1
|
Abbasi M, Rashnavadi M, Gholami M, Molaei S. Antibacterial property of hydroxyapatite extracted from biological sources and doped with Cu 2+ and Ag + by Sol-gels method. Sci Rep 2025; 15:12101. [PMID: 40204784 PMCID: PMC11982404 DOI: 10.1038/s41598-025-89886-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 02/10/2025] [Indexed: 04/11/2025] Open
Abstract
Hydroxyapatite is used in dental materials such as fillings, veneers, and implants due to its biocompatibility and similarity to the natural tooth structure. Goat teeth contain a high amount of hydroxyapatite, the primary mineral component of tooth enamel. Hydroxyapatite in goat tooth enamel ranges from 70 to 90%, sheep teeth from 75 to 85%, and cow teeth from 60 to 75% by weight. Sheep and Cow teeth have slightly lower hydroxyapatite content compared to goats, which is due to slight differences in their species. Hydroxyapatite can be modified or combined with other compounds (metals) to become a compound with high antibacterial properties, which have various applications in dentistry and medicine. This study aims to extract HA particles from the teeth of domestic animals (goats, sheep, and cows), especially goats (higher hydroxyapatite) in a shorter period, purer and with a simpler and more economical method and without adding chemical compounds containing Phosphate was compared to other methods and HA extracted from goat teeth ash was doped with copper and silver metal ions (HA-Doped Cu2+-Ag+) and showed high antibacterial properties. The ideal temperature for calcining HA is 1150 °C for 2 h. The physical properties of extracted HA and HA-Doped Cu2+-Ag+ were investigated using X-ray diffraction and Fourier transform infrared spectroscopy (FT-IR). It was observed in SEM that the distribution of diameter and size is different depending on the molar ratio of Cu2+ and Ag+. According to the XRD report, copper metals entered the network and silver metal was placed around the hydroxyapatite. Antibacterial activity was effective using agar and tube diffusion methods. Minimum inhibitory concentration (MIC) and minimum antibacterial concentration (MBC) were determined. HA doped with copper and silver is an effective antibacterial agent. It proves to be the most effective antibacterial agent in biomedical applications and is compatible with all bacterial strains.
Collapse
Affiliation(s)
- Mahsa Abbasi
- Department of Chemistry, Faculty of Basic Sciences, Ilam University, Ilam, Iran
- Pharmaceutical Sciences Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Milad Gholami
- Department of Chemistry, Faculty of Basic Sciences, Ilam University, Ilam, Iran.
- Biotechnology and Medicinal Plants Research Center, Ilam University of Medical Sciences, Ilam, Iran.
| | - Somayeh Molaei
- Department of Chemistry, Faculty of Science, University of Kurdistan, Sanandaj, Iran
| |
Collapse
|
2
|
Ciobanu CS, Predoi D, Iconaru SL, Predoi MV, Ghegoiu L, Buton N, Motelica-Heino M. Copper doped hydroxyapatite nanocomposite thin films: synthesis, physico-chemical and biological evaluation. Biometals 2024; 37:1487-1500. [PMID: 39073689 PMCID: PMC11618323 DOI: 10.1007/s10534-024-00620-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 07/07/2024] [Indexed: 07/30/2024]
Abstract
Cu-doped hydroxyapatite (CuHAp) thin films were obtained using spin coating method. To make these thin films, CuHAp suspensions obtained by sol-gel method were used. The coatings obtained were thermally treated at 500 °C. After the thermal treatment, the thin films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM). Moreover, the stability of the suspensions before being used to obtain the thin films was certified by dynamic light scattering (DLS), zeta potential methods and ultrasound measurements. In the XRD patterns, the peaks associated with hexagonal hydroxyapatite were identified in accordance with JCPDS no. 09-0432. EDS and XPS results confirmed the presence of Cu ions in the samples. Data about the morphological features and chemical composition of CuHAp thin films were obtained by performing scanning electron microscopy (SEM) measurements. Our results suggest that the CuHAp thin films surface is continuous and homogenous. The presence of the functional groups in the CuHAp thin films was confirmed by Fourier-transform infrared spectroscopy (FTIR) and Raman spectroscopy studies. Information about the surface topography of the CuHAp thin films has been obtained using atomic force microscopy (AFM). The AFM images determined that the surface topography of the CuHAp thin layer is homogenous and continuous without presenting any unevenness or fissures. The cytotoxicity of CuHAp thin films was assessed using human gingival fibroblasts (HGF-1) cells. The results of the cell viability assays demonstrated that the thin films presented good biocompatible properties towards the HGF-1 cells. Additionally, the adherence and development of HGF-1 cells on the surface of CuHAp thin films were determined using AFM. The AFM surface topographies highlighted that the CuHAp thin film's surface favored the attachment and proliferation of HGF-1 cells on their surface.
Collapse
Affiliation(s)
- Carmen Steluta Ciobanu
- National Institute of Materials Physics, Atomistilor Street, No. 405A, P.O. Box MG 07, 077125, Magurele, Romania
| | - Daniela Predoi
- National Institute of Materials Physics, Atomistilor Street, No. 405A, P.O. Box MG 07, 077125, Magurele, Romania.
| | - Simona Liliana Iconaru
- National Institute of Materials Physics, Atomistilor Street, No. 405A, P.O. Box MG 07, 077125, Magurele, Romania
| | - Mihai Valentin Predoi
- Department of Mechanics, University Politehnica of Bucharest, BN 002, 313 Splaiul Independentei, 060042, Bucharest, Romania
| | - Liliana Ghegoiu
- National Institute of Materials Physics, Atomistilor Street, No. 405A, P.O. Box MG 07, 077125, Magurele, Romania
| | - Nicolas Buton
- HORIBA Jobin Yvon S.A.S., 6-18, Rue du Canal, 91165, Longjumeau Cédex, France
| | - Mikael Motelica-Heino
- ISTO, UMR 7327 CNRS Université d'Orléans, 1A Rue de la Férollerie, 45071, Orléans CEDEX 2, France
| |
Collapse
|
3
|
Shreya R, Fopase R, Sharma S, Pandey LM. Design of biphasic Fe and Zn doped hydroxyapatite: Novel strategy for combating osteomyelitis infections. CERAMICS INTERNATIONAL 2024; 50:42607-42618. [DOI: 10.1016/j.ceramint.2024.08.104] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
|
4
|
Ghosh R, Li X, Yates MZ. Nonenzymatic Glucose Sensor Using Bimetallic Catalysts. ACS APPLIED MATERIALS & INTERFACES 2024; 16:17-29. [PMID: 38118131 PMCID: PMC10788829 DOI: 10.1021/acsami.3c10167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/25/2023] [Accepted: 11/28/2023] [Indexed: 12/22/2023]
Abstract
Bimetallic glucose oxidation electrocatalysts were synthesized by two electrochemical reduction reactions carried out in series onto a titanium electrode. Nickel was deposited in the first synthesis stage followed by either silver or copper in the second stage to form Ag@Ni and Cu@Ni bimetallic structures. The chemical composition, crystal structure, and morphology of the resulting metal coating of the titanium electrode were investigated by X-ray diffraction, energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and electron microscopy. The electrocatalytic performance of the coated titanium electrodes toward glucose oxidation was probed using cyclic voltammetry and amperometry. It was found that the unique high surface area bimetallic structures have superior electrocatalytic activity compared to nickel alone. The resulting catalyst-coated titanium electrode served as a nonenzymatic glucose sensor with high sensitivity and low limit of detection for glucose. The Cu@Ni catalyst enables accurate measurement of glucose over the concentration range of 0.2-12 mM, which includes the full normal human blood glucose range, with the maximum level extending high enough to encompass warning levels for prediabetic and diabetic conditions. The sensors were also found to perform well in the presence of several chemical compounds found in human blood known to interfere with nonenzymatic sensors.
Collapse
Affiliation(s)
- Rashmi Ghosh
- Department of Chemical Engineering, University of Rochester, Rochester, New York 14627, United States
| | - Xiao Li
- Department of Chemical Engineering, University of Rochester, Rochester, New York 14627, United States
| | - Matthew Z. Yates
- Department of Chemical Engineering, University of Rochester, Rochester, New York 14627, United States
| |
Collapse
|
5
|
Yin Z, Gong G, Liu X, Yin J. Mechanism of regulating macrophages/osteoclasts in attenuating wear particle-induced aseptic osteolysis. Front Immunol 2023; 14:1274679. [PMID: 37860014 PMCID: PMC10582964 DOI: 10.3389/fimmu.2023.1274679] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/22/2023] [Indexed: 10/21/2023] Open
Abstract
Joint replacement surgery is the most effective treatment for end-stage arthritis. Aseptic loosening caused by periprosthetic osteolysis is a common complication after joint replacement. Inflammation induced by wear particles derived from prosthetic biomaterials is a major cause of osteolysis. We emphasize that bone marrow-derived macrophages and their fusion-derived osteoclasts play a key role in this pathological process. Researchers have developed multiple intervention approaches to regulate macrophage/osteoclast activation. Aiming at wear particle-induced periprosthetic aseptic osteolysis, this review separately discusses the molecular mechanism of regulation of ROS formation and inflammatory response through intervention of macrophage/osteoclast RANKL-MAPKs-NF-κB pathway. These molecular mechanisms regulate osteoclast activation in different ways, but they are not isolated from each other. There is also a lot of crosstalk among the different mechanisms. In addition, other bone and joint diseases related to osteoclast activation are also briefly introduced. Therefore, we discuss these new findings in the context of existing work with a view to developing new strategies for wear particle-associated osteolysis based on the regulation of macrophages/osteoclasts.
Collapse
Affiliation(s)
- Zhaoyang Yin
- Department of Orthopedics, The Affiliated Lianyungang Hospital of Xuzhou Medical University (The First People’s Hospital of Lianyungang), Lianyungang, China
| | - Ge Gong
- Department of Geriatrics, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xinhui Liu
- Department of Orthopedics, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, China
| | - Jian Yin
- Department of Orthopedics, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, China
| |
Collapse
|
6
|
Kumar R, Nagesh S, Mani SP. Preparation and Assessment of Antimicrobial Effect of Strontium and Copper Co-substituted Hydroxyapatite Nanoparticle-Incorporated Orthodontic Composite: A Preliminary In Vitro Study. Cureus 2023; 15:e47495. [PMID: 38021789 PMCID: PMC10663871 DOI: 10.7759/cureus.47495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 10/22/2023] [Indexed: 12/01/2023] Open
Abstract
Background and aims Enamel demineralization and white spot lesions (WSLs) during orthodontic treatment have always been a challenge to orthodontists. The advancement of nanotechnology has paved the way for the incorporation of bioactive compounds in orthodontic materials especially orthodontic composites for prevention and management of WSLs. The present study aims to prepare, characterize, and then incorporate copper and strontium doped nanohydroxyapatite into orthodontic composite material and test its antibacterial efficacy. Materials and methods The present in vitro study involved the preparation of the strontium and copper co-substituted hydroxyapatite (SrCuHA) nanoparticles (Nps) using the sol-gel method. The prepared Nps were characterized using scanning electron microscopy (SEM), energy-dispersive X-ray analysis (EDAX), and Fourier transform infrared spectroscopy (FTIR). The Nps were incorporated into a commercially available orthodontic composite. The antimicrobial properties of the SrCuHA Nps-incorporated composite were tested using the Agar well diffusion method against Staphylococcus aureus(S. aureus), Streptococcus mutans (S. mutans), and Escherichia coli (E. coli). Results The SrCuHA Nps were successfully prepared. EDAX, FTIR, and SEM analyses revealed the successful formation of the Nps. The SrCuHA-incorporated orthodontic composite at a higher concentration of 40 μl showed the maximum zone of inhibition (ZOI) against S. mutans. The control group showed the maximum ZOI against E. coli and the SrCuHA Nps-incorporated composite at 20 μl showed the maximum inhibition against S. aureus. Conclusion In the present study, successful preparation of SrCuHA Nps followed by incorporation in the orthodontic adhesive was done. The prepared nanoparticle was characterized and the SrCuHA Nps-incorporated orthodontic composite demonstrated comparable ZOI against S. mutans to the control.
Collapse
Affiliation(s)
- Raja Kumar
- Orthodontics and Dentofacial Orthopaedics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Shweta Nagesh
- Orthodontics and Dentofacial Orthopaedics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - S P Mani
- Orthodontics and Dentofacial Orthopaedics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| |
Collapse
|
7
|
Durdu S, Cihan G, Yalcin E, Cavusoglu K, Altinkok A, Sagcan H, Yurtsever İ, Usta M. Surface characterization, electrochemical properties and in vitro biological properties of Zn-deposited TiO 2 nanotube surfaces. Sci Rep 2023; 13:11423. [PMID: 37452093 PMCID: PMC10349054 DOI: 10.1038/s41598-023-38733-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 07/13/2023] [Indexed: 07/18/2023] Open
Abstract
In this work, to improve antibacterial, biocompatible and bioactive properties of commercial pure titanium (cp-Ti) for implant applications, the Zn-deposited nanotube surfaces were fabricated on cp-Ti by using combined anodic oxidation (AO) and physical vapor deposition (PVD-TE) methods. Homogenous elemental distributions were observed through all surfaces. Moreover, Zn-deposited surfaces exhibited hydrophobic character while bare Ti surfaces were hydrophilic. Due to the biodegradable behavior of Zn on the nanotube surface, Zn-deposited nanotube surfaces showed higher corrosion current density than bare cp-Ti surface in SBF conditions as expected. In vitro biological properties such as cell viability, ALP activity, protein adsorption, hemolytic activity and antibacterial activity for Gram-positive and Gram-negative bacteria of all surfaces were investigated in detail. Cell viability, ALP activity and antibacterial properties of Zn-deposited nanotube surfaces were significantly improved with respect to bare cp-Ti. Moreover, hemolytic activity and protein adsorption of Zn-deposited nanotube surfaces were decreased. According to these results; a bioactive, biocompatible and antibacterial Zn-deposited nanotube surfaces produced on cp-Ti by using combined AO and PVD techniques can have potential for orthopedic and dental implant applications.
Collapse
Affiliation(s)
- Salih Durdu
- Industrial Engineering, Faculty of Engineering, Giresun University, Merkez, 28200, Giresun, Turkey.
- Mechanical Engineering, Giresun University, 28200, Giresun, Turkey.
| | - Gizem Cihan
- Department of Biology, Giresun University, 28200, Giresun, Turkey
| | - Emine Yalcin
- Department of Biology, Giresun University, 28200, Giresun, Turkey
| | | | - Atilgan Altinkok
- Turkish Naval Academy, National Defence University, 34940, Istanbul, Turkey
| | - Hasan Sagcan
- Department of Medical Laboratory Techniques, Istanbul Medipol University, Istanbul, Turkey
| | - İlknur Yurtsever
- Department of Medical Laboratory Techniques, Istanbul Medipol University, Istanbul, Turkey
- Pharmacology and Toxicology Department, Boonshoft School of Medicine Ohio, Wright State University, Dayton, USA
| | - Metin Usta
- Materials Science and Engineering, Gebze Technical University, 41400, Gebze, Turkey
- Aluminum Research Center (GTU-AAUM), Gebze Technical University, 41400, Gebze, Turkey
| |
Collapse
|
8
|
Valinton JAA, Kurniawan A, Jhang RH, Pangilinan CR, Lee CH, Chen CH. Invisible Bactericidal Coatings on Generic Surfaces through a Convenient Hand Spray. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:14909-14917. [PMID: 36472118 DOI: 10.1021/acs.langmuir.2c02604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Robust antimicrobial coatings featuring high transparency, strong bactericidal activity, and an easy application procedure on generic surfaces can be widely accepted by the public to prevent pandemics. In this work, we demonstrated the hand-sprayer-based approach to deposit complex oxide coatings composed of Co-Mn-Cu-Zn-Ag on screen protectors of smartphones through acidic redox-assisted deposition (ARD). The as-obtained coatings possess high transparency (99.74% transmittance at 550 nm) and long-lasting durability against swiping (for 135 days of average use) or wet cleaning (for a routine of 3 times/day for 33 days). The spray coating enabling 3.14% Escherichia coli viability can further be reduced to 0.21% through a consistent elemental composition achieved via the immersion method. The high intake of Cu2+ in the coating is majorly responsible for the bactericidal activity, and the presence of Ag+ and Zn2+ is necessary to achieve almost complete eradication. The success of extending the bactericidal coatings on other typical hand-touched surfaces (e.g., stainless steel railings, rubber handrails, and plastic switches) in public areas has been demonstrated.
Collapse
Affiliation(s)
| | - Alfin Kurniawan
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung80424, Taiwan
| | - Ren-Huai Jhang
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung80424, Taiwan
| | - Christian R Pangilinan
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung80424, Taiwan
| | - Che-Hsin Lee
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung80424, Taiwan
| | - Chun-Hu Chen
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung80424, Taiwan
| |
Collapse
|
9
|
Rathnayake A, Hettithanthri O, Sandanayake S, Mahatantila K, Rajapaksha AU, Vithanage M. Essence of hydroxyapatite in defluoridation of drinking water: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 311:119882. [PMID: 35934148 DOI: 10.1016/j.envpol.2022.119882] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 07/24/2022] [Accepted: 07/30/2022] [Indexed: 06/15/2023]
Abstract
Hydroxyapatite (HAP) is an easily synthesizable, low-cost mineral that has been recognized as a potential material for fluoride removal. Some of the synthesis methods of HAP are quite straightforward and cost-effective, while some require sophisticated synthesis techniques under advanced laboratory conditions. This review assesses the physicochemical characteristics of HAP and HAP-based composites produced via various techniques, their recent development in defluoridation and most importantly, the fluoride removal performances. For the first time, fluoride removal performances of HAP and HAP composites are compared based on partition coefficient (KD) instead of maximum adsorption capacity (Qmax), which is significantly influenced by initial loading concentrations. Novel HAP tailored composites exhibit comparatively high KD values indicating the excellent capability of fluoride removal along with specific surface areas above 120 m2/g. HAP doped with aluminium complexes, HAP doped ceramic beads, HAP-pectin nanocomposite and HAP-stilbite nanocomposite, HAP decorated nanotubes, nanowires and nanosheets demonstrated high Qmax and KD. The secret of HAP is not the excellent fluoride removal performances but best removal at neutral and near-neutral pH, which most of the defluoridation materials are incapable of, making them ideal adsorbents for drinking water treatment. Multiple mechanisms including physical surface adsorption, ion-exchange, and electrostatic interactions are the main mechanisms involved in defluoridation. Further research work must be focused on upscaling HAP-based composites for defluoridation on a commercial scale.
Collapse
Affiliation(s)
- Anushka Rathnayake
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka; Institute of Chemistry Ceylon, Adamantane House, Rajagiriya, Sri Lanka
| | - Oshadi Hettithanthri
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Sandun Sandanayake
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Kushani Mahatantila
- Chemical and Microbiological Laboratory, Industrial Technology Institute, Colombo 7, Sri Lanka
| | - Anushka Upamali Rajapaksha
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Meththika Vithanage
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka; The Institute of Agriculture, University of Western Australia, Perth, WA6009, Australia; Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies, Uttarakhand, 248007, India.
| |
Collapse
|
10
|
Ma X, Zhou S, Xu X, Du Q. Copper-containing nanoparticles: Mechanism of antimicrobial effect and application in dentistry-a narrative review. Front Surg 2022; 9:905892. [PMID: 35990090 PMCID: PMC9388913 DOI: 10.3389/fsurg.2022.905892] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 07/19/2022] [Indexed: 11/18/2022] Open
Abstract
Copper has been used as an antimicrobial agent long time ago. Nowadays, copper-containing nanoparticles (NPs) with antimicrobial properties have been widely used in all aspects of our daily life. Copper-containing NPs may also be incorporated or coated on the surface of dental materials to inhibit oral pathogenic microorganisms. This review aims to detail copper-containing NPs' antimicrobial mechanism, cytotoxic effect and their application in dentistry.
Collapse
Affiliation(s)
- Xinru Ma
- Department of Stomatology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Department of Stomatology, Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region (West China Hospital Sichuan University Tibet Chengdu Branch Hospital), Chengdu, China
| | - Shiyu Zhou
- Department of Stomatology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaoling Xu
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Qin Du
- Department of Stomatology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
11
|
Jin Y, Wang Y, Chen Y, Han T, Chen Y, Wang C. Enhanced Antibacterial Ability and Bioactivity of Polyetherketoneketone Modified with LL-37. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:4578-4588. [PMID: 35380840 DOI: 10.1021/acs.langmuir.1c03319] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Polyetherketoneketone (PEKK) is considered to be a potential substitute material for metal bone implants because of its advantageous biocompatibility, chemical stability, and mechanical properties, but clinical application has been severely restricted due to PEKK's lack of antibacterial ability and biological activity. In this study, LL-37, a natural human antimicrobial peptide, was successfully modified on the PEKK surface with polydopamine as the intermediate layer and released continuously for more than 6 days. The results of the MTT assay, colony counts, and Live/Dead staining demonstrated that compared to unmodified PEKK, the LL-37-modified PEKK significantly inhibited the adhesion, vitality, and bacterial biofilm growth of Staphylococcus aureus and Escherichia coli in a concentration-dependent way. Furthermore, the LL-37-modified PEKK enhanced biocompatibility (cell adhesion and viability) and promoted osteogenic differentiation of human umbilical cord Wharton's jelly-derived mesenchymal stem cells. Our data suggested that LL-37-modified PEKK might be a promising material for use in orthopedic implants.
Collapse
Affiliation(s)
- Yabing Jin
- Jiangsu Key Laboratory of Oral Diseases, Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China
| | - Yijin Wang
- Jiangsu Key Laboratory of Oral Diseases, Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China
| | - Yuhong Chen
- Jiangsu Key Laboratory of Oral Diseases, Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China
| | - Tianlei Han
- Jiangsu Key Laboratory of Oral Diseases, Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China
| | - Yiyi Chen
- Jiangsu Key Laboratory of Oral Diseases, Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China
| | - Chen Wang
- Jiangsu Key Laboratory of Oral Diseases, Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
12
|
Simultaneous Precipitation and Electrodeposition of Hydroxyapatite Coatings at Different Temperatures on Various Metal Substrates. COATINGS 2022. [DOI: 10.3390/coatings12020288] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The coating of orthopedic and dental implants with hydroxyapatite (HA) is recognized as a method to increase their integration ability. A new metal coating method, comprising simultaneous precipitation and electrodeposition, is presented. Two studies are described: the first is related to the influence of time/temperature increase on the morpho-structural characteristics of the deposited layer on the Ti substrate, while the second study presents the characteristics of the layers deposited on different metal substrates. For comparison, specimens were obtained using the classical electrochemical deposition under the same experimental conditions. The addition of Ca to the electrolyte creates more compact and more uniform coatings, while the addition of P creates more porous layers. Only a very small quantity of crystalline HA deposited on the C55, Cu, and Ni substrates when the classic electrodeposition method was employed, while using the new approach has clearly led to a larger crystalline HA amount electrodeposited on the same types of metals. With some exceptions, the advantages of using the new method are: better crystallinity, more uniform and continuous surface, higher roughness, and potentially higher anti-corrosion capabilities.
Collapse
|
13
|
Tao B, Lin C, Guo A, Yu Y, Qin X, Li K, Tian H, Yi W, Lei D, Chen L. Fabrication of copper ions-substituted hydroxyapatite/polydopamine nanocomposites with high antibacterial and angiogenesis effects for promoting infected wound healing. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.08.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
14
|
Sobierajska P, Nowak N, Rewak-Soroczynska J, Targonska S, Lewińska A, Grosman L, Wiglusz RJ. Investigation of topography effect on antibacterial properties and biocompatibility of nanohydroxyapatites activated with zinc and copper ions: In vitro study of colloids, hydrogel scaffolds and pellets. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 134:112547. [DOI: 10.1016/j.msec.2021.112547] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/19/2021] [Accepted: 11/08/2021] [Indexed: 12/30/2022]
|
15
|
Hodges NA, Sussman EM, Stegemann JP. Aseptic and septic prosthetic joint loosening: Impact of biomaterial wear on immune cell function, inflammation, and infection. Biomaterials 2021; 278:121127. [PMID: 34564034 DOI: 10.1016/j.biomaterials.2021.121127] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 09/01/2021] [Accepted: 09/07/2021] [Indexed: 12/17/2022]
Abstract
The success of total joint replacements has led to consistent growth in the use of arthroplasty in progressively younger patients. However, more than 10 percent of patients require revision surgeries due to implant failure caused by osteolytic loosening. These failures are classified as either aseptic or septic and are associated with the presence of particulate wear debris generated by mechanical action between implant components. Aseptic loosening results from chronic inflammation caused by activation of resident immune cells in contact with implant wear debris. In contrast, septic loosening is defined by the presence of chronic infection at the implant site. However, recent findings suggest that subclinical biofilms may be overlooked when evaluating the cause of implant failure, leading to a misdiagnosis of aseptic loosening. Many of the inflammatory pathways contributing to periprosthetic joint infections are also involved in bone remodeling and resorption. In particular, wear debris is increasingly implicated in the inhibition of the innate and adaptive immune response to resolve an infection or prevent hematogenous spread. This review examines the interconnectivity of wear particle- and infection-associated mechanisms of implant loosening, as well as biomaterials-based strategies to combat infection-related osteolysis.
Collapse
Affiliation(s)
- Nicholas A Hodges
- University of Michigan, Department of Biomedical Engineering, Ann Arbor, MI, 48109, USA; Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, FDA, Silver Spring, MD, 20993, USA.
| | - Eric M Sussman
- Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, FDA, Silver Spring, MD, 20993, USA.
| | - Jan P Stegemann
- University of Michigan, Department of Biomedical Engineering, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
16
|
Wang M, Zhu Y. Defect Induced Charge Redistribution and Enhanced Adsorption of Lysozyme on Hydroxyapatite for Efficient Antibacterial Activity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:10786-10796. [PMID: 34463099 DOI: 10.1021/acs.langmuir.1c01666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Defects in hydroxyapatite (HA) have attracted increasing research interest due to their significant functions to increase the bioactivity and antibacterial ability of hard-tissue implants. However, little is known about the natural property and functional mechanism of the defects in HA. Herein, we reported on the defect property concerned with the coordination state and charge distribution in Al doped HA, as well as the consequent interface and protein capture ability for improved antibacterial activity. Systemic investigations suggested that Al replacing Ca in HA induced coordination defect with decreased coordination number and bond distance, caused charge transfer and redistribution of surrounding O atom and resulted in an increase in negative charge of coordinated O atoms. These O atoms coordinated with Al further served as docking sites for lysozyme molecules via electrostatic and H-bonding interaction. The capacity of lysozyme adsorption for Al-HA increased approximately 10-fold more than that of HA, which significantly increased the antibacterial activity through lysozyme-catalyzed splitting of cell wall of bacteria. Moreover, in vitro studies indicated that Al-HA materials showed good cytocompatibility. These findings not only provided new insights into the important effect of defects on the performances of HA biomaterials by modulation of the coordination state, charge distribution, and chemical activity, but also proposed a promising method for efficient antibacterial activity of HA biomaterials.
Collapse
Affiliation(s)
- Ming Wang
- Key Lab of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
| | - Yingchun Zhu
- Key Lab of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Science, Beijing 100049, China
| |
Collapse
|
17
|
Ponnusamy S, Subramani R, Elangomannan S, Louis K, Periasamy M, Dhanaraj G. Novel Strategy for Gallium-Substituted Hydroxyapatite/ Pergularia daemia Fiber Extract/Poly( N-vinylcarbazole) Biocomposite Coating on Titanium for Biomedical Applications. ACS OMEGA 2021; 6:22537-22550. [PMID: 34514226 PMCID: PMC8427647 DOI: 10.1021/acsomega.1c02186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
The current work mainly focuses on the innovative nature of nano-gallium-substituted hydroxyapatite (nGa-HAp)/Pergularia daemia fiber extract (PDFE)/poly(N-vinylcarbazole) (PVK) biocomposite coating on titanium (Ti) metal in an eco-friendly and low-cost way through electrophoretic deposition for metallic implant applications. Detailed analysis of this nGa-HAp/PDFE/PVK biocomposite coating revealed many encouraging functional properties like structure and uniformity of the coating. Furthermore, gallium and fruit extract of PDFE-incorporated biocomposite enhance the in vitro antimicrobial, cell viability, and bioactivity studies. In addition, the mechanical and anticorrosion tests of the biocomposite material proved improved adhesion, hardness, and corrosion resistance properties, which were found to be attributed to the presence of PDFE and PVK. Also, the swelling and degradation behaviors of the as-developed material were evaluated in simulated body fluids (SBF) solution. The results revealed that the as-developed composite exhibited superior swelling and lower degradation properties, which evidences the stability of composite in the SBF solution. Overall, the results of the present study indicate that these nGa-HAp/PDFE/PVK biocomposite materials with improved mechanical, corrosion resistance, antibacterial, cell viability, and bioactivity properties appear as promising materials for biomedical applications.
Collapse
Affiliation(s)
| | - Ramya Subramani
- Department
of Physics, School of Basic and Applied Sciences, Central University of Tamil Nadu, Thiruvarur 610 101, Tamil Nadu, India
| | - Shinyjoy Elangomannan
- Department
of Physics, School of Basic and Applied Sciences, Central University of Tamil Nadu, Thiruvarur 610 101, Tamil Nadu, India
| | - Kavitha Louis
- Department
of Physics, School of Basic and Applied Sciences, Central University of Tamil Nadu, Thiruvarur 610 101, Tamil Nadu, India
| | - Manoravi Periasamy
- Materials
Chemistry and Metal Fuel Cycle Group, Indira
Gandhi Centre for Atomic Research, Kalpakkam 603102, Tamil
Nadu, India
| | - Gopi Dhanaraj
- Department
of Chemistry, Periyar University, Salem 636 011, Tamil Nadu, India
| |
Collapse
|
18
|
Wang B, Wu Z, Wang S, Wang S, Niu Q, Wu Y, Jia F, Bian A, Xie L, Qiao H, Chang X, Lin H, Zhang H, Huang Y. Mg/Cu-doped TiO 2 nanotube array: A novel dual-function system with self-antibacterial activity and excellent cell compatibility. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 128:112322. [PMID: 34474873 DOI: 10.1016/j.msec.2021.112322] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 06/28/2021] [Accepted: 07/12/2021] [Indexed: 01/29/2023]
Abstract
Many studies were conducted to change the surface morphology and chemical composition of Ti implants for the improvement of antibacterial ability and osseointegration between medical Ti and surrounding bone tissue. In this study, we successfully prepared a novel dual-function coating on pure Ti surface, i.e. Cu and Mg-co-doped TiO2 nanotube (TN) coating, by combining anodisation and hydrothermal treatment (HT), which could act as a delivery platform for the sustained release of Cu and Mg ions. Results showed that the amounts of Cu and Mg were about 5.43 wt%-6.55 wt% and 0.69 wt%-0.73 wt%, respectively. In addition, the surface morphology of Cu and Mg-co-doped TN (CuMTN) coatings transformed into nanoneedles after HT for 1 h. Compared with TN, CuMTN had no change in roughness and remarkable improved hydrophilicity. Antibacterial tests revealed that CuMTN had an antibacterial rate of more than 93% against Escherichia coli and Staphylococcus aureus, thereby showing excellent antibacterial properties. In addition, CuMTN could induce the formation of apatite well after being immersed in simulated body fluid, showing good biological activity. Preosteoblasts (MC3T3-E1) cultured on CuMTN-coated Ti demonstrated better proliferation and osteogenic differentiation than pristine and as-anodised specimens. To the best of our best knowledge, this study had successfully attempted to combine anodisation and HT, introduce Cu/Mg elements and functionalise Ti-based implant surfaces with enhanced hydrophilicity, osteogenesis and antimicrobial properties that can meet clinical needs for the first time.
Collapse
Affiliation(s)
- Bingbing Wang
- College of Lab Medicine, Hebei North University, Key Laboratory of Biomedical Materials of Zhangjiakou, Zhangjiakou 075000, China
| | - Zongze Wu
- College of Lab Medicine, Hebei North University, Key Laboratory of Biomedical Materials of Zhangjiakou, Zhangjiakou 075000, China
| | - Shuo Wang
- College of Lab Medicine, Hebei North University, Key Laboratory of Biomedical Materials of Zhangjiakou, Zhangjiakou 075000, China
| | - Saisai Wang
- College of Lab Medicine, Hebei North University, Key Laboratory of Biomedical Materials of Zhangjiakou, Zhangjiakou 075000, China
| | - Qimeng Niu
- College of Lab Medicine, Hebei North University, Key Laboratory of Biomedical Materials of Zhangjiakou, Zhangjiakou 075000, China
| | - Yuwei Wu
- College of Lab Medicine, Hebei North University, Key Laboratory of Biomedical Materials of Zhangjiakou, Zhangjiakou 075000, China
| | - Fenghuan Jia
- College of Lab Medicine, Hebei North University, Key Laboratory of Biomedical Materials of Zhangjiakou, Zhangjiakou 075000, China
| | - Anqi Bian
- College of Lab Medicine, Hebei North University, Key Laboratory of Biomedical Materials of Zhangjiakou, Zhangjiakou 075000, China
| | - Lei Xie
- School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Haixia Qiao
- College of Lab Medicine, Hebei North University, Key Laboratory of Biomedical Materials of Zhangjiakou, Zhangjiakou 075000, China
| | - Xiaotong Chang
- College of Lab Medicine, Hebei North University, Key Laboratory of Biomedical Materials of Zhangjiakou, Zhangjiakou 075000, China
| | - He Lin
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Hui Zhang
- College of Lab Medicine, Hebei North University, Key Laboratory of Biomedical Materials of Zhangjiakou, Zhangjiakou 075000, China.
| | - Yong Huang
- College of Lab Medicine, Hebei North University, Key Laboratory of Biomedical Materials of Zhangjiakou, Zhangjiakou 075000, China.
| |
Collapse
|
19
|
Electrophoretic deposition of collagen/chitosan films with copper-doped phosphate glasses for orthopaedic implants. J Colloid Interface Sci 2021; 607:869-880. [PMID: 34536940 DOI: 10.1016/j.jcis.2021.08.199] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/31/2021] [Accepted: 08/30/2021] [Indexed: 12/20/2022]
Abstract
Coatings with bioactive properties play a key role in the success of orthopaedic implants. Recent studies focused on composite coatings incorporating biocompatible elements that can increase the nucleation of hydroxyapatite (HA), the mineral component of bone, and have promising bioactive and biodegradable properties. Here we report a method of fabricating composite collagen, chitosan and copper-doped phosphate glass (PG) coatings for biomedical applications using electrophoretic deposition (EPD). The use of collagen and chitosan (CTS) allows for the co-deposition of PG particles at standard ambient temperature and pressure (1 kPa, 25 °C), and the addition of collagen led to the steric stabilization of PG in solution. The coating composition was varied by altering the collagen/CTS concentrations in the solutions, as well as depositing PG with 0, 5 and 10 mol% CuO dopant. A monolayer of collagen/CTS containing PG was obtained on stainless steel cathodes, showing that deposition of PG in conjunction with a polymer is feasible. The mass of the monolayer varied depending on the polymer (collagen, CTS and collagen/CTS) and combination of polymer + PG (collagen-PG, CTS-PG and collagen/CTS-PG), while the presence of copper led to agglomerates during deposition at higher concentrations. The deposition yield was studied at different time points and showed a profile typical of constant voltage deposition. Increasing the concentration of collagen in the PG solution allows for a higher deposition yield, while pure collagen solutions resulted in hydrogen gas evolution at the cathode. The ability to deposit polymer-PG coatings that can mimic native bone tissue allows for the potential to fabricate orthopaedic implants with tailored biological properties with lower risk of rejection from the host and exhibit increased bioactivity.
Collapse
|
20
|
Subhadarshini S, Singh R, Mandal A, Roy S, Mandal S, Mallik S, Goswami DK, Das AK, Das NC. Silver Nanodot Decorated Dendritic Copper Foam As a Hydrophobic and Mechano-Chemo Bactericidal Surface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:9356-9370. [PMID: 34328738 DOI: 10.1021/acs.langmuir.1c00698] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The present work investigates the time-dependent antibacterial activity of the silver nanodot decorated dendritic copper foam nanostructures against Escherichia coli (Gram-negative) and Bacillus subtilis (Gram-positive) bacteria. An advanced antibacterial and antifouling surface is fabricated utilizing the collective antibacterial properties of silver nanodots, chitosan, and dendritic copper foam nanostructures. The porous network of the Ag nanodot decorated Cu foam is made up of nanodendrites, which reduce the wettability of the surface. Hence, the surface exhibits hydrophobic nature and inhibits the growth of bacterial flora along with the elimination of dead bacterial cells. The fabricated surface exhibits a water contact angle (WCA) of 158.7 ± 0.17°. Specifically, we tested the fabricated material against both the Gram-positive and Gram-negative bacterial models. The antibacterial activity of the fabricated surface is evident from the growth inhibition percentage of bacterial strains of Escherichia coli (72.30 ± 0.60%) and Bacillus subtilis (48.30 ± 1.71%). The micrographs obtained from scanning electron microscopy (SEM), transmission electron microscopy (TEM), and atomic force microscopy (AFM) of the treated cells show the damaged cellular structures of the bacteria, which is strong evidence of successful antibacterial action. The antibacterial effect can be attributed to the synergistic mechano-chemo mode of action involving mechanical disruption of the bacterial cell wall by the nanoprotrusions present on the Cu dendrites along with the chemical interaction of the Ag nanodots with vital intracellular components.
Collapse
Affiliation(s)
- Suvani Subhadarshini
- School of Nano Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Rashika Singh
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Ajoy Mandal
- Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Satyajit Roy
- Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Suman Mandal
- Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Samik Mallik
- School of Nano Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Dipak K Goswami
- School of Nano Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
- Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Amit K Das
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Narayan C Das
- School of Nano Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
- Rubber Technology Centre, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| |
Collapse
|
21
|
Fernando NL, Rathnayake DTN, Kottegoda N, Jayanetti JKDS, Karunaratne V, Jayasundara DR. Mechanistic Insights into Interactions at Urea-Hydroxyapatite Nanoparticle Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:6691-6701. [PMID: 34018756 DOI: 10.1021/acs.langmuir.1c00564] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Development of controlled release biomolecules by surface modification of hydroxyapatite nanoparticles has recently gained popularity in the areas of bionanotechnology and nanomedicine. However, optimization of these biomolecules for applications such as drug delivery, nutrient delivery requires a systematic understanding of binding mechanisms and interfacial kinetics at the molecular level between the nanomatrix and the active compound. In this research, urea is used as a model molecule to investigate its interactions with two morphologically different thin films of hydroxyapatite nanoparticles. These thin films were fabricated on quartz crystal piezoelectric sensors to selectively expose Ca2+ and PO43- sites of hydroxyapatite. Respective urea adsorption and desorption on both of these sites were monitored in situ and in real time in the phosphate buffer solution that mimics body fluids. The measured kinetic parameters, which corroborate structural predisposition for controlled release, show desorption rates that are one-tenth of the adsorption rates on both surfaces. Furthermore, the rate of desorption from the PO43- site is one-half the rate of desorption from the Ca2+ site. The Hill kinetic model was found to satisfactorily fit data, which explains cooperative binding between the hydroxyapatite nanoparticle thin film and urea. Fourier transform infrared spectra and X-ray photoemission spectra of the urea adsorbed on the above surfaces confirm the cooperative binding. It also elucidates the different binding mechanisms between urea and hydroxyapatite that contribute to the changes in the interfacial kinetics. These findings provide valuable information for structurally optimizing hydroxyapatite nanoparticle surfaces to control interfacial kinetics for applications in bionanotechnology and nanomedicine.
Collapse
Affiliation(s)
- Nimshi L Fernando
- Department of Physics, University of Colombo, Colombo 00300, Sri Lanka
| | | | - Nilwala Kottegoda
- Department of Chemistry, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
| | | | - Veranja Karunaratne
- Department of Chemistry, University of Peradeniya, Peradeniya 20400, Sri Lanka
| | | |
Collapse
|
22
|
Diwu W, Dong X, Nasif O, Alharbi SA, Zhao J, Li W. In-vivo Investigations of Hydroxyapatite/Co-polymeric Composites Coated Titanium Plate for Bone Regeneration. Front Cell Dev Biol 2021; 8:631107. [PMID: 33681187 PMCID: PMC7930390 DOI: 10.3389/fcell.2020.631107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 12/21/2020] [Indexed: 12/04/2022] Open
Abstract
A perfect mimic of human bone is very difficult. Still, the latest advancement in biomaterials makes it possible to design composite materials with morphologies merely the same as that of bone tissues. In the present work is the fabrication of selenium substituted Hydroxyapatite (HAP-Se) covered by lactic acid (LA)-Polyethylene glycol (PEG)-Aspartic acid (AS) composite with the loading of vincristine sulfate (VCR) drug (HAP-Se/LA-PEG-AS/VCR) for twin purposes of bone regenerations. The HAP-Se/LA-PEG-AS/VCR composite coated on titanium implant through electrophoretic deposition (EPD). The prepared composite characterized using FTIR, XRD techniques to rely on the composites' chemical nature and crystalline status. The morphology of the composite and the titanium plate with the composite coating was investigated by utilizing SEM, TEM instrument techniques, and it reveals the composite has porous morphology. The drug (VCR) load in HAP-Se/LA-PEG-AS and releasing nature were investigated through UV-Visible spectroscopy at the wavelength of 295 nm. In vitro study of SBF treatment shows excellent biocompatibility to form the HAP crystals. The viability against MG63 and toxicity against Saos- 2 cells have expressed the more exceptional biocompatibility in bone cells and toxicity with the cancer cells of prepared composites. The in-vivo study emphasizes prepared biomaterial suitable for implantation and helps accelerate bone regeneration on osteoporosis and osteosarcoma affected hard tissue.
Collapse
Affiliation(s)
- Weilong Diwu
- Department of Orthopedics, The First Affiliated Hospital of Air Force Military Medical University, Xi'an, China
| | - Xin Dong
- Department of Orthopedics, The Second Affiliated Hospital of Air Force Military Medical University, Xi'an, China
| | - Omaima Nasif
- Department of Physiology, College of Medicine and King Khalid University Hospital, King Saud University, Riyadh, Saudi Arabia
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Jian Zhao
- Department of Orthopedics, The Second Affiliated Hospital of Air Force Military Medical University, Xi'an, China
| | - Wei Li
- Department of Orthopedics, The Second Affiliated Hospital of Air Force Military Medical University, Xi'an, China
| |
Collapse
|
23
|
Blinova AV, Rumyantsev VA. [Nanomaterials in the modern dentistry (review)]. STOMATOLOGIIA 2021; 100:103-109. [PMID: 33874670 DOI: 10.17116/stomat2021100021103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Was to study the promising areas for using nanotechnologies in dentistry, existing methods of diagnostics, treatment and prevention of the dental diseases based on the properties of nanoparticles, to review the scientific literature devoted to this problem. In this literature review we use 86 sources: 1 Russian and 85 foreign articles. Analyzed articles were published within the last 5 years. The literature review summarizes and presents up-to-date methods of diagnosing, treating, and preventing dental disease that use nanotechnologies. Development and implementation of nanotechnological treatment are a promising direction for modern dentistry.
Collapse
|
24
|
Xu N, Fu J, Zhao L, Chu PK, Huo K. Biofunctional Elements Incorporated Nano/Microstructured Coatings on Titanium Implants with Enhanced Osteogenic and Antibacterial Performance. Adv Healthc Mater 2020; 9:e2000681. [PMID: 32875743 DOI: 10.1002/adhm.202000681] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 08/02/2020] [Indexed: 12/20/2022]
Abstract
Bone fracture is prevalent among athletes and senior citizens and may require surgical insertion of bone implants. Titanium (Ti) and its alloys are widely used in orthopedics due to its high corrosion resistance, good biocompatibility, and modulus compatible with natural bone tissues. However, bone repair and regrowth are impeded by the insufficient intrinsic osteogenetic capability of Ti and Ti alloys and potential bacterial infection. The physicochemical properties of the materials and nano/microstructures on the implant surface are crucial for clinical success and loading with biofunctional elements such as Sr, Zn, Cu, Si, and Ag into nano/microstructured TiO2 coating has been demonstrated to enhance bone repair/regeneration and bacterial resistance of Ti implants. In this review, recent advances in biofunctional element-incorporated nano/microstructured coatings on Ti and Ti alloy implants are described and the prospects and limitations are discussed.
Collapse
Affiliation(s)
- Na Xu
- The State Key Laboratory of Refractories and Metallurgy, Institute of Advanced Materials and Nanotechnology, College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Jijiang Fu
- The State Key Laboratory of Refractories and Metallurgy, Institute of Advanced Materials and Nanotechnology, College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Lingzhou Zhao
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Paul K Chu
- Department of Physics, Department of Materials Science and Engineering and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Kaifu Huo
- The State Key Laboratory of Refractories and Metallurgy, Institute of Advanced Materials and Nanotechnology, College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430081, China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
25
|
Jacobs A, Renaudin G, Forestier C, Nedelec JM, Descamps S. Biological properties of copper-doped biomaterials for orthopedic applications: A review of antibacterial, angiogenic and osteogenic aspects. Acta Biomater 2020; 117:21-39. [PMID: 33007487 DOI: 10.1016/j.actbio.2020.09.044] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/17/2020] [Accepted: 09/21/2020] [Indexed: 12/13/2022]
Abstract
Copper is an essential trace element required for human life, and is involved in several physiological mechanisms. Today researchers have found and confirmed that Cu has biological properties which are particularly useful for orthopedic biomaterials applications such as implant coatings or biodegradable filler bone substitutes. Indeed, Cu exhibits antibacterial functions, provides angiogenic ability and favors osteogenesis; these represent major key points for ideal biomaterial integration and the healing process that follows. The antibacterial performances of copper-doped biomaterials present an interesting alternative to the massive use of prophylactic antibiotics and help to limit the development of antibiotic resistance. By stimulating blood vessel growth and new bone formation, copper contributes to the improved bio-integration of biomaterials. This review describes the bio-functional advantages offered by Cu and focuses on the antibacterial, angiogenic and osteogenic properties of Cu-doped biomaterials with potential for orthopedic applications.
Collapse
|
26
|
Shen X, Hu W, Ping L, Liu C, Yao L, Deng Z, Wu G. Antibacterial and Osteogenic Functionalization of Titanium With Silicon/Copper-Doped High-Energy Shot Peening-Assisted Micro-Arc Oxidation Technique. Front Bioeng Biotechnol 2020; 8:573464. [PMID: 33163479 PMCID: PMC7580868 DOI: 10.3389/fbioe.2020.573464] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/07/2020] [Indexed: 11/13/2022] Open
Abstract
Antibacterial and osteogenic functionalization of titanium (Ti) implants will greatly expand their clinical indications in immediate implant therapy, accelerate osteointegration, and enhance long-term prognosis. We had recently shown that the high-energy shot peening (HESP)-assisted micro-arc oxidation (MAO) significantly improved the bioactivity and coating stability of Ti-based substrates. In this study, we further functionalized Ti with antibacterial and osteogenic properties by doping silicon (Si) and/or copper (Cu) ions into HESP/MAO-treated coatings. Physicochemical characterization displayed that the doping of Si and Cu in HESP/MAO-treated coatings (Si/Cu-MAO) did not significantly change their surface topography, roughness, crystal structure, coating thickness, bonding strength, and wettability. The results of X-ray photoelectron spectroscopy (XPS) showed that Si and Cu in the Si/Cu-MAO coating was in the form of silicate radical (SiO3 2-) and bivalent copper (Cu2+), respectively. The total amounts of Si and Cu were about 13.5 and 5.8 μg/cm2, which released about 33.2 and 31.3% within 14 day, respectively. Compared with the control group (MAO), Si doping samples (MAO-Si) significantly increased the cell viability, alkaline phosphatase (ALP) activity, mineralization and osteogenic genes (ALP, collagen I and osteocalcin) expression of MC3T3-E1 cells. Furthermore, the addition of Cu presented good bactericidal property against both Staphylococcus aureus and Streptococcus mutans (even under the co-culture condition of bacteria and MC3T3-E1 cells): the bacteriostatic rate of both bacteria was over 95%. In conclusion, the novel bioactive Si/Cu-MAO coating with antibacterial and osteogenic properties is a promising functionalization method for orthopedic and dental implants, especially in the immediate implant treatment with an infected socket.
Collapse
Affiliation(s)
- Xinkun Shen
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Wenjia Hu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Linchao Ping
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Chongxing Liu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Lili Yao
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Zhennan Deng
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Gang Wu
- Department of Oral Implantology and Prosthetic Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), Amsterdam Movement Science, University of Amsterdam and Vrije University Amsterdam, Amsterdam, Netherland.,Department of Oral and Maxillofacial Surgary/Pathology, Amsterdam UMC and Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universitetit Amsterdam, Amsterdam Movement Science, Amsterdam, Netherlands
| |
Collapse
|
27
|
Prosolov KA, Lastovka VV, Belyavskaya OA, Lychagin DV, Schmidt J, Sharkeev YP. Tailoring the Surface Morphology and the Crystallinity State of Cu- and Zn-Substituted Hydroxyapatites on Ti and Mg-Based Alloys. MATERIALS 2020; 13:ma13194449. [PMID: 33036465 PMCID: PMC7579569 DOI: 10.3390/ma13194449] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/02/2020] [Accepted: 10/04/2020] [Indexed: 12/20/2022]
Abstract
Titanium-based alloys are known as a “gold standard” in the field of implantable devices. Mg-based alloys, in turn, are very promising biocompatible material for biodegradable, temporary implants. However, the clinical application of Mg-based alloys is currently limited due to the rapid resorption rate in the human body. The deposition of a barrier layer in the form of bioactive calcium phosphate coating is proposed to decelerate Mg-based alloys resorption. The dissolution rate of calcium phosphates is strongly affected by their crystallinity and structure. The structure of antibacterial Cu- and Zn-substituted hydroxyapatite deposited by an radiofrequency (RF) magnetron sputtering on Ti and Mg–Ca substrates is tailored by post-deposition heat treatment and deposition at increased substrate temperatures. It is established that upon an increase in heat treatment temperature mean crystallite size decreases from 47 ± 17 to 13 ± 9 nm. The character of the crystalline structure is not only governed by the temperature itself but relies on the condition such as either post-deposition treatment, where an amorphous calcium phosphate undergoes crystallization or instantaneous crystalline coating growth during deposition on the hot substrate. A higher treatment temperature at 700 °C results in local coating micro-cracking and induced defects, while the temperature of 400–450 °C resulted in the formation of dense, void-free structure.
Collapse
Affiliation(s)
- Konstantin A. Prosolov
- Institute of Strength Physics and Materials Science of SB RAS, Academicheskii Prospect 2/4, 634055 Tomsk, Russia; (V.V.L.); (O.A.B.); (Y.P.S.)
- Correspondence: ; Tel.: +7-961-888-58-33
| | - Vladimir V. Lastovka
- Institute of Strength Physics and Materials Science of SB RAS, Academicheskii Prospect 2/4, 634055 Tomsk, Russia; (V.V.L.); (O.A.B.); (Y.P.S.)
| | - Olga A. Belyavskaya
- Institute of Strength Physics and Materials Science of SB RAS, Academicheskii Prospect 2/4, 634055 Tomsk, Russia; (V.V.L.); (O.A.B.); (Y.P.S.)
| | - Dmitry V. Lychagin
- Department of Mineralogy and Geochemistry, National Research Tomsk State University, Lenin Avenue, 36, 634050 Tomsk, Russia;
| | - Juergen Schmidt
- Department of Electrochemistry, Innovent Technology Development, Pruessingstrasse 27 B, D-07745 Jena, Germany;
| | - Yurii P. Sharkeev
- Institute of Strength Physics and Materials Science of SB RAS, Academicheskii Prospect 2/4, 634055 Tomsk, Russia; (V.V.L.); (O.A.B.); (Y.P.S.)
- Research School of High-Energy Physics, National Research Tomsk Polytechnic University, Lenin Avenue, 30, 634050 Tomsk, Russia
| |
Collapse
|
28
|
Hui Y, Dong Z, Wenkun P, Yao D, Huichang G, Tongxiang L. Facile synthesis of copper doping hierarchical hollow porous hydroxyapatite beads by rapid gelling strategy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 109:110531. [PMID: 32228968 DOI: 10.1016/j.msec.2019.110531] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 12/02/2019] [Accepted: 12/05/2019] [Indexed: 11/24/2022]
Abstract
Calcium phosphate based ceramic materials are widely used in bone tissue engineering. Till now, it remains an unmet challenge to construct monodispersed hollow porous calcium phosphate beads through facile and scalable-production strategy. Herein, a rapid gelling strategy is used to combine the guar gum and metal hydroxide, which helps to prepare hollow hierarchical porous hydroxyapatite beads. Results show that the concentration of copper ions and calcination temperature greatly affect the microstructure transformation of the product. Higher concentrations of copper ions lead to the growth of hollow structures, and these ceramic beads exhibit excellent biocompatibility and antibacterial properties. The structure evolution of the products is systematically investigated, and a formation mechanism has been proposed.
Collapse
Affiliation(s)
- Yang Hui
- School of Materials Science and Engineering, Jiangxi University of Science and Technology, Ganzhou, China; Engineering Research Center for Hydrogen Energy Materials and Devices, Jiangxi University of Science and Technology, Ganzhou, China
| | - Zhang Dong
- School of Materials Science and Engineering, Jiangxi University of Science and Technology, Ganzhou, China
| | - Peng Wenkun
- School of Materials Science and Engineering, Jiangxi University of Science and Technology, Ganzhou, China
| | - Di Yao
- School of Materials Science and Engineering, Jiangxi University of Science and Technology, Ganzhou, China
| | - Gao Huichang
- School of Medicine, South China University of Technology, Guangzhou 510006, China; National Engineering Research Centre for Tissue Restoration and Reconstruction, Guangzhou 510006, China.
| | - Liang Tongxiang
- School of Materials Science and Engineering, Jiangxi University of Science and Technology, Ganzhou, China; Engineering Research Center for Hydrogen Energy Materials and Devices, Jiangxi University of Science and Technology, Ganzhou, China.
| |
Collapse
|
29
|
Ding Z, Wang Y, Zhou Q, Ding Z, Liu J, He Q, Zhang H. Microstructure, Wettability, Corrosion Resistance and Antibacterial Property of Cu-MTa 2O 5 Multilayer Composite Coatings with Different Cu Incorporation Contents. Biomolecules 2019; 10:E68. [PMID: 31906220 PMCID: PMC7022678 DOI: 10.3390/biom10010068] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 12/29/2019] [Accepted: 12/29/2019] [Indexed: 12/21/2022] Open
Abstract
Bacterial infection and toxic metal ions releasing are the challenges in the clinical application of Ti6Al4V alloy implant materials. Copper is a kind of long-acting, broad-spectrum and safe antibacterial element, and Ta2O5 has good corrosion resistance, wear-resistance and biocompatibility, they are considered and chosen as a potential coating candidate for implant surface modification. In this paper, magnetron sputtering technology was used to prepare copper doped Ta2O5 multilayer composite coating Cu-Ta2O5/Ta2O5/Ta2O5-TiO2/TiO2/Ti (Cu-MTa2O5 for short) on Ti6Al4V alloy surface, for studying the effect of copper incorporation on the microstructure, wettability, anticorrosion and antibacterial activities of the composite coating. The results showed that Cu-MTa2O5 coating obviously improves the hydrophobicity, corrosion resistance and antibacterial property of Ti6Al4V alloy. In the coating, both copper and Ta2O5 exhibit an amorphous structure and copper mainly presents as an oxidation state (Cu2O and CuO). With the increase of the doping amount of copper, the grain size, roughness, and hydrophobicity of the modified surface of Ti6Al4V alloy are increased. Electrochemical experiment results demonstrated that the corrosion resistance of Cu-MTa2O5 coated Ti6Al4V alloy slightly decreased with the increase of copper concentration, but this coating still acts strong anticorrosion protection for Ti6Al4V alloy. Moreover, the Cu-MTa2O5 coating can kill more than 97% of Staphylococcus aureus in 24 h, and the antibacterial rate increases with the increase of copper content. Therefore, Cu-MTa2O5 composite coating is a good candidate for improving anticorrosion and antibacterial properties of Ti6Al4V alloy implant medical devices.
Collapse
Affiliation(s)
- Zeliang Ding
- School of Mechanical Engineering, Hunan University of Technology, Zhuzhou 412007, China; (Y.W.); (Q.Z.); (H.Z.)
| | - Yi Wang
- School of Mechanical Engineering, Hunan University of Technology, Zhuzhou 412007, China; (Y.W.); (Q.Z.); (H.Z.)
| | - Quan Zhou
- School of Mechanical Engineering, Hunan University of Technology, Zhuzhou 412007, China; (Y.W.); (Q.Z.); (H.Z.)
| | - Ziyu Ding
- School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007, China;
| | - Jun Liu
- School of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China;
| | - Quanguo He
- School of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China;
| | - Haibo Zhang
- School of Mechanical Engineering, Hunan University of Technology, Zhuzhou 412007, China; (Y.W.); (Q.Z.); (H.Z.)
| |
Collapse
|
30
|
Ding Z, Wang Y, Zhou Q, Ding Z, Wu Y, Zhu Y, Shi W, He Q. The Preparation and Properties of Multilayer Cu-MTa 2O 5 Composite Coatings on Ti6Al4V for Biomedical Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1498. [PMID: 31640135 PMCID: PMC6835318 DOI: 10.3390/nano9101498] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/13/2019] [Accepted: 10/18/2019] [Indexed: 02/07/2023]
Abstract
For the enhancement of the anticorrosion and antibacterial performance of the biomedical alloy Ti6Al4V, a novel Cu incorporated multilayer Ta2O5ceramic composite coating Cu-Ta2O5/Ta2O5/Ta2O5-TiO2/TiO2/Ti (coating codeCu-MTa2O5) was developed by radio frequency (RF) and direct current (DC) reactive magnetron sputtering. Meanwhile, to better display the multilayer Ta2O5 coating mentioned above, a monolayer Ta2O5 ceramic coating was deposited onto the surface of Ti6Al4V alloy as a reference. The surface morphology, microstructure, phase constituents, and elemental states of the coating were evaluated by atomic force microscopy, scanning electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy, respectively. The adhesion strength, wettability, anticorrosion and antibacterial properties of the coating were examined by a scratch tester, contact angle measurement, electrochemical workstations, and plate counting method, respectively. The results showed that the deposited coatings were amorphous and hydrophobic. Cu doped into the Ta2O5 coating existed as CuO and Cu2O. A Ta2O5-TiO2/TiO2/Ti multi-interlayer massively enhanced the adhesion strength of the coating, which was 2.9 times stronger than that of the monolayer Ta2O5coating. The multilayer Cu-MTa2O5 coating revealed a higher corrosion potential and smaller corrosion current density as compared to the uncoated Ti6Al4V, indicating the better anticorrosion performance of Ti6Al4V. Moreover, a 99.8% antibacterial effect of Cu-MTa2O5 coated against Staphylococcus aureuswas obtained.
Collapse
Affiliation(s)
- Zeliang Ding
- School of Mechanical Engineering, Hunan University of Technology, Zhuzhou 412007, China.
| | - Yi Wang
- School of Mechanical Engineering, Hunan University of Technology, Zhuzhou 412007, China.
| | - Quan Zhou
- School of Mechanical Engineering, Hunan University of Technology, Zhuzhou 412007, China.
| | - Ziyu Ding
- School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007, China.
| | - Yiyong Wu
- School of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China.
| | - Yuefang Zhu
- Zhuzhou Institute of Food and Drug Control, Zhuzhou 412008, China.
| | - Wensong Shi
- Zhuzhou Institute of Food and Drug Control, Zhuzhou 412008, China.
| | - Quanguo He
- School of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China.
| |
Collapse
|
31
|
Affiliation(s)
- Xiang Ge
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of EducationSchool of Mechanical EngineeringTianjin UniversityTianjin300354People's Republic of China
| |
Collapse
|