1
|
Dudaryeva OY, Cousin L, Krajnovic L, Gröbli G, Sapkota V, Ritter L, Deshmukh D, Cui Y, Style RW, Levato R, Labouesse C, Tibbitt MW. Tunable Bicontinuous Macroporous Cell Culture Scaffolds via Kinetically Controlled Phase Separation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2410452. [PMID: 39745118 PMCID: PMC11837887 DOI: 10.1002/adma.202410452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 12/01/2024] [Indexed: 02/20/2025]
Abstract
3D scaffolds enable biological investigations with a more natural cell conformation. However, the porosity of synthetic hydrogels is often limited to the nanometer scale, which confines the movement of 3D encapsulated cells and restricts dynamic cell processes. Precise control of hydrogel porosity across length scales remains a challenge and the development of porous materials that allow cell infiltration, spreading, and migration in a manner more similar to natural ECM environments is desirable. Here, a straightforward and reliable method is presented for generating kinetically-controlled macroporous biomaterials using liquid-liquid phase separation between poly(ethylene glycol) (PEG) and dextran. Photopolymerization-induced phase separation resulted in macroporous hydrogels with tunable pore size. Varying light intensity and hydrogel composition controlled polymerization kinetics, time to percolation, and complete gelation, which defined the average pore diameter (Ø = 1-200 µm) and final gel stiffness of the formed hydrogels. Critically, for biological applications, macroporous hydrogels are prepared from aqueous polymer solutions at physiological pH and temperature using visible light, allowing for direct cell encapsulation. Human dermal fibroblasts in a range of macroporous gels are encapsulated with different pore sizes. Porosity improved cell spreading with respect to bulk gels and allowed migration in the porous biomaterials.
Collapse
Affiliation(s)
- Oksana Y. Dudaryeva
- Macromolecular Engineering LaboratoryDepartment of Mechanical and Process EngineeringETH ZurichZurich8092Switzerland
- Department of OrthopedicsUniversity Medical Center UtrechtUtrecht3584Netherlands
| | - Lucien Cousin
- Macromolecular Engineering LaboratoryDepartment of Mechanical and Process EngineeringETH ZurichZurich8092Switzerland
| | - Leila Krajnovic
- Macromolecular Engineering LaboratoryDepartment of Mechanical and Process EngineeringETH ZurichZurich8092Switzerland
| | - Gian Gröbli
- Macromolecular Engineering LaboratoryDepartment of Mechanical and Process EngineeringETH ZurichZurich8092Switzerland
| | - Virbin Sapkota
- Macromolecular Engineering LaboratoryDepartment of Mechanical and Process EngineeringETH ZurichZurich8092Switzerland
| | - Lauritz Ritter
- Macromolecular Engineering LaboratoryDepartment of Mechanical and Process EngineeringETH ZurichZurich8092Switzerland
| | - Dhananjay Deshmukh
- Macromolecular Engineering LaboratoryDepartment of Mechanical and Process EngineeringETH ZurichZurich8092Switzerland
| | - Yifan Cui
- Macromolecular Engineering LaboratoryDepartment of Mechanical and Process EngineeringETH ZurichZurich8092Switzerland
| | - Robert W. Style
- Laboratory for Soft Materials and InterfacesDepartment of MaterialsETH ZurichZurich8093Switzerland
| | - Riccardo Levato
- Department of OrthopedicsUniversity Medical Center UtrechtUtrecht3584Netherlands
- Department of Clinical ScienceFaculty of Veterinary MedicineUtrecht UniversityUtrecht3581CTNetherlands
| | - Céline Labouesse
- Macromolecular Engineering LaboratoryDepartment of Mechanical and Process EngineeringETH ZurichZurich8092Switzerland
| | - Mark W. Tibbitt
- Macromolecular Engineering LaboratoryDepartment of Mechanical and Process EngineeringETH ZurichZurich8092Switzerland
| |
Collapse
|
2
|
Lu D, Bobrin VA. Scalable Macroscopic Engineering from Polymer-Based Nanoscale Building Blocks: Existing Challenges and Emerging Opportunities. Biomacromolecules 2024; 25:7058-7077. [PMID: 39470717 DOI: 10.1021/acs.biomac.4c01212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Natural materials exhibit exceptional properties due to their hierarchical structures spanning from the nano- to the macroscale. Replicating these intricate spatial arrangements in synthetic materials presents a significant challenge as it requires precise control of nanometric features within large-scale structures. Addressing this challenge depends on developing methods that integrate assembly techniques across multiple length scales to construct multiscale-structured synthetic materials in practical, bulk forms. Polymers and polymer-hybrid nanoparticles, with their tunable composition and structural versatility, are promising candidates for creating hierarchically organized materials. This review highlights advances in scalable techniques for nanoscale organization of polymer-based building blocks within macroscopic structures, including block copolymer self-assembly with additive manufacturing, polymer brush nanoparticles capable of self-assembling into larger, ordered structures, and direct-write colloidal assembly. These techniques offer promising pathways toward the scalable fabrication of materials with emergent properties suited for advanced applications such as bioelectronic interfaces, artificial muscles, and other biomaterials.
Collapse
Affiliation(s)
- Derong Lu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore
| | - Valentin A Bobrin
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
3
|
Wu D, Dev V, Bobrin VA, Lee K, Boyer C. Nanostructure design of 3D printed materials through macromolecular architecture. Chem Sci 2024:d4sc05597g. [PMID: 39502506 PMCID: PMC11533054 DOI: 10.1039/d4sc05597g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/27/2024] [Indexed: 11/08/2024] Open
Abstract
Polymerization-induced microphase separation (PIMS) has been previously combined with 3D printing to develop customized nanostructured materials with a wide range of functional applications. In traditional PIMS, monofunctional, linear macromolecular chain transfer agents (macroCTAs) are used to develop macroCTA-b-P(monomer-stat-crosslinker) networks that self-assemble into unique disordered nanostructures. In this work, we designed a significantly altered network structure by utilizing linear macroCTAs with pendant CTA groups, which provides a novel network upon polymerization (i.e., branched copolymers, [macroCTA-graft-[P(monomer-stat-crosslinker)] n ]-b-P(monomer-stat-crosslinker)). Intriguingly, this method leads to the development of alternative disordered morphologies where the internal nanostructure can be precisely controlled. By systematically varying the number of pendant CTA groups, we demonstrate controlled transitions in macroCTA domain continuity, nanodomain size, and phase interface sharpness. These tunable properties translate to adjustable mechanical and swelling behaviors in the resulting 3D printed objects, ultimately enabling the fabrication of smart 4D materials (swelling-induced actuators and temperature-responsive shape-morphing objects). This research significantly expands the design toolbox for 3D printed PIMS materials, providing increased flexibility in the development of advanced materials with specific nanostructures and functionalities.
Collapse
Affiliation(s)
- Di Wu
- Cluster for Advanced Macromolecular Design, School of Chemical Engineering, University of New South Wales Sydney NSW 2052 Australia
| | - Vaibhav Dev
- Cluster for Advanced Macromolecular Design, School of Chemical Engineering, University of New South Wales Sydney NSW 2052 Australia
| | - Valentin A Bobrin
- Cluster for Advanced Macromolecular Design, School of Chemical Engineering, University of New South Wales Sydney NSW 2052 Australia
| | - Kenny Lee
- Cluster for Advanced Macromolecular Design, School of Chemical Engineering, University of New South Wales Sydney NSW 2052 Australia
| | - Cyrille Boyer
- Cluster for Advanced Macromolecular Design, School of Chemical Engineering, University of New South Wales Sydney NSW 2052 Australia
- Australian Centre for Nanomedicine, School of Chemical Engineering, University of New South Wales Sydney NSW 2052 Australia
| |
Collapse
|
4
|
Shi X, Yao Y, Zhang J, Corrigan N, Boyer C. Polymerization Induced Microphase Separation of ABC Triblock Copolymers for 3D Printing Nanostructured Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305268. [PMID: 37661582 DOI: 10.1002/smll.202305268] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/01/2023] [Indexed: 09/05/2023]
Abstract
Polymerization-induced microphase separation (PIMS) is a versatile technique for producing nanostructured materials. In previous PIMS studies, the predominant approach involved employing homopolymers as macromolecular chain transfer agents (macroCTAs) to mediate the formation of nanostructured materials. In this article, the use of AB diblock copolymers as macroCTAs to design PIMS systems for 3D printing of nanostructured materials is investigated. Specifically, the influence of diblock copolymer composition and block sequence on the resulting nanostructures, and their subsequent impact on bulk properties is systematically investigated. Through careful manipulation of the A/B block ratios, the morphology and size of the nanodomains are successfully controlled. Remarkably, the sequence of A and B blocks significantly affects the microphase separation process, resulting in distinct morphologies. The effect can be attributed to changes in the interaction parameters (χAB, χBC, χAC) between the different block segments. Furthermore, the block sequence and composition exert profound influence on the thermomechanical, tensile, and swelling properties of 3D printed nanostructured materials. By leveraging this knowledge, it becomes possible to design advanced 3D printable materials with tailored properties, opening new avenues for material engineering.
Collapse
Affiliation(s)
- Xiaobing Shi
- Cluster for Advanced Macromolecular Design, School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Yin Yao
- Electron Microscope Unit, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Jin Zhang
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Nathaniel Corrigan
- Cluster for Advanced Macromolecular Design, School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
- Australian Centre for Nanomedicine, School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Cyrille Boyer
- Cluster for Advanced Macromolecular Design, School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
- Australian Centre for Nanomedicine, School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
5
|
Maciejewska M. Influence of the Polymerization Parameters on the Porosity and Thermal Stability of Polymeric Monoliths. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2860. [PMID: 38930229 PMCID: PMC11204994 DOI: 10.3390/ma17122860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/29/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024]
Abstract
Rigid porous polymeric monoliths are robust, highly efficient, versatile stationary phases. They offer simple preparation and convenient modification provided by a whole range of synthesis factors, e.g., starting monomers, cross-linkers, initiators, porogens, polymerization techniques, and temperature. The main aim of this study was to synthesize polymeric monoliths and determine the correlation between polymerization parameters and the porosity and thermal stability of the obtained materials. Polymeric monoliths were synthesized directly in HPLC columns using N-vinyl-2-pyrrolidone (NVP) and 4-vinylpiridine (4VP) as functional monomers, with trimethylolpropane trimethacrylate (TRIM) serving as the cross-linking monomer. During copolymerization a mixture of cyclohexanol/decane-1-ol was used as the pore-forming diluent. Polymerization was carried out at two different temperatures: 55 and 75 °C. As a result, monoliths with highly developed internal structure were synthesized. The value of their specific surface area was in the range of 92 m2/g to 598 m2/g, depending on the monomer composition and polymerization temperature. Thermal properties of the obtained materials were investigated by means of thermogravimetry (TG). Significant differences in thermal behavior were noticed between monoliths synthesized at 55 and 75 °C. Additionally, the poly(NVP-co-TRIM) monolith was successfully applied in GC analyses.
Collapse
Affiliation(s)
- Małgorzata Maciejewska
- Department of Polymer Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University, Gliniana 33, 20-614 Lublin, Poland
| |
Collapse
|
6
|
Xiu Y, Bobrin VA, Corrigan N, Zhang J, Boyer C. Effect of Macromolecular Structure on Phase Separation Regime in 3D Printed Materials. Macromol Rapid Commun 2023; 44:e2300236. [PMID: 37289980 DOI: 10.1002/marc.202300236] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/02/2023] [Indexed: 06/10/2023]
Abstract
In this study, the fabrication of 3D-printed polymer materials with controlled phase separation using polymerization induced microphase separation (PIMS) via photoinduced 3D printing is demonstrated. While many parameters affecting the nanostructuration in PIMS processes are extensively investigated, the influence of the chain transfer agent (CTA) end group, i.e., Z-group, of macromolecular chain transfer agent (macroCTA) remains unclear as previous research has exclusively employed trithiocarbonate as the CTA end group. Herein, the effect of macroCTAs containing four different Z-groups on the formation of nanostructure of 3D printed materials is explored. The results show that the different Z-groups lead to distinct network formation and phase separation behaviors between the resins, influencing both the 3D printing process and the resulting material properties. Specifically, less reactive macroCTAs toward acrylic radical addition, such as O-alkyl xanthate and N-alkyl-N-aryl dithiocarbamate, result in translucent and brittle materials with macrophase separation morphology. In contrast, more reactive macroCTAs such as S-alkyl trithiocarbonate and 4-chloro-3,5-dimethylpyrazo dithiocarbamate produce transparent and rigid materials with nano-scale morphology. Findings of this study provide a novel approach to manipulate the nanostructure and properties of 3D printed PIMS materials, which can have important implications for materials science and engineering.
Collapse
Affiliation(s)
- Yuan Xiu
- Cluster for Advanced Macromolecular Design, School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
- Australian Centre for Nanomedicine, School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Valentin A Bobrin
- Cluster for Advanced Macromolecular Design, School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
- Australian Centre for Nanomedicine, School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Nathaniel Corrigan
- Cluster for Advanced Macromolecular Design, School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
- Australian Centre for Nanomedicine, School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Jin Zhang
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Cyrille Boyer
- Cluster for Advanced Macromolecular Design, School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
- Australian Centre for Nanomedicine, School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
7
|
Bobrin VA, Hackbarth HG, Yao Y, Bedford NM, Zhang J, Corrigan N, Boyer C. Customized Nanostructured Ceramics via Microphase Separation 3D Printing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304734. [PMID: 37750431 PMCID: PMC10646229 DOI: 10.1002/advs.202304734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Indexed: 09/27/2023]
Abstract
To date, the restricted capability to fabricate ceramics with independently tailored nano- and macroscopic features has hindered their implementation in a wide range of crucial technological areas, including aeronautics, defense, and microelectronics. In this study, a novel approach that combines self- and digital assembly to create polymer-derived ceramics with highly controlled structures spanning from the nano- to macroscale is introduced. Polymerization-induced microphase separation of a resin during digital light processing generates materials with nanoscale morphologies, with the distinct phases consisting of either a preceramic precursor or a sacrificial polymer. By precisely controlling the molecular weight of the sacrificial polymer, the domain size of the resulting material phases can be finely tuned. Pyrolysis of the printed objects yields ceramics with complex macroscale geometries and nanoscale porosity, which display excellent thermal and oxidation resistance, and morphology-dependent thermal conduction properties. This method offers a valuable technological platform for the simplified fabrication of nanostructured ceramics with complex shapes.
Collapse
Affiliation(s)
- Valentin A. Bobrin
- Cluster for Advanced Macromolecular DesignSchool of Chemical EngineeringUniversity of New South WalesSydneyNSW2052Australia
| | - Haira G. Hackbarth
- School of Chemical EngineeringUniversity of New South WalesSydneyNSW2052Australia
| | - Yin Yao
- Electron Microscope UnitMark Wainwright Analytical CentreUniversity of New South WalesSydneyNSW2052Australia
| | - Nicholas M. Bedford
- School of Chemical EngineeringUniversity of New South WalesSydneyNSW2052Australia
| | - Jin Zhang
- School of Mechanical and Manufacturing EngineeringUniversity of New South WalesSydneyNSW2052Australia
| | - Nathaniel Corrigan
- Cluster for Advanced Macromolecular DesignSchool of Chemical EngineeringUniversity of New South WalesSydneyNSW2052Australia
| | - Cyrille Boyer
- Cluster for Advanced Macromolecular DesignSchool of Chemical EngineeringUniversity of New South WalesSydneyNSW2052Australia
- Australian Centre for NanomedicineSchool of Chemical EngineeringUniversity of New South WalesSydneyNSW2052Australia
| |
Collapse
|
8
|
Lee K, Corrigan N, Boyer C. Polymerization Induced Microphase Separation for the Fabrication of Nanostructured Materials. Angew Chem Int Ed Engl 2023; 62:e202307329. [PMID: 37429822 DOI: 10.1002/anie.202307329] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/30/2023] [Accepted: 07/10/2023] [Indexed: 07/12/2023]
Abstract
Polymerization induced microphase separation (PIMS) is a strategy used to develop unique nanostructures with highly useful morphologies through the microphase separation of emergent block copolymers during polymerization. In this process, nanostructures are formed with at least two chemically independent domains, where at least one domain is composed of a robust crosslinked polymer. Crucially, this synthetically simple method is readily used to develop nanostructured materials with the highly coveted co-continuous morphology, which can also be converted into mesoporous materials by selective etching of one domain. As PIMS exploits a block copolymer microphase separation mechanism, the size of each domain can be tightly controlled by modifying the size of block copolymer precursors, thus providing unparalleled control over nanostructure and resultant mesopore sizes. Since its inception 11 years ago, PIMS has been used to develop a vast inventory of advanced materials for an extensive range of applications including biomedical devices, ion exchange membranes, lithium-ion batteries, catalysis, 3D printing, and fluorescence-based sensors, among many others. In this review, we provide a comprehensive overview of the PIMS process, summarize latest developments in PIMS chemistry, and discuss its utility in a wide variety of relevant applications.
Collapse
Affiliation(s)
- Kenny Lee
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, UNSW Australia, Sydney, NSW 2052, Australia
| | - Nathaniel Corrigan
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, UNSW Australia, Sydney, NSW 2052, Australia
- Australian Centre for NanoMedicine (ACN), School of Chemical Engineering, UNSW Australia, Sydney, NSW 2052, Australia
| | - Cyrille Boyer
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, UNSW Australia, Sydney, NSW 2052, Australia
- Australian Centre for NanoMedicine (ACN), School of Chemical Engineering, UNSW Australia, Sydney, NSW 2052, Australia
| |
Collapse
|
9
|
Zhou Z, Hilder EF, Eeltink S. A protocol for fabrication of polymer monolithic capillary columns and tuning the morphology targeting high-resolution bioanalysis in gradient-elution liquid chromatography. J Sep Sci 2023; 46:e2300439. [PMID: 37515368 DOI: 10.1002/jssc.202300439] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023]
Abstract
Polymer monolithic stationary phases are designed as a continuous interconnected globular material perfused by macropores. Like packed column, where separation efficiency is related to particle diameter, the efficiency of monoliths can be enhanced by tuning the size of both the microglobules and macropores. This protocol described the synthesis of poly(styrene-co-divinylbenzene) monolithic stationary phases in capillary column formats. Moreover, guidelines are provided to tune the macropore structure targeting high-throughput and high-resolution monolith chromatography. The versatility of these columns is exemplified by their ability to separate tryptic digests, intact proteins, and oligonucleotides under a variety of chromatographic conditions. The repeatability of the presented column fabrication process is demonstrated by the successful creation of 12 columns in three different column batches, as evidenced by the consistency of retention times (coefficients of variance [c.v.] = 0.9%), peak widths (c.v. = 4.7%), and column pressures (c.v. = 3.1%) across the batches.
Collapse
Affiliation(s)
- Zhuoheng Zhou
- Department of Chemical Engineering, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Emily F Hilder
- Future Industries Institute, University of South Australia, Adelaide, Australia
| | - Sebastiaan Eeltink
- Department of Chemical Engineering, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| |
Collapse
|
10
|
Mukai M, Sato M, Miyadai W, Maruo S. On-Demand Tunability of Microphase Separation Structure of 3D Printing Material by Reversible Addition/Fragmentation Chain Transfer Polymerization. Polymers (Basel) 2023; 15:3519. [PMID: 37688145 PMCID: PMC10490546 DOI: 10.3390/polym15173519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/20/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Controlling the phase-separated structure of polymer alloys is a promising method for tailoring the properties of polymers. However, controlling the morphology of phase-separated structures is challenging. Recently, phase-separated structures have been fabricated via 3D printing; however, only a few methods that enable on-demand control of phase separation have been reported. In this study, laser-scanning stereolithography, a vat photopolymerization method, is used to form a phase-separated structure via polymerization-induced microphase separation by varying the scanning speed and using macro-reversible addition/fragmentation chain transfer (macro-RAFT) agents with different average molar masses, along with multiarmed macro-RAFT agents; such structures were used to fabricate 3D-printed parts. Various phase-separated morphologies including sea-island and reverse sea-island were achieved by controlling the laser scanning speed and RAFT type. Heterogeneous structures with different material properties were also achieved by simply changing the laser scanning speed. As the deformation due to shrinkage in the process of cleaning 3D-printed parts depends on the laser scanning speed, shape correction was introduced to suppress the effect of shrinkage and obtain the desired shape.
Collapse
Affiliation(s)
- Masaru Mukai
- Graduate School of Engineering Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Mituki Sato
- Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan; (M.S.); (W.M.)
| | - Wakana Miyadai
- Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan; (M.S.); (W.M.)
| | - Shoji Maruo
- Graduate School of Engineering Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| |
Collapse
|
11
|
Exploring the use of oligomeric carbonates as porogens and ion-conductors in phase-separated structural electrolytes for Lithium-ion batteries. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
12
|
Melodia D, Bhadra A, Lee K, Kuchel R, Kundu D, Corrigan N, Boyer C. 3D Printed Solid Polymer Electrolytes with Bicontinuous Nanoscopic Domains for Ionic Liquid Conduction and Energy Storage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2206639. [PMID: 36737816 DOI: 10.1002/smll.202206639] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Solid polymer electrolytes (SPEs) offer several advantages compared to their liquid counterparts, and much research has focused on developing SPEs with enhanced mechanical properties while maintaining high ionic conductivities. The recently developed polymerization-induced microphase separation (PIMS) technique offers a straightforward pathway to fabricate bicontinuous nanostructured materials in which the mechanical properties and conductivity can be independently tuned. In this work SPEs with tunable mechanical properties and conductivities are prepared via digital light processing 3D printing, exploiting the PIMS process to achieve nanostructured ion-conducting materials for energy storage applications. A rigid crosslinked poly(isobornyl acrylate-stat-trimethylpropane triacrylate) scaffold provided materials with room temperature shear modulus above 400 MPa, while soft poly(oligoethylene glycol methyl ether acrylate) domains containing the ionic liquid 1-butyl-3-methylimidazolium bis-(trifluoromethyl sulfonyl)imide endowed the material with ionic conductivity up to 1.2 mS cm-1 at 30 °C. These features make the 3D-printed SPE very competitive for applications in all solid energy storage devices, including supercapacitors.
Collapse
Affiliation(s)
- Daniele Melodia
- School of Chemical Engineering, UNSW, Australia, Cluster for Advanced Macromolecular Design (CAMD), Sydney, NSW, 2052, Australia
| | - Abhirup Bhadra
- School of Chemical Engineering, UNSW Australia, Sydney, NSW, 2052, Australia
- School of Mechanical and Manufacturing Engineering, UNSW Australia, Sydney, NSW, 2052, Australia
| | - Kenny Lee
- School of Chemical Engineering, UNSW, Australia, Cluster for Advanced Macromolecular Design (CAMD), Sydney, NSW, 2052, Australia
| | - Rhiannon Kuchel
- Electron Microscope Unit (EMU), UNSW Australia, Sydney, NSW, 2052, Australia
| | - Dipan Kundu
- School of Chemical Engineering, UNSW Australia, Sydney, NSW, 2052, Australia
- School of Mechanical and Manufacturing Engineering, UNSW Australia, Sydney, NSW, 2052, Australia
| | - Nathaniel Corrigan
- School of Chemical Engineering, UNSW, Australia, Cluster for Advanced Macromolecular Design (CAMD), Sydney, NSW, 2052, Australia
- Australian Centre for NanoMedicine (ACN), School of Chemical Engineering, UNSW Australia, Sydney, NSW, 2052, Australia
| | - Cyrille Boyer
- School of Chemical Engineering, UNSW, Australia, Cluster for Advanced Macromolecular Design (CAMD), Sydney, NSW, 2052, Australia
- Australian Centre for NanoMedicine (ACN), School of Chemical Engineering, UNSW Australia, Sydney, NSW, 2052, Australia
| |
Collapse
|
13
|
Jana R, Ramakrishnan S. Counterion-Based Polymerizable Porogens─Direct Preparation of Nanoporous Polymer Matrices with Control over Pore Size and Carboxylic Acid Content. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c02154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Rounak Jana
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - S. Ramakrishnan
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
14
|
Satheeshkumar C, Seo H, Hong S, Kim P, Seo M. Synthesis of triphenylene-based hierarchically porous monolith with nitroaromatic-sensitive fluorescence. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
15
|
Lee K, Shang Y, Bobrin VA, Kuchel R, Kundu D, Corrigan N, Boyer C. 3D Printing Nanostructured Solid Polymer Electrolytes with High Modulus and Conductivity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2204816. [PMID: 36007199 DOI: 10.1002/adma.202204816] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/26/2022] [Indexed: 06/15/2023]
Abstract
The development of advanced solid-state energy-storage devices is contingent upon finding new ways to produce and manufacture scalable, high-modulus solid-state electrolytes that can simultaneously provide high ionic conductivity and robust mechanical integrity. In this work, an efficient one-step process to manufacture solid polymer electrolytes composed of nanoscale ion-conducting channels embedded in a rigid crosslinked polymer matrix via Digital Light Processing 3D printing is reported. A visible-light-mediated polymerization-induced microphase-separation approach is utilized, which produces materials with two chemically independent nanoscale domains with highly tunable nanoarchitectures. By producing materials containing a poly(ethylene oxide) domain swelled with an ionic liquid, robust solid polymer electrolytes with outstanding room-temperature (22 °C) shear modulus (G' > 108 Pa) and ionic conductivities up to σ = 3 × 10-4 S cm-1 are achieved. The nanostructured 3D-printed electrolytes are fabricated into a custom geometry and employed in a symmetric carbon supercapacitor, demonstrating the scalability of the fabrication and the functionality of the electrolyte. Critically, these high-performance materials are manufactured on demand using inexpensive and commercially available 3D printers, which allows the facile modular design of solid polymer electrolytes with custom geometries.
Collapse
Affiliation(s)
- Kenny Lee
- Cluster for Advanced Macromolecular Design (CAMD), UNSW Australia, Sydney, NSW, 2052, Australia
| | - Yuan Shang
- School of Chemical Engineering, UNSW Australia, Sydney, NSW, 2052, Australia
- School of Mechanical and Manufacturing Engineering, UNSW Australia, Sydney, NSW, 2052, Australia
| | - Valentin A Bobrin
- Cluster for Advanced Macromolecular Design (CAMD), UNSW Australia, Sydney, NSW, 2052, Australia
| | - Rhiannon Kuchel
- Electron Microscope Unit, UNSW Australia, Sydney, NSW, 2052, Australia
| | - Dipan Kundu
- School of Chemical Engineering, UNSW Australia, Sydney, NSW, 2052, Australia
- School of Mechanical and Manufacturing Engineering, UNSW Australia, Sydney, NSW, 2052, Australia
| | - Nathaniel Corrigan
- Cluster for Advanced Macromolecular Design (CAMD), UNSW Australia, Sydney, NSW, 2052, Australia
- Australian Centre for NanoMedicine (ACN), School of Chemical Engineering, UNSW Australia, Sydney, NSW, 2052, Australia
| | - Cyrille Boyer
- Cluster for Advanced Macromolecular Design (CAMD), UNSW Australia, Sydney, NSW, 2052, Australia
- Australian Centre for NanoMedicine (ACN), School of Chemical Engineering, UNSW Australia, Sydney, NSW, 2052, Australia
| |
Collapse
|
16
|
Shi X, Bobrin VA, Yao Y, Zhang J, Corrigan N, Boyer C. Designing Nanostructured 3D Printed Materials by Controlling Macromolecular Architecture. Angew Chem Int Ed Engl 2022; 61:e202206272. [PMID: 35732587 PMCID: PMC9544629 DOI: 10.1002/anie.202206272] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Indexed: 11/23/2022]
Abstract
Nanostructured polymeric materials play important roles in many advanced applications, however, controlling the morphologies of polymeric thermosets remains a challenge. This work uses multi-arm macroCTAs to mediate polymerization-induced microphase separation (PIMS) and prepare nanostructured materials via photoinduced 3D printing. The characteristic length scale of microphase-separated domains is determined by the macroCTA arm length, while nanoscale morphologies are controlled by the macroCTA architecture. Specifically, using 2- and 4- arm macroCTAs provides materials with different morphologies compared to analogous monofunctional linear macroCTAs at similar compositions. The mechanical properties of these nanostructured thermosets can also be tuned while maintaining the desired morphologies. Using multi-arm macroCTAs can thus broaden the scope of accessible nanostructures for extended applications, including the fabrication of actuators and potential drug delivery devices.
Collapse
Affiliation(s)
- Xiaobing Shi
- Cluster for Advanced Macromolecular Design and Australian Centre for NanomedicineSchool of Chemical EngineeringUniversity of New South WalesSydneyNSW 2052Australia
| | - Valentin A. Bobrin
- Cluster for Advanced Macromolecular Design and Australian Centre for NanomedicineSchool of Chemical EngineeringUniversity of New South WalesSydneyNSW 2052Australia
| | - Yin Yao
- Electron Microscope UnitMark Wainwright Analytical CentreUniversity of New South WalesSydneyNSW 2052Australia
| | - Jin Zhang
- School of Mechanical and Manufacturing EngineeringUniversity of New South WalesSydneyNSW 2052Australia
| | - Nathaniel Corrigan
- Cluster for Advanced Macromolecular Design and Australian Centre for NanomedicineSchool of Chemical EngineeringUniversity of New South WalesSydneyNSW 2052Australia
| | - Cyrille Boyer
- Cluster for Advanced Macromolecular Design and Australian Centre for NanomedicineSchool of Chemical EngineeringUniversity of New South WalesSydneyNSW 2052Australia
| |
Collapse
|
17
|
Shi X, Bobrin VA, Yao Y, Zhang J, Corrigan N, Boyer CAJM. Designing Nanostructured 3D Printed Materials by Controlling Macromolecular Architecture. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xiaobing Shi
- UNSW: University of New South Wales Chemical Engineering 2031 Sydney AUSTRALIA
| | - Valentin A. Bobrin
- UNSW: University of New South Wales Chemical Engineering School of Chemical Engineering 2031 Sydney AUSTRALIA
| | - Yin Yao
- UNSW: University of New South Wales Mark Wainwright Analytical Centre 2031 Sydney AUSTRALIA
| | - Jin Zhang
- UNSW: University of New South Wales School of Mechanical and Manufacturing Engineering 2031 Sydney AUSTRALIA
| | - Nathaniel Corrigan
- UNSW: University of New South Wales School of Chemical Engineering UNSWSchool of Chemical Engineering 2031 Sydney AUSTRALIA
| | - Cyrille Andre Jean Marie Boyer
- University of New South Wales Chemical Engineering and Australian Centre for Nanomedicine and Centre for Advanced Macromolecular Design High streetApplied science building 2052 Sydney AUSTRALIA
| |
Collapse
|
18
|
Nano- to macro-scale control of 3D printed materials via polymerization induced microphase separation. Nat Commun 2022; 13:3577. [PMID: 35732624 PMCID: PMC9217958 DOI: 10.1038/s41467-022-31095-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/02/2022] [Indexed: 11/09/2022] Open
Abstract
Although 3D printing allows the macroscopic structure of objects to be easily controlled, controlling the nanostructure of 3D printed materials has rarely been reported. Herein, we report an efficient and versatile process for fabricating 3D printed materials with controlled nanoscale structural features. This approach uses resins containing macromolecular chain transfer agents (macroCTAs) which microphase separate during the photoinduced 3D printing process to form nanostructured materials. By varying the chain length of the macroCTA, we demonstrate a high level of control over the microphase separation behavior, resulting in materials with controllable nanoscale sizes and morphologies. Importantly, the bulk mechanical properties of 3D printed objects are correlated with their morphologies; transitioning from discrete globular to interpenetrating domains results in a marked improvement in mechanical performance, which is ascribed to the increased interfacial interaction between soft and hard domains. Overall, the findings of this work enable the simplified production of materials with tightly controllable nanostructures for broad potential applications.
Collapse
|
19
|
Leguizamon SC, Ahn J, Lee S, Jones BH. Tuneable phase behaviour and glass transition via polymerization-induced phase separation in crosslinked step-growth polymers. SOFT MATTER 2022; 18:4455-4463. [PMID: 35661857 DOI: 10.1039/d2sm00485b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Once limited to chain-growth polymerizations, fine control over polymerization-induced phase separation (PIPS) has recently been demonstrated in rubber-toughened thermoset materials formed through step-growth polymerizations. The domain length scales of these thermoset materials can be elegantly tuned by utilizing a binary mixture of curing agents (CAs) that individually yield disparate morphologies. Importantly, varying the composition of the binary mixture affects characteristics of the materials such as glass transition temperature and tensile behavior. Here, we establish a full phase diagram of PIPS in a rubber-toughened epoxy system tuned by a binary CA mixture to provide a robust framework of phase behaviour. X-Ray scattering in situ and post-PIPS is employed to elucidate the PIPS mechanism whereby an initial polymerization-induced compositional fluctuation causes nanoscale phase separation of rubber and epoxy components prior to local chain crosslinking and potential macrophase separation. We further demonstrate the universality of this approach by alternatively employing binary epoxy or binary rubber mixtures to achieve broad variations in morphology and glass transitions.
Collapse
Affiliation(s)
- Samuel C Leguizamon
- Department of Organic Materials Science, Sandia National Laboratories, Albuquerque, NM, 87185, USA.
| | - Juhong Ahn
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Sangwoo Lee
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Brad H Jones
- Department of Organic Materials Science, Sandia National Laboratories, Albuquerque, NM, 87185, USA.
| |
Collapse
|
20
|
Bobrin VA, Lee K, Zhang J, Corrigan N, Boyer C. Nanostructure Control in 3D Printed Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107643. [PMID: 34742167 DOI: 10.1002/adma.202107643] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/30/2021] [Indexed: 06/13/2023]
Abstract
Currently, there are no straightforward methods to 3D print materials with nanoscale control over morphological and functional properties. Here, a novel approach for the fabrication of materials with controlled nanoscale morphologies using a rapid and commercially available Digital Light Processing 3D printing technique is demonstrated. This process exploits reversible deactivation radical polymerization to control the in-situ-polymerization-induced microphase separation of 3D printing resins, which provides materials with complex architectures controllable from the macro- to nanoscale, resulting in the preparation of materials with enhanced mechanical properties. This method does not require specialized equipment or process conditions and thus represents an important development in the production of advanced materials via additive manufacturing.
Collapse
Affiliation(s)
- Valentin A Bobrin
- Cluster for Advanced Macromolecular Design, School of Chemical Engineering, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Kenny Lee
- Cluster for Advanced Macromolecular Design, School of Chemical Engineering, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Jin Zhang
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Nathaniel Corrigan
- Cluster for Advanced Macromolecular Design, School of Chemical Engineering, University of New South Wales, Sydney, New South Wales, 2052, Australia
- Australian Centre for Nanomedicine, School of Chemical Engineering, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Cyrille Boyer
- Cluster for Advanced Macromolecular Design, School of Chemical Engineering, University of New South Wales, Sydney, New South Wales, 2052, Australia
- Australian Centre for Nanomedicine, School of Chemical Engineering, University of New South Wales, Sydney, New South Wales, 2052, Australia
| |
Collapse
|
21
|
Jana R, Ramakrishnan S. Direct Generation of Internally Functionalized Nanoporous Polymers: Design of Polymerizable Porogens. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Rounak Jana
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - S. Ramakrishnan
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
22
|
Xu H, Xiao H, Ellison CJ, Mahanthappa MK. Flexible Nanoporous Materials by Matrix Removal from Cylinder-Forming Diblock Copolymers. NANO LETTERS 2021; 21:7587-7594. [PMID: 34460249 DOI: 10.1021/acs.nanolett.1c02097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We describe a straightforward self-assembly route to nanoporous materials derived from a hexagonally-packed cylinder (HEX) morphology of a polyisoprene-block-polylactide (PI-b-PLA) diblock copolymer, by thermal cross-linking of the minority PI domains followed by selective chemical etching of the PLA matrix. The resulting mechanically stable and porous samples defy the expectation that the remaining cylinders cannot yield a robust, integrated material upon matrix removal. Scanning electron microscopy imaging reveals that this unexpected structural integrity stems from the interconnected nanofibrils therein, reflecting topological defects at the grain boundaries of the parent polydomain HEX nanostructure. Hydrodynamic radius-dependent poly(ethylene oxide) (Mn = 0.4-35 kg/mol) permeation behavior through these monoliths directly demonstrated the continuity and size selectivity of the nanoporous material. The ready accessibility of block copolymer HEX morphologies of varied chemistries suggests that this matrix etching strategy will enable the future design of functional, size-selective nanofiltration membrane materials.
Collapse
Affiliation(s)
- Hongyun Xu
- Department of Chemical Engineering & Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Han Xiao
- Department of Chemical Engineering & Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Christopher J Ellison
- Department of Chemical Engineering & Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Mahesh K Mahanthappa
- Department of Chemical Engineering & Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
23
|
Leguizamon SC, Powers J, Ahn J, Dickens S, Lee S, Jones BH. Polymerization-Induced Phase Separation in Rubber-Toughened Amine-Cured Epoxy Resins: Tuning Morphology from the Nano- to Macro-scale. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01208] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Samuel C. Leguizamon
- Material, Physical, and Chemical Sciences Center, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Jackson Powers
- Material, Physical, and Chemical Sciences Center, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Juhong Ahn
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Sara Dickens
- Material, Physical, and Chemical Sciences Center, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Sangwoo Lee
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Brad H. Jones
- Material, Physical, and Chemical Sciences Center, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| |
Collapse
|
24
|
Zeng M, Guo H, Wang G, Shang L, Zhao C, Li H. Nanostructured high-performance electrolyte membranes based on polymer network post-assembly for high-temperature supercapacitors. J Colloid Interface Sci 2021; 603:408-417. [PMID: 34197989 DOI: 10.1016/j.jcis.2021.06.110] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/07/2021] [Accepted: 06/16/2021] [Indexed: 11/30/2022]
Abstract
The development of high-temperature supercapacitors highly relies on the explore of stable polymer electrolyte membranes (PEMs) with high ionic conductivities at high-temperature conditions. However, it is a challenge to achieve both high stability and high conductivity in a PEM at elevated temperatures. Herein, we report the fabrication of high-performance proton conductive PEMs suitable for high-temperature supercapacitors (HT-SCs), which is based on a post-assembly strategy to control the rearrangement of polymer networks in the PEMs. This strategy can create cross-linked PEMs with bicontinuous nanostructures, as well as highly stable and highly conductive features. Specifically, a series of bicontinuous PEMs are prepared by the controllable cross-linking of poly(ether-ether-ketone) and poly(4-vinylpyridine), followed by the inducement of phosphoric acid. These PEMs exhibit both a high proton conductivity of 70 mS cm-1 and a high modulus of 39.3 MPa at 150 ℃, which can serve as high-performance electrolytes. The HT-SCs based on these PEMs display a specific capacitance of 138.0 F g-1 and a high capacitance retention of 80.0% after 2500 galvanostatic charge-discharge cycles at 150 ℃, exhibiting excellent high-temperature capacitance and cycle stability. This post-assembly concept can provide a new route to design high-performance PEMs for HT-SC and other energy device applications.
Collapse
Affiliation(s)
- Minghao Zeng
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| | - Haikun Guo
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| | - Gang Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| | - Lichao Shang
- Key Laboratory of High Performance Plastics, Ministry of Education, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Chengji Zhao
- Key Laboratory of High Performance Plastics, Ministry of Education, College of Chemistry, Jilin University, Changchun 130012, PR China.
| | - Haolong Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China; Key Laboratory of High Performance Plastics, Ministry of Education, College of Chemistry, Jilin University, Changchun 130012, PR China.
| |
Collapse
|
25
|
Lee J, Seo M. Downsizing of Block Polymer-Templated Nanopores to One Nanometer via Hyper-Cross-Linking of High χ-Low N Precursors. ACS NANO 2021; 15:9154-9166. [PMID: 33950684 DOI: 10.1021/acsnano.1c02690] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Synthesizing nanoporous polymer from the block polymer template by selective removal of the sacrificial domain offers straightforward pore size control as a function of the degree of polymerization (N). Downscaling pore size into the microporous regime (<2 nm) has been thermodynamically challenging, because the low N drives the system to disorder and the small-sized pore is prone to collapse. Herein, we report that maximizing cross-linking density of a block polymer precursor with an increased interaction parameter (χ) can help successfully stabilize the structure bearing pore sizes of 1.1 nm. We adopt polymerization-induced microphase separation (PIMS) combined with hyper-cross-linking as a strategy for the preparation of the bicontinuous block polymer precursors with a densely cross-linked framework by copolymerization of vinylbenzyl chloride with divinylbenzene and also Friedel-Crafts alkylation. Incorporating 4-vinylbiphenyl as a higher-χ comonomer to the sacrificial polylactide (PLA) block and optimizing the segregation strength versus cross-linking density allow for further downscaling. Control of pore size by N of PLA is demonstrated in the range of 9.9-1.1 nm. Accessible surface area to fluorescein-tagged dextrans is regulated by the relative size of the pore to the guest, and pore size is controlled. These findings will be useful for designing microporous polymers with tailored pore size for advanced catalytic and separation applications.
Collapse
Affiliation(s)
| | - Myungeun Seo
- Department of Chemistry, KAIST, Daejeon 34141, Korea
- KAIST Institute for Nanocentury, KAIST, Daejeon 34141, Korea
| |
Collapse
|
26
|
Naga N, Ito M, Mezaki A, Tang HC, Chang TFM, Sone M, Nageh H, Nakano T. Morphology Control and Metallization of Porous Polymers Synthesized by Michael Addition Reactions of a Multi-Functional Acrylamide with a Diamine. MATERIALS (BASEL, SWITZERLAND) 2021; 14:800. [PMID: 33572043 PMCID: PMC7915525 DOI: 10.3390/ma14040800] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/28/2021] [Accepted: 02/02/2021] [Indexed: 12/02/2022]
Abstract
Porous polymers have been synthesized by an aza-Michael addition reaction of a multi-functional acrylamide, N,N',N″,N‴-tetraacryloyltriethylenetetramine (AM4), and hexamethylene diamine (HDA) in H2O without catalyst. Reaction conditions, such as monomer concentration and reaction temperature, affected the morphology of the resulting porous structures. Connected spheres, co-continuous monolithic structures and/or isolated holes were observed on the surface of the porous polymers. These structures were formed by polymerization-induced phase separation via spinodal decomposition or highly internal phase separation. The obtained porous polymers were soft and flexible and not breakable by compression. The porous polymers adsorbed various solvents. An AM4-HDA porous polymer could be plated by Ni using an electroless plating process via catalyzation by palladium (II) acetylacetonate following reduction of Ni ions in a plating solution. The intermediate Pd-catalyzed porous polymer promoted the Suzuki-Miyaura cross coupling reaction of 4-bromoanisole and phenylboronic acid.
Collapse
Affiliation(s)
- Naofumi Naga
- Department of Applied Chemistry, College of Engineering, Shibaura Institute of Technology, 3-7-5 Toyosu, Koto-ku, Tokyo 135-8548, Japan;
- Graduate School of Engineering and Science, Shibaura Institute of Technology, 3-7-5 Toyosu, Koto-ku, Tokyo 135-8548, Japan;
| | - Minako Ito
- Graduate School of Engineering and Science, Shibaura Institute of Technology, 3-7-5 Toyosu, Koto-ku, Tokyo 135-8548, Japan;
| | - Aya Mezaki
- Department of Applied Chemistry, College of Engineering, Shibaura Institute of Technology, 3-7-5 Toyosu, Koto-ku, Tokyo 135-8548, Japan;
| | - Hao-Chun Tang
- Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8503, Japan; (H.-C.T.); (T.-F.M.C.); (M.S.)
| | - Tso-Fu Mark Chang
- Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8503, Japan; (H.-C.T.); (T.-F.M.C.); (M.S.)
| | - Masato Sone
- Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8503, Japan; (H.-C.T.); (T.-F.M.C.); (M.S.)
| | - Hassan Nageh
- Institute for Catalysis and Graduate, School of Chemical Sciences and Engineering, Hokkaido University, N 21, W 10, Kita-ku, Sapporo 001-0021, Japan; (H.N.); (T.N.)
| | - Tamaki Nakano
- Institute for Catalysis and Graduate, School of Chemical Sciences and Engineering, Hokkaido University, N 21, W 10, Kita-ku, Sapporo 001-0021, Japan; (H.N.); (T.N.)
- Integrated Research Consortium on Chemical Sciences, Institute for Catalysis, Hokkaido University, N 21, W 10, Kita-ku, Sapporo 001-0021, Japan
| |
Collapse
|
27
|
Goldfeld DJ, Silver ES, Valdez JM, Hillmyer MA. Bicontinuous Ion-Exchange Materials through Polymerization-Induced Microphase Separation. ACS Macro Lett 2021; 10:60-64. [PMID: 35548992 DOI: 10.1021/acsmacrolett.0c00684] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Polymerization-induced microphase separation has been used to prepare solid cross-linked monoliths containing bicontinuous and nanostructured polymer domains. We use this process to fabricate a monolith containing either a negatively or positively charged polyelectrolyte domain inside of the neutral styrene/divinylbenzene-derived matrix. First, the materials are made with a neutral pre-ionic polymer containing masked charged groups. The monoliths are then functionalized to a charged state by treatment with trimethylamine; small-angle X-ray scattering shows no significant morphological change in the microphase-separated structure upon postpolymerization modification. By exchanging dyes with the counterions in the material, we corroborated the continuity of the charged domains. Using ion-exchange capacity measurements, we estimate the number of accessible charges within the material based on macro-chain transfer agent molar mass and loading.
Collapse
Affiliation(s)
- David J. Goldfeld
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Eric S. Silver
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - José M. Valdez
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Marc A. Hillmyer
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
28
|
Mishra AK, Lim J, Lee J, Park S, Seo Y, Hwang H, Kim JK. Control drug release behavior by highly stable and pH sensitive poly(N-vinylpyrrolidone)-block-poly(4-vinylpyridine) copolymer micelles. POLYMER 2021. [DOI: 10.1016/j.polymer.2020.123329] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
29
|
Lequieu J, Magenau AJD. Reaction-induced phase transitions with block copolymers in solution and bulk. Polym Chem 2021. [DOI: 10.1039/d0py00722f] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Reaction-induced phase transitions use chemical reactions to drive macromolecular organisation and self-assembly. This review highlights significant and recent advancements in this burgeoning field.
Collapse
Affiliation(s)
- Joshua Lequieu
- Department of Chemical and Biological Engineering
- Drexel University
- Philadelphia
- USA
| | | |
Collapse
|
30
|
Hampu N, Werber JR, Chan WY, Feinberg EC, Hillmyer MA. Next-Generation Ultrafiltration Membranes Enabled by Block Polymers. ACS NANO 2020; 14:16446-16471. [PMID: 33315381 DOI: 10.1021/acsnano.0c07883] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Reliable and equitable access to safe drinking water is a major and growing challenge worldwide. Membrane separations represent one of the most promising strategies for the energy-efficient purification of potential water sources. In particular, porous membranes are used for the ultrafiltration (UF) of water to remove contaminants with nanometric sizes. However, despite exhibiting excellent water permeability and solution processability, existing UF membranes contain a broad distribution of pore sizes that limit their size selectivity. To maximize the potential utility of UF membranes and allow for precise separations, improvements in the size selectivity of these systems must be achieved. Block polymers represent a potentially transformative solution, as these materials self-assemble into well-defined domains of uniform size. Several different strategies have been reported for integrating block polymers into UF membranes, and each strategy has its own set of materials and processing considerations to ensure that uniform and continuous pores are generated. This Review aims to summarize and critically analyze the chemistries, processing techniques, and properties required for the most common methods for producing porous membranes from block polymers, with a particular focus on the fundamental mechanisms underlying block polymer self-assembly and pore formation. Critical structure-property-performance metrics will be analyzed for block polymer UF membranes to understand how these membranes compare to commercial UF membranes and to identify key research areas for continued improvements. This Review is intended to inform readers of the capabilities and current challenges of block polymer UF membranes, while stimulating critical thought on strategies to advance these technologies.
Collapse
Affiliation(s)
- Nicholas Hampu
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Jay R Werber
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Wui Yarn Chan
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Elizabeth C Feinberg
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Marc A Hillmyer
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
31
|
Yace Mi, Liu S, Zhang Y, Sun J, Zhou W. The Roles Played by DMF in the Structure Formation of Epoxy-Based Porous Monolith. POLYMER SCIENCE SERIES B 2020. [DOI: 10.1134/s1560090420050097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Curing behavior, chain dynamics, and microstructure of high Tg thiol-acrylate networks with systematically varied network heterogeneity. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122783] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
33
|
Xie Y, Hillmyer MA. Nanostructured Polymer Monoliths for Biomedical Delivery Applications. ACS APPLIED BIO MATERIALS 2020; 3:3236-3247. [PMID: 35025366 DOI: 10.1021/acsabm.0c00228] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Drug delivery systems are designed to control the release rate and location of therapeutic agents in the body to achieve enhanced drug efficacy and to mitigate adverse side effects. In particular, drug-releasing implants provide sustained and localized release. We report nanostructured polymer monoliths synthesized by polymerization-induced microphase separation (PIMS) as potential implantable delivery devices. As a model system, free poly(ethylene oxide) homopolymers were incorporated into the nanoscopic poly(ethylene oxide) domains contained within a cross-linked polystyrene matrix. The in vitro release of these poly(ethylene oxide) molecules from monoliths was investigated as a function of poly(ethylene oxide) loading and molar mass as well as the molar mass and weight fraction of poly(ethylene oxide) macro-chain transfer agent used in the PIMS process for forming the monoliths. We also developed nanostructured microneedles targeting efficient and long-term transdermal drug delivery by combining PIMS and microfabrication techniques. Finally, given the prominence of poly(lactide) in drug delivery devices, the degradation rate of microphase-separated poly(lactide) in PIMS monoliths was evaluated and compared with bulk poly(lactide).
Collapse
Affiliation(s)
- Yihui Xie
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Marc A Hillmyer
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| |
Collapse
|
34
|
Polystyrene networks with polyoxyethylene cross-links covalently grafted onto nano-SiO2 cores: surface-initiated ATRP and thermal investigations. Polym Bull (Berl) 2019. [DOI: 10.1007/s00289-019-03064-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
35
|
Adeel M, Zhao B, Xu S, Zheng S. Investigation of Azobenzene Photoisomerization Effect on Morphologies and Properties of Nanostructured Thermosets Involving Epoxy and a Diblock Copolymer. J Phys Chem B 2019; 123:10110-10123. [PMID: 31644292 DOI: 10.1021/acs.jpcb.9b08017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This work highlights the effect of azobenzene photoisomerization on the morphologies and properties of the nanostructured thermosets involving epoxy and a diblock copolymer. First, a diblock copolymer composed of poly(ethylene oxide) (PEO) and poly(6-(4-(4-cyanophenylazo)phenoxy)hexyl methacrylate) (PCPHM) was synthesized, and this diblock copolymer was composed of an epoxy-philic block (i.e., PEO) and an azobenzene moiety-beating block (viz., PCPHM). This diblock copolymer was introduced into epoxy to obtain the nanostructured thermosets via reaction-induced microphase separation approach. To control the configuration of azobenzene moieties of the PCPHM block, the curing reactions were performed in the absence and/or presence of ultraviolet (UV) irradiation, respectively. It was found that, without UV irradiation, the PCPHM microdomains were generated with the trans isomers of azobenzene. Under UV irradiation, however, the PCPHM microdomains were formed with the cis configuration of azobenzene moieties. The ultraviolet-visible light (UV-vis) spectroscopy showed that the trans and cis configurations of azobenzene moieties were significantly fixed with the occurrence of curing reactions. The photoluminescent measurements showed that the nanostructured thermosets with trans-azobenzene moieties can emit fluorescence, which was in sharp contrast to those with cis-azobenzene moieties. The results of small-angle X-ray and atomic force microscopy showed that the nanostructured thermosets with trans and cis isomers of azobenzene moieties had quite different morphologies. It was found that the sizes of the PCPHM microdomains with cis configuration of azobenzene moieties were significantly larger than those with trans configuration. The difference in configuration of azobenzene moieties also resulted in the difference in glass-transition temperatures and dielectric properties of the materials. The results suggest a new approach to modulate the morphologies and physical properties of the nanostructured thermosets by means of photoisomerization of azobenzene moieties.
Collapse
Affiliation(s)
- Muhammad Adeel
- Department of Polymer Science and Engineering and the State Key Laboratory of Metal Matrix Composites , Shanghai Jiao Tong University , Shanghai 200240 , People's Republic of China
| | - Bingjie Zhao
- Department of Polymer Science and Engineering and the State Key Laboratory of Metal Matrix Composites , Shanghai Jiao Tong University , Shanghai 200240 , People's Republic of China
| | - Sen Xu
- Department of Polymer Science and Engineering and the State Key Laboratory of Metal Matrix Composites , Shanghai Jiao Tong University , Shanghai 200240 , People's Republic of China
| | - Sixun Zheng
- Department of Polymer Science and Engineering and the State Key Laboratory of Metal Matrix Composites , Shanghai Jiao Tong University , Shanghai 200240 , People's Republic of China
| |
Collapse
|
36
|
Adeel M, Zhao B, Xu S, Zheng S. Fluorescence Enhancement Induced by Curing Reaction in Nanostructured Epoxy Thermosets Containing a Diblock Copolymer. J Phys Chem B 2019; 123:6282-6289. [PMID: 31313587 DOI: 10.1021/acs.jpcb.9b00925] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In this work, a novel curing-induced fluorescence (FL) enhancement phenomenon in the nanostructuring process of epoxy thermosets was investigated. Toward this end, a diblock copolymer composed of poly(ethylene oxide) and poly(((4-vinylphenyl)ethene-1,1,2-triyl)tribenzene) (PTPEE) blocks was introduced into epoxy thermosets. Before curing reaction, the mixtures of epoxy precursors with the diblock copolymer only emitted feeble FL under ultra-visible (UV) irradiation. However, photoluminescence was significantly enhanced after the curing reaction was carried out. It was found that the novel FL enhancement phenomenon resulted from the aggregation-induced emission behavior of PTPEE blocks, which was triggered by curing reaction. In the nanostructured thermosets, the fluorophore blocks (viz. PTPEE) of this diblock copolymer were segregated into aggregates, that is, a reaction-induced microphase separation occurred. Owing to the generation of PTPEE microdomains, the epoxy nanocomposites significantly displayed the enhanced dielectric constants due to the promoted contribution from electron polarizations via π-π conjugation in the materials.
Collapse
Affiliation(s)
- Muhammad Adeel
- School of Chemistry and Chemical Engineering and the State Key Laboratory of Metal Matrix Composites , Shanghai Jiao Tong University , Shanghai 200240 , P. R. China
| | - Bingjie Zhao
- School of Chemistry and Chemical Engineering and the State Key Laboratory of Metal Matrix Composites , Shanghai Jiao Tong University , Shanghai 200240 , P. R. China
| | - Sen Xu
- School of Chemistry and Chemical Engineering and the State Key Laboratory of Metal Matrix Composites , Shanghai Jiao Tong University , Shanghai 200240 , P. R. China
| | - Sixun Zheng
- School of Chemistry and Chemical Engineering and the State Key Laboratory of Metal Matrix Composites , Shanghai Jiao Tong University , Shanghai 200240 , P. R. China
| |
Collapse
|
37
|
Liang Y, Zhang L, Zhang Y. Well-Defined Materials for High-Performance Chromatographic Separation. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2019; 12:451-473. [PMID: 30939031 DOI: 10.1146/annurev-anchem-061318-114854] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Chromatographic separation has been widely applied in various fields, such as chemical engineering, precision medicine, energy, and biology. Because chromatographic separation is based on differential partitioning between the mobile phase and stationary phase and affected by band dispersion and mass transfer resistance from these two phases, the materials used as the stationary phase play a decisive role in separation performance. In this review, we discuss the design of separation materials to achieve the separation with high efficiency and high resolution and highlight the well-defined materials with uniform pore structure and unique properties. The achievements, recent developments, challenges, and future trends of such materials are discussed. Furthermore, the surface functionalization of separation ma-terials for further improvement of separation performance is reviewed. Finally, future research directions and the challenges of chromatographic separation are presented.
Collapse
Affiliation(s)
- Yu Liang
- CAS Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China;
| | - Lihua Zhang
- CAS Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China;
| | - Yukui Zhang
- CAS Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China;
| |
Collapse
|
38
|
Utroša P, Žagar E, Kovačič S, Pahovnik D. Porous Polystyrene Monoliths Prepared from in Situ Simultaneous Interpenetrating Polymer Networks: Modulation of Morphology by Polymerization Kinetics. Macromolecules 2019; 52:819-826. [PMID: 31496541 PMCID: PMC6727602 DOI: 10.1021/acs.macromol.8b01923] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 11/30/2018] [Indexed: 01/28/2023]
Abstract
Semi-interpenetrating polymer networks (semi-IPNs) were prepared by in situ simultaneous orthogonal polymerizations, where the linear poly(ε-caprolactone) (PCL) was synthesized by ring-opening polymerization of ε-caprolactone and the poly(styrene-co-divinylbenzene) (PS) network was formed by free-radical polymerization of styrene/divinylbenzene. Semi-IPNs were used as the precursors for the preparation of porous PS monoliths. To this end, the PCL domains were selectively removed by hydrolysis under basic conditions. By changing the amount of organocatalyst used for the ring-opening polymerization of ε-caprolactone, the relative polymerization kinetics of both monomers was varied, which has a pronounced effect on the morphology of thus-obtained PS frameworks.
Collapse
Affiliation(s)
- Petra Utroša
- Department
of Polymer Chemistry and Technology, National
Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Ema Žagar
- Department
of Polymer Chemistry and Technology, National
Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Sebastijan Kovačič
- Department
of Polymer Chemistry and Technology, National
Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
- Faculty
of Chemistry and Chemical Engineering, Laboratory for Organic and
Polymer Chemistry and Technology, University
of Maribor, Smetanova
17, 2000 Maribor, Slovenia
| | - David Pahovnik
- Department
of Polymer Chemistry and Technology, National
Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| |
Collapse
|
39
|
Jeon C, Han JJ, Seo M. Control of Ion Transport in Sulfonated Mesoporous Polymer Membranes. ACS APPLIED MATERIALS & INTERFACES 2018; 10:40854-40862. [PMID: 30384592 DOI: 10.1021/acsami.8b14712] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We investigated proton conductivity and the permeability of monovalent cations across sulfonated mesoporous membranes (SMMs) prepared with well-defined pore sizes and adjustable sulfonic acid content. Mesoporous membranes with three-dimensionally continuous pore structure were produced by the polymerization-induced microphase separation (PIMS) process involving the reversible addition-fragmentation chain transfer (RAFT) copolymerization of styrene and divinylbenzene in the presence of a polylactide (PLA) macrochain transfer agent and subsequent PLA etching. This allowed us to control pore size by varying PLA molar mass. Postsulfonation of the mesoporous membranes yielded SMMs whose pore structure was retained. The sulfonic acid content was adjusted by reaction time. While proton conductivity increased with increasing ion exchange capacity (IEC) without noticeable dependence on the pore size, ion permeability was strongly influenced by the pore size and IEC values. Decreasing pore size and increasing IEC resulted in a decrease in ion permeability, suggesting that ions traverse across the membrane via the vehicular mechanism, through the mesoporous spaces filled with water. We further observed that the permeability of the vanadium oxide ion was dramatically suppressed by reducing the pore size below 4 nm, which was consistent with preliminary vanadium redox flow battery data. Our approach suggests a route to developing permselective membranes by decoupling proton conductivity and ion permeability, which could be useful for designing separator materials for next-generation battery systems.
Collapse
Affiliation(s)
- Choongseop Jeon
- Graduate School of Nanoscience and Technology , Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141 , Republic of Korea
| | | | - Myungeun Seo
- Graduate School of Nanoscience and Technology , Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141 , Republic of Korea
- Department of Chemistry , KAIST , Daejeon 34141 , Republic of Korea
- Advanced Battery Center, KAIST Institute for Nanocentury , KAIST , Daejeon 34141 , Republic of Korea
| |
Collapse
|
40
|
Liang Y, Peng H, Zhang Y, Zhou X, Liao Y, Xie X, Zhou H. Relationship between polymerization kinetics and microstructure in reactive polymer blends: An Avrami-Erofeev study. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.07.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
41
|
Vidil T, Cloître M, Tournilhac F. Control of Gelation and Network Properties of Cationically Copolymerized Mono- and Diglycidyl Ethers. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b00406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Thomas Vidil
- Matière Molle et Chimie, UMR 7167 CNRS ESPCI Paris, PSL Research University, 10 rue Vauquelin 75005 Paris, France
| | - Michel Cloître
- Matière Molle et Chimie, UMR 7167 CNRS ESPCI Paris, PSL Research University, 10 rue Vauquelin 75005 Paris, France
| | - Francois Tournilhac
- Matière Molle et Chimie, UMR 7167 CNRS ESPCI Paris, PSL Research University, 10 rue Vauquelin 75005 Paris, France
| |
Collapse
|
42
|
Kim S, Seo M. Control of porosity in hierarchically porous polymers derived from hyper-crosslinked block polymer precursors. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/pola.28966] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Soobin Kim
- Graduate School of Nanoscience and Technology; Korea Advanced Institute of Science and Technology (KAIST); Daejeon 34141 Korea
| | - Myungeun Seo
- Graduate School of Nanoscience and Technology; Korea Advanced Institute of Science and Technology (KAIST); Daejeon 34141 Korea
- Department of Chemistry; KAIST; Daejeon 34141 Korea
| |
Collapse
|
43
|
Satheeshkumar C, Seo M. Creation of micropores by RAFT copolymerization of conjugated multi-vinyl cross-linkers. Polym Chem 2018. [DOI: 10.1039/c8py01198b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Copolymerization of conjugated multi-vinyl cross-linkers with styrene creates a fluorescent and microporous cross-linked network, useful for the synthesis of hierarchically porous polymers.
Collapse
Affiliation(s)
- Chinnadurai Satheeshkumar
- Graduate School of Nanoscience and Technology
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon 34141
- Republic of Korea
| | - Myungeun Seo
- Graduate School of Nanoscience and Technology
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon 34141
- Republic of Korea
- Department of Chemistry
| |
Collapse
|
44
|
Saba SA, Lee B, Hillmyer MA. Tricontinuous Nanostructured Polymers via Polymerization-Induced Microphase Separation. ACS Macro Lett 2017; 6:1232-1236. [PMID: 35650776 DOI: 10.1021/acsmacrolett.7b00677] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Nanostructured tricontinuous block polymers allow for the preparation of single-component materials that combine multiple properties. We demonstrate the synthesis of a mesoporous material from the selective orthogonal etching of a microphase-separated tricontinuous block polymer precursor. Using the synthetic approach of polymerization-induced microphase separation (PIMS), divinylbenzene (DVB) is polymerized from a mixture of poly(isoprene) (PI) and poly(lactide) (PLA) macro-chain transfer agents. In the PIMS process in situ cross-linking by the DVB arrests structural coarsening, resulting in a disordered block polymer morphology that we posit exhibits three nonintersecting continuous domains. Selective etching of the PI domains by olefin cross metathesis and PLA domains by hydrolytic degradation produces a mesoporous polymer with two independent pore networks arising from the different etch mechanisms.
Collapse
Affiliation(s)
- Stacey A. Saba
- Department
of Chemical Engineering and Materials Science and ‡Department of
Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Bongjoon Lee
- Department
of Chemical Engineering and Materials Science and ‡Department of
Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Marc A. Hillmyer
- Department
of Chemical Engineering and Materials Science and ‡Department of
Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
45
|
Vidil T, Hampu N, Hillmyer MA. Nanoporous Thermosets with Percolating Pores from Block Polymers Chemically Fixed above the Order-Disorder Transition. ACS CENTRAL SCIENCE 2017; 3:1114-1120. [PMID: 29104928 PMCID: PMC5658760 DOI: 10.1021/acscentsci.7b00358] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Indexed: 06/07/2023]
Abstract
A lamellar diblock polymer combining a cross-linkable segment with a chemically etchable segment was cross-linked above its order-disorder temperature (TODT) to kinetically trap the morphology associated with the fluctuating disordered state. After removal of the etchable block, evaluation of the resulting porous thermoset allows for an unprecedented experimental characterization of the trapped disordered phase. Through a combination of small-angle X-ray scattering, nitrogen sorption, scanning electron microscopy, and electron tomography experiments we demonstrate that the nanoporous structure exhibits a narrow pore size distribution and a high surface to volume ratio and is bicontinuous over a large sample area. Together with the processability of the polymeric starting material, the proposed system combines attractive attributes for many advanced applications. In particular, it was used to design new composite membranes for the ultrafiltration of water.
Collapse
Affiliation(s)
- Thomas Vidil
- Department
of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Nicholas Hampu
- Department
of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Marc A. Hillmyer
- Department
of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
46
|
Chu WC, Bastakoti BP, Kaneti YV, Li JG, Alamri HR, Alothman ZA, Yamauchi Y, Kuo SW. Tailored Design of Bicontinuous Gyroid Mesoporous Carbon and Nitrogen-Doped Carbon from Poly(ethylene oxide-b-caprolactone) Diblock Copolymers. Chemistry 2017; 23:13734-13741. [PMID: 28699298 DOI: 10.1002/chem.201702360] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Indexed: 11/11/2022]
Abstract
Highly ordered mesoporous resol-type phenolic resin and the corresponding mesoporous carbon materials were synthesized by using poly(ethylene oxide-b-caprolactone) (PEO-b-PCL) diblock copolymer as a soft template. The self-assembled mesoporous phenolic resin was found to form only in a specific resol concentration range of 40-70 wt % due to an intriguing balance of hydrogen-bonding interactions in the resol/PEO-b-PCL mixtures. Furthermore, morphological transitions of the mesostructures from disordered to gyroid to cylindrical and finally to disordered micelle structure were observed with increasing resol concentration. By calcination under nitrogen atmosphere at 800 °C, the bicontinuous mesostructured gyroid phenolic resin could be converted to mesoporous carbon with large pore size without collapse of the original mesostructure. Furthermore, post-treatment of the mesoporous gyroid phenolic resin with melamine gave rise to N-doped mesoporous carbon with unique electronic properties for realizing high CO2 adsorption capacity (6.72 mmol g-1 at 0 °C).
Collapse
Affiliation(s)
- Wei-Cheng Chu
- Materials and Optoelectronic Science, National Sun Yat-Sen University, Center for Nanoscience and Nanotechnology, Kaohsiung, 804, Taiwan
| | - Bishnu Prasad Bastakoti
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Yusuf Valentino Kaneti
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Jheng-Guang Li
- Materials and Optoelectronic Science, National Sun Yat-Sen University, Center for Nanoscience and Nanotechnology, Kaohsiung, 804, Taiwan.,R&D Department, Asia Carbons & Technology Inc., Taoyuan, Taiwan
| | - Hatem R Alamri
- Physics Department, Jamoum University College, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Zeid A Alothman
- Advanced Materials Research Chair, Chemistry Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Yusuke Yamauchi
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan.,Advanced Materials Research Chair, Chemistry Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.,Australian Institute for Innovative Materials (AIIM), University of Wollongong, Squires Way, North Wollongong, NSW, 2500, Australia
| | - Shiao-Wei Kuo
- Materials and Optoelectronic Science, National Sun Yat-Sen University, Center for Nanoscience and Nanotechnology, Kaohsiung, 804, Taiwan.,Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
47
|
Krishnan MR, Chien YC, Cheng CF, Ho RM. Fabrication of Mesoporous Polystyrene Films with Controlled Porosity and Pore Size by Solvent Annealing for Templated Syntheses. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:8428-8435. [PMID: 28817284 DOI: 10.1021/acs.langmuir.7b02195] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Herein, we aim to develop a facile method for the fabrication of mesoporous polystyrene (PS) films with controlled porosity and pore size by solvent annealing. A PS polymer film is solvent-annealed using N,N-dimethyl formamide (DMF) vapor for the development of phase separation, followed by rapidly cooling to the preset cryogenic temperature. Subsequently, a nonsolvent (methanol) is introduced to extract the crystalline DMF from the DMF-swollen PS, giving mesoporous PS with a network structure after the removal of DMF. The porosity of the mesoporous PS films can be controlled by the degree of swelling. Most interestingly, the phase separation between PS and DMF at the thin-film state under solvent annealing can be regulated by the annealing time through the spinodal decomposition, giving the development of nanonetwork structure with controlled structural features (i.e., framework size and interframework spacing) at invariant porosity. Consequently, after the removal of DMF, mesoporous PS films with controlled porosity and pore size can be obtained and then used as a template for the fabrication of a variety of nanoporous inorganics by templated syntheses, such as nanoporous SiO2, TiO2, and Ni, providing a cost-effective way to fabricate a range of nanoporous materials with controlled porosity and pore size as well as large specific surface area for aimed applications.
Collapse
Affiliation(s)
- Mohan Raj Krishnan
- Department of Chemical Engineering, National Tsing Hua University , Hsinchu 30013, Taiwan, ROC
| | - Yu-Cheng Chien
- Department of Chemical Engineering, National Tsing Hua University , Hsinchu 30013, Taiwan, ROC
| | - Chung-Fu Cheng
- Department of Chemical Engineering, National Tsing Hua University , Hsinchu 30013, Taiwan, ROC
| | - Rong-Ming Ho
- Department of Chemical Engineering, National Tsing Hua University , Hsinchu 30013, Taiwan, ROC
| |
Collapse
|