1
|
Wang J, Han Z, Zhang L, Ding R, Ding C, Chen K, Wang Z. Two dimensional MoS 2 accelerates mechanically controlled polymerization and remodeling of hydrogel. Nat Commun 2025; 16:1689. [PMID: 39956812 PMCID: PMC11830778 DOI: 10.1038/s41467-025-57068-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 02/11/2025] [Indexed: 02/18/2025] Open
Abstract
Self-remodeling material can change their physical properties based on mechanical environment. Recently, mechanically controlled polymerization using mechanoredox catalyst enabled composite materials to undergo a permanent structural change, thereby enhancing their mechanical strength. However, a significant delay in material's response was observed due to the sluggish activation of the bulk catalyst for polymerization. Herein, we report a fast, mechanically controlled radical polymerization of water soluble monomers using 2D MoS2 as the mechanoredox catalyst, studied under various mechanical stimuli, including ultrasound, ball milling and low frequency vibrations. Our strategy enables complete polymerization within several minutes of work. This accelerated process can be utilized to create composite hydrogels with the ability to alter their mechanical and electrical properties in response to mechanical stimuli. This strategy has potential for applications in smart materials such as hydrogel sensors, artificial muscles, and implantable biomaterials.
Collapse
Affiliation(s)
- Jian Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China
| | - Zhijun Han
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China
| | - Longfei Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China
| | - Ran Ding
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China
| | - Chengqiang Ding
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China
| | - Kai Chen
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China
| | - Zhao Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China.
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Soochow University, Suzhou, China.
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Soochow University, Suzhou, China.
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University, Suzhou, China.
| |
Collapse
|
2
|
Zhang L, Zou X, Ding C, Wang Z. Mechanically induced cationic reversible addition-fragmentation chain transfer polymerization of vinyl ethers. Chem Sci 2024:d4sc05263c. [PMID: 39479168 PMCID: PMC11514177 DOI: 10.1039/d4sc05263c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/21/2024] [Indexed: 11/02/2024] Open
Abstract
Mechanoredox catalysis has emerged as a sustainable approach for organic transformations. Mechanically controlled polymerization that uses mechanoredox catalysts enables synthesis of complex polymers and mechanoresponsive materials with diverse applications. Despite its potential, the focus has predominantly been on free radical polymerization and acrylate monomers. The mechanochemical synthesis of poly(vinyl ether)s (PVEs) poses a significant challenge in the field. Herein, we report an efficient mechanically induced cationic reversible addition-fragmentation chain transfer (mechano-cRAFT) polymerization using 2D MoS2 as a mechanoredox catalyst, where free radical intermediates can be further oxidized to cations to promote cationic polymerization of vinyl ethers. This mechano-cRAFT polymerization can be conducted in air and with minimal organic solvent, resulting in quantitative monomer conversion. This strategy is applicable to a range of vinyl ether monomers, yielding polymers with controlled molecular weight and narrow dispersity. We also performed trapping experiments to investigate the piezoelectrically mediated redox process, and further validated the mechanism through density functional theory (DFT) calculations.
Collapse
Affiliation(s)
- Longfei Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 China
| | - Xiuyang Zou
- Jiangsu Province Engineering Research Center of Environment Functional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University Huaian 223300 China
| | - Chengqiang Ding
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 China
| | - Zhao Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 China
| |
Collapse
|
3
|
Feng H, Shao X, Wang Z. Mechanochemical Controlled Radical Polymerization: From Harsh to Mild. Chempluschem 2024; 89:e202400287. [PMID: 38940320 DOI: 10.1002/cplu.202400287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/15/2024] [Accepted: 06/27/2024] [Indexed: 06/29/2024]
Abstract
Mechanochemistry constitutes a burgeoning field that investigates the chemical and physicochemical alterations of substances under mechanical force. It enables the synthesis of materials which is challenging to obtain via thermal, optical or electrical activation methods. In addition, it diminishes reliance on organic solvents and provides a novel route for green chemistry. Today, as a distinct branch alongside electrochemistry, photochemistry, and thermochemistry, mechanochemistry has emerged as a frontier research domain within chemistry and material science. In recent years, the intersection of mechanochemistry with controlled radical polymerization has witnessed rapid advancements, providing new routes to polymer science. Significantly, we have experienced breakthroughs in methods relying on sonochemistry, piezoelectricity and contact electrification. These methodologies not only facilitate the synthesis of polymers with high molecular weight but also enable precise control over polymer chain length and structure. Transitioning from harsh to mild conditions in mechanochemical routes has facilitated a significant improvement in the controllability of mechanochemical polymerization. From this perspective, we introduce the progress of mechanochemistry in controlled radical polymerization in recent years, aim to clarify the historcial development of this topic.
Collapse
Affiliation(s)
- Haoyang Feng
- Northwestern Polytechnical University, Frontiers Science Center for Flexible Electronics (FSCFE) & Institute of Flexible Electronics (IFE), Xi'an, 710072, China
| | - Xiaoyang Shao
- Northwestern Polytechnical University, Frontiers Science Center for Flexible Electronics (FSCFE) & Institute of Flexible Electronics (IFE), Xi'an, 710072, China
| | - Zhenhua Wang
- Northwestern Polytechnical University, Frontiers Science Center for Flexible Electronics (FSCFE) & Institute of Flexible Electronics (IFE), Xi'an, 710072, China
| |
Collapse
|
4
|
Zhang Y, Zhang J, Xu S, Shi G, He Y, Qiao X, Pang X. BaTiO 3 Catalyzed Ultrasonic-Driven Piezoelectric-Induced Reversible Addition-Fragmentation Chain-Transfer Polymerization in Aqueous Media. Macromol Rapid Commun 2024; 45:e2400235. [PMID: 38742492 DOI: 10.1002/marc.202400235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/04/2024] [Indexed: 05/16/2024]
Abstract
Compared with normal stimulus such as light and heat, ultrasonic possesses much deeper penetration into tissues and organs and has lower scattering in heterogeneous systems as a noninvasive stimulus. Reversible addition-fragmentation chain-transfer polymerization (RAFT) in aqueous media is performed in a commercial ultrasonic wash bath with 40 kHz frequency ultrasonic, in the presence of piezoelectric tetragonal BaTiO3 (BTO) nanoparticles. Owing to the electron transfer from BTO under the ultrasonic action, the water can be decomposed to produce hydroxyl radical (HO•) and initiate the RAFT polymerization (piezo-RAFT). The piezo-RAFT polymerization exhibits features of controllable and livingness, such as linear increase of molar mass and narrow molar mass distributions (Mw/Mn < 1.20). Excellent temporal control of the polymerization and the chain fidelity of polymers are illustrated by "ON and OFF" experiment and chain extension, separately. Moreover, this ultrasonic-driven piezoelectric-induced RAFT polymerization in aqueous media can be directly used for the preparation of piezoelectric hydrogel which have potential application for stress sensor.
Collapse
Affiliation(s)
- Yu Zhang
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Junle Zhang
- Faculty of Engineering, Huanghe Science and Technology College, Zhengzhou, 450063, China
| | - Shuo Xu
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Ge Shi
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Yanjie He
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiaoguang Qiao
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
- College of Materials Engineering, Henan International Joint Laboratory of Rare Earth Composite Materials, Henan Engineering Technology Research Center for Fiber Preparation and Modification, Henan University of Engineering, Zhengzhou, 451191, China
| | - Xinchang Pang
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
5
|
Zhang W, Chen Z, Zhang Z. Photo-Deactivation Strategy for Switchable ATRP with the Assistance of Molecular Switches. Macromol Rapid Commun 2024; 45:e2400162. [PMID: 38719215 DOI: 10.1002/marc.202400162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/18/2024] [Indexed: 05/21/2024]
Abstract
Light irradiation is an external stimulus, rapidly developed in switchable atom transfer radical polymerization (ATRP) via photo-activation methods in recent years. Herein, a photo-deactivation strategy is introduced to regulate ATRP with the assistance of photoswitchable hexaarylbiimidozole (HABI). Under visible light irradiation and in the presence of HABI, ATRP is greatly decelerated or quenched depending on the concentration of HABI. Interestingly, with visible light off, ATRP can proceed smoothly and follow a first-order kinetics. Moreover, photo-switchable ATRP alternatively with light off and on is demonstrated. Besides, the mechanism of photo-deactivation ATRP involving radical quenching is proposed in the presence of HABI.
Collapse
Affiliation(s)
- Weidong Zhang
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & Jiangsu Key Laboratory of Frontier Material Physics and Devices, School of Physical Science and Technology, Soochow University, Suzhou, 215006, P. R. China
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry Engineering and Materials Science of Soochow University, Suzhou, 215123, China
| | - Zhuan Chen
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry Engineering and Materials Science of Soochow University, Suzhou, 215123, China
| | - Zhengbiao Zhang
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry Engineering and Materials Science of Soochow University, Suzhou, 215123, China
| |
Collapse
|
6
|
Feng H, Chen Z, Li L, Shao X, Fan W, Wang C, Song L, Matyjaszewski K, Pan X, Wang Z. Aerobic mechanochemical reversible-deactivation radical polymerization. Nat Commun 2024; 15:6179. [PMID: 39039089 PMCID: PMC11263483 DOI: 10.1038/s41467-024-50562-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 07/15/2024] [Indexed: 07/24/2024] Open
Abstract
Polymer materials suffer mechano-oxidative deterioration or degradation in the presence of molecular oxygen and mechanical forces. In contrast, aerobic biological activities combined with mechanical stimulus promote tissue regeneration and repair in various organs. A synthetic approach in which molecular oxygen and mechanical energy synergistically initiate polymerization will afford similar robustness in polymeric materials. Herein, aerobic mechanochemical reversible-deactivation radical polymerization was developed by the design of an organic mechano-labile initiator which converts oxygen into activators in response to ball milling, enabling the reaction to proceed in the air with low-energy input, operative simplicity, and the avoidance of potentially harmful organic solvents. In addition, this approach not only complements the existing methods to access well-defined polymers but also has been successfully employed for the controlled polymerization of (meth)acrylates, styrenic monomers and solid acrylamides as well as the synthesis of polymer/perovskite hybrids without solvent at room temperature which are inaccessible by other means.
Collapse
Affiliation(s)
- Haoyang Feng
- Frontiers Science Center for Flexible Electronics (FSCFE) & Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, China
| | - Zhe Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Lei Li
- Frontiers Science Center for Flexible Electronics (FSCFE) & Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, China
| | - Xiaoyang Shao
- Frontiers Science Center for Flexible Electronics (FSCFE) & Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, China
| | - Wenru Fan
- Frontiers Science Center for Flexible Electronics (FSCFE) & Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, China
| | - Chen Wang
- Frontiers Science Center for Flexible Electronics (FSCFE) & Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, China
| | - Lin Song
- Frontiers Science Center for Flexible Electronics (FSCFE) & Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, China
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA, 15213, USA.
| | - Xiangcheng Pan
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China.
| | - Zhenhua Wang
- Frontiers Science Center for Flexible Electronics (FSCFE) & Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, China.
| |
Collapse
|
7
|
Yang L, Guo X, Yang Y, Duan G, Chen K, Wang J, Li Y, Wang Z. Mechanically Controlled Enzymatic Polymerization and Remodeling. ACS Macro Lett 2024; 13:401-406. [PMID: 38511967 DOI: 10.1021/acsmacrolett.4c00057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
In nature, proteins possess the remarkable ability to sense and respond to mechanical forces, thereby triggering various biological events, such as bone remodeling and muscle regeneration. However, in synthetic systems, harnessing the mechanical force to induce material growth still remains a challenge. In this study, we aimed to utilize low-frequency ultrasound (US) to activate horseradish peroxidase (HRP) and catalyze free radical polymerization. Our findings demonstrate the efficacy of this mechano-enzymatic chemistry in rapidly remodeling the properties of materials through cross-linking polymerization and surface coating. The resulting samples exhibited a significant enhancement in tensile strength, elongation, and Young's modulus. Moreover, the hydrophobicity of the surface could be completely switched within just 30 min of US treatment. This work presents a novel approach for incorporating mechanical sensing and rapid remodeling capabilities into materials.
Collapse
Affiliation(s)
- Lei Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Xinyu Guo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Yiyan Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Gaigai Duan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Kai Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Jian Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Yiwen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Zhao Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
8
|
Zeitler SM, Golder MR. Shake, shear, and grind! - the evolution of mechanoredox polymerization methodology. Chem Commun (Camb) 2023; 60:26-35. [PMID: 38018257 DOI: 10.1039/d3cc04323a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
In the last half decade, mechanoredox catalysis has enabled an entirely new genre of polymerization methodology. In this paradigm, mechanical force, such as ultrasonic cavitation bubble collapse or ball mill grinding, polarizes piezoelectric nanoparticles; the resultant piezopotential drives the redox processes necessary for free- and controlled-radical polymerizations. Since being introduced, evolution of these methods facilitates exploration of mechanistic underpinnings behind key electron-transfer events. Mechanical force has not only been identified as a "greener" alternative to more traditional reaction stimuli (e.g., heat, light) for the synthesis of commodity polymers, but also a potential technology to enable the production of novel thermoplastic and thermoset materials that are either challenging, or even impossible, to access using conventional solution-state approaches. In this Feature Article, significant contributions to such methods are highlighted within. Advances and ongoing challenges in both ultrasound and ball milling driven reactions for radical polymerization and crosslinking are identified and discussed.
Collapse
Affiliation(s)
- Sarah M Zeitler
- Department of Chemistry and Molecular Engineering & Science Institute, University of Washington, Seattle, WA 98195, USA.
| | - Matthew R Golder
- Department of Chemistry and Molecular Engineering & Science Institute, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
9
|
Ayarza J, Wang J, Kim H, Huang PR, Cassaidy B, Yan G, Liu C, Jaeger HM, Rowan SJ, Esser-Kahn AP. Bioinspired mechanical mineralization of organogels. Nat Commun 2023; 14:8319. [PMID: 38097549 PMCID: PMC10721619 DOI: 10.1038/s41467-023-43733-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 11/17/2023] [Indexed: 12/17/2023] Open
Abstract
Mineralization is a long-lasting method commonly used by biological materials to selectively strengthen in response to site specific mechanical stress. Achieving a similar form of toughening in synthetic polymer composites remains challenging. In previous work, we developed methods to promote chemical reactions via the piezoelectrochemical effect with mechanical responses of inorganic, ZnO nanoparticles. Herein, we report a distinct example of a mechanically-mediated reaction in which the spherical ZnO nanoparticles react themselves leading to the formation of microrods composed of a Zn/S mineral inside an organogel. The microrods can be used to selectively create mineral deposits within the material resulting in the strengthening of the overall resulting composite.
Collapse
Affiliation(s)
- Jorge Ayarza
- Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, IL, 60637, USA
| | - Jun Wang
- Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, IL, 60637, USA
| | - Hojin Kim
- Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, IL, 60637, USA
- James Franck Institute, University of Chicago, 929 East 57th Street, Chicago, IL, 60637, USA
| | - Pin-Ruei Huang
- Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, IL, 60637, USA
| | - Britteny Cassaidy
- Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, IL, 60637, USA
| | - Gangbin Yan
- Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, IL, 60637, USA
| | - Chong Liu
- Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, IL, 60637, USA
| | - Heinrich M Jaeger
- James Franck Institute, University of Chicago, 929 East 57th Street, Chicago, IL, 60637, USA
- Department of Physics, University of Chicago, 5720 South Ellis Avenue, Chicago, IL, 60637, USA
| | - Stuart J Rowan
- Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, IL, 60637, USA
- Department of Chemistry, University of Chicago, 5735 South Ellis Avenue, Chicago, IL, 60637, USA
- Chemical and Engineering Sciences Division, Argonne National Laboratory, 9700 Cass Avenue, Lemont, IL, 60439, USA
| | - Aaron P Esser-Kahn
- Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, IL, 60637, USA.
| |
Collapse
|
10
|
Li Z, Wang Z, Wang C, Li W, Fan W, Zhao R, Feng H, Peng D, Huang W. Mechanoluminescent Materials Enable Mechanochemically Controlled Atom Transfer Radical Polymerization and Polymer Mechanotransduction. RESEARCH (WASHINGTON, D.C.) 2023; 6:0243. [PMID: 37795336 PMCID: PMC10546606 DOI: 10.34133/research.0243] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/13/2023] [Indexed: 10/06/2023]
Abstract
Organic mechanophores have been widely adopted for polymer mechanotransduction. However, most examples of polymer mechanotransduction inevitably experience macromolecular chain rupture, and few of them mimic mussel's mechanochemical regeneration, a mechanically mediated process from functional units to functional materials in a controlled manner. In this paper, inorganic mechanoluminescent (ML) materials composed of CaZnOS-ZnS-SrZnOS: Mn2+ were used as a mechanotransducer since it features both piezoelectricity and mechanolunimescence. The utilization of ML materials in polymerization enables both mechanochemically controlled radical polymerization and the synthesis of ML polymer composites. This procedure features a mechanochemically controlled manner for the design and synthesis of diverse mechanoresponsive polymer composites.
Collapse
Affiliation(s)
- Zexuan Li
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics, Northwestern Polytechnical University, Xi’an 710072, China
| | - Zhenhua Wang
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics, Northwestern Polytechnical University, Xi’an 710072, China
| | - Chen Wang
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics, Northwestern Polytechnical University, Xi’an 710072, China
| | - Wenxi Li
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an 710072, China
| | - Wenru Fan
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics, Northwestern Polytechnical University, Xi’an 710072, China
| | - Ruoqing Zhao
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics, Northwestern Polytechnical University, Xi’an 710072, China
| | - Haoyang Feng
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics, Northwestern Polytechnical University, Xi’an 710072, China
| | - Dengfeng Peng
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics, Northwestern Polytechnical University, Xi’an 710072, China
| |
Collapse
|
11
|
Chen Z, Sun Y, Wang X, Zhang W, Zhang Z. Tailoring Polymerization Controllability and Dispersity Through a Photoswitchable Catalyst Strategy. Macromol Rapid Commun 2023; 44:e2300198. [PMID: 37231589 DOI: 10.1002/marc.202300198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/12/2023] [Indexed: 05/27/2023]
Abstract
Modulating on-demand polymerization is a challenge in synthetic macromolecules. Herein, tailoring polymerization controllability and dispersity during single-electron transfer mediated living radical polymerization (SET-LRP) of methyl methacrylate (MMA) is achieved. Hexaarylbiimidazole (HABI) is employed as a photoswitchable catalyst, allowing reversible control of catalytic activity between an active and inactive state. In the presence of HABI and with the light on (active state), control SET-LRP of MMA follows first-order kinetics, resulting in polymers with a narrow molecular weight distribution. In contrast, polymerization responds to light and reverts to their original uncontrolled state with light off (inactive state). Therefore, repeatable resetting polymerization can be easily performed. The key to photomodulating dispersity is to use an efficient molecular switch to tailor the breadths of dispersity. Besides, the mechanism of HABI-mediated SET-LRP with switchable ability is proposed.
Collapse
Affiliation(s)
- Zhuan Chen
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry Engineering and Materials Science of Soochow University, Suzhou, 215123, P. R. China
| | - Yue Sun
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & Jiangsu Key Laboratory of Thin Films, School of Physical Science and Technology, Soochow University, Suzhou, 215006, P. R. China
| | - Xin Wang
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry Engineering and Materials Science of Soochow University, Suzhou, 215123, P. R. China
| | - Weidong Zhang
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry Engineering and Materials Science of Soochow University, Suzhou, 215123, P. R. China
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & Jiangsu Key Laboratory of Thin Films, School of Physical Science and Technology, Soochow University, Suzhou, 215006, P. R. China
| | - Zhengbiao Zhang
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry Engineering and Materials Science of Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|
12
|
Ren Z, Ding C, Ding R, Wang J, Li Z, Tan R, Wang X, Wang Z, Zhang Z. Enhancing Ultrasound-Assisted Iodine-Mediated Reversible-Deactivation Radical Polymerization by Piezoelectric Nanoparticles. ACS Macro Lett 2023; 12:1159-1165. [PMID: 37523272 DOI: 10.1021/acsmacrolett.3c00317] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
The development of mechanochemical tools for regulating the polymerization process has received an increasing amount of attention in recent years. Herein, we report the example of the mechanically controlled iodine-mediated reversible-deactivation radical polymerization (mechano-RDRP) using piezoelectric tetragonal BaTiO3 nanoparticles (T-BTO) as mechanoredox catalyst and alkyl iodide as the initiator. We demonstrated a more efficient mechanochemical initiation and reversible deactivation process than sonochemical activation via a mechanoredox-mediated alkyl iodide cleavage reaction. The mechanochemical activation of the C-I bond was verified by density functional theory (DFT) calculations. Theoretical calculations together with experimental results confirmed the more efficient initiation and polymerization than the traditional sonochemical approach. The influence of BaTiO3, initiator, and solvent was further examined to reveal the mechanism of the mechano-RDRP. The results showed good controllability over molecular weight and capacity for a one-pot chain extension. This work expands the scope of mechanically controlled polymerization and shows good potential in the construction of adaptive materials.
Collapse
Affiliation(s)
- Ziye Ren
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Chengqiang Ding
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Ran Ding
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Junce Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Zhengheng Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Rui Tan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Xin Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Zhao Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Zhengbiao Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| |
Collapse
|
13
|
Cvek M, Jazani AM, Sobieski J, Jamatia T, Matyjaszewski K. Comparison of Mechano- and PhotoATRP with ZnO Nanocrystals. Macromolecules 2023; 56:5101-5110. [PMID: 37457022 PMCID: PMC10339823 DOI: 10.1021/acs.macromol.3c00250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 04/24/2023] [Indexed: 07/18/2023]
Abstract
Zinc oxide (ZnO) was previously reported as an excellent cocatalyst for mechanically controlled atom transfer radical polymerization (mechanoATRP), but its photocatalytic properties in photoinduced ATRP (photoATRP) have been much less explored. Herein, well-defined ZnO nanocrystals were prepared via microwave-assisted synthesis and applied as a heterogeneous cocatalyst in mechano- and photoATRP. Both techniques yielded polymers with outstanding control over the molecular weight, but ZnO-cocatalyzed photoATRP was much faster than analogous mechanoATRP (conversion of 91% in 1 h vs 54% in 5 h). The kinetics of photoATRP was tuned by loadings of ZnO nanocrystals. PhotoATRP with ZnO did not require any excess of ligand versus Cu, in contrast to mechanoATRP, requiring an excess of ligand, acting as a reducing agent. ZnO-cocatalyzed photoATRP proceeded controllably without prior deoxygenation, since ZnO was involved in a cascade of reactions, leading to the rapid elimination of oxygen. The versatility and robustness of the technique were demonstrated for various (meth)acrylate monomers with good temporal control and preservation of end-group functionality, illustrated by the formation of tailored block copolymers.
Collapse
Affiliation(s)
- Martin Cvek
- Department
of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
- Centre
of Polymer Systems, Tomas Bata University
in Zlin, Trida T. Bati 5678, 760 01 Zlin, Czech Republic
| | - Arman Moini Jazani
- Department
of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Julian Sobieski
- Department
of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Thaiskang Jamatia
- Centre
of Polymer Systems, Tomas Bata University
in Zlin, Trida T. Bati 5678, 760 01 Zlin, Czech Republic
| | - Krzysztof Matyjaszewski
- Department
of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
14
|
Chakma P, Zeitler SM, Baum F, Yu J, Shindy W, Pozzo LD, Golder MR. Mechanoredox Catalysis Enables a Sustainable and Versatile Reversible Addition-Fragmentation Chain Transfer Polymerization Process. Angew Chem Int Ed Engl 2023; 62:e202215733. [PMID: 36395245 DOI: 10.1002/anie.202215733] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Indexed: 11/19/2022]
Abstract
The sustainable synthesis of macromolecules with control over sequence and molar mass remains a challenge in polymer chemistry. By coupling mechanochemistry and electron-transfer processes (i.e., mechanoredox catalysis), an energy-conscious controlled radical polymerization methodology is realized. This work explores an efficient mechanoredox reversible addition-fragmentation chain transfer (RAFT) polymerization process using mechanical stimuli by implementing piezoelectric barium titanate and a diaryliodonium initiator with minimal solvent usage. This mechanoredox RAFT process demonstrates exquisite control over poly(meth)acrylate dispersity and chain length while also showcasing an alternative to the solution-state synthesis of semifluorinated polymers that typically utilize exotic solvents and/or reagents. This chemistry will find utility in the sustainable development of materials across the energy, biomedical, and engineering communities.
Collapse
Affiliation(s)
- Progyateg Chakma
- Department of Chemistry and Molecular Engineering & Science Institute, University of Washington, 36 Bagley Hall, Seattle, WA 98195, USA
| | - Sarah M Zeitler
- Department of Chemistry and Molecular Engineering & Science Institute, University of Washington, 36 Bagley Hall, Seattle, WA 98195, USA
| | - Fábio Baum
- Department of Chemical Engineering and Department of Material Science & Engineering, University of Washington, 105 Benson Hall, Seattle, WA 98195, USA
| | - Jiatong Yu
- Department of Chemistry and Molecular Engineering & Science Institute, University of Washington, 36 Bagley Hall, Seattle, WA 98195, USA
| | - Waseem Shindy
- Department of Chemistry and Molecular Engineering & Science Institute, University of Washington, 36 Bagley Hall, Seattle, WA 98195, USA
| | - Lilo D Pozzo
- Department of Chemical Engineering and Department of Material Science & Engineering, University of Washington, 105 Benson Hall, Seattle, WA 98195, USA
| | - Matthew R Golder
- Department of Chemistry and Molecular Engineering & Science Institute, University of Washington, 36 Bagley Hall, Seattle, WA 98195, USA
| |
Collapse
|
15
|
Wang C, Fan W, Li Z, Xiong J, Zhang W, Wang Z. Sonochemistry-assisted photocontrolled atom transfer radical polymerization enabled by manganese carbonyl. Polym Chem 2022. [DOI: 10.1039/d2py00682k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sonochemistry-assisted photocontrolled atom transfer radical polymerization (SAP-ATRP) is developed to circumvent the problem caused by the low penetration depth of light.
Collapse
Affiliation(s)
- Chen Wang
- Frontiers Science Center for Flexible Electronics & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University, Xi'an 710072, China
| | - Wenru Fan
- Frontiers Science Center for Flexible Electronics & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University, Xi'an 710072, China
| | - Zexuan Li
- Frontiers Science Center for Flexible Electronics & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University, Xi'an 710072, China
| | - Jiaqiang Xiong
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Wei Zhang
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Zhenhua Wang
- Frontiers Science Center for Flexible Electronics & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
16
|
He J, Yi Z, Chen Q, Li Z, Hu J, Zhu M. Piezoelectric polarization of MIL-100(Fe) by harvesting mechanical energy for cocatalyst-free H2 evolution. Chem Commun (Camb) 2022; 58:10723-10726. [DOI: 10.1039/d2cc03976a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To suit the emergency of a new strategy for hydrogen (H2) evolution, a metal–organic framework (MIL-100(Fe)) is applied in the piezoelectric-driven process for catalytic H2 generation. Herein, MIL-100(Fe) was firstly...
Collapse
|