1
|
Kaneda N, Imato K, Sasaki A, Tanaka R, Imae I, Hirata T, Matsumoto T, Ooyama Y. Main-chain stiff-stilbene photoswitches in solution, in bulk, and at surfaces. Chem Sci 2024; 15:20545-20555. [PMID: 39600512 PMCID: PMC11587148 DOI: 10.1039/d4sc06470d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024] Open
Abstract
Molecular photoswitches have been incorporated into polymer backbones to control the macromolecular conformations by structural changes of the main-chain photoswitches. However, previous photoswitches installed in the main chains are thermolabile, which precludes deep understanding, precise regulation, and practical applications of the macromolecular conformational changes. Herein, we focus on sterically hindered stiff stilbene (HSS), an emerging photoswitch offering large structural changes in isomerization between the thermally bistable E and Z isomers, and disclose the chemistry of main-chain HSS photoswitches in solution, in bulk, and at thin film surfaces. We synthesize and investigate three types of linear polymers with different chemical linkages between HSS repeating units, polyurethane, polyester, and polyene. The polymer conformations in solution, i.e., hydrodynamic volume, are reversibly photocontrollable in a precise manner by the E/Z ratio. Furthermore, the nanoscopic conformational transformations are amplified to macroscopic photoswitching of the solution transmittance and the surface wettability synergistically with changes between interchain and intrachain hydrogen bonding in the polyurethanes. Additionally, the Z-to-E photoisomerization yields in the glassy state are above 70%, comparable to those in solution, and extraordinarily high despite the restricted molecular mobility. The findings of this study will pave the way for practical and unconventional applications of smart polymer systems based on photoswitches.
Collapse
Affiliation(s)
- Naoki Kaneda
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University 1-4-1 Kagamiyama Higashihiroshima 739-8527 Japan
| | - Keiichi Imato
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University 1-4-1 Kagamiyama Higashihiroshima 739-8527 Japan
| | - Ayane Sasaki
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University 1-4-1 Kagamiyama Higashihiroshima 739-8527 Japan
| | - Ryo Tanaka
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University 1-4-1 Kagamiyama Higashihiroshima 739-8527 Japan
| | - Ichiro Imae
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University 1-4-1 Kagamiyama Higashihiroshima 739-8527 Japan
| | - Toyoaki Hirata
- Department of Frontier Fiber Technology and Science, Graduate School of Engineering, University of Fukui 3-9-1 Bunkyo Fukui 910-8507 Japan
| | - Takuya Matsumoto
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University 1-1 Rokkodaicho, Nada Kobe 657-8501 Japan
| | - Yousuke Ooyama
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University 1-4-1 Kagamiyama Higashihiroshima 739-8527 Japan
| |
Collapse
|
2
|
He C, Xiao Y, Wang S, Lu H, Li X, Xu L, Wang C, Tu Y. Main-Chain Azobenzene Poly(ether ester) Multiblock Copolymers for Strong and Tough Light-Driven Actuators. ACS APPLIED MATERIALS & INTERFACES 2024; 16:56469-56480. [PMID: 39382379 DOI: 10.1021/acsami.4c13375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
The stimulus-responsive polymeric materials have attracted great research interest, especially those remotely manipulated materials with potential applications in actuators and soft robotics. Here we report a photoresponsive main-chain actuator based on azobenzene poly(ether ester) multiblock copolymer (mBCP) thermoplastic elastomers, (PTAD-b-PTMO-b-PTAD)n, which were synthesized by a cascade polycondensation-coupling ring-opening polymerization method using poly(tetramethylene oxide) (PTMO) and azobenzene-containing cyclic oligoesters (COTADs) as monomers. The thermal, mechanical, and microphase separation behaviors of mBCPs could be flexibly tuned by altering the ratios of soft-to-hard segments and block number (n). The oriented azobenzene mBCP fibers were prepared by melt spinning, showing reversible photoresponsive properties with remarkably high strength (∼1000 MPa) and high elongation at break comparable to spider silks. Fast photoinduced bending and contraction were successfully achieved in these fibers with high work and power densities and energy conversion efficiency, enabling it to lift up about 250 times of its own weight. Moreover, it can take out materials inside the tube by UV-light control. These fibers could be applied in light-driven actuators or telecontrolled robot arms.
Collapse
Affiliation(s)
- Chong He
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
- Beijing Yanshan Petrochemical High-Tech Company, Ltd., Beijing 102500, China
| | - Yang Xiao
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Sheng Wang
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Huanjun Lu
- Jiangsu Key Laboratory for Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xiaohong Li
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Lin Xu
- National Engineering Research Center for Synthesis of Novel Rubber and Plastic Materials, SINOPEC (Beijing) Research Institute of Chemical Industry Company, Ltd., Yanshan Branch, Beijing 102500, China
| | - Chao Wang
- National Engineering Research Center for Synthesis of Novel Rubber and Plastic Materials, SINOPEC (Beijing) Research Institute of Chemical Industry Company, Ltd., Yanshan Branch, Beijing 102500, China
| | - Yingfeng Tu
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
3
|
Zou J, Liao J, He Y, Zhang T, Xiao Y, Wang H, Shen M, Yu T, Huang W. Recent Development of Photochromic Polymer Systems: Mechanism, Materials, and Applications. RESEARCH (WASHINGTON, D.C.) 2024; 7:0392. [PMID: 38894714 PMCID: PMC11184227 DOI: 10.34133/research.0392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 04/26/2024] [Indexed: 06/21/2024]
Abstract
Photochromic polymer is defined as a series of materials based on photochromic units in polymer chains, which produces reversible color changes under irradiation with a particular wavelength. Currently, as the research progresses, it shows increasing potential applications in various fields, such as anti-counterfeiting, information storage, super-resolution imaging, and logic gates. However, there is a paucity of published reviews on the topic of photochromic polymers. Herein, this review discusses and summarizes the research progress and prospects of such materials, mainly summarizing the basic mechanisms, classification, and applications of azobenzene, spiropyran, and diarylethene photochromic polymers. Moreover, 3-dimensional (3D) printable photochromic polymers are worthy to be summarized specifically because of its innovative approach for practical application; meanwhile, the developing 3D printing technology has shown increasing potential opportunities for better applications. Finally, the current challenges and future directions of photochromic polymer materials are summarized.
Collapse
Affiliation(s)
- Jindou Zou
- Frontiers Science Center for Flexible Electronics (FSCFE) and Xi’an Institute of Flexible Electronics (IFE),
Northwestern Polytechnical University, Xi’an 710072, China
| | - Jimeng Liao
- Frontiers Science Center for Flexible Electronics (FSCFE) and Xi’an Institute of Flexible Electronics (IFE),
Northwestern Polytechnical University, Xi’an 710072, China
| | - Yunfei He
- Frontiers Science Center for Flexible Electronics (FSCFE) and Xi’an Institute of Flexible Electronics (IFE),
Northwestern Polytechnical University, Xi’an 710072, China
| | - Tiantian Zhang
- Frontiers Science Center for Flexible Electronics (FSCFE) and Xi’an Institute of Flexible Electronics (IFE),
Northwestern Polytechnical University, Xi’an 710072, China
| | - Yuxin Xiao
- Frontiers Science Center for Flexible Electronics (FSCFE) and Xi’an Institute of Flexible Electronics (IFE),
Northwestern Polytechnical University, Xi’an 710072, China
| | - Hailan Wang
- Frontiers Science Center for Flexible Electronics (FSCFE) and Xi’an Institute of Flexible Electronics (IFE),
Northwestern Polytechnical University, Xi’an 710072, China
| | - Mingyao Shen
- Frontiers Science Center for Flexible Electronics (FSCFE) and Xi’an Institute of Flexible Electronics (IFE),
Northwestern Polytechnical University, Xi’an 710072, China
| | - Tao Yu
- Frontiers Science Center for Flexible Electronics (FSCFE) and Xi’an Institute of Flexible Electronics (IFE),
Northwestern Polytechnical University, Xi’an 710072, China
- Key Laboratory of Flexible Electronics of Zhejiang Province,
Ningbo Institute of Northwestern Polytechnical University, Ningbo 315103, China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE) and Xi’an Institute of Flexible Electronics (IFE),
Northwestern Polytechnical University, Xi’an 710072, China
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM),
Nanjing Tech University (Nanjing Tech), Nanjing 211816, China
- State Key Laboratory of Organic Electronics and Information Displays and Jiangsu Key Laboratory of Biosensors, Institute of Advanced Materials (IAM),
Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| |
Collapse
|
4
|
Fan J, Wu W, Liu Y, Ji B, Xu H, Zhong Y, Zhang L, Mao Z. Customizable High-Contrast Optical Responses: Dual Photosensitive Colors for Smart Textiles. ACS APPLIED MATERIALS & INTERFACES 2023; 15:54085-54097. [PMID: 37939228 DOI: 10.1021/acsami.3c11872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Smart textiles demonstrating optical responses to external light stimuli hold great promise as functional materials with a wide range of applications in personalized decoration and information visualization. The incorporation of high-contrast, vivid, and real-time optical signals, such as color change or fluorescence emission, to indicate light on/off states is both crucial and challenging. In this study, we have developed a dual output photosensitive dye system possessing photochromic and photofluorescent properties, which was successfully applied to the dyeing and finishing processes of cotton fabrics. The design and fabrication of this dye system were based on the unique photoinduced proton transfer (PPT) principle exhibited by the water-soluble spiropyran (trans-MCH) molecule. The dual output response relies on the open-/closed-loop mechanism, wherein light regulates the trans-MCH molecule. Upon excitation by UV or visible light, the dye system and dyed fabrics display significant color changes and fluorescence switching in a real-time and highly reversible manner. Moreover, diverse photosensitive color systems can be tailored by direct blending with commercially available water-soluble dyes. By integrating high-contrast dual optical outputs into this scalable, versatile, and reversible dye system, we envisage the development and design of smart textiles capable of producing high-end products.
Collapse
Affiliation(s)
- Ji Fan
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China
| | - Wei Wu
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China
| | - Yitong Liu
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China
| | - Bolin Ji
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China
| | - Hong Xu
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China
| | - Yi Zhong
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China
| | - Linping Zhang
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China
| | - Zhiping Mao
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China
- Shanghai Belt and Road Joint Laboratory of Textile Intelligent Manufacturing, Innovation Center for Textile Science and Technology of Donghua University, Shanghai 201620, China
- National Innovation Center of Advanced Dyeing & Finishing Technology, Shandong Zhongkang Guochuang Research Institute of Advanced Dyeing & Finishing Technology Co., Ltd., Taian City 271000, Shandong, China
| |
Collapse
|
5
|
Ube T, Suka I, Ogikubo S, Hashimoto G, Suda M, Yamamoto HM, Ikeda T. Inducing Motions of Polymers in Liquid Nitrogen with Light. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2306402. [PMID: 37867200 DOI: 10.1002/adma.202306402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/02/2023] [Indexed: 10/24/2023]
Abstract
Polymer materials that show macroscopic deformation in response to external stimuli are feasible for novel soft actuators including microactuators. Incorporation of photochromic moieties, such as azobenzenes, into polymer networks enables macroscopic deformation under irradiation with light through photoisomerization. Under cryogenic conditions, however, it has been difficult to induce macroscopic deformation as polymers lose their soft nature due to the severe restrictions of molecular motions. Here, activation of molecular motions and macroscopic deformation in liquid nitrogen only with light for polymers containing photochromic moieties is reported. Photoinduced bending of polymer networks with normal azobenzenes in liquid nitrogen is enabled by preliminary UV irradiation at room temperature to produce cis-isomers. To realize photoinduced deformation directly in liquid nitrogen, polymer networks are functionalized with bridged azobenzenes, which exist as cis-isomers in thermodynamic equilibrium. The films with bridged azobenzenes exhibit reversible photoisomerization and bending upon irradiation with light in liquid nitrogen without the need of preliminary irradiation, implying that the change in conformation of polymer chains can be isothermally induced even under cryogenic conditions. Achievement of flexible motions under cryogenic conditions through isothermal processes will greatly expand the operating temperature range of soft actuators.
Collapse
Affiliation(s)
- Toru Ube
- Research & Development Initiative, Chuo University, Tokyo, 112-8551, Japan
| | - Ikumi Suka
- Graduate School of Science and Engineering, Chuo University, Tokyo, 112-8551, Japan
| | - Shunya Ogikubo
- Graduate School of Science and Engineering, Chuo University, Tokyo, 112-8551, Japan
| | - Gaku Hashimoto
- Graduate School of Science and Engineering, Chuo University, Tokyo, 112-8551, Japan
| | - Masayuki Suda
- Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan
| | | | - Tomiki Ikeda
- Research & Development Initiative, Chuo University, Tokyo, 112-8551, Japan
| |
Collapse
|
6
|
Isokuortti J, Griebenow T, von Glasenapp JS, Raeker T, Filatov MA, Laaksonen T, Herges R, Durandin NA. Triplet sensitization enables bidirectional isomerization of diazocine with 130 nm redshift in excitation wavelengths. Chem Sci 2023; 14:9161-9166. [PMID: 37655019 PMCID: PMC10466275 DOI: 10.1039/d3sc02681g] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/04/2023] [Indexed: 09/02/2023] Open
Abstract
Diazocines are bridged azobenzenes with phenyl rings connected by a CH2-CH2 group. Despite this rather small structural difference, diazocine exhibits improved properties over azobenzene as a photoswitch and most importantly, its Z configuration is more stable than the E isomer. Herein, we reveal yet another unique feature of this emerging class of photoswitches. In striking contrast to azobenzenes and other photochromes, diazocine can be selectively switched in E → Z direction and most intriguingly from its thermodynamically stable Z to metastable E isomer upon successive excitation of two different triplet sensitizers present in solution at the same time. This approach leads to extraordinary large redshift of excitation wavelengths to perform isomerization i.e. from 400 nm blue to 530 nm green light (Z → E) and from 530 nm green to 740 nm far-red one (E → Z), which falls in the near-infrared window in biological tissue. Therefore, this work opens up of potential avenues for utilizing diazocines for example in photopharmacology, smart materials, light energy harvesting/storage devices, and out-of-equilibrium systems.
Collapse
Affiliation(s)
- Jussi Isokuortti
- Faculty of Engineering and Natural Sciences, Tampere University FI-33101 Tampere Finland
| | - Thomas Griebenow
- Otto-Diels-Institute of Organic Chemistry, Christian-Albrechts-University of Kiel 24098 Kiel Germany
| | - Jan-Simon von Glasenapp
- Otto-Diels-Institute of Organic Chemistry, Christian-Albrechts-University of Kiel 24098 Kiel Germany
| | - Tim Raeker
- Institute for Physical Chemistry, Department for Theoretical Chemistry, Christian-Albrechts-University of Kiel 24098 Kiel Germany
| | - Mikhail A Filatov
- School of Chemical and Pharmaceutical Sciences, Technological University Dublin, City Campus Grangegorman Dublin 7 Ireland
| | - Timo Laaksonen
- Faculty of Engineering and Natural Sciences, Tampere University FI-33101 Tampere Finland
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki Finland
| | - Rainer Herges
- Otto-Diels-Institute of Organic Chemistry, Christian-Albrechts-University of Kiel 24098 Kiel Germany
| | - Nikita A Durandin
- Faculty of Engineering and Natural Sciences, Tampere University FI-33101 Tampere Finland
| |
Collapse
|
7
|
Facile Synthesis of Light-Switchable Polymers with Diazocine Units in the Main Chain. Polymers (Basel) 2023; 15:polym15051306. [PMID: 36904547 PMCID: PMC10007058 DOI: 10.3390/polym15051306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/26/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Unlike azobenzene, the photoisomerization behavior of its ethylene-bridged derivative, diazocine, has hardly been explored in synthetic polymers. In this communication, linear photoresponsive poly(thioether)s containing diazocine moieties in the polymer backbone with different spacer lengths are reported. They were synthesized in thiol-ene polyadditions between a diazocine diacrylate and 1,6-hexanedithiol. The diazocine units could be reversibly photoswitched between the (Z)- and (E)-configurations with light at 405 nm and 525 nm, respectively. Based on the chemical structure of the diazocine diacrylates, the resulting polymer chains differed in their thermal relaxation kinetics and molecular weights (7.4 vs. 43 kDa) but maintained a clearly visible photoswitchability in the solid state. Gel permeation chromatography (GPC) measurements indicated a hydrodynamic size expansion of the individual polymer coils as a result of the Z→E pincer-like diazocine switching motion on a molecular scale. Our work establishes diazocine as an elongating actuator that can be used in macromolecular systems and smart materials.
Collapse
|
8
|
Zhang X, Wang X, Zhang Y, Wang Z, Wang Y, Hu F. Influence of heating temperature on the optical response properties and surface relief patterns of TiO 2/GeO 2/ormosils composite films containing azobenzene. APPLIED OPTICS 2022; 61:7671-7676. [PMID: 36256367 DOI: 10.1364/ao.471628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/22/2022] [Indexed: 06/16/2023]
Abstract
With the progress of modern integrated optical technology, organic-inorganic composite materials have been widely used in integrated optoelectronic devices. Because of satisfying optical response properties among azobenzene, it will be an ideal choice to introduce the material into organic-inorganic composite materials. TiO2/GeO2/ormosils composite films containing azobenzene were prepared by combining the solgel technique with the spin-coating process. The optical transmission modes and loss of as-prepared samples at different transmission wavelengths were researched by a prism coupler. The result shows that the composite film is multi-mode transmission at the transmission wavelength of 633 nm and single-mode transmission at 1538 nm. The transmission loss is sufficient for applications in optical elements. The response properties and Fourier transform infrared spectroscopy of as-prepared samples at different heating temperatures were also studied. The composite films obtained at 50°C have the best optical response properties. Furthermore, the banding energy and chemical composition among the films were measured through x-ray photoelectron spectroscopy. Finally, the surface topography of as-prepared samples was observed by atomic force microscopy. The surface of the composite film appears with patterns of relief under the appropriate temperature. The above results show that the as-prepared TiO2/GeO2/ormosils composite films containing azobenzene will be a kind of ideal material in the field of integrated optics applications.
Collapse
|
9
|
Zhang Z, Wang W, O'Hagan M, Dai J, Zhang J, Tian H. Stepping Out of the Blue: From Visible to Near-IR Triggered Photoswitches. Angew Chem Int Ed Engl 2022; 61:e202205758. [PMID: 35524420 DOI: 10.1002/anie.202205758] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Indexed: 12/22/2022]
Abstract
Light offers unique opportunities for controlling the activity of materials and biosystems with high spatiotemporal resolution. Molecular photoswitches are chromophores that undergo reversible isomerization between different states upon irradiation with light, allowing a convenient means to control their influence over the system of interest. However, a significant limitation of classical photoswitches is the requirement to initiate the switching in one or both directions using deleterious UV light with poor tissue penetration. Red-shifted photoswitches are hence in high demand and have attracted keen recent research interest. In this Review, we highlight recent progress towards the development of visible- and NIR-activated photoswitches characterized by distinct photochromic reaction mechanisms. We hope to inspire further endeavors in this field, allowing the full potential of these tools in biotechnology and materials chemistry applications to be realized.
Collapse
Affiliation(s)
- Zhiwei Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Wenhui Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Michael O'Hagan
- Institute of Chemistry, The Minerva Center for Bio-hybrid Complex Systems, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Jinghong Dai
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Junji Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - He Tian
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
10
|
Ghosh S, Ghosh S, Raza R, Ghosh K. Progress of 3-aminopyridine-based amide, urea, imine and azo derivatives in supramolecular gelation. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Fang W, Feng Y, Gao J, Wang H, Ge J, Yang Q, Feng W. Visible Light-Driven Alkyne-Grafted Ethylene-Bridged Azobenzene Chromophores for Photothermal Utilization. Molecules 2022; 27:molecules27103296. [PMID: 35630773 PMCID: PMC9145641 DOI: 10.3390/molecules27103296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/17/2022] [Accepted: 05/17/2022] [Indexed: 02/05/2023] Open
Abstract
Molecular photoswitches are considered to be important candidates in the field of solar energy storage due to their sensitive and reversible bidirectional optical response. Nevertheless, it is still a daunting challenge to design a molecular photoswitch to improve the low solar spectrum utilization and quantum yields while achieving charging and discharging of heat without solvent assistance. Herein, a series of visible-light-driven ethylene-bridged azobenzene (b-Azo) chromophores with different alkyne substituents which can undergo isomerization reactions promoted in both directions by visible light are reported. Their visible light responsiveness improves their solar spectrum utilization while also having high quantum yields. In addition, as the compounds are liquids, there is no need to dissolve the compounds in order to exploit this switching. The photoisomerization of b-Azo can be adjusted by alkyne-related substituents, and hexyne-substituted b-Azo is able to store and release photothermal energy with a high density of 106.1 J·g−1, and can achieve a temperature increase of 1.8 °C at a low temperature of −1 °C.
Collapse
|
12
|
Zhang Z, Wang W, O’Hagan M, Dai J, Zhang J, Tian H. Stepping Out of the Blue: From Visible to Near‐IR Triggered Photoswitches. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Zhiwei Zhang
- East China University of Science and Technology School of Chemistry and Molecular Engineering Dept. Chem Shanghai CHINA
| | - Wenhui Wang
- East China University of Science and Technology School of Chemistry and Molecular Engineering Dept. Chem CHINA
| | | | - Jinghong Dai
- East China University of Science and Technology School of Chemistry and Molecular Engineering Dept. Chem CHINA
| | - Junji Zhang
- East China University of Science and Technology School of Chemistry and Molecular Engineering Dept. Chem Shanghai CHINA
| | - He Tian
- East China University of Science and Technology School of Chemistry and Molecular Engineering Institute of Fine Chemicals Meilong Road 130 200237 Shanghai! CHINA
| |
Collapse
|
13
|
Liu Y, Sun Y, Zhang W. Synthesis of
Stimuli‐Responsive
Block Copolymers and Block Copolymer Nano‐assemblies. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202100821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Yuan Liu
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry Nankai University Tianjin 300071 China
| | - Yu Sun
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry Nankai University Tianjin 300071 China
| | - Wangqing Zhang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry Nankai University Tianjin 300071 China
| |
Collapse
|
14
|
Zhou Y, Wang L, Zhang H. Enhancing the performances of physically cross-linked photodeformable main-chain azobenzene poly(ester-amide)s via chemical structure engineering. Polym Chem 2022. [DOI: 10.1039/d2py00492e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The development of physically cross-linked photodeformable main-chain azobenzene poly(ester-amide)s with enhanced performances via chemical structure engineering and obtention of their detailed structure–property relationship are first described.
Collapse
Affiliation(s)
- Yan Zhou
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), and College of Chemistry, Nankai University, Tianjin 300071, China
| | - Lei Wang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), and College of Chemistry, Nankai University, Tianjin 300071, China
| | - Huiqi Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), and College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
15
|
Wang H, Bisoyi H, Zhang X, Hassan F, Li Q. Visible Light-Driven Molecular Switches and Motors: Recent Developments and Applications. Chemistry 2021; 28:e202103906. [PMID: 34964995 DOI: 10.1002/chem.202103906] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Indexed: 11/09/2022]
Abstract
Inspired by human vision, a diverse range of light-driven molecular switches and motors has been developed for fundamental understanding and application in material science and biology. Recently, the design and synthesis of visible light-driven molecular switches and motors have been actively pursued. This emerging trend is partly motivated to avoid the harmful effects of ultraviolet light, which was necessary to drive the classical molecular switches and motors at least in one direction, impeding their employment in biomedical and photopharmacology applications. Moreover, visible light-driven molecular switches and motors are demonstrated to enable benign optical materials for advanced photonic devices. Therefore, during the past several years, visible light-driven molecular switches based on azobenzene derivatives, diarylethenes, 1,2-dicyanodithienylethenes, hemithioindigo derivatives, iminothioindoxyls, donor-acceptor Stenhouse adducts, and overcrowded alkene based molecular motors have been judiciously designed, synthesized, and used in the development of functional materials and systems for a wide range of applications. In this Review, we present the recent developments toward the design of visible light-driven molecular switches and motors, with their applications in the fabrication of functional materials and systems in material science, bioscience, pharmacology, etc . The visible light-driven molecular switches and motors realized so far undoubtedly widen the scope of these interesting compounds for technological and biological applications. We hope this Review article could provide additional impetus and inspire further research interests for future exploration of visible light-driven advanced materials, systems, and devices.
Collapse
Affiliation(s)
- Hao Wang
- Kent State University, Advanced Materials and Liquid Crystal Institute, UNITED STATES
| | - Hari Bisoyi
- Kent State University, Advanced Materials and Liquid Crystal Institute, UNITED STATES
| | - Xinfang Zhang
- Kent State University, Advanced Materials and Liquid Crystal Institue, UNITED STATES
| | - Fathy Hassan
- Kent State University, Advanced Materials and Liquid Crystal Institute, UNITED STATES
| | - Quan Li
- Kent State University, Liquid Crystal Institute and Chemical Physics Interdiscinplary Program, 3273 Crown Pointe Drive, 44224, Stow, UNITED STATES
| |
Collapse
|
16
|
Goual N, Casimiro L, Delattre V, Retailleau P, Maisonneuve S, Bogliotti N, Métivier R, Xie J, Marinetti A, Voituriez A. Triazonine-based bistable photoswitches: synthesis, characterization and photochromic properties. Chem Commun (Camb) 2021; 57:10079-10082. [PMID: 34514480 DOI: 10.1039/d1cc02746h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We disclose here dibenzotriazonines as a new class of nine-membered cyclic azobenzenes displaying a nitrogen function in the saturated ring chain. The specific features of these compounds are (i) a preferred E-configuration, (ii) high bi-directional photoswitching and (iii) good thermal stability of both E- and Z-forms.
Collapse
Affiliation(s)
- Nawel Goual
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, Gif-sur-Yvette, 91198, France.
| | - Lorenzo Casimiro
- Université Paris-Saclay, ENS Paris-Saclay, CNRS, PPSM, Gif-sur-Yvette, 91190, France.
| | - Vincent Delattre
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, Gif-sur-Yvette, 91198, France.
| | - Pascal Retailleau
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, Gif-sur-Yvette, 91198, France.
| | - Stéphane Maisonneuve
- Université Paris-Saclay, ENS Paris-Saclay, CNRS, PPSM, Gif-sur-Yvette, 91190, France.
| | - Nicolas Bogliotti
- Université Paris-Saclay, ENS Paris-Saclay, CNRS, PPSM, Gif-sur-Yvette, 91190, France.
| | - Rémi Métivier
- Université Paris-Saclay, ENS Paris-Saclay, CNRS, PPSM, Gif-sur-Yvette, 91190, France.
| | - Juan Xie
- Université Paris-Saclay, ENS Paris-Saclay, CNRS, PPSM, Gif-sur-Yvette, 91190, France.
| | - Angela Marinetti
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, Gif-sur-Yvette, 91198, France.
| | - Arnaud Voituriez
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, Gif-sur-Yvette, 91198, France.
| |
Collapse
|
17
|
Chen H, Chen W, Lin Y, Xie Y, Liu SH, Yin J. Visible and near-infrared light activated azo dyes. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.03.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
18
|
Zhang H. Reprocessable Photodeformable Azobenzene Polymers. Molecules 2021; 26:4455. [PMID: 34361608 PMCID: PMC8347682 DOI: 10.3390/molecules26154455] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/16/2021] [Accepted: 07/21/2021] [Indexed: 11/17/2022] Open
Abstract
Photodeformable azobenzene (azo) polymers are a class of smart polymers that can efficiently convert light energy into mechanical power, holding great promise in various photoactuating applications. They are typically of crosslinked polymer networks with highly oriented azo mesogens embedded inside. Upon exposure to the light of appropriate wavelength, they experience dramatic order parameter change following the configuration change of the azo units. This could result in the generation and accumulation of the gradient microscopic photomechanical force in the crosslinked polymer networks, thus leading to their macroscopic deformation. So far, a great number of photodeformable azo polymers have been developed, including some unoriented ones showing photodeformation based on different mechanisms. Among them, photodeformable azo polymers with dynamic crosslinking networks (and some uncrosslinked ones) have aroused particular interest recently because of their obvious advantages over those with stable chemical crosslinking structures such as high recyclability and reprocessability. In this paper, I provide a detailed overview of the recent progress in such reprocessable photodeformable polymers. In addition, some challenges and perspectives are also presented.
Collapse
Affiliation(s)
- Huiqi Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
19
|
Klockmann F, Fangmann C, Zender E, Schanz T, Catapano C, Terfort A. Substituted Dibenzodiazocines: Rapid Synthesis and Photochemical Properties. ACS OMEGA 2021; 6:18434-18441. [PMID: 34308074 PMCID: PMC8296553 DOI: 10.1021/acsomega.1c02524] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
11,12-Dihydrodibenzo[c,g]-1,2-diazocines have been established as a viable alternative to azobenzene for photoswitching, in particular, as they show an inverted switching behavior: the ground state is the Z isomer. In this paper, we present an improved method to obtain dibenzodiazocine and its derivatives from the respective 2-nitrotoluenes in two reaction steps, each proceeding in minutes. This fast access to a variety of derivatives permitted the study of substitution effects on the synthesis and on the photochemical properties. With biochemical applications in mind, methanol was chosen as a protic solvent system for the photochemical investigations. In contrast to the azobenzene system, none of the tested substitution patterns resulted in more efficient switching or in significantly prolonged half-lives, showing that the system is dominated by the ring strain.
Collapse
|
20
|
Zhang X, Liu S, Xue C, Zhang W, Sun R, Hu F. Titanium content influence on the optical response characteristics of TiO 2/ormosils composite films doped with azobenzene. APPLIED OPTICS 2021; 60:5581-5587. [PMID: 34263848 DOI: 10.1364/ao.425944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/04/2021] [Indexed: 06/13/2023]
Abstract
TiO2-based organic-inorganic composite films doped with azobenzene and photosensitive groups were prepared by combining a low-temperature solgel technique and a spin-coating method. The influence of TiO2 content on the optical and structural properties of the composite films including the film thickness, the refractive index, the transmission loss, the thermal gravity analysis, and Fourier transform infrared spectroscopy spectra was studied. Photoisomerization and optical switching characteristics of the composite film were investigated under the irradiation of 365 nm ultraviolet light and 450 nm visible light. Results indicate that several micrometer thick films can be easily obtained at room temperature and there is a proportional relationship between the refractive index value and the TiO2 content. In addition, the composite films have a low optical propagation loss of about 0.1 dB/cm. The composite films with 0.2 M TiO2 content have an obvious photoisomerization and good optical switching properties. Finally, the hexagonal microlens array was fabricated in the composite films by using an ultraviolet nanoimprint technology. All these results above indicate that the as-prepared TiO2-based organic-inorganic composite film has potential applications in optical switching devices and photonic elements.
Collapse
|
21
|
Amir F, Li X, Gruschka MC, Colley ND, Li L, Li R, Linder HR, Sell SA, Barnes JC. Dynamic, multimodal hydrogel actuators using porphyrin-based visible light photoredox catalysis in a thermoresponsive polymer network. Chem Sci 2020; 11:10910-10920. [PMID: 34094340 PMCID: PMC8162415 DOI: 10.1039/d0sc04287k] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 09/01/2020] [Indexed: 12/16/2022] Open
Abstract
Hydrogels that can respond to multiple external stimuli represent the next generation of advanced functional biomaterials. Here, a series of multimodal hydrogels were synthesized that can contract and expand reversibly over several cycles while changing their mechanical properties in response to blue and red light, as well as heat (∼50 °C). The light-responsive behavior was achieved through a photoredox-based mechanism consisting of photoinduced electron transfer from a zinc porphyrin photocatalyst in its excited state to oligoviologen-based macrocrosslinkers, both of which were integrated into the hydrogel polymer network during gel formation. Orthogonal thermoresponsive properties were also realized by introducing N-isopropyl acrylamide (NIPAM) monomer simultaneously with hydroxyethyl acrylate (HEA) in the pre-gel mixture to produce a statistical 60 : 40 HEA : NIPAM polymer network. The resultant hydrogel actuators - crosslinked with either a styrenated viologen dimer (2V4+-St) or hexamer (6V12+-St) - were exposed to red or blue light, or heat, for up to 5 h, and their rate of contraction, as well as the corresponding changes in their physical properties (i.e., stiffness, tensile strength, Young's modulus, etc.), were measured. The combined application of blue light and heat to the 6V12+-St-based hydrogels was also demonstrated, resulting in hydrogels with more than two-fold faster contraction kinetics and dramatically enhanced mechanical robustness when fully contracted. We envision that the reported materials and the corresponding methods of remotely manipulating the dynamic hydrogels may serve as a useful blueprint for future adaptive materials used in biomedical applications.
Collapse
Affiliation(s)
- Faheem Amir
- Department of Chemistry, Washington University One Brookings Drive St. Louis MO 63130 USA
| | - Xuesong Li
- Department of Chemistry, Washington University One Brookings Drive St. Louis MO 63130 USA
| | - Max C Gruschka
- Department of Chemistry, Washington University One Brookings Drive St. Louis MO 63130 USA
| | - Nathan D Colley
- Department of Chemistry, Washington University One Brookings Drive St. Louis MO 63130 USA
| | - Lei Li
- Department of Chemistry, Washington University One Brookings Drive St. Louis MO 63130 USA
| | - Ruihan Li
- Department of Chemistry, Washington University One Brookings Drive St. Louis MO 63130 USA
| | - Houston R Linder
- Department of Biomedical Engineering, Saint Louis University St. Louis MO 63103 USA
| | - Scott A Sell
- Department of Biomedical Engineering, Saint Louis University St. Louis MO 63103 USA
| | - Jonathan C Barnes
- Department of Chemistry, Washington University One Brookings Drive St. Louis MO 63130 USA
| |
Collapse
|
22
|
Moormann W, Tellkamp T, Stadler E, Röhricht F, Näther C, Puttreddy R, Rissanen K, Gescheidt G, Herges R. Efficient Conversion of Light to Chemical Energy: Directional, Chiral Photoswitches with Very High Quantum Yields. Angew Chem Int Ed Engl 2020; 59:15081-15086. [PMID: 32348617 PMCID: PMC7496762 DOI: 10.1002/anie.202005361] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Indexed: 12/14/2022]
Abstract
Photochromic systems have been used to achieve a number of engineering functions such as light energy conversion, molecular motors, pumps, actuators, and sensors. Key to practical applications is a high efficiency in the conversion of light to chemical energy, a rigid structure for the transmission of force to the environment, and directed motion during isomerization. We present a novel type of photochromic system (diindane diazocines) that converts visible light with an efficiency of 18 % to chemical energy. Quantum yields are exceptionally high with >70 % for the cis-trans isomerization and 90 % for the back-reaction and thus higher than the biochemical system rhodopsin (64 %). Two diastereomers (meso and racemate) were obtained in only two steps in high yields. Both isomers are directional switches with high conversion rates (76-99 %). No fatigue was observed after several thousands of switching cycles in both systems.
Collapse
Affiliation(s)
- Widukind Moormann
- Otto-Diels-Institut für Organische ChemieChristian-Albrechts-Universität zu KielOtto-Hahn-Platz 424118KielGermany
| | - Tobias Tellkamp
- Otto-Diels-Institut für Organische ChemieChristian-Albrechts-Universität zu KielOtto-Hahn-Platz 424118KielGermany
| | - Eduard Stadler
- Institute of Physical and Theoretical ChemistryGraz University of TechnologyStremayrgasse 98010GrazAustria
| | - Fynn Röhricht
- Otto-Diels-Institut für Organische ChemieChristian-Albrechts-Universität zu KielOtto-Hahn-Platz 424118KielGermany
| | - Christian Näther
- Institut für Anorganische ChemieChristian-Albrechts-Universität zu KielMax-Eyth-Str. 224118KielGermany
| | - Rakesh Puttreddy
- University of JyvaskylaDepartment of ChemistryP.O. Box 3540014JyväskyläFinland
- Smart Photonic MaterialsFaculty of Engineering and Natural SciencesTampere UniversityP. O. Box 54133101TampereFinland
| | - Kari Rissanen
- University of JyvaskylaDepartment of ChemistryP.O. Box 3540014JyväskyläFinland
| | - Georg Gescheidt
- Institute of Physical and Theoretical ChemistryGraz University of TechnologyStremayrgasse 98010GrazAustria
| | - Rainer Herges
- Otto-Diels-Institut für Organische ChemieChristian-Albrechts-Universität zu KielOtto-Hahn-Platz 424118KielGermany
| |
Collapse
|
23
|
Moormann W, Tellkamp T, Stadler E, Röhricht F, Näther C, Puttreddy R, Rissanen K, Gescheidt G, Herges R. Effiziente Umwandlung von Licht in chemische Energie: Gerichtete, chirale Photoschalter mit sehr hohen Quantenausbeuten. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005361] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Widukind Moormann
- Otto-Diels-Institut für Organische Chemie Christian-Albrechts-Universität zu Kiel Otto-Hahn-Platz 4 24118 Kiel Deutschland
| | - Tobias Tellkamp
- Otto-Diels-Institut für Organische Chemie Christian-Albrechts-Universität zu Kiel Otto-Hahn-Platz 4 24118 Kiel Deutschland
| | - Eduard Stadler
- Institute of Physical and Theoretical Chemistry Graz University of Technology Stremayrgasse 9 8010 Graz Österreich
| | - Fynn Röhricht
- Otto-Diels-Institut für Organische Chemie Christian-Albrechts-Universität zu Kiel Otto-Hahn-Platz 4 24118 Kiel Deutschland
| | - Christian Näther
- Institut für Anorganische Chemie Christian-Albrechts-Universität zu Kiel Max-Eyth-Str. 2 24118 Kiel Deutschland
| | - Rakesh Puttreddy
- University of Jyvaskyla Department of Chemistry P.O. Box 35 40014 Jyväskylä Finnland
- Smart Photonic Materials Faculty of Engineering and Natural Sciences Tampere University P. O. Box 541 33101 Tampere Finnland
| | - Kari Rissanen
- University of Jyvaskyla Department of Chemistry P.O. Box 35 40014 Jyväskylä Finnland
| | - Georg Gescheidt
- Institute of Physical and Theoretical Chemistry Graz University of Technology Stremayrgasse 9 8010 Graz Österreich
| | - Rainer Herges
- Otto-Diels-Institut für Organische Chemie Christian-Albrechts-Universität zu Kiel Otto-Hahn-Platz 4 24118 Kiel Deutschland
| |
Collapse
|
24
|
Z-E isomerization of azobenzene based amphiphilic poly(urethane-urea)s: Influence on the dynamic mechanical properties and the effect of the self-assembly in solution on the isomerization kinetics. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109583] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
25
|
Abstract
Ethylene bridged azobenzenes are novel, promising molecular switches that are thermodynamically more stable in the (Z) than in the (E) configuration, contrary to the linear azobenzene. However, their previous synthetic routes were often not general, and yields were poorly reproducible, and sometimes very low. Here we present a new synthetic strategy that is both versatile and reliable. Starting from widely available 2-bromobenzyl bromides, the designated molecules can be obtained in three simple steps.
Collapse
Affiliation(s)
- Shuo Li
- Otto-Diels-Institute for Organic Chemistry , University of Kiel , Otto-Hahn-Platz 4 , 24098 Kiel , Germany
| | - Nadi Eleya
- University of Bremen , Institute for Organic and Analytical Chemistry , Leobener Str. 7 , 28359 Bremen , Germany
| | - Anne Staubitz
- Otto-Diels-Institute for Organic Chemistry , University of Kiel , Otto-Hahn-Platz 4 , 24098 Kiel , Germany.,University of Bremen , Institute for Organic and Analytical Chemistry , Leobener Str. 7 , 28359 Bremen , Germany.,University of Bremen , MAPEX Center for Materials and Processes , Bibliothekstr. 1 , 28359 Bremen , Germany
| |
Collapse
|
26
|
Li QW, Su YX, Zou H, Chen YY, Zhou L, Hou XH, Liu N, Wu ZQ. Self-assembly and fluorescence emission of UV-responsive azobenzene-containing helical poly(phenyl isocyanide) copolymers. Polym Chem 2020. [DOI: 10.1039/d0py01072c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
UV-responsive azobenzene-containing helical copolymers were obtained, and their self-assembly and fluorescent properties were investigated.
Collapse
Affiliation(s)
- Qian-Wei Li
- Department of Polymer Science and Engineering
- School of Chemistry and Chemical Engineering
- and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering
- Hefei University of Technology
- Hefei 230009
| | - Yi-Xu Su
- Department of Polymer Science and Engineering
- School of Chemistry and Chemical Engineering
- and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering
- Hefei University of Technology
- Hefei 230009
| | - Hui Zou
- Department of Polymer Science and Engineering
- School of Chemistry and Chemical Engineering
- and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering
- Hefei University of Technology
- Hefei 230009
| | - Yong-Yuan Chen
- Department of Polymer Science and Engineering
- School of Chemistry and Chemical Engineering
- and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering
- Hefei University of Technology
- Hefei 230009
| | - Li Zhou
- Department of Polymer Science and Engineering
- School of Chemistry and Chemical Engineering
- and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering
- Hefei University of Technology
- Hefei 230009
| | - Xiao-Hua Hou
- Department of Polymer Science and Engineering
- School of Chemistry and Chemical Engineering
- and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering
- Hefei University of Technology
- Hefei 230009
| | - Na Liu
- Department of Polymer Science and Engineering
- School of Chemistry and Chemical Engineering
- and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering
- Hefei University of Technology
- Hefei 230009
| | - Zong-Quan Wu
- Department of Polymer Science and Engineering
- School of Chemistry and Chemical Engineering
- and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering
- Hefei University of Technology
- Hefei 230009
| |
Collapse
|
27
|
Dattler D, Fuks G, Heiser J, Moulin E, Perrot A, Yao X, Giuseppone N. Design of Collective Motions from Synthetic Molecular Switches, Rotors, and Motors. Chem Rev 2019; 120:310-433. [PMID: 31869214 DOI: 10.1021/acs.chemrev.9b00288] [Citation(s) in RCA: 262] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Precise control over molecular movement is of fundamental and practical importance in physics, biology, and chemistry. At nanoscale, the peculiar functioning principles and the synthesis of individual molecular actuators and machines has been the subject of intense investigations and debates over the past 60 years. In this review, we focus on the design of collective motions that are achieved by integrating, in space and time, several or many of these individual mechanical units together. In particular, we provide an in-depth look at the intermolecular couplings used to physically connect a number of artificial mechanically active molecular units such as photochromic molecular switches, nanomachines based on mechanical bonds, molecular rotors, and light-powered rotary motors. We highlight the various functioning principles that can lead to their collective motion at various length scales. We also emphasize how their synchronized, or desynchronized, mechanical behavior can lead to emerging functional properties and to their implementation into new active devices and materials.
Collapse
Affiliation(s)
- Damien Dattler
- SAMS Research Group, Institute Charles Sadron, CNRS , University of Strasbourg , 23 rue du Loess , BP 84047, 67034 Strasbourg Cedex 2 , France
| | - Gad Fuks
- SAMS Research Group, Institute Charles Sadron, CNRS , University of Strasbourg , 23 rue du Loess , BP 84047, 67034 Strasbourg Cedex 2 , France
| | - Joakim Heiser
- SAMS Research Group, Institute Charles Sadron, CNRS , University of Strasbourg , 23 rue du Loess , BP 84047, 67034 Strasbourg Cedex 2 , France
| | - Emilie Moulin
- SAMS Research Group, Institute Charles Sadron, CNRS , University of Strasbourg , 23 rue du Loess , BP 84047, 67034 Strasbourg Cedex 2 , France
| | - Alexis Perrot
- SAMS Research Group, Institute Charles Sadron, CNRS , University of Strasbourg , 23 rue du Loess , BP 84047, 67034 Strasbourg Cedex 2 , France
| | - Xuyang Yao
- SAMS Research Group, Institute Charles Sadron, CNRS , University of Strasbourg , 23 rue du Loess , BP 84047, 67034 Strasbourg Cedex 2 , France
| | - Nicolas Giuseppone
- SAMS Research Group, Institute Charles Sadron, CNRS , University of Strasbourg , 23 rue du Loess , BP 84047, 67034 Strasbourg Cedex 2 , France
| |
Collapse
|
28
|
Maier MS, Hüll K, Reynders M, Matsuura BS, Leippe P, Ko T, Schäffer L, Trauner D. Oxidative Approach Enables Efficient Access to Cyclic Azobenzenes. J Am Chem Soc 2019; 141:17295-17304. [PMID: 31584272 DOI: 10.1021/jacs.9b08794] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Azobenzenes are versatile photoswitches that have found widespread use in a variety of fields, ranging from photopharmacology to the material sciences. In addition to regular azobenzenes, the cyclic diazocines have recently emerged. Although diazocines have fascinating conformational and photophysical properties, their use has been limited by their synthetic accessibility. Herein, we present a general, high-yielding protocol that relies on the oxidative cyclization of dianilines. In combination with a modular substrate synthesis, it allows for rapid access to diversely functionalized diazocines on gram scales. Our work systematically explores substituent effects on the photoisomerization and thermal relaxation of diazocines. It will enable their incorporation into a wide variety of functional molecules, unlocking the full potential of these emerging photoswitches. The method can be applied to the synthesis of a new cyclic azobenzene with a nine-membered central ring and distinct properties.
Collapse
Affiliation(s)
- Martin S Maier
- Department of Chemistry and Center for Integrated Protein Science (CIPSM) , Ludwig Maximilian University Munich , 81377 Munich , Germany
- Department of Chemistry , New York University , New York , New York 10003 , United States
| | - Katharina Hüll
- Department of Chemistry and Center for Integrated Protein Science (CIPSM) , Ludwig Maximilian University Munich , 81377 Munich , Germany
- Department of Chemistry , New York University , New York , New York 10003 , United States
| | - Martin Reynders
- Department of Chemistry and Center for Integrated Protein Science (CIPSM) , Ludwig Maximilian University Munich , 81377 Munich , Germany
- Department of Chemistry , New York University , New York , New York 10003 , United States
| | - Bryan S Matsuura
- Department of Chemistry and Center for Integrated Protein Science (CIPSM) , Ludwig Maximilian University Munich , 81377 Munich , Germany
- Department of Chemistry , New York University , New York , New York 10003 , United States
| | - Philipp Leippe
- Department of Chemistry and Center for Integrated Protein Science (CIPSM) , Ludwig Maximilian University Munich , 81377 Munich , Germany
| | - Tongil Ko
- Department of Chemistry , New York University , New York , New York 10003 , United States
| | - Lukas Schäffer
- Department of Chemistry and Center for Integrated Protein Science (CIPSM) , Ludwig Maximilian University Munich , 81377 Munich , Germany
| | - Dirk Trauner
- Department of Chemistry and Center for Integrated Protein Science (CIPSM) , Ludwig Maximilian University Munich , 81377 Munich , Germany
- Department of Chemistry , New York University , New York , New York 10003 , United States
| |
Collapse
|
29
|
Li Y, Zhuo H, Chen H, Chen S. Novel photo-thermal staged-responsive supramolecular shape memory polyurethane complex. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.121671] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
30
|
Worch JC, Prydderch H, Jimaja S, Bexis P, Becker ML, Dove AP. Stereochemical enhancement of polymer properties. Nat Rev Chem 2019. [DOI: 10.1038/s41570-019-0117-z] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
31
|
Xu WC, Sun S, Wu S. Photoinduced Reversible Solid-to-Liquid Transitions for Photoswitchable Materials. Angew Chem Int Ed Engl 2019; 58:9712-9740. [PMID: 30737869 DOI: 10.1002/anie.201814441] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Indexed: 11/06/2022]
Abstract
Heating and cooling can induce reversible solid-to-liquid transitions of matter. In contrast, athermal photochemical processes can induce reversible solid-to-liquid transitions of some newly developed azobenzene compounds. Azobenzene is photoswitchable. UV light induces trans-to-cis isomerization; visible light or heat induces cis-to-trans isomerization. Trans and cis isomers usually have different melting points (Tm ) or glass transition temperatures (Tg ). If Tm or Tg of an azobenzene compound in trans and cis forms are above and below room temperature, respectively, light may induce reversible solid-to-liquid transitions. In this Review, we introduce azobenzene compounds that exhibit photoinduced reversible solid-to-liquid transitions, discuss the mechanisms and design principles, and show their potential applications in healable coatings, adhesives, transfer printing, lithography, actuators, fuels, and gas separation. Finally, we discuss remaining challenges in this field.
Collapse
Affiliation(s)
- Wen-Cong Xu
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Jinzhai Road 96, Hefei, 230026, China
| | - Shaodong Sun
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Jinzhai Road 96, Hefei, 230026, China
| | - Si Wu
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Jinzhai Road 96, Hefei, 230026, China
| |
Collapse
|
32
|
Xu W, Sun S, Wu S. Photoinduzierte, reversible Fest‐flüssig‐Übergänge unter Verwendung photoschaltbarer Materialien. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201814441] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Wen‐Cong Xu
- CAS Key Laboratory of Soft Matter ChemistryHefei National Laboratory for Physical Sciences at the MicroscaleAnhui Key Laboratory of Optoelectronic Science and TechnologyDepartment of Polymer Science and EngineeringUniversity of Science and Technology of China Jinzhai Road 96 Hefei 230026 China
| | - Shaodong Sun
- CAS Key Laboratory of Soft Matter ChemistryHefei National Laboratory for Physical Sciences at the MicroscaleAnhui Key Laboratory of Optoelectronic Science and TechnologyDepartment of Polymer Science and EngineeringUniversity of Science and Technology of China Jinzhai Road 96 Hefei 230026 China
| | - Si Wu
- CAS Key Laboratory of Soft Matter ChemistryHefei National Laboratory for Physical Sciences at the MicroscaleAnhui Key Laboratory of Optoelectronic Science and TechnologyDepartment of Polymer Science and EngineeringUniversity of Science and Technology of China Jinzhai Road 96 Hefei 230026 China
| |
Collapse
|
33
|
Liu J, Xiao C. Capability of starch derivative containing azo and carboxylic groups to tune photo-behaviors via LbL-assembly. Int J Biol Macromol 2019; 131:608-613. [DOI: 10.1016/j.ijbiomac.2019.03.106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/15/2019] [Accepted: 03/17/2019] [Indexed: 12/01/2022]
|
34
|
Ansari M, Bera R, Mondal S, Das N. Triptycene-Derived Photoresponsive Fluorescent Azo-Polymer as Chemosensor for Picric Acid Detection. ACS OMEGA 2019; 4:9383-9392. [PMID: 31460028 PMCID: PMC6648835 DOI: 10.1021/acsomega.9b00497] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 05/16/2019] [Indexed: 05/08/2023]
Abstract
Two new triptycene-based azobenzene-functionalized polymers (TBAFPs) have been synthesized using the well-known Pd-catalyzed Sonogashira cross-coupling polycondensation reaction between 2,6-diethynyltriptycene and (meta or para) dibromo-azobenzenes. Enhancement of the fluorescent emission intensity was observed upon trans → cis isomerization of -N=N- linkage in TBAFPs. The cis-lifetime of TBAFP1 is rather long (greater than 2 days). The resulting materials were tested as a potential chemosensor for the detection of picric acid (PA)-a water pollutant as well as chemical constituent of explosives used in warfare. PA was found to interact strongly with TBAFPs, which led to significant quenching of the latter's fluorescence emission intensities. The binding constants are in the order of 105 M-1. TBAFPs were also able to detect PA in nanomolar concentrations.
Collapse
Affiliation(s)
- Mosim Ansari
- Department of Chemistry, Indian
Institute of Technology Patna, 801106 Bihar, India
| | - Ranajit Bera
- Department of Chemistry, Indian
Institute of Technology Patna, 801106 Bihar, India
| | - Snehasish Mondal
- Department of Chemistry, Indian
Institute of Technology Patna, 801106 Bihar, India
| | - Neeladri Das
- Department of Chemistry, Indian
Institute of Technology Patna, 801106 Bihar, India
| |
Collapse
|
35
|
Thapaliya ER, Zhao J, Ellis-Davies GCR. Locked-Azobenzene: Testing the Scope of a Unique Photoswitchable Scaffold for Cell Physiology. ACS Chem Neurosci 2019; 10:2481-2488. [PMID: 30767510 DOI: 10.1021/acschemneuro.8b00734] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Azobenzenes are the most widely studied photoswitches, and have become popular optical probes for biological systems. The cis configuration is normally metastable, meaning the trans configuration is always thermodynamically favored. The unique exception to this rule is an azobenzene having a two-carbon bridge between ortho positions, substitutions that lock the photoswitch in its cis configuration. Only thoroughly chemically characterized relatively recently, we describe the first applications of this locked-azobenzene (or "LAB") scaffold with two derivatives designed to control ion flow in pyramidal neurons in acutely isolated brain slices. Our LAB derivatives maintain most of the desirable photochemical properties of the parent scaffold, and work as designed in living cells. However, LAB derivitization changes the trans photostationary state from >85% of the parent photoswitch to about 50%, suggesting that careful design considerations must be given for future applications of the LAB scaffold in biological areas.
Collapse
Affiliation(s)
- Ek Raj Thapaliya
- Department of Neuroscience, Mount Sinai School of Medicine, New York, New York 10029, United States
| | - Jun Zhao
- Department of Neuroscience, Mount Sinai School of Medicine, New York, New York 10029, United States
| | | |
Collapse
|
36
|
Reeves JA, De Alwis Watuthanthrige N, Boyer C, Konkolewicz D. Intrinsic and Catalyzed Photochemistry of Phenylvinylketone for Wavelength‐Sensitive Controlled Polymerization. CHEMPHOTOCHEM 2019. [DOI: 10.1002/cptc.201900052] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Jennifer A. Reeves
- Department of Chemistry and BiochemistryMiami University 651 E High St Oxford OH 45056 Miami USA
| | | | - Cyrille Boyer
- Centre for Advanced Macromolecular Design and Australian Centre for NanoMedicine School of Chemical Engineering, and Centre for Advanced Macromolecular Design and Australian Centre for NanoMedicine, School of ChemistryThe University of New South Wales Sydney NSW 2052 Australia
| | - Dominik Konkolewicz
- Department of Chemistry and BiochemistryMiami University 651 E High St Oxford OH 45056 Miami USA
| |
Collapse
|
37
|
Albert L, Peñalver A, Djokovic N, Werel L, Hoffarth M, Ruzic D, Xu J, Essen L, Nikolic K, Dou Y, Vázquez O. Modulating Protein–Protein Interactions with Visible‐Light‐Responsive Peptide Backbone Photoswitches. Chembiochem 2019; 20:1417-1429. [DOI: 10.1002/cbic.201800737] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Indexed: 11/07/2022]
Affiliation(s)
- Lea Albert
- Fachbereich ChemiePhilipps-Universität Marburg Hans-Meerwein-Strasse 4 35043 Marburg Germany
| | - Alberto Peñalver
- Fachbereich ChemiePhilipps-Universität Marburg Hans-Meerwein-Strasse 4 35043 Marburg Germany
| | - Nemanja Djokovic
- Department of Pharmaceutical ChemistryFaculty of PharmacyUniversity of Belgrade 450 Vojvode Stepe 11000 Belgrade Serbia
| | - Laura Werel
- Fachbereich ChemiePhilipps-Universität Marburg Hans-Meerwein-Strasse 4 35043 Marburg Germany
| | - Malte Hoffarth
- Fachbereich ChemiePhilipps-Universität Marburg Hans-Meerwein-Strasse 4 35043 Marburg Germany
| | - Dusan Ruzic
- Department of Pharmaceutical ChemistryFaculty of PharmacyUniversity of Belgrade 450 Vojvode Stepe 11000 Belgrade Serbia
| | - Jing Xu
- Department of PathologyUniversity of Michigan Ann Arbor MI 48109 USA
| | - Lars‐Oliver Essen
- Fachbereich ChemiePhilipps-Universität Marburg Hans-Meerwein-Strasse 4 35043 Marburg Germany
| | - Katarina Nikolic
- Department of Pharmaceutical ChemistryFaculty of PharmacyUniversity of Belgrade 450 Vojvode Stepe 11000 Belgrade Serbia
| | - Yali Dou
- Department of PathologyUniversity of Michigan Ann Arbor MI 48109 USA
| | - Olalla Vázquez
- Fachbereich ChemiePhilipps-Universität Marburg Hans-Meerwein-Strasse 4 35043 Marburg Germany
| |
Collapse
|
38
|
Moormann W, Langbehn D, Herges R. Synthesis of functionalized diazocines for application as building blocks in photo- and mechanoresponsive materials. Beilstein J Org Chem 2019; 15:727-732. [PMID: 30992720 PMCID: PMC6444418 DOI: 10.3762/bjoc.15.68] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 03/09/2019] [Indexed: 11/28/2022] Open
Abstract
Seven symmetrically 3,3'-substituted diazocines were synthesized. Functional groups include alcohol, azide, amine and vinyl groups, which are suitable for polymer synthesis. Upon irradiation at 385 and 530 nm the diazocines perform a reversible, pincer-type movement switching the 3,3'-distance between 6.1 Å (cis, stable isomer) and 8.2 Å (trans, metastable isomer). Key reactions in the synthesis are an oxidative C-C coupling of 2-nitrotoluenes (75-82% yield) and a reductive ring closure to form the diazocines (56-60% yield). The cyclization of the dinitro compound to the azo compound was improved in yield and reproducibility, by over-reduction to the hydrazine and reoxidation to the azo unit. In contrast to 3,3'- and 4,4'-diaminodiazocine, which have been implemented in macromolecules for conformation switching, our compounds exhibit improved photophysical properties (photostationary states, separation of absorption bands in the cis and trans configuration). Hence they are promising candidates as molecular switches in photo and mechanoresponsive macromolecules and other smart materials.
Collapse
Affiliation(s)
- Widukind Moormann
- Otto Diels Institute for Organic Chemistry, Christian-Albrechts-University, Otto-Hahn-Platz 4, 24118 Kiel, Germany
| | - Daniel Langbehn
- Otto Diels Institute for Organic Chemistry, Christian-Albrechts-University, Otto-Hahn-Platz 4, 24118 Kiel, Germany
| | - Rainer Herges
- Otto Diels Institute for Organic Chemistry, Christian-Albrechts-University, Otto-Hahn-Platz 4, 24118 Kiel, Germany
| |
Collapse
|
39
|
Yoon Y, Jo S, Park SJ, Kim HM, Kim D, Lee TS. Unusual fluorescence of o-phenylazonaphthol derivatives with aggregation-induced emission and their use in two-photon cell imaging. Chem Commun (Camb) 2019; 55:6747-6750. [DOI: 10.1039/c9cc03106e] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Unusual fluorescence of o-phenylazonaphthol derivatives with aggregated-induced emission (AIE) is reported for the first time, which can be used in two-photon cell imaging applications.
Collapse
Affiliation(s)
- Yeoju Yoon
- Organic and Optoelectronic Materials Laboratory
- Department of Advanced Organic Materials and Textile System Engineering
- Chungnam National University
- Daejeon 34134
- Korea
| | - Seonyoung Jo
- Organic and Optoelectronic Materials Laboratory
- Department of Advanced Organic Materials and Textile System Engineering
- Chungnam National University
- Daejeon 34134
- Korea
| | - Sang Jun Park
- Department of Chemistry and Department of Energy Systems Research
- Ajou University
- Suwon 16499
- Korea
| | - Hwan Myung Kim
- Department of Chemistry and Department of Energy Systems Research
- Ajou University
- Suwon 16499
- Korea
| | - Dongwook Kim
- Department of Chemistry
- Kyonggi University
- Suwon 16227
- Korea
| | - Taek Seung Lee
- Organic and Optoelectronic Materials Laboratory
- Department of Advanced Organic Materials and Textile System Engineering
- Chungnam National University
- Daejeon 34134
- Korea
| |
Collapse
|
40
|
Liu M, Yin L, Wang L, Miao T, Cheng X, Wang Y, Zhang W, Zhu X. Synthesis of monodisperse aromatic azo oligomers toward gaining new insight into the isomerization of π-conjugated azo systems. Polym Chem 2019. [DOI: 10.1039/c9py00001a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The unique E → Z photoisomerization mechanism of monodisperse fluorene-azo oligomers was studied and the trans-[trans–trans]n-cis model was proposed. This novel model will give new insight into the isomerization of π-conjugated azo systems.
Collapse
Affiliation(s)
- Meng Liu
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Lu Yin
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Laibing Wang
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Tengfei Miao
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Xiaoxiao Cheng
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Yong Wang
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Wei Zhang
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Xiulin Zhu
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
| |
Collapse
|
41
|
Zhu Y, Ma C, Han H, Sun R, Liao X, Xie M. Azobenzene-functionalized polymers by ring-opening metathesis polymerization for high dielectric and energy storage performance. Polym Chem 2019. [DOI: 10.1039/c9py00151d] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Block copolymers with push–pull azobenzene pendants and core–shell nanostructures exhibited high and regulated dielectric constants by photoisomerization of azobenzene groups, low dielectric loss, and high energy density.
Collapse
Affiliation(s)
- Yu Zhu
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai
- China
| | - Cuihong Ma
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai
- China
| | - Huijin Han
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai
- China
| | - Ruyi Sun
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai
- China
| | - Xiaojuan Liao
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai
- China
| | - Meiran Xie
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai
- China
| |
Collapse
|