xianting Ding
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China.
| |
Collapse
|
42
|
Ko Y, Truong VK, Woo SY, Dickey MD, Hsiao L, Genzer J. Counterpropagating Gradients of Antibacterial and Antifouling Polymer Brushes. Biomacromolecules 2021; 23:424-430. [PMID: 34905339 DOI: 10.1021/acs.biomac.1c01386] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report on the formation of counterpropagating density gradients in poly([2-dimethylaminoethyl] methacrylate) (PDMAEMA) brushes featuring spatially varying quaternized and betainized units. Starting with PDMAEMA brushes with constant grafting density and degree of polymerization, we first generate a density gradient of quaternized units by directional vapor reaction involving methyl iodide. The unreacted DMAEMA units are then betainized through gaseous-phase betainization with 1,3-propanesultone. The gas reaction of PDMAEMA with 1,3-propanesultone eliminates the formation of byproducts present during the liquid-phase modification. We use the counterpropagating density gradients of quaternized and betainized PDMAEMA brushes in antibacterial and antifouling studies. Completely quaternized and betainized brushes exhibit antibacterial and antifouling behaviors. Samples containing 12% of quaternized and 85% of betainized units act simultaneously as antibacterial and antifouling surfaces.
Collapse
Affiliation(s)
- Yeongun Ko
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, United States
| | - Vi Khanh Truong
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, United States.,Nanobiotechnology Laboratory, School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Sun Young Woo
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, United States
| | - Michael D Dickey
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, United States
| | - Lilian Hsiao
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, United States
| | - Jan Genzer
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, United States.,Global Station for Soft Matter, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Hokkaido 060-0808, Japan
| |
Collapse
|
43
|
Schardt L, Martínez Guajardo A, Koc J, Clarke JL, Finlay JA, Clare AS, Gardner H, Swain GW, Hunsucker K, Laschewsky A, Rosenhahn A. Low Fouling Polysulfobetaines with Variable Hydrophobic Content. Macromol Rapid Commun 2021; 43:e2100589. [PMID: 34734670 DOI: 10.1002/marc.202100589] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/01/2021] [Indexed: 11/08/2022]
Abstract
Amphiphilic polymer coatings combining hydrophilic elements, in particular zwitterionic groups, and hydrophobic elements comprise a promising strategy to decrease biofouling. However, the influence of the content of the hydrophobic component in zwitterionic coatings on the interfacial molecular reorganization dynamics and the anti-fouling performance is not well understood. Therefore, coatings of amphiphilic copolymers of sulfobetaine methacrylate 3-[N-2'-(methacryloyloxy)ethyl-N,N-dimethyl]-ammonio propane-1-sulfonate (SPE) are prepared which contain increasing amounts of hydrophobic n-butyl methacrylate (BMA). Their fouling resistance is compared to that of their homopolymers PSPE and PBMA. The photo-crosslinked coatings form hydrogel films with a hydrophilic surface. Fouling by the proteins fibrinogen and lysozyme as well as by the diatom Navicula perminuta and the green algae Ulva linza is assessed in laboratory assays. While biofouling is strongly reduced by all zwitterionic coatings, the best fouling resistance is obtained for the amphiphilic copolymers. Also in preliminary field tests, the anti-fouling performance of the amphiphilic copolymer films is superior to that of both homopolymers. When the coatings are exposed to a marine environment, the reduced susceptibility to silt incorporation, in particular compared to the most hydrophilic polyzwitterion PSPE, likely contributes to the improved fouling resistance.
Collapse
Affiliation(s)
- Lisa Schardt
- Analytical Chemistry - Biointerfaces, Ruhr University Bochum, 44801, Bochum, Germany
| | | | - Julian Koc
- Analytical Chemistry - Biointerfaces, Ruhr University Bochum, 44801, Bochum, Germany
| | - Jessica L Clarke
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - John A Finlay
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Anthony S Clare
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Harrison Gardner
- Center for Corrosion and Biofouling Control, Florida Institute of Technology, Melbourne, FL, 32901, USA
| | - Geoffrey W Swain
- Center for Corrosion and Biofouling Control, Florida Institute of Technology, Melbourne, FL, 32901, USA
| | - Kelli Hunsucker
- Center for Corrosion and Biofouling Control, Florida Institute of Technology, Melbourne, FL, 32901, USA
| | - André Laschewsky
- Institute of Chemistry, University of Potsdam, 14476, Potsdam, Germany.,Fraunhofer Institute of Applied Polymer Research IAP, 14476, Potsdam, Germany
| | - Axel Rosenhahn
- Analytical Chemistry - Biointerfaces, Ruhr University Bochum, 44801, Bochum, Germany
| |
Collapse
|
44
|
Lin CH, Luo SC. Combination of AFM and Electrochemical QCM-D for Probing Zwitterionic Polymer Brushes in Water: Visualization of Ionic Strength and Surface Potential Effects. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:12476-12486. [PMID: 34648298 DOI: 10.1021/acs.langmuir.1c02230] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The surface modification of soft zwitterionic polymer brushes with antifouling properties represents a facile approach to enhancing the performance of bioelectronics. Ionic strength and applied potentials play a crucial role in controlling polymer brushes' conformation and hydration states. In this study, we quantitatively investigated and compared poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC) and poly(sulfobetaine methacrylate) (PSBMA) brushes at different salt concentrations and applied surface potentials. Initiator-containing poly(3,4-ethylenedioxythiophene) films (poly(EDOT-Br)) were prepared by electropolymerization. After the conducting polymer was deposited, polymer brushes grew from the electrode surface through surface-initiated atom-transfer radical polymerization (SI-ATRP). Polymer brushes were carefully characterized for their surface morphologies using an atomic force microscope (AFM). The force volume method measured using AFM enabled the analysis of the Young's modulus of the two polymer brushes. Hydration states and protein binding behaviors of polymer brushes were examined using quartz crystal microbalance with dissipation (QCM-D). We further integrated a potentiostat with the QCM-D to conduct an electrochemical QCM-D study. The energy dissipation and frequency changes corresponded to the ion adsorption on the film surface under different ionic strengths. The results of both hydration states and nonspecific protein binding behavior indicate that PMPC brushes have greater ionic strength independency, implying the conformation of the unchanged PMPC brushes. Moreover, we illustrated how the surface potential influences nonspecific and specific binding behavior on PMPC brushes on PEDOT films compared with electrified poly(EDOT-PC) electrodes. We concluded that PMPC brushes exhibit unique behaviors that are barely affected by ion concentration, and that the brushes' modification results in less influence by surface potential due to the finite Debye length influencing the electrode surface to outer environment in an NaCl aqueous solution.
Collapse
Affiliation(s)
- Chia-Hsuan Lin
- Department of Materials Science and Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Shyh-Chyang Luo
- Department of Materials Science and Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes (NHRI), Miaoli County, 35053 Taiwan
| |
Collapse
|
45
|
Olejnik A, Karczewski J, Dołęga A, Siuzdak K, Cenian A, Grochowska K. Simple synthesis route for fabrication of protective photo-crosslinked poly(zwitterionic) membranes for application in non-enzymatic glucose sensing. J Biomed Mater Res B Appl Biomater 2021; 110:679-690. [PMID: 34592065 DOI: 10.1002/jbm.b.34946] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 09/03/2021] [Accepted: 09/09/2021] [Indexed: 01/20/2023]
Abstract
This work focuses on the fabrication of non-enzymatic glucose sensing materials based on laser-formed Au nanoparticles embedded in Ti-textured substrates. Those materials possess good catalytic activity toward glucose oxidation in 0.1 × phosphate buffered saline as well as resistance to some interferants, such as ascorbic acid, urea, and glycine. The electrodes are further coated with three different polymers, that is, Nafion, photo-crosslinked poly(zwitterions) based on sulfobetaine methacrylate, and a hybrid membrane consisting of both polymers. Both the optimal integrity of the material and its catalytic activity toward glucose oxidation were maintained by the hybrid membranes with a large excess of poly(zwitterions) (mass ratio 20:1). The chemical structures of the as-formed membranes are confirmed by Fourier transform infrared spectroscopy. Due to the zwitterionic nature of the coating, the electrodes are resistant to biofouling and maintain electrochemical activity toward glucose for 4 days. Moreover, due to the synergistic effect of both Nafion and poly(zwitterions), the interference from the two compounds, namely, from acetylsalicylic acid and acetaminophen, was diminished. Besides the presence of polymer membranes, the electrode possesses a sensitivity of 36.8 μA cm-2 mM-1 in the linear range of 0.4-12 mM, while the limit of detection was estimated to be 23 μM. Finally, the electrodes are stable, and their response is not altered even by 1,000 bending cycles.
Collapse
Affiliation(s)
- Adrian Olejnik
- Centre for Plasma and Laser Engineering, The Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Gdańsk, Poland.,Department of Metrology and Optoelectronics, Faculty of Electronics, Telecommunications and Informatics, Gdańsk University of Technology, Gdańsk, Poland
| | - Jakub Karczewski
- Faculty of Applied Physics and Mathematics, Gdańsk University of Technology, Gdańsk, Poland
| | - Anna Dołęga
- Department of Inorganic Chemistry, Faculty of Chemistry, Gdańsk University of Technology, Gdańsk, Poland
| | - Katarzyna Siuzdak
- Centre for Plasma and Laser Engineering, The Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Gdańsk, Poland
| | - Adam Cenian
- Centre for Plasma and Laser Engineering, The Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Gdańsk, Poland
| | - Katarzyna Grochowska
- Centre for Plasma and Laser Engineering, The Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Gdańsk, Poland
| |
Collapse
|
46
|
C Lourenço T, Ebadi M, J Panzer M, Brandell D, T Costa L. A molecular dynamics study of a fully zwitterionic copolymer/ionic liquid-based electrolyte: Li + transport mechanisms and ionic interactions. J Comput Chem 2021; 42:1689-1703. [PMID: 34128552 DOI: 10.1002/jcc.26706] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/07/2021] [Accepted: 05/30/2021] [Indexed: 11/05/2022]
Abstract
The development of polymer electrolytes (PEs) is crucial for advancing safe, high-energy density batteries, such as lithium-metal and other beyond lithium-ion chemistries. However, reaching the optimum balance between mechanical stiffness and ionic conductivity is not a straightforward task. Zwitterionic (ZI) gel electrolytes comprising lithium salt and ionic liquid (IL) solutions within a fully ZI polymer network can, in this context, provide useful properties. Although such materials have shown compatibility with lithium metal in batteries, several fundamental structure-dynamic relationships regarding ionic transport and the Li+ coordination environment remain unclear. To better resolve such issues, molecular dynamics simulations were carried out for two IL-based electrolyte systems, N-butyl-N-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ([BMP][TFSI]) with 1 M LiTFSI salt and a ZI gel electrolyte containing the IL and a ZI copolymer: poly(2-methacryloyloxyethyl phosphorylcholine-co-sulfobetaine vinylimidazole), poly(MPC-co-SBVI). The addition of ZI polymer decreases the [TFSI]- -[Li]+ interactions and increases the IL ion diffusivities, and consequently, the overall ZI gel ionic conductivity. The structural analyses showed a large preference for lithium-ion interactions with the polymer phosphonate groups, while the [TFSI]- anions interact directly with the sulfonate group and the [BMP]+ cations only display secondary interactions with the polymer. In contrast to previous experimental data on the same system, the simulated transference numbers showed smaller [Li]+ contributions to the overall ionic conductivities, mainly due to negatively charged lithium aggregates and the strong lithium-ion interactions in the systems.
Collapse
Affiliation(s)
- Tuanan C Lourenço
- MolMod-CS, Instituto de Química, Universidade Federal Fluminense, Rio de Janeiro, Brazil
| | - Mahsa Ebadi
- Department of Chemistry-Ångström Laboratory, Uppsala University, Uppsala, Sweden
| | - Matthew J Panzer
- Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts, USA
| | - Daniel Brandell
- Department of Chemistry-Ångström Laboratory, Uppsala University, Uppsala, Sweden
| | - Luciano T Costa
- MolMod-CS, Instituto de Química, Universidade Federal Fluminense, Rio de Janeiro, Brazil
| |
Collapse
|
47
|
One-pot synthesis of double and triple polybetaine block copolymers and their temperature-responsive solution behavior. Colloid Polym Sci 2021. [DOI: 10.1007/s00396-021-04846-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
48
|
Bairagi U, Jacob J. Macroporous Polyzwitterionic Gels As Versatile Intermediates for the Fixation and Release of Anions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:5424-5435. [PMID: 33891417 DOI: 10.1021/acs.langmuir.1c00888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A new stable and functional polyzwitterion poly[1-(carboxymethyl)-4-methacrylamidopyridin-1-ium] was synthesized. The zwitterionic polymer shows its isoelectric point at a pH of 4.2, bidirectional pH responsiveness, and formation of dendritic fractal self-aggregated structures. Using this as a common intermediate, a simple, direct, and scalable single-step protocol was established to introduce various elementary anions like NO3-, HSO4-, H2PO4-, F-, Cl-, Br-, I-, CH3COO-, and HCOO- in their salt forms by reaction with the corresponding acids. FESEM studies on cross-linked polymeric hydrogels established the macroporous nature of these materials with their pore size in the range of 10-15 μm. Bidirectional swelling behavior was observed in these hydrogels from gel swelling kinetics and pH studies. Anion release studies in deionized water and buffer solutions showed ∼82 and ∼95% cumulative release for nitrate and phosphate anions, respectively, in 72 h. Our studies suggest that multifunctional polyzwitterionic gels are promising intermediates in the fixation and release of anions like nitrate and phosphate with potential applications in agriculture and healthcare.
Collapse
Affiliation(s)
- Ujjawal Bairagi
- Department of Materials Science and Engineering, Indian Institute of Technology, Delhi, New Delhi 110016, India
| | - Josemon Jacob
- Department of Materials Science and Engineering, Indian Institute of Technology, Delhi, New Delhi 110016, India
| |
Collapse
|
49
|
Kumar R, Santa Chalarca CF, Bockman MR, Bruggen CV, Grimme CJ, Dalal RJ, Hanson MG, Hexum JK, Reineke TM. Polymeric Delivery of Therapeutic Nucleic Acids. Chem Rev 2021; 121:11527-11652. [PMID: 33939409 DOI: 10.1021/acs.chemrev.0c00997] [Citation(s) in RCA: 198] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The advent of genome editing has transformed the therapeutic landscape for several debilitating diseases, and the clinical outlook for gene therapeutics has never been more promising. The therapeutic potential of nucleic acids has been limited by a reliance on engineered viral vectors for delivery. Chemically defined polymers can remediate technological, regulatory, and clinical challenges associated with viral modes of gene delivery. Because of their scalability, versatility, and exquisite tunability, polymers are ideal biomaterial platforms for delivering nucleic acid payloads efficiently while minimizing immune response and cellular toxicity. While polymeric gene delivery has progressed significantly in the past four decades, clinical translation of polymeric vehicles faces several formidable challenges. The aim of our Account is to illustrate diverse concepts in designing polymeric vectors towards meeting therapeutic goals of in vivo and ex vivo gene therapy. Here, we highlight several classes of polymers employed in gene delivery and summarize the recent work on understanding the contributions of chemical and architectural design parameters. We touch upon characterization methods used to visualize and understand events transpiring at the interfaces between polymer, nucleic acids, and the physiological environment. We conclude that interdisciplinary approaches and methodologies motivated by fundamental questions are key to designing high-performing polymeric vehicles for gene therapy.
Collapse
Affiliation(s)
- Ramya Kumar
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | | | - Matthew R Bockman
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Craig Van Bruggen
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Christian J Grimme
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Rishad J Dalal
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Mckenna G Hanson
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Joseph K Hexum
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Theresa M Reineke
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
50
|
Brown MU, Triozzi A, Emrick T. Polymer Zwitterions with Phosphonium Cations. J Am Chem Soc 2021; 143:6528-6532. [DOI: 10.1021/jacs.1c00793] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Marcel U. Brown
- Polymer Science and Engineering Department, Conte Center for Polymer Research, University of Massachusetts Amherst, 120 Governors Drive, Amherst, Massachusetts 01003, United States
| | - Alexandria Triozzi
- Polymer Science and Engineering Department, Conte Center for Polymer Research, University of Massachusetts Amherst, 120 Governors Drive, Amherst, Massachusetts 01003, United States
| | - Todd Emrick
- Polymer Science and Engineering Department, Conte Center for Polymer Research, University of Massachusetts Amherst, 120 Governors Drive, Amherst, Massachusetts 01003, United States
| |
Collapse
|