1
|
Zhang Y, Zhang W, Chen Z, Wang L, Yu G. Recent developments in polymer semiconductors with excellent electron transport performances. Chem Soc Rev 2025; 54:2483-2519. [PMID: 39906917 DOI: 10.1039/d4cs00504j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Benefiting from molecular design and device innovation, electronic devices based on polymer semiconductors have achieved significant developments and gradual commercialization over the past few decades. Most of high-performance polymer semiconductors that have been prepared exhibit p-type performances, and records of their carrier mobilities are constantly being broken through. Although ambipolar and n-type polymers are necessary for constructing p-n heterojunctions and logic circuits, only a few materials show outstanding device performances, which leads to their developments lagging far behind that of p-type analogues. As a consequence, it is extremely significant to summarize polymer semiconductors with excellent electron transport performances. This review focuses on the design considerations and bonding modes between monomers of polymer semiconductors with high electron mobilities. To enhance electron transport performances of polymer semiconductors, the structural modification strategies are described in detail. Subsequently, the electron transport, thermoelectric, mixed ionic-electronic conduction, intrinsically stretchable, photodetection, and spin transport performances of high-electron mobility polymers are discussed from the perspective of molecular engineering. In the end, the challenges and prospects in this research field are presented, which provide valuable guidance for the design of polymer semiconductors with excellent electron transport performances and the exploration of more advanced applications in the future.
Collapse
Affiliation(s)
- Yunchao Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Weifeng Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhihui Chen
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Liping Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Gui Yu
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
2
|
Wang TY, Liu H, Liu M, Shih YH, Yu X, Li Z, Chueh CC. Fluoranthene imide dimers with strong isomeric effects on the charge transport properties. Phys Chem Chem Phys 2024; 26:26895-26899. [PMID: 39412529 DOI: 10.1039/d4cp03245d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
To date, the development of high-performance n-type organic semiconductors has remained challenging due to the scarcity of highly electron-deficient π-conjugated structural units and the difficulty of controlling intermolecular packing in the thin-film state. In addition, there have been few reports on the use of dimer design to tune the optoelectronic properties of materials. Herein, we report new cyano-substituted fluoranthene imide-based dimers (F16 and F17) for small-molecule n-type organic semiconductors. It is noteworthy that substituents at different positions lead to different film morphologies and very distinct thermal aggregation behaviors due to different dihedral angles. The self-assembly behavior of F17 improves thermal stability. Therefore, F17, which has a closer cyano groups structure, exhibits better field-effect transistor performance, with a maximum mobility of 6.6 × 10-4 cm2 V-1 s-1, while F16 does not exhibit any transistor performance.
Collapse
Affiliation(s)
- Ting-Yu Wang
- Department of Chemical Engineering, National Taiwan University, Taipei, 10617, Taiwan.
| | - Huangcheng Liu
- Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Miao Liu
- Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Yen-Han Shih
- Department of Chemical Engineering, National Taiwan University, Taipei, 10617, Taiwan.
| | - Xinyu Yu
- Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Zhong'an Li
- Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Chu-Chen Chueh
- Department of Chemical Engineering, National Taiwan University, Taipei, 10617, Taiwan.
| |
Collapse
|
3
|
Ren P, Chen L, Sun C, Hua X, Luo N, Fan B, Chen P, Shao X, Zhang HL, Liu Z. Linear Non-benzenoid Isomer of Acene Fusing Chrysene with Azulene Units. J Phys Chem Lett 2024; 15:8410-8419. [PMID: 39116005 DOI: 10.1021/acs.jpclett.4c01917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Non-benzenoid polycyclic aromatic hydrocarbons (PAHs) have received considerable attention owing to their distinctive optical and electrical properties. Nevertheless, the synthesis and optoelectronic application of non-benzenoid PAHs remain challenging. Herein, we present a facile synthesis of linear non-benzenoid PAH with an armchair edge, diACh, by fusing chrysene with two azulene units. We systematically investigated the optical and electrical properties, which were also compared to its isomers, including benzenoid and non-benzenoid zigzag edge isomers. diACh exhibits global aromaticity, good planarity, and suitable highest occupied molecular orbital/lowest unoccupied molecular orbital energy levels. The protonation of diACh in solution successively forms a stable tropylium cation and dication. Moreover, the neutral, cationic, and dicationic states of diACh can be transformed with remarkable reversibility during the protonation-deprotonation process, as confirmed by ultraviolet-visible absorptions, fluorescence spectra, 1H nuclear magnetic resonance, and theoretical calculations. Additionally, we fabricate p-type organic field-effect transistor (OFET) devices based on diACh with hole mobility up to 0.026 cm2 V-1 s-1, and we further develop OFET-based acid vapor sensors with good sensitivity, recyclability, and selectivity. These findings underscore the unique properties of linear non-benzenoid PAHs with an armchair edge engendered by the fusion of azulene with the acene backbone, showcasing prospective applications in organic optoelectronics.
Collapse
Affiliation(s)
- Peng Ren
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Special Function Materials and Structure Design, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Liangliang Chen
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, People's Republic of China
| | - Chunlin Sun
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Special Function Materials and Structure Design, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Xinqiang Hua
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Special Function Materials and Structure Design, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Nan Luo
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Special Function Materials and Structure Design, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Baojin Fan
- College of Chemistry and Chemical Engineering Institute of Polymers and Energy Chemistry, Nanchang University, Nanchang, Jiangxi 330031, People's Republic of China
| | - Pinyu Chen
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Special Function Materials and Structure Design, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Xiangfeng Shao
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Special Function Materials and Structure Design, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Hao-Li Zhang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Special Function Materials and Structure Design, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Zitong Liu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Special Function Materials and Structure Design, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| |
Collapse
|
4
|
Shen T, Jiang Z, Wang Y, Liu Y. Rational Molecular Design of Diketopyrrolopyrrole-Based n-Type and Ambipolar Polymer Semiconductors. Chemistry 2024; 30:e202401812. [PMID: 38887976 DOI: 10.1002/chem.202401812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 06/20/2024]
Abstract
Diketopyrrolopyrrole (DPP)-based polymer semiconductors have drawn great attention in the field of organic electronics due to the planar structure, decent solubilizing capability, and high crystallinity. However, the electron-deficient capacity of DPP derivatives are not strong enough, leading to relatively high-lying lowest unoccupied molecular orbital (LUMO) energy levels of the corresponding polymers. As a result, n-type and ambipolar DPP-based polymers are rare and their electron mobilities also lag far behind the p-type counterparts, which limits the development of important p-n-junction-based electronic devices. Therefore, new design strategies have been proposed recent years to develop n-type/ambipolar DPP-based polymers with improved performances. In this view, these molecular design strategies are summarized, including copolymerization of DPP with different acceptors and weak donors, DPP flanked aromatic ring modification, DPP-core ring expansion and DPP dimerization. The relationship between the chemical structures and organic thin-film transistor performances is intensively discussed. Finally, a perspective on future trends in the molecular design of DPP-based n-type/ambipolar polymers is also proposed.
Collapse
Affiliation(s)
- Tao Shen
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 2005, Songhu Road, Shanghai, 200438, China
| | - Zhen Jiang
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 2005, Songhu Road, Shanghai, 200438, China
| | - Yang Wang
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 2005, Songhu Road, Shanghai, 200438, China
| | - Yunqi Liu
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 2005, Songhu Road, Shanghai, 200438, China
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Science, Beijing, 100190, China
| |
Collapse
|
5
|
Zhang T, Chen Z, Zhang W, Wang L, Yu G. Recent Progress of Fluorinated Conjugated Polymers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403961. [PMID: 38830614 DOI: 10.1002/adma.202403961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/16/2024] [Indexed: 06/05/2024]
Abstract
In recent years, conjugated polymers have received widespread attention due to their characteristic advantages of light weight, favorable solution processability, and structural modifiability. Among various conjugated polymers, fluorinated ones have developed rapidly to achieve high-performance n-type or ambipolar polymeric semiconductors. The uniqueness of fluorinated conjugated polymers contains the high coplanarity of their structures, lower frontier molecular orbital energy levels, and strong nonbonding interactions. In this review, first the fluorinated building blocks, including fluorinated benzene and thiophene rings, fluorinated B←N bridged units, and fluoroalkyl side chains are summarized. Subsequently, different synthetic methods of fluorinated conjugated polymers are described, with a special focus on their respective advantages and disadvantages. Then, with these numerous fluorinated structures and appropriate synthetic methods bear in mind, the properties and applications of the fluorinated conjugated polymers, such as cyclopentadithiophene-, amide-, and imide-based polymers, and B←N embedded polymers, are systematically discussed. The introduction of fluorine atoms can further enhance the electron-deficiency of the backbone, influencing the charge carrier transport performance. The promising fluorinated conjugated polymers are applied widely in organic field-effect transistors, organic solar cells, organic thermoelectric devices, and other organic opto-electric devices. Finally, the outlook on the challenges and future development of fluorinated conjugated polymers is systematically discussed.
Collapse
Affiliation(s)
- Tianhao Zhang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Zhihui Chen
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Weifeng Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Liping Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Gui Yu
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
6
|
Zhou Z, Luo N, Cui T, Luo L, Pu M, Wang Y, He F, Jia C, Shao X, Zhang HL, Liu Z. Pre-Endcapping of Hyperbranched Polymers toward Intrinsically Stretchable Semiconductors with Good Ductility and Carrier Mobility. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313312. [PMID: 38318963 DOI: 10.1002/adma.202313312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/30/2024] [Indexed: 02/07/2024]
Abstract
The advancement of semiconducting polymers stands as a pivotal milestone in the quest to realize wearable electronics. Nonetheless, endowing semiconductor polymers with stretchability without compromising their carrier mobility remains a formidable challenge. This study proposes a "pre-endcapping" strategy for synthesizing hyperbranched semiconducting polymers (HBSPs), aiming to achieve the balance between carrier mobility and stretchability for organic electronics. The findings unveil that the aggregates formed by the endcapped hyperbranched network structure not only ensure efficient charge transport but also demonstrate superior tensile resistance. In comparison to linear conjugated polymers, HBSPs exhibit substantially larger crack onset strains and notably diminished tensile moduli. It is evident that the HBSPs surpass their linear counterparts in terms of both their semiconducting and mechanical properties. Among HBSPs, HBSP-72h-2.5 stands out as the preeminent candidate within the field of inherently stretchable semiconducting polymers, maintaining 93% of its initial mobility even when subjected to 100% strain (1.41 ± 0.206 cm2 V-1 s-1). Furthermore, thin film devices of HBSP-72h-2.5 remain stable after undergoing repeated stretching and releasing cycles. Notably, the mobilities are independent of the stretching directions, showing isotropic charge transport behavior. The preliminary study makes this "pre-endcapping" strategy a potential candidate for the future design of organic materials for flexible electronic devices.
Collapse
Affiliation(s)
- Zhaoqiong Zhou
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Special Function Materials and Structure Design, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Nan Luo
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Special Function Materials and Structure Design, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Tianqiang Cui
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Special Function Materials and Structure Design, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Liang Luo
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Special Function Materials and Structure Design, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Mingrui Pu
- Guangdong Provincial Key Laboratory of Catalysis, Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Ying Wang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Special Function Materials and Structure Design, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Feng He
- Guangdong Provincial Key Laboratory of Catalysis, Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Chunyang Jia
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Xiangfeng Shao
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Special Function Materials and Structure Design, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Hao-Li Zhang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Special Function Materials and Structure Design, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Zitong Liu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Special Function Materials and Structure Design, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
7
|
Yang J, Li J, Zhang X, Yang W, Jeong SY, Huang E, Liu B, Woo HY, Chen Z, Guo X. Functionalized Phenanthrene Imide-Based Polymers for n-Type Organic Thin-Film Transistors. Angew Chem Int Ed Engl 2024; 63:e202319627. [PMID: 38443313 DOI: 10.1002/anie.202319627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/19/2024] [Accepted: 03/05/2024] [Indexed: 03/07/2024]
Abstract
High-performing n-type polymers are crucial for the advance of organic electronics field, however strong electron-deficient building blocks with optimized physicochemical properties for constructing them are still limited. The imide-functionalized polycyclic aromatic hydrocarbons (PAHs) with extended π-conjugated framework, high electron deficiency and good solubility serve as promising candidates for developing high-performance n-type polymers. Among the PAHs, phenanthrene (PhA) features a well-delocalized aromatic π-system with multiple modifiable active sites . However, the PhA-based imides are seldom studied, mainly attributed to the synthetic challenge. Herein, we report two functionalized PhAs, CPOI and CPCNI, by simultaneously incorporating imide with carbonyl or dicyanomethylene onto PhA. Notably, the dicyanomethylene-modified CPCNI exhibits a well stabilized LUMO energy level (-3.84 eV), attributed to the synergetic inductive effect from imide and cyano groups. Subsequently, based on CPOI and CPCNI, two polymers PCPOI-Tz and PCPCNI-Tz were developed. Applied to organic thin-film transistors, owing to the strong electron-deficiency of CPCNI, polymer PCPCNI-Tz shows an improved electron mobility and largely decreased threshold voltage compared with PCPOI-Tz. This work affords two structurally novel electron-deficient building blocks and highlights the effectiveness of dual functionalization of PhAs with strong electron-withdrawing groups for devising n-type polymers.
Collapse
Affiliation(s)
- Jie Yang
- Department Materials Science and Engineering, Southern University of Science and Technology (SUSTech) No. 1088, Xueyuan Road, Shenzhen, Guangdong, 518055, China
| | - Jianfeng Li
- Department Materials Science and Engineering, Southern University of Science and Technology (SUSTech) No. 1088, Xueyuan Road, Shenzhen, Guangdong, 518055, China
| | - Xiage Zhang
- Department Materials Science and Engineering, Southern University of Science and Technology (SUSTech) No. 1088, Xueyuan Road, Shenzhen, Guangdong, 518055, China
| | - Wanli Yang
- Department Materials Science and Engineering, Southern University of Science and Technology (SUSTech) No. 1088, Xueyuan Road, Shenzhen, Guangdong, 518055, China
| | - Sang Young Jeong
- Research Institute for Natural Sciences, Department of Chemistry, Korea University, Anamro 145, Seoul, 02841, South Korea
| | - Enmin Huang
- Department Materials Science and Engineering, Southern University of Science and Technology (SUSTech) No. 1088, Xueyuan Road, Shenzhen, Guangdong, 518055, China
| | - Bin Liu
- Department Materials Science and Engineering, Southern University of Science and Technology (SUSTech) No. 1088, Xueyuan Road, Shenzhen, Guangdong, 518055, China
| | - Han Young Woo
- Research Institute for Natural Sciences, Department of Chemistry, Korea University, Anamro 145, Seoul, 02841, South Korea
| | - Zhicai Chen
- Department Materials Science and Engineering, Southern University of Science and Technology (SUSTech) No. 1088, Xueyuan Road, Shenzhen, Guangdong, 518055, China
- Department State Key Laboratory of Marine Resource Utilization in South China Sea, College of Materials Science and Engineering, Hainan University, Haikou, Hainan, 570228, China
| | - Xugang Guo
- Department Materials Science and Engineering, Southern University of Science and Technology (SUSTech) No. 1088, Xueyuan Road, Shenzhen, Guangdong, 518055, China
- Guangdong, Provincial Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology (SUSTech) No. 1088, Xueyuan Road, Shenzhen, Guangdong, 518055, China
| |
Collapse
|
8
|
Ren S, Ding Y, Zhang W, Wang Z, Wang S, Yi Z. Rational Design of Novel Conjugated Terpolymers Based on Diketopyrrolopyrrole and Their Applications to Organic Thin-Film Transistors. Polymers (Basel) 2023; 15:3803. [PMID: 37765656 PMCID: PMC10535888 DOI: 10.3390/polym15183803] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/09/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023] Open
Abstract
Organic polymer semiconductor materials, due to their good chemical modifiability, can be easily tuned by rational molecular structure design to modulate their material properties, which, in turn, affects the device performance. Here, we designed and synthesized a series of materials based on terpolymer structures and applied them to organic thin-film transistor (OTFT) device applications. The four polymers, obtained by polymerization of three monomers relying on the Stille coupling reaction, shared comparable molecular weights, with the main structural difference being the ratio of the thiazole component to the fluorinated thiophene (Tz/FS). The conjugated polymers exhibited similar energy levels and thermal stability; however, their photochemical and crystalline properties were distinctly different, leading to significantly varied mobility behavior. Materials with a Tz/FS ratio of 50:50 showed the highest electron mobility, up to 0.69 cm2 V-1 s-1. Our investigation reveals the fundamental relationship between the structure and properties of materials and provides a basis for the design of semiconductor materials with higher carrier mobility.
Collapse
Affiliation(s)
- Shiwei Ren
- Zhuhai-Fudan Innovation Research Institute, Hengqin 519000, China
| | - Yubing Ding
- Zhuhai-Fudan Innovation Research Institute, Hengqin 519000, China
| | - Wenqing Zhang
- Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhuoer Wang
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Sichun Wang
- Laboratory of Molecular Materials and Devices, Department of Materials Science, Fudan University, Shanghai 200438, China
| | - Zhengran Yi
- Zhuhai-Fudan Innovation Research Institute, Hengqin 519000, China
| |
Collapse
|
9
|
Li J, Chen Z, Wang J, Young Jeong S, Yang K, Feng K, Yang J, Liu B, Woo HY, Guo X. Semiconducting Polymers Based on Simple Electron-Deficient Cyanated trans-1,3-Butadienes for Organic Field-Effect Transistors. Angew Chem Int Ed Engl 2023; 62:e202307647. [PMID: 37525009 DOI: 10.1002/anie.202307647] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/31/2023] [Accepted: 07/31/2023] [Indexed: 08/02/2023]
Abstract
Developing high-performance but low-cost n-type polymers remains a significant challenge in the commercialization of organic field-effect transistors (OFETs). To achieve this objective, it is essential to design the key electron-deficient units with simple structures and facile preparation processes, which can facilitate the production of low-cost n-type polymers. Herein, by sequentially introducing fluorine and cyano functionalities onto trans-1,3-butadiene, we developed a series of structurally simple but highly electron-deficient building blocks, namely 1,4-dicyano-butadiene (CNDE), 3-fluoro-1,4-dicyano-butadiene (CNFDE), and 2,3-difluoro-1,4-dicyano-butadiene (CNDFDE), featuring a highly coplanar backbone and deep-positioned lowest unoccupied molecular orbital (LUMO) energy levels (-3.03-4.33 eV), which render them highly attractive for developing n-type semiconducting polymers. Notably, all these electron-deficient units can be easily accessed by a two-step high-yield synthetic procedure from low-cost raw materials, thus rendering them highly promising candidates for commercial applications. Upon polymerization with diketopyrrolopyrrole (DPP), three copolymers were developed that demonstrated unipolar n-type transport characteristics in OFETs with the highest electron mobility of >1 cm2 V-1 s-1 . Hence, CNDE, CNFDE, and CNDFDE represent a class of novel, simple, and efficient electron-deficient units for constructing low-cost n-type polymers, thereby providing valuable insight for OFET applications.
Collapse
Affiliation(s)
- Jianfeng Li
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), 518055, Shenzhen, Guangdong, China
| | - Zhicai Chen
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), 518055, Shenzhen, Guangdong, China
- Department State Key Laboratory of Marine Resource Utilization in South China Sea, College of Materials Science and Engineering, Hainan University, 570228, Haikou, Hainan, China
| | - Junwei Wang
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), 518055, Shenzhen, Guangdong, China
| | - Sang Young Jeong
- Research Institute for Natural Sciences, Department of Chemistry, Korea University, 02841, Seoul, South Korea
| | - Kun Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, Hunan, China
| | - Kui Feng
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), 518055, Shenzhen, Guangdong, China
| | - Jie Yang
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), 518055, Shenzhen, Guangdong, China
| | - Bin Liu
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), 518055, Shenzhen, Guangdong, China
| | - Han Young Woo
- Research Institute for Natural Sciences, Department of Chemistry, Korea University, 02841, Seoul, South Korea
| | - Xugang Guo
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), 518055, Shenzhen, Guangdong, China
- Songshan Lake Materials Laboratory, 523808, Dongguan, Guangdong, China
| |
Collapse
|
10
|
Zhou Z, Luo N, Shao X, Zhang HL, Liu Z. Hyperbranched Polymers for Organic Semiconductors. Chempluschem 2023; 88:e202300261. [PMID: 37377071 DOI: 10.1002/cplu.202300261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/28/2023] [Accepted: 06/28/2023] [Indexed: 06/29/2023]
Abstract
Hyperbranched polymers (HBPs) have attracted increasing attention owing to their distinct highly branched topological structures, resulting in unique properties and wide applications in organic semiconductors (OSCs). In this Review, recent progress in functional HBPs is outlined in the field of OSCs, including organic light-emitting diodes (OLEDs), organic photovoltaics (OPVs), dye-sensitized solar cells (DSSCs), and organic field effect transistors (OFETs), among others. Prospects of HBPs-based materials in OSCs are examined. The results revealed that multi-dimensional topologies not only regulate the electron (hole) transport but also adjust the film morphology, thereby affecting the efficiency and long life of organic electronic devices. Many studies showed the usefulness of HBPs as hole transport materials but reports dealing with n-type and ambipolar materials are still lacking. In addition, the interchain covalent bond in hyperbranched polymers could mitigate the damage caused by stretching, conducive to building stable flexible stretchable devices with long-term durability and good safety under harsh environmental conditions. Overall, the flexible stretchable design may enrich the applications of HBPs in organic semiconductors and provide new ideas for guiding the future design of functional organic semiconductor materials.
Collapse
Affiliation(s)
- Zhaoqiong Zhou
- College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou, Gansu, 730000, China
| | - Nan Luo
- College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou, Gansu, 730000, China
| | - Xiangfeng Shao
- College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou, Gansu, 730000, China
| | - Hao-Li Zhang
- College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou, Gansu, 730000, China
| | - Zitong Liu
- College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou, Gansu, 730000, China
| |
Collapse
|
11
|
Pati SK, Patra D, Muduli S, Mishra S, Park S. Energy Storage Application of Conducting Polymers Featuring Dual Acceptors: Exploring Conjugation and Flexible Chain Length Effects. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2300689. [PMID: 36950756 DOI: 10.1002/smll.202300689] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/03/2023] [Indexed: 06/18/2023]
Abstract
Solution-processable conducting polymers (CPs) are a compelling alternative to inorganic counterparts because of their potential for tuning chemical properties and creating flexible organic electronics. CPs, which typically comprise either only an electron donor (D) or its alternative combinations with an electron acceptor (A), exhibit charge transfer behavior between the units, resulting in an electrical conductivity suitable for utilization in electronic devices and for energy storage applications. However, the energy storage behavior of CPs with a sequence of electron acceptors (A-A), has rarely been investigated, despite their promising lower band gap and higher charge carrier mobility. Utilizing the aforesaid concept herein, four CPs featuring benzodithiophenedione (BDD), and diketopyrrolepyrrole (DPP) are synthesized. Among them, the BDDTH-DPPEH polymer exhibited the highest specific capacitance of 126.5 F g-1 at a current density of 0.5 A g-1 in an organic electrolyte over a wide potential window of -0.6-1.4 V. Notably, the supercapacitor properties of the polymeric electrode materials improved with increasing conjugation length by adding thiophene donor units and shortening the alkyl chain lengths. Furthermore, a symmetric supercapacitor device fabricated using BDDTH-DPPEH exhibited a high-power density of 4000 W kg-1 and an energy density of 31.66 Wh kg-1 .
Collapse
Affiliation(s)
- Subir K Pati
- Department of Nano Convergence Engineering, Department of Polymer-Nano Science and Technology, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Dhananjaya Patra
- Department of Nano Convergence Engineering, Department of Polymer-Nano Science and Technology, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Sunita Muduli
- Department of Chemistry, Indian Institute of Technology, Kharagpur, 721302, India
| | - Sabyashachi Mishra
- Department of Chemistry, Indian Institute of Technology, Kharagpur, 721302, India
| | - Sungjune Park
- Department of Nano Convergence Engineering, Department of Polymer-Nano Science and Technology, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| |
Collapse
|
12
|
Lin L, Wang C, Deng Y, Geng Y. Isomerically Pure Oxindole-Terminated Quinoids for n-Type Organic Thin-Film Transistors Enabled by the Chlorination of Quinoidal Core. Chemistry 2023; 29:e202203336. [PMID: 36456528 DOI: 10.1002/chem.202203336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/03/2022]
Abstract
Quinoidal compounds have great potential utility as high-performance organic semiconducting materials because of their rigid planar structures and extended π-conjugation. However, the existence of E and Z isomers adversely affects the charge-transport properties of quinoidal compounds. In this study, three isomerically pure oxindole-terminated quinoids were developed by introducing chlorine atoms in the quinoidal core. The synthesized quinoids were confirmed to have a Z,Z configuration by means of 1 H NMR spectroscopy, density functional theory calculations, and single-crystal X-ray analysis. Importantly, the strategy of chlorination allowed to maintain low-lying frontier molecular orbital energy levels and ensure favorable intermolecular packing. Consequently, all three quinoidal compounds showed n-type transport characteristics in organic thin-film transistors, with electron mobilities up to 0.35 cm2 V-1 s-1 , which is the highest value reported to date for oxindole-terminated quinoids. Our study can provide new guidelines for the design of isomerically pure quinoids with high electron mobilities.
Collapse
Affiliation(s)
- Linlin Lin
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, P. R. China
| | - Cheng Wang
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, P. R. China
| | - Yunfeng Deng
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, P. R. China.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University Binhai New City, Fuzhou, 350207, China
| | - Yanhou Geng
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, P. R. China.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University Binhai New City, Fuzhou, 350207, China
| |
Collapse
|
13
|
Kim H, Kang J, Park J, Ahn H, Kang IN, Jung IH. All-Polymer Photodetectors with n-Type Polymers Having Nonconjugated Spacers for Dark Current Density Reduction. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hyeokjun Kim
- Department of Organic and Nano Engineering, and Human-Tech Convergence Program, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul04763, Republic of Korea
| | - Jinhyeon Kang
- Department of Organic and Nano Engineering, and Human-Tech Convergence Program, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul04763, Republic of Korea
| | - Jaehee Park
- Department of Organic and Nano Engineering, and Human-Tech Convergence Program, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul04763, Republic of Korea
| | - Hyungju Ahn
- Pohang Accelerator Laboratory, POSTECH, Pohang37673, Republic of Korea
| | - In-Nam Kang
- Department of Chemistry, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si14662, Republic of Korea
| | - In Hwan Jung
- Department of Organic and Nano Engineering, and Human-Tech Convergence Program, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul04763, Republic of Korea
| |
Collapse
|
14
|
Development of non-fullerene electron acceptors for efficient organic photovoltaics. SN APPLIED SCIENCES 2022. [DOI: 10.1007/s42452-022-05128-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
AbstractCompared to fullerene based electron acceptors, n-type organic semiconductors, so-called non-fullerene acceptors (NFAs), possess some distinct advantages, such as readily tuning of optical absorption and electronic energy levels, strong absorption in the visible region and good morphological stability for flexible electronic devices. The design and synthesis of new NFAs have enabled the power conversion efficiencies (PCEs) of organic photovoltaic (OPV) devices to increase to around 19%. This review summarises the important breakthroughs that have contributed to this progress, focusing on three classes of NFAs, i.e. perylene diimide (PDI), diketopyrrolopyrrole (DPP) and acceptor–donor–acceptor (A-D-A) based NFAs. Specifically, the PCEs of PDI, DPP, and A-D-A series based non-fullerene OPVs have been reported up to 11%, 13% and 19%, respectively. Structure–property relationships of representative NFAs and their impact on OPV performances are discussed. Finally, we consider the remaining challenges and promising directions for achieving high-performing NFAs.
Collapse
|