1
|
Abou Hamad N, Akintola J, Schlenoff JB. Quantifying Hydrophilicity in Polyelectrolytes and Polyzwitterions. Macromolecules 2025; 58:3422-3430. [PMID: 40224165 PMCID: PMC11984477 DOI: 10.1021/acs.macromol.4c03126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/13/2025] [Accepted: 03/10/2025] [Indexed: 04/15/2025]
Abstract
The affinity of charged polymers for water is of central interest in polyelectrolyte science. Hydration controls the solution properties of polyelectrolytes as well as their performance in materials having a balance of positive and negative repeat units, such as polyelectrolyte complexes, PECs, and polyzwitterions, PZs. As with neutral polymers, a ranking of water affinity, loosely termed hydrophilicity, is often sought. Apart from the solubility in water, there are few methods for determining relative hydrophilicity. The scaling exponent of size with molecular weight provides, for polymers in general, a classical measure of solvent quality. In this work, using aqueous size exclusion chromatography coupled with static light scattering, the radius of gyration scaling with molecular weight was determined for a range of cationic and anionic polyelectrolytes and for some polyzwitterions. For a more definitive comparison of hydrophilicity, solution calorimetry was used to measure the enthalpy of solution, ΔH sol, when rigorously dried samples of these polymers were dissolved in aqueous 0.1 M NaCl. All polymers yielded strongly exothermic ΔH sol, which provided a ranking of hydrophilicity. The first four molecules of water appear to generate almost all of the heat. Methacryl versions of polymers were more hydrophilic, as ΔH sol was 3-5 kJ mol-1 more exothermic than the nonmethacryl polymer. Polyzwitterions were shown to be strongly hydrated, consistent with the proposed mechanisms for their antifouling properties, although water is not necessarily more strongly held for PZs compared to PEs.
Collapse
Affiliation(s)
- Nagham Abou Hamad
- Department of Chemistry and Biochemistry, The Florida State University, Tallahassee, Florida 32308-4390, United
States
| | - John Akintola
- Department of Chemistry and Biochemistry, The Florida State University, Tallahassee, Florida 32308-4390, United
States
| | - Joseph B. Schlenoff
- Department of Chemistry and Biochemistry, The Florida State University, Tallahassee, Florida 32308-4390, United
States
| |
Collapse
|
2
|
Hickey KP, MacDonell MM, Picel KC. Quantum chemically calculated Abraham parameters for quantifying and predicting polymer hydrophobicity. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2025; 44:653-661. [PMID: 39844586 DOI: 10.1093/etojnl/vgae062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/01/2024] [Accepted: 11/07/2024] [Indexed: 01/24/2025]
Abstract
The leakage and accumulation of plastic in the environment is a significant and growing problem with numerous detrimental impacts and has led to a push toward the design and development of more environmentally benign materials. To this end, we have developed a quantum chemistry-based model for predicting the mobility of polymer materials from molecular structure. Hydrophobicity is used as a surrogate for mobility given that hydrophobic interactions drive much of the partitioning of contaminants in and out of various environmentally relevant compartments. To model polymer hydrophobicity, we adjusted a previously developed Quantum Chemically Calculated Abraham Parameter model to calculate Abraham parameters of small molecules from molecular structure information. The resulting model predicted the octanol-water partition coefficient (KOW) of polymer repeating units with a root mean square error (RMSE) of 0.48 (log scale). Additionally, the hydrophobicity of high molecular weight polymer materials was captured through solubility parameters and Nile red staining experiments from the literature and predicted with RMSEs of 1.21 (J/cc)0.5 and 3.42 nm, respectively. Finally, to test the environmental applicability of the model, the relative adsorption capacity of three polymers was predicted and used to unify sorption isotherms across multiple sorbates and polymer sorbents.
Collapse
Affiliation(s)
- Kevin P Hickey
- Environmental Science Division, Argonne National Laboratory, Lemont, IL, United States
| | - Margaret M MacDonell
- Environmental Science Division, Argonne National Laboratory, Lemont, IL, United States
| | - Kurt C Picel
- Environmental Science Division, Argonne National Laboratory, Lemont, IL, United States
| |
Collapse
|
3
|
Waugaman SD, Dementyev M, Abbasi GharehTapeh E, Lopez CG, Mathers RT, Hickey RJ. Nanoparticle Loading in Swollen Polymer Gels: An Unexpected Thermodynamic Twist. NANO LETTERS 2025; 25:3323-3329. [PMID: 39960322 DOI: 10.1021/acs.nanolett.4c06501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Tailoring polymer gel functionality by loading small molecules and nanoparticles is critical for drug delivery and tissue regeneration. Typically, solute loading in gels correlates with the degree of solvent swelling, which is controlled by the cross-link density and polymer/solvent interactions. However, the general assumption that the degree of swelling is the primary factor for nanoparticle loading is incorrect. Here, we demonstrate that the pairwise interactions between the polymer, solvent, and solute dictate the solute loading in gels. We performed gel loading studies of ligand-stabilized gold nanoparticles using different solvents, polymer network hydrophobicity, and cross-link densities, and found that nanoparticle distribution between polymer and solvent correlate with calculated thermodynamic partition coefficients. Despite previous assumptions that the maximum nanoparticle loading occurs at the highest degree of gel swelling, we reveal that nanoparticles preferentially load into gels with lower solvent swelling if ligand/polymer interactions are more favorable than ligand/solvent interactions.
Collapse
Affiliation(s)
- Seth D Waugaman
- Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Mykyta Dementyev
- Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Elmira Abbasi GharehTapeh
- Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Carlos G Lopez
- Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Robert T Mathers
- Chemistry, The Pennsylvania State University, New Kensington, Pennsylvania 15068, United States
| | - Robert J Hickey
- Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
4
|
Fernandes MCS, Branco R, Pereira P, Coelho JFJ, Morais PV, Serra AC. Antimicrobial Activity of Copolymer Structures from Bio-Based Monomers. Biomacromolecules 2024; 25:7915-7925. [PMID: 39540900 DOI: 10.1021/acs.biomac.4c01203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The urgent need for new antimicrobial compounds has led scientists to explore antimicrobial peptides (AMPs) and antimicrobial polymers as solutions for multidrug resistance. In this study, we synthesized copolymers with cationic and hydrophobic moieties by free-radical polymerization (FRP) using a chain transfer agent to control molecular weights. The potential of natural products as part of the hydrophobic moiety was evaluated, along with variations in their monomer content (13-25%) and the molecular weight (MW) of the copolymer (5000-20,000 g·mol-1). Hydrophobicity was evaluated using the theoretical Log Poct values and surface areas (SAs). Biological assays included antimicrobial activity against Escherichia coli and Staphylococcus aureus standard strains, hemolytic activity in red blood cells (RBC), and cytotoxicity tests against HEK293T cells. Keys findings indicate that copolymers with tropolone moieties, lower MWs, and an optimal balance between hydrophobic and cationic moieties show a promising basis for future generations of antimicrobials.
Collapse
Affiliation(s)
- Mónica C S Fernandes
- CEMMPRE, ARISE, Department of Chemical Engineering, University of Coimbra, Coimbra 3030-790, Portugal
| | - Rita Branco
- CEMMPRE, ARISE, Department of Life Sciences, University of Coimbra, Coimbra 3001-401, Portugal
| | - Patrícia Pereira
- CEMMPRE, ARISE, Department of Chemical Engineering, University of Coimbra, Coimbra 3030-790, Portugal
- IPN, Instituto Pedro Nunes, Associação para a Inovação e Desenvolvimento em Ciência e Tecnologia, Rua Pedro Nunes, Coimbra 3030-199, Portugal
| | - Jorge F J Coelho
- CEMMPRE, ARISE, Department of Chemical Engineering, University of Coimbra, Coimbra 3030-790, Portugal
- IPN, Instituto Pedro Nunes, Associação para a Inovação e Desenvolvimento em Ciência e Tecnologia, Rua Pedro Nunes, Coimbra 3030-199, Portugal
| | - Paula V Morais
- CEMMPRE, ARISE, Department of Life Sciences, University of Coimbra, Coimbra 3001-401, Portugal
| | - Arménio C Serra
- CEMMPRE, ARISE, Department of Chemical Engineering, University of Coimbra, Coimbra 3030-790, Portugal
| |
Collapse
|
5
|
Zhang X, Xia Y, Sun Y, Zhang C, Zhang X. Water-Degradable Oxygen-Rich Polymers with AB/ABB Units from Fast and Selective Copolymerization. Angew Chem Int Ed Engl 2024; 63:e202315524. [PMID: 38279840 DOI: 10.1002/anie.202315524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/26/2024] [Accepted: 01/26/2024] [Indexed: 01/29/2024]
Abstract
Researchers have been chasing plastics that can automatically and fully degrade into valuable products under natural conditions. Here, we develop a series of water-degradable polymers from the first reported fast and selective cationic copolymerization of formaldehyde (B) with cyclic anhydrides (A). In addition to readily accessible monomers, the method is performed at industrially relevant temperatures (~100 °C), takes tens or even minutes, and uses common acid as the catalyst. Interestingly, such polymers possess tunable AB/ABB-type repeating units, which are considered to be thermodynamic and kinetic products, respectively, resulting in low carbon content ([O] : [C] up to 1 : 1). Notably, the polymers can completely degrade to valuable diacids within 150 days in water at ambient temperature owing to the incorporation of carboxyl terminals and acid-responsive acetal units. By washing with aqueous sodium carbonate, the polymers are relatively stable over several months.
Collapse
Affiliation(s)
- Xun Zhang
- National Key Laboratory of Biobased Transportation Fuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, 310027, Hangzhou, China
| | - Yanni Xia
- National Key Laboratory of Biobased Transportation Fuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, 310027, Hangzhou, China
| | - Yue Sun
- National Key Laboratory of Biobased Transportation Fuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, 310027, Hangzhou, China
| | - Chengjian Zhang
- National Key Laboratory of Biobased Transportation Fuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, 310027, Hangzhou, China
| | - Xinghong Zhang
- National Key Laboratory of Biobased Transportation Fuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, 310027, Hangzhou, China
| |
Collapse
|
6
|
Yang Q, Zhao H, Peng Q, Chen G, Liu J, Cao X, Xiong S, Li G, Liu Q. Elimination of Pharmaceutical Compounds from Aqueous Solution through Novel Functionalized Pitch-Based Porous Adsorbents: Kinetic, Isotherm, Thermodynamic Studies and Mechanism Analysis. Molecules 2024; 29:463. [PMID: 38257376 PMCID: PMC10819009 DOI: 10.3390/molecules29020463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 01/13/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
The long-term presence of PPCPs in the aqueous environment poses a potentially significant threat to human life and physical health and the safety of the water environment. In our previous work, we investigated low-cost pitch-based HCP adsorbents with an excellent adsorption capacity and magnetic responsiveness through a simple one-step Friedel-Crafts reaction. In this work, we further investigated the adsorption behavior of the prepared pitch-based adsorbents onto three PPCP molecules (DFS, AMP, and antipyrine) in detail. The maximum adsorption capacity of P-MPHCP for DFS was 444.93 mg g-1. The adsorption equilibrium and kinetic processes were well described through the Langmuir model and the proposed secondary kinetic model. The negative changes in Gibbs free energy and enthalpy reflected that the adsorption of HCPs onto PPCPs was a spontaneous exothermic process. The recoverability results showed that the adsorption of MPHCP and P-MPHCP onto DFS remained above 95% after 10 adsorption-desorption cycles. The present work further demonstrates that these pitch-based adsorbents can be used for multiple applications, which have a very extensive practical application prospect.
Collapse
Affiliation(s)
- Qilin Yang
- School of Material Science and Engineering, Hunan University of Science and Technology, Xiangtan 411201, China; (Q.Y.); (Q.P.); (G.C.); (J.L.); (X.C.); (S.X.); (G.L.)
| | - Hongwei Zhao
- School of Material Science and Engineering, Hunan University of Science and Technology, Xiangtan 411201, China; (Q.Y.); (Q.P.); (G.C.); (J.L.); (X.C.); (S.X.); (G.L.)
- Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Qi Peng
- School of Material Science and Engineering, Hunan University of Science and Technology, Xiangtan 411201, China; (Q.Y.); (Q.P.); (G.C.); (J.L.); (X.C.); (S.X.); (G.L.)
| | - Guang Chen
- School of Material Science and Engineering, Hunan University of Science and Technology, Xiangtan 411201, China; (Q.Y.); (Q.P.); (G.C.); (J.L.); (X.C.); (S.X.); (G.L.)
| | - Jiali Liu
- School of Material Science and Engineering, Hunan University of Science and Technology, Xiangtan 411201, China; (Q.Y.); (Q.P.); (G.C.); (J.L.); (X.C.); (S.X.); (G.L.)
| | - Xinxiu Cao
- School of Material Science and Engineering, Hunan University of Science and Technology, Xiangtan 411201, China; (Q.Y.); (Q.P.); (G.C.); (J.L.); (X.C.); (S.X.); (G.L.)
- Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Shaohui Xiong
- School of Material Science and Engineering, Hunan University of Science and Technology, Xiangtan 411201, China; (Q.Y.); (Q.P.); (G.C.); (J.L.); (X.C.); (S.X.); (G.L.)
- Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Gen Li
- School of Material Science and Engineering, Hunan University of Science and Technology, Xiangtan 411201, China; (Q.Y.); (Q.P.); (G.C.); (J.L.); (X.C.); (S.X.); (G.L.)
- Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Qingquan Liu
- School of Material Science and Engineering, Hunan University of Science and Technology, Xiangtan 411201, China; (Q.Y.); (Q.P.); (G.C.); (J.L.); (X.C.); (S.X.); (G.L.)
- Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, Hunan University of Science and Technology, Xiangtan 411201, China
| |
Collapse
|
7
|
Lee CE, Kim S, Park HW, Lee W, Jangid AK, Choi Y, Jeong WJ, Kim K. Tailoring tumor-recognizable hyaluronic acid-lipid conjugates to enhance anticancer efficacies of surface-engineered natural killer cells. NANO CONVERGENCE 2023; 10:56. [PMID: 38097911 PMCID: PMC10721593 DOI: 10.1186/s40580-023-00406-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/01/2023] [Indexed: 12/18/2023]
Abstract
Natural killer (NK) cells have clinical advantages in adoptive cell therapy owing to their inherent anticancer efficacy and their ability to identify and eliminate malignant tumors. However, insufficient cancer-targeting ligands on NK cell surfaces often inhibit their immunotherapeutic performance, especially in immunosuppressive tumor microenvironment. To facilitate tumor recognition and subsequent anticancer function of NK cells, we developed hyaluronic acid (HA, ligands to target CD44 overexpressed onto cancer cells)-poly(ethylene glycol) (PEG, cytoplasmic penetration blocker)-Lipid (molecular anchor for NK cell membrane decoration through hydrophobic interaction) conjugates for biomaterial-mediated ex vivo NK cell surface engineering. Among these major compartments (i.e., Lipid, PEG and HA), optimization of lipid anchors (in terms of chemical structure and intrinsic amphiphilicity) is the most important design parameter to modulate hydrophobic interaction with dynamic NK cell membranes. Here, three different lipid types including 1,2-dimyristoyl-sn-glycero-3-phosphati-dylethanolamine (C14:0), 1,2-distearoyl-sn-glycero-3-phosphatidylethanolamine (DSPE, C18:0), and cholesterol were evaluated to maximize membrane coating efficacy and associated anticancer performance of surface-engineered NK cells (HALipid-NK cells). Our results demonstrated that NK cells coated with HA-PEG-DSPE conjugates exhibited significantly enhanced anticancer efficacies toward MDA-MB-231 breast cancer cells without an off-target effect on human fibroblasts specifically via increased NK cell membrane coating efficacy and prolonged surface duration of HA onto NK cell surfaces, thereby improving HA-CD44 recognition. These results suggest that our HALipid-NK cells with tumor-recognizable HA-PEG-DSPE conjugates could be further utilized in various cancer immunotherapies.
Collapse
Affiliation(s)
- Chae Eun Lee
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul, 04620, Republic of Korea
| | - Sungjun Kim
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul, 04620, Republic of Korea
| | - Hee Won Park
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul, 04620, Republic of Korea
| | - Wonjeong Lee
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul, 04620, Republic of Korea
| | - Ashok Kumar Jangid
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul, 04620, Republic of Korea
| | - Yonghyun Choi
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Kanagawa, 226-8501, Japan
| | - Woo-Jin Jeong
- Department of Biological Engineering, Inha University, Incheon, 22212, Republic of Korea.
| | - Kyobum Kim
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul, 04620, Republic of Korea.
| |
Collapse
|
8
|
Sanei Z, Ghanbari T, Sharif A. Polyethylene glycol-grafted graphene oxide nanosheets in tailoring the structure and reverse osmosis performance of thin film composite membrane. Sci Rep 2023; 13:16940. [PMID: 37805619 PMCID: PMC10560276 DOI: 10.1038/s41598-023-44129-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023] Open
Abstract
Introducing hydrophilic polymers such as polyethylene glycol (PEG) within the polyamide (PA) layer of thin film composite (TFC) membranes helps achieve high water desalination performance. Here, PEGs of different molecular weights (X: 1500, 6000, 16,000 g/mol) are effectively introduced into the PA layer of TFC membranes utilizing PEG-grafted graphene oxide (GOPX) nanosheets and their effects on the physicochemical properties and reverse osmosis (RO) performance of the thin film nanocomposite (TFN) membranes are investigated. Among the TFNs prepared the GOP16000/TFN exhibits the best performance with 68% improvement in water flux and almost constant salt rejection compared to those of the bare TFC. The influence of PEG molecular weight on the RO performance of the membranes is interpreted by different surface and bulk hydrophilicity as well as thickness and surface roughness of PA layers of GOPX/TFNs. Furthermore, TFNs with thinner and smoother PA layers and thus higher water flux are obtained by dispersing GOPXs in the aqueous phase of the PA interfacial polymerization reaction than by dispersing them in the organic phase of the reaction. Finally, the high antifouling potential of TFNs containing PEG-grafted GOs is demonstrated.
Collapse
Affiliation(s)
- Zahra Sanei
- Polymer Reaction Engineering Department, Faculty of Chemical Engineering, Tarbiat Modares University, P.O. Box 14155-143, Tehran, Iran
| | - Taranom Ghanbari
- Polymer Reaction Engineering Department, Faculty of Chemical Engineering, Tarbiat Modares University, P.O. Box 14155-143, Tehran, Iran
| | - Alireza Sharif
- Polymer Reaction Engineering Department, Faculty of Chemical Engineering, Tarbiat Modares University, P.O. Box 14155-143, Tehran, Iran.
| |
Collapse
|
9
|
Miclotte MJ, Varlas S, Reynolds CD, Rashid B, Chapman E, O’Reilly RK. Thermoresponsive Block Copolymer Core-Shell Nanoparticles with Tunable Flow Behavior in Porous Media. ACS APPLIED MATERIALS & INTERFACES 2022; 14:54182-54193. [PMID: 36401811 PMCID: PMC9743085 DOI: 10.1021/acsami.2c15024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
With the purpose of investigating new polymeric materials as potential flow modifiers for their future application in enhanced oil recovery (EOR), a series of amphiphilic poly(di(ethylene glycol) methyl ether methacrylate-co-oligo(ethylene glycol) methyl ether methacrylate) [P(DEGMA-co-OEGMA)]-based core-shell nanoparticles were prepared by aqueous reversible addition-fragmentation chain transfer-mediated polymerization-induced self-assembly. The developed nano-objects were shown to be thermoresponsive, demonstrating a reversible lower-critical solution temperature (LCST)-type phase transition with increasing solution temperature. Characterization of their thermoresponsive nature by variable-temperature UV-vis and dynamic light scattering analyses revealed that these particles reversibly aggregate when heated above their LCST and that the critical transition temperature could be accurately tuned by simply altering the molar ratio of core-forming monomers. Sandpack experiments were conducted to evaluate their pore-blocking performance at low flow rates in a porous medium heated at temperatures above their LCST. This analysis revealed that particles aggregated in the sandpack column and caused pore blockage with a significant reduction in the porous medium permeability. The developed aggregates and the increased pressure generated by the blockage were found to remain stable under the injection of brine and were observed to rapidly dissipate upon reducing the temperature below the LCST of each formulation. Further investigation by double-column sandpack analysis showed that the blockage was able to reform when re-heated and tracked the thermal front. Moreover, the rate of blockage formation was observed to be slower when the LCST of the injected particles was higher. Our investigation is expected to pave the way for the design of "smart" and versatile polymer technologies for EOR applications in future studies.
Collapse
Affiliation(s)
| | - Spyridon Varlas
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
| | - Carl D. Reynolds
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
| | - Bilal Rashid
- BP
Exploration Operating Company Ltd., Sunbury-on-Thames, Middlesex TW16 7LN, U.K.
| | - Emma Chapman
- BP
Exploration Operating Company Ltd., Sunbury-on-Thames, Middlesex TW16 7LN, U.K.
| | - Rachel K. O’Reilly
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
| |
Collapse
|
10
|
Moll V, Beć KB, Grabska J, Huck CW. Investigation of Water Interaction with Polymer Matrices by Near-Infrared (NIR) Spectroscopy. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27185882. [PMID: 36144616 PMCID: PMC9504856 DOI: 10.3390/molecules27185882] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/03/2022] [Accepted: 09/07/2022] [Indexed: 12/01/2022]
Abstract
The interaction of water with polymers is an intensively studied topic. Vibrational spectroscopy techniques, mid-infrared (MIR) and Raman, were often used to investigate the properties of water–polymer systems. On the other hand, relatively little attention has been given to the potential of using near-infrared (NIR) spectroscopy (12,500–4000 cm−1; 800–2500 nm) for exploring this problem. NIR spectroscopy delivers exclusive opportunities for the investigation of molecular structure and interactions. This technique derives information from overtones and combination bands, which provide unique insights into molecular interactions. It is also very well suited for the investigation of aqueous systems, as both the bands of water and the polymer can be reliably acquired in a range of concentrations in a more straightforward manner than it is possible with MIR spectroscopy. In this study, we applied NIR spectroscopy to investigate interactions of water with polymers of varying hydrophobicity: polytetrafluoroethylene (PTFE), polypropylene (PP), polystyrene (PS), polyvinylchloride (PVC), polyoxymethylene (POM), polyamide 6 (PA), lignin (Lig), chitin (Chi) and cellulose (Cell). Polymer–water mixtures in the concentration range of water between 1–10%(w/w) were investigated. Spectra analysis and interpretation were performed with the use of difference spectroscopy, Principal Component Analysis (PCA), Median Linkage Clustering (MLC), Partial Least Squares Regression (PLSR), Multivariate Curve Resolution Alternating Least Squares (MCR-ALS) and Two-Dimensional Correlation Spectroscopy (2D-COS). Additionally, from the obtained data, aquagrams were constructed and interpreted with aid of the conclusions drawn from the conventional approaches. We deepened insights into the problem of water bands obscuring compound-specific signals in the NIR spectrum, which is often a limiting factor in analytical applications. The study unveiled clearly visible trends in NIR spectra associated with the chemical nature of the polymer and its increasing hydrophilicity. We demonstrated that changes in the NIR spectrum of water are manifested even in the case of interaction with highly hydrophobic polymers (e.g., PTFE). Furthermore, the unveiled spectral patterns of water in the presence of different polymers were found to be dissimilar between the two major water bands in NIR spectrum (νs + νas and νas + δ).
Collapse
|
11
|
Abstract
ConspectusThis Account discusses the evolution of our strategy to conduct environmentally responsible research in the field of polymer chemistry. To contextualize our work, we begin with a broad historical overview of the modern environmental movement, the rise of sustainability as a concept, and how chemistry has responded to these forces, which were often sharply critical of our field. We then trace our own responses, from graduate school onward, chronicling a series of experiences and research projects that molded, challenged, and reshaped how we think about sustainability in polymer science.Since beginning our independent careers in 2004, we have recognized and worked to resolve the tension between designing synthetic polymers for specific desired thermomechanical properties and minimizing environmental impact. In our early years, we were most strongly guided by the 12 Principles of Green Chemistry (12PGC), which had only recently been proposed. The authors' early research agendas had a rather narrow focus on two areas, specifically catalysis and biobased monomers, which we saw as strongly linked to sustainability. Over time, we found these areas to be too narrow in their focus, ignoring important considerations such as the capacity of monomer supply to support scale-up and the impact polymers have at the end of their usage lifetimes. With respect to monomers and catalysts, we consider descriptive metrics that quantify waste production and the toxicity of compounds used during synthesis. In terms of polymer end-of-life, we discuss hydrophobicity as a tool to help understand susceptibility to degradation in the environment as well as some of the concerns with design for degradation, a critical component of 12PGC.Now, after nearly two decades of investigation, we believe that achieving sustainability in polymer science will require us to move beyond the qualitative use of the 12PGC to a portfolio of metrics. We note a heartening increase in the availability and use of such metrics and tools across the field. These include items that provide limited insight but are relatively trivial to integrate into existing workflows such as E factor or the Toxicity Estimation Software Tool. We also appreciate the increased use of Life Cycle Assessment (LCA), which is both dramatically more thorough and difficult to deploy. Finally, we propose the creation of a national LCA center, similar to instrumental core facilities. Such a resource would enable the use of this tool across multiple phases of research and we hope would more effectively guide us to a sustainable future.
Collapse
Affiliation(s)
| | - Robert T Mathers
- Department of Chemistry, Pennsylvania State University, New Kensington, Pennsylvania 15068, United States
| |
Collapse
|
12
|
Akar I, Foster JC, Leng X, Pearce AK, Mathers RT, O’Reilly RK. Log Poct/SA Predicts the Thermoresponsive Behavior of P(DMA- co-RA) Statistical Copolymers. ACS Macro Lett 2022; 11:498-503. [PMID: 35575334 PMCID: PMC9022432 DOI: 10.1021/acsmacrolett.1c00776] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
![]()
Polymers that exhibit
a lower critical solution temperature (LCST)
have been of great interest for various biological applications such
as drug or gene delivery, controlled release systems, and biosensing.
Tuning the LCST behavior through control over polymer composition
(e.g., upon copolymerization of monomers with different hydrophobicity)
is a widely used method, as the phase transition is greatly affected
by the hydrophilic/hydrophobic balance of the copolymers. However,
the lack of a general method that relates copolymer hydrophobicity
to their temperature response leads to exhaustive experiments when
seeking to obtain polymers with desired properties. This is particularly
challenging when the target copolymers are comprised of monomers that
individually form nonresponsive homopolymers, that is, only when copolymerized
do they display thermoresponsive behavior. In this study, we sought
to develop a predictive relationship between polymer hydrophobicity
and cloud point temperature (TCP). A series
of statistical copolymers were synthesized based on hydrophilic N,N-dimethyl acrylamide (DMA) and hydrophobic
alkyl acrylate monomers, and their hydrophobicity was compared using
surface area-normalized octanol/water partition coefficients (Log Poct/SA). Interestingly, a correlation between
the Log Poct/SA of the copolymers and
their TCPs was observed for the P(DMA-co-RA) copolymers, which allowed TCP prediction of a demonstrative copolymer P(DMA-co-MMA). These results highlight the strong potential of this computational
tool to improve the rational design of copolymers with desired temperature
responses prior to synthesis.
Collapse
Affiliation(s)
- Irem Akar
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Jeffrey C. Foster
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Xiyue Leng
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Amanda K. Pearce
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Robert T. Mathers
- Department of Chemistry, Pennsylvania State University, New Kensington, Pennsylvania 15068, United States
| | - Rachel K. O’Reilly
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
13
|
Eickelmann S, Moon S, Liu Y, Bitterer B, Ronneberger S, Bierbaum D, Breitling F, Loeffler FF. Assessing Polymer-Surface Adhesion with a Polymer Collection. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:2220-2226. [PMID: 35138112 PMCID: PMC8867722 DOI: 10.1021/acs.langmuir.1c02724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/26/2022] [Indexed: 06/14/2023]
Abstract
Polymer modification plays an important role in the construction of devices, but the lack of fundamental understanding on polymer-surface adhesion limits the development of miniaturized devices. In this work, a thermoplastic polymer collection was established using the combinatorial laser-induced forward transfer technique as a research platform, to assess the adhesion of polymers to substrates of different wettability. Furthermore, it also revealed the influence of adhesion on dewetting phenomena during the laser transfer and relaxation process, resulting in polymer spots of various morphologies. This gives a general insight into polymer-surface adhesion and connects it with the generation of defined polymer microstructures, which can be a valuable reference for the rational use of polymers.
Collapse
Affiliation(s)
- Stephan Eickelmann
- Max-Planck-Institute
of Colloids and Interfaces, Biomolecular Systems, Am Muehlenberg 1, 14476 Potsdam, Germany
| | - Sanghwa Moon
- Max-Planck-Institute
of Colloids and Interfaces, Biomolecular Systems, Am Muehlenberg 1, 14476 Potsdam, Germany
| | - Yuxin Liu
- Max-Planck-Institute
of Colloids and Interfaces, Biomolecular Systems, Am Muehlenberg 1, 14476 Potsdam, Germany
| | - Benjamin Bitterer
- Institute
of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Sebastian Ronneberger
- Max-Planck-Institute
of Colloids and Interfaces, Biomolecular Systems, Am Muehlenberg 1, 14476 Potsdam, Germany
| | - Dominik Bierbaum
- Max-Planck-Institute
of Colloids and Interfaces, Biomolecular Systems, Am Muehlenberg 1, 14476 Potsdam, Germany
| | - Frank Breitling
- Institute
of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Felix F. Loeffler
- Max-Planck-Institute
of Colloids and Interfaces, Biomolecular Systems, Am Muehlenberg 1, 14476 Potsdam, Germany
| |
Collapse
|
14
|
Krauklis AE, Karl CW, Rocha IBCM, Burlakovs J, Ozola-Davidane R, Gagani AI, Starkova O. Modelling of Environmental Ageing of Polymers and Polymer Composites-Modular and Multiscale Methods. Polymers (Basel) 2022; 14:216. [PMID: 35012240 PMCID: PMC8747293 DOI: 10.3390/polym14010216] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 12/29/2021] [Indexed: 12/04/2022] Open
Abstract
Service lifetimes of polymers and polymer composites are impacted by environmental ageing. The validation of new composites and their environmental durability involves costly testing programs, thus calling for more affordable and safe alternatives, and modelling is seen as such an alternative. The state-of-the-art models are systematized in this work. The review offers a comprehensive overview of the modular and multiscale modelling approaches. These approaches provide means to predict the environmental ageing and degradation of polymers and polymer composites. Furthermore, the systematization of methods and models presented herein leads to a deeper and reliable understanding of the physical and chemical principles of environmental ageing. As a result, it provides better confidence in the modelling methods for predicting the environmental durability of polymeric materials and fibre-reinforced composites.
Collapse
Affiliation(s)
- Andrey E. Krauklis
- Institute for Mechanics of Materials, University of Latvia, Jelgavas Street 3, LV-1004 Riga, Latvia;
| | | | - Iuri B. C. M. Rocha
- Faculty of Civil Engineering and Geosciences, Delft University of Technology, P.O. Box 5048, 2600 GA Delft, The Netherlands;
| | - Juris Burlakovs
- Institute of Forestry and Rural Engineering, Estonian University of Life Sciences, 5 Kreutzwaldi St., 51014 Tartu, Estonia;
| | - Ruta Ozola-Davidane
- Faculty of Geography and Earth Sciences, University of Latvia, Raina Blvd 19, LV-1586 Riga, Latvia;
| | - Abedin I. Gagani
- Siemens Digital Industries Software, Via Werner von Siemens 1, 20128 Milan, Italy;
| | - Olesja Starkova
- Institute for Mechanics of Materials, University of Latvia, Jelgavas Street 3, LV-1004 Riga, Latvia;
| |
Collapse
|
15
|
Bisbjerg G, Brown GW, Pham KS, Kock RA, Ramos W, Patierno JA, Bautista A, Zawalick NM, Vigil V, Padrnos JD, Mathers RT, Heying MD, Costanzo PJ. Exploring polymer solubility with thermally‐responsive Diels‐Alder monomers: Revisiting the monkey's fist. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Greg Bisbjerg
- Department of Chemistry and Biochemistry California Polytechnic State University San Luis Obispo California USA
| | - Ginger W. Brown
- Department of Chemistry and Biochemistry California Polytechnic State University San Luis Obispo California USA
| | - Kimberly S. Pham
- Department of Chemistry and Biochemistry California Polytechnic State University San Luis Obispo California USA
| | - Ryan A. Kock
- Department of Chemistry Boston University Boston Massachusetts USA
| | - William Ramos
- Department of Chemistry and Biochemistry California Polytechnic State University San Luis Obispo California USA
| | - Jordan A. Patierno
- Department of Chemistry and Biochemistry California Polytechnic State University San Luis Obispo California USA
| | | | - Natalie M. Zawalick
- Department of Chemistry University of California at Los Angeles Los Angeles California USA
| | - Viviana Vigil
- Department of Marine Science California State University Monterey Bay Marina California USA
| | - John D. Padrnos
- Department of Chemistry Penn State University New Kensington Pennsylvania USA
| | - Robert T. Mathers
- Department of Chemistry Penn State University New Kensington Pennsylvania USA
| | - Michael D. Heying
- Department of Chemistry and Biochemistry California Polytechnic State University San Luis Obispo California USA
| | - Philip J. Costanzo
- Department of Chemistry and Biochemistry California Polytechnic State University San Luis Obispo California USA
| |
Collapse
|
16
|
Heckel J, Batti F, Mathers RT, Walther A. Spinodal decomposition of chemically fueled polymer solutions. SOFT MATTER 2021; 17:5401-5409. [PMID: 33969370 DOI: 10.1039/d1sm00515d] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Out-of-equilibrium phase transitions driven by dissipation of chemical energy are a common mechanism for morphological organization and temporal programming in biology. Inspired by this, dissipative self-assembly utilizes chemical reaction networks (CRNs) that consume high-energy molecules (chemical fuels) to generate transient structures and functionality. While a wide range of chemical fuels and building blocks are now available for chemically fueled systems, so far little attention has been paid to the phase-separation process itself. Herein, we investigate the chemically fueled spinodal decomposition of poly(norbornene dicarboxylic acid) (PNDAc) solution, which is driven by a cyclic chemical reaction network. Our analysis encompasses both the molecular level in terms of the CRN, but also the phase separation process. We investigate the morphology of formed domains, as well as the kinetics and mechanism of domain growth, and develop a kinetic/thermodynamic hybrid model to not only rationalize the dependence of the system on fuel concentration and pH, but also open pathways towards predictive design of future fueled polymer systems.
Collapse
Affiliation(s)
- Jonas Heckel
- Institute for Macromolecular Chemistry, University of Freiburg, Stefan-Meier-Str. 31, 79104 Freiburg, Germany and Freiburg Materials Research Center (FMF), University of Freiburg, Stefan-Meier-Str. 21, 79104 Freiburg, Germany and Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| | - Fabio Batti
- Institute for Macromolecular Chemistry, University of Freiburg, Stefan-Meier-Str. 31, 79104 Freiburg, Germany
| | - Robert T Mathers
- Department of Chemistry, Pennsylvania State University, New Kensington, PA 15068, USA.
| | - Andreas Walther
- A3BMS Lab, Department of Chemistry, University of Mainz, Duesbergweg 10-14, 55128 Mainz, Germany. and Cluster of Excellence livMatS @ FIT - Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| |
Collapse
|
17
|
Mimicking associative learning using an ion-trapping non-volatile synaptic organic electrochemical transistor. Nat Commun 2021; 12:2480. [PMID: 33931638 PMCID: PMC8087835 DOI: 10.1038/s41467-021-22680-5] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 03/16/2021] [Indexed: 02/02/2023] Open
Abstract
Associative learning, a critical learning principle to improve an individual's adaptability, has been emulated by few organic electrochemical devices. However, complicated bias schemes, high write voltages, as well as process irreversibility hinder the further development of associative learning circuits. Here, by adopting a poly(3,4-ethylenedioxythiophene):tosylate/Polytetrahydrofuran composite as the active channel, we present a non-volatile organic electrochemical transistor that shows a write bias less than 0.8 V and retention time longer than 200 min without decoupling the write and read operations. By incorporating a pressure sensor and a photoresistor, a neuromorphic circuit is demonstrated with the ability to associate two physical inputs (light and pressure) instead of normally demonstrated electrical inputs in other associative learning circuits. To unravel the non-volatility of this material, ultraviolet-visible-near-infrared spectroscopy, X-ray photoelectron spectroscopy and grazing-incidence wide-angle X-ray scattering are used to characterize the oxidation level variation, compositional change, and the structural modulation of the poly(3,4-ethylenedioxythiophene):tosylate/Polytetrahydrofuran films in various conductance states. The implementation of the associative learning circuit as well as the understanding of the non-volatile material represent critical advances for organic electrochemical devices in neuromorphic applications.
Collapse
|
18
|
Heckel J, Loescher S, Mathers RT, Walther A. Chemically Fueled Volume Phase Transition of Polyacid Microgels. Angew Chem Int Ed Engl 2021; 60:7117-7125. [PMID: 33340387 PMCID: PMC8048534 DOI: 10.1002/anie.202014417] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/10/2020] [Indexed: 11/17/2022]
Abstract
Microgels are soft colloids that show responsive behavior and are easy to functionalize for applications. They are considered key components for future smart colloidal material systems. However, so far microgel systems have almost exclusively been studied in classical responsive switching settings using external triggers, while internally organized, autonomous control mechanisms as found in supramolecular chemistry and DNA nanotechnology relying on fuel-driven out-of-equilibrium concepts have not been implemented into microgel systems. Here, we introduce chemically fueled transient volume phase transitions (VPTs) for poly(methacrylic acid) (PMAA) microgels, where the collapsed hydrophobic state can be programmed using the fuel concentration in a cyclic reaction network. We discuss details of the system behavior as a function of pH and fuel amount, unravel kinetically trapped regions and showcase transient encapsulation and time-programmed release as a first application.
Collapse
Affiliation(s)
- Jonas Heckel
- Institute for Macromolecular ChemistryUniversity of FreiburgStefan-Meier-Str. 3179104FreiburgGermany
- Freiburg Materials Research Center (FMF)University of FreiburgStefan-Meier-Str. 2179104FreiburgGermany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT)University of FreiburgGeorges-Köhler-Allee 10579110FreiburgGermany
| | - Sebastian Loescher
- Institute for Macromolecular ChemistryUniversity of FreiburgStefan-Meier-Str. 3179104FreiburgGermany
- Freiburg Materials Research Center (FMF)University of FreiburgStefan-Meier-Str. 2179104FreiburgGermany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT)University of FreiburgGeorges-Köhler-Allee 10579110FreiburgGermany
| | - Robert T. Mathers
- Department of ChemistryPennsylvania State UniversityNew KensingtonPA15068USA
| | - Andreas Walther
- ABMS LabDepartment of ChemistryUniversity of MainzDuesbergweg 10–1455128MainzGermany
- Cluster of Excellence livMatS @ FIT—Freiburg Center for Interactive Materials and Bioinspired TechnologiesUniversity of FreiburgGeorges-Köhler-Allee 10579110FreiburgGermany
| |
Collapse
|
19
|
Shan H, Li S, Zhang X, Meng F, Zhuang Y, Si Z, Cai D, Chen B, Qin P. Molecular dynamics simulation and preparation of vinyl modified polydimethylsiloxane membrane for pervaporation recovery of furfural. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.118006] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
20
|
Heckel J, Loescher S, Mathers RT, Walther A. Chemically Fueled Volume Phase Transition of Polyacid Microgels. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014417] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jonas Heckel
- Institute for Macromolecular Chemistry University of Freiburg Stefan-Meier-Str. 31 79104 Freiburg Germany
- Freiburg Materials Research Center (FMF) University of Freiburg Stefan-Meier-Str. 21 79104 Freiburg Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT) University of Freiburg Georges-Köhler-Allee 105 79110 Freiburg Germany
| | - Sebastian Loescher
- Institute for Macromolecular Chemistry University of Freiburg Stefan-Meier-Str. 31 79104 Freiburg Germany
- Freiburg Materials Research Center (FMF) University of Freiburg Stefan-Meier-Str. 21 79104 Freiburg Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT) University of Freiburg Georges-Köhler-Allee 105 79110 Freiburg Germany
| | - Robert T. Mathers
- Department of Chemistry Pennsylvania State University New Kensington PA 15068 USA
| | - Andreas Walther
- A3BMS Lab Department of Chemistry University of Mainz Duesbergweg 10–14 55128 Mainz Germany
- Cluster of Excellence livMatS @ FIT—Freiburg Center for Interactive Materials and Bioinspired Technologies University of Freiburg Georges-Köhler-Allee 105 79110 Freiburg Germany
| |
Collapse
|
21
|
Fuoco T, Cuartero M, Parrilla M, García-Guzmán JJ, Crespo GA, Finne-Wistrand A. Capturing the Real-Time Hydrolytic Degradation of a Library of Biomedical Polymers by Combining Traditional Assessment and Electrochemical Sensors. Biomacromolecules 2021; 22:949-960. [PMID: 33502851 PMCID: PMC7875459 DOI: 10.1021/acs.biomac.0c01621] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We have developed an innovative methodology to overcome the lack of techniques for real-time assessment of degradable biomedical polymers at physiological conditions. The methodology was established by combining polymer characterization techniques with electrochemical sensors. The in vitro hydrolytic degradation of a series of aliphatic polyesters was evaluated by following the molar mass decrease and the mass loss at different incubation times while tracing pH and l-lactate released into the incubation media with customized miniaturized electrochemical sensors. The combination of different analytical approaches provided new insights into the mechanistic and kinetics aspects of the degradation of these biomedical materials. Although molar mass had to reach threshold values for soluble oligomers to be formed and specimens' resorption to occur, the pH variation and l-lactate concentration were direct evidence of the resorption of the polymers and indicative of the extent of chain scission. Linear models were found for pH and released l-lactate as a function of mass loss for the l-lactide-based copolymers. The methodology should enable the sequential screening of degradable polymers at physiological conditions and has potential to be used for preclinical material's evaluation aiming at reducing animal tests.
Collapse
Affiliation(s)
- Tiziana Fuoco
- Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Teknikringen 56-58, SE 100-44 Stockholm, Sweden
| | - Maria Cuartero
- Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Teknikringen 30, SE-100 44 Stockholm, Sweden
| | - Marc Parrilla
- Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Teknikringen 30, SE-100 44 Stockholm, Sweden
| | - Juan José García-Guzmán
- Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Teknikringen 30, SE-100 44 Stockholm, Sweden
| | - Gaston A Crespo
- Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Teknikringen 30, SE-100 44 Stockholm, Sweden
| | - Anna Finne-Wistrand
- Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Teknikringen 56-58, SE 100-44 Stockholm, Sweden
| |
Collapse
|
22
|
Foster JC, Akar I, Grocott MC, Pearce AK, Mathers RT, O’Reilly RK. 100th Anniversary of Macromolecular Science Viewpoint: The Role of Hydrophobicity in Polymer Phenomena. ACS Macro Lett 2020; 9:1700-1707. [PMID: 33299653 PMCID: PMC7717397 DOI: 10.1021/acsmacrolett.0c00645] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 10/21/2020] [Indexed: 11/30/2022]
Abstract
The seemingly simple notion of the hydrophobic effect can be viewed from multiple angles involving theory, simulation, and experiments. This viewpoint examines five attributes of predictive models to enhance synthetic efforts as well as experimental methods to quantify hydrophobicity. In addition, we compare existing predictive models against experimental data for polymer surface tension, lower critical solution temperature, solution self-assembly morphology, and degradation behavior. Key conclusions suggest that both the Hildebrand solubility parameters (HSPs) and surface area-normalized Log P (Log P SA-1) values provide unique and complementary insights into polymer phenomena. In particular, HSPs appear to better describe bulk polymer phenomena for thermoplastics such as surface tension, while Log P SA-1 values are well-suited for describing and predicting the behavior of polymers in solution.
Collapse
Affiliation(s)
- Jeffrey C. Foster
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Irem Akar
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Marcus C. Grocott
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Amanda K. Pearce
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Robert T. Mathers
- Department
of Chemistry, Pennsylvania State University, New Kensington, Pennsylvania 15068, United States
| | - Rachel K. O’Reilly
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
23
|
Phuong PT, Oliver S, He J, Wong EHH, Mathers RT, Boyer C. Effect of Hydrophobic Groups on Antimicrobial and Hemolytic Activity: Developing a Predictive Tool for Ternary Antimicrobial Polymers. Biomacromolecules 2020; 21:5241-5255. [DOI: 10.1021/acs.biomac.0c01320] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Pham Thu Phuong
- Australian Centre for NanoMedicine, School of Chemical Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Susan Oliver
- Australian Centre for NanoMedicine, School of Chemical Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Junchen He
- Australian Centre for NanoMedicine, School of Chemical Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Edgar H. H. Wong
- Australian Centre for NanoMedicine, School of Chemical Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Robert T. Mathers
- Department of Chemistry, Penn State University, New Kensington, Pennsylvania 15068, United States
| | - Cyrille Boyer
- Australian Centre for NanoMedicine, School of Chemical Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
24
|
Little A, Pellis A, Comerford JW, Naranjo-Valles E, Hafezi N, Mascal M, Farmer TJ. Effects of Methyl Branching on the Properties and Performance of Furandioate-Adipate Copolyesters of Bio-Based Secondary Diols. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2020; 8:14471-14483. [PMID: 33014637 PMCID: PMC7525809 DOI: 10.1021/acssuschemeng.0c04513] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/12/2020] [Indexed: 06/11/2023]
Abstract
Furandioate-adipate copolyesters are an emerging class of bio-based biodegradable polymers with great potential to replace fossil-derived terephthalic acid-based copolyesters such as poly(butylene adipate-co-terephthalate) (PBAT). Furandioate-adipate polyesters have almost exclusively been prepared with conventional primary (1°) alcohol diols, while secondary (2°) alcohol diol monomers have largely been overlooked until now, despite preliminary observations that using methyl-branched diols increases the T g of the resultant polyesters. Little is known of what impact the use of 2° alcohol diols has on other properties such as material strength, hydrophobicity, and rate of enzymatic hydrolysis-all key parameters for performance and end-of-life. To ascertain the effects of using 2° diols on the properties of furandioate-adipate copolyesters, a series of polymers from diethyl adipate (DEA) and 2,5-furandicarboxylic acid diethyl ester (FDEE) using different 1° and 2° alcohol diols was prepared. Longer transesterification times and greater excesses of diol (diol/diester molar ratio of 2:1) were found to be necessary to achieve M ws > 20 kDa using 2° alcohol diols. All copolyesters from 2° diols were entirely amorphous and exhibited higher T gs than their linear equivalents from 1° diols. Compared to linear poly(1,4-butyleneadipate-co-1,4-butylenefurandioate), methyl-branched, poly(2,5-hexamethyleneadipate-co-2,5-hexamethylenefurandioate) (0:7:0.3 furandioate/adipate ratio) displayed both higher modulus (67.8 vs 19.1 MPa) and higher extension at break (89.7 vs 44.5 mm). All other methyl-branched copolyesters displayed lower modulus but retained higher extension at break compared with their linear analogues. Enzymatic hydrolysis studies using Humicola insolens cutinase revealed that copolyesters from 2° alcohol diols have significantly decreased rates of biodegradation than their linear equivalents synthesized using 1° alcohol diols, allowing for fine-tuning of polymer stability. Hydrophobicity, as revealed by water contact angles, was also found to generally increase through the introduction of methyl branching, demonstrating potential for these materials in coatings applications.
Collapse
Affiliation(s)
- Alastair Little
- Green Chemistry Centre of Excellence, Department of Chemistry, University of York, Heslington, York YO10 5DD, U.K
| | - Alessandro Pellis
- Green Chemistry Centre of Excellence, Department of Chemistry, University of York, Heslington, York YO10 5DD, U.K
- Department of Agrobiotechnology, Institute of Environmental Biotechnology, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz Straβe 20, Tulln an der Donau 3430, Austria
| | - James W Comerford
- Green Chemistry Centre of Excellence, Department of Chemistry, University of York, Heslington, York YO10 5DD, U.K
| | - Edwin Naranjo-Valles
- Department of Chemistry, University of California Davis, 1 Shields Avenue, Davis, California 95616, United States
| | - Nema Hafezi
- Department of Chemistry, University of California Davis, 1 Shields Avenue, Davis, California 95616, United States
| | - Mark Mascal
- Department of Chemistry, University of California Davis, 1 Shields Avenue, Davis, California 95616, United States
| | - Thomas J Farmer
- Green Chemistry Centre of Excellence, Department of Chemistry, University of York, Heslington, York YO10 5DD, U.K
| |
Collapse
|
25
|
Kovaliov M, Wright TA, Cheng B, Mathers RT, Zhang X, Meng D, Szcześniak K, Jenczyk J, Jurga S, Cohen-Karni D, Page RC, Konkolewicz D, Averick S. Toward Next-Generation Biohybrid Catalyst Design: Influence of Degree of Polymerization on Enzyme Activity. Bioconjug Chem 2020; 31:939-947. [DOI: 10.1021/acs.bioconjchem.0c00084] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Marina Kovaliov
- Neuroscience Institute, Allegheny Health Network, Allegheny General Hospital, Pittsburgh, Pennsylvania 15212, United States
| | - Thaiesha A. Wright
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45011, United States
| | - Boyle Cheng
- Neuroscience Institute, Allegheny Health Network, Allegheny General Hospital, Pittsburgh, Pennsylvania 15212, United States
| | - Robert T. Mathers
- Department of Chemistry, Penn State University, New Kensington, Pennsylvania 15068, United States
| | - Xiangyu Zhang
- Dave C. Swalm School of Chemical Engineering, Mississippi State University, Starkville, Mississippi 39762, United States
| | - Dong Meng
- Dave C. Swalm School of Chemical Engineering, Mississippi State University, Starkville, Mississippi 39762, United States
| | - Katarzyna Szcześniak
- NanoBioMedical Centre, Adam Mickiewicz University, Poznań, 61614, Poland
- Faculty of Chemical Technology, Poznan University of Technology, Poznań, Berdychowo 4, 60-965 Poznań, Poland
| | - Jacek Jenczyk
- NanoBioMedical Centre, Adam Mickiewicz University, Poznań, 61614, Poland
| | - Stefan Jurga
- NanoBioMedical Centre, Adam Mickiewicz University, Poznań, 61614, Poland
| | - Devora Cohen-Karni
- Preclinical Education, Lake Erie College of Osteopathic Medicine at Seton Hill, Greensburg, Pennsylvania 15601, United States
| | - Richard C. Page
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45011, United States
| | - Dominik Konkolewicz
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45011, United States
| | - Saadyah Averick
- Neuroscience Institute, Allegheny Health Network, Allegheny General Hospital, Pittsburgh, Pennsylvania 15212, United States
| |
Collapse
|
26
|
Stubbs C, Murray KA, Ishibe T, Mathers RT, Gibson MI. Combinatorial Biomaterials Discovery Strategy to Identify New Macromolecular Cryoprotectants. ACS Macro Lett 2020; 9:290-294. [PMID: 32337092 PMCID: PMC7175595 DOI: 10.1021/acsmacrolett.0c00044] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 02/06/2020] [Indexed: 12/20/2022]
Abstract
Cryoprotective agents (CPAs) are typically solvents or small molecules, but there is a need for innovative CPAs to reduce toxicity and increase cell yield, for the banking and transport of cells. Here we use a photochemical high-throughput discovery platform to identify macromolecular cryoprotectants, as rational design approaches are currently limited by the lack of structure-property relationships. Using liquid handling systems, 120 unique polyampholytes were synthesized using photopolymerization with RAFT agents. Cryopreservation screening identified "hit" polymers and nonlinear trends between composition and function, highlighting the requirement for screening, with polymer aggregation being a key factor. The most active polymers reduced the volume of dimethyl sulfoxide (DMSO) required to cryopreserve a nucleated cell line, demonstrating the potential of this approach to identify materials for cell storage and transport.
Collapse
Affiliation(s)
| | - Kathryn A. Murray
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| | - Toru Ishibe
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| | - Robert T. Mathers
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 15068, United States
| | - Matthew I. Gibson
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.,Warwick Medical School, University
of Warwick, Coventry CV4 7AL, U.K.,E-mail:
| |
Collapse
|
27
|
Ranking environmental degradation trends of plastic marine debris based on physical properties and molecular structure. Nat Commun 2020; 11:727. [PMID: 32024839 PMCID: PMC7002677 DOI: 10.1038/s41467-020-14538-z] [Citation(s) in RCA: 217] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 01/16/2020] [Indexed: 11/15/2022] Open
Abstract
As plastic marine debris continues to accumulate in the oceans, many important questions surround this global dilemma. In particular, how many descriptors would be necessary to model the degradation behavior of ocean plastics or understand if degradation is possible? Here, we report a data-driven approach to elucidate degradation trends of plastic debris by linking abiotic and biotic degradation behavior in seawater with physical properties and molecular structures. The results reveal a hierarchy of predictors to quantify surface erosion as well as combinations of features, like glass transition temperature and hydrophobicity, to classify ocean plastics into fast, medium, and slow degradation categories. Furthermore, to account for weathering and environmental factors, two equations model the influence of seawater temperature and mechanical forces. Accumulation of micro and nano-plastic in the oceans has emerged as a global challenge. Here, the authors predict a hierarchy of features that regulate their degradation and surface erosion by a thorough analysis of polymer structure, composition, physical properties and degradation data.
Collapse
|
28
|
Báez JE, Shea KJ, Dennison PR, Obregón-Herrera A, Bonilla-Cruz J. Monodisperse oligo(δ-valerolactones) and oligo(ε-caprolactones) with docosyl (C22) end-groups. Polym Chem 2020. [DOI: 10.1039/d0py00576b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Two different families of monodisperse oligoesters with α-hydroxyl-ω-docosyl (C22) terminal groups [oligo(δ-valerolactone) and oligo(ϵ-caprolactone)] were isolated by flash column chromatography (FCC).
Collapse
Affiliation(s)
- José E. Báez
- Department of Chemistry
- Division of Natural and Exact Sciences
- University of Guanajuato (UG)
- Guanajuato
- Gto. Mexico
| | - Kenneth J. Shea
- Department of Chemistry
- University of California
- Irvine
- Irvine
- 92697-2025
| | | | - Armando Obregón-Herrera
- Department of Biology
- Division of Natural and Exact Sciences
- University of Guanajuato (UG)
- Guanajuato
- Gto. Mexico
| | - José Bonilla-Cruz
- Centro de Investigación en Materiales Avanzados S.C. (CIMAV-Unidad Monterrey)
- Apodaca
- 66628 Mexico
| |
Collapse
|
29
|
Kim HJ, Ogura S, Otabe T, Kamegawa R, Sato M, Kataoka K, Miyata K. Fine-Tuning of Hydrophobicity in Amphiphilic Polyaspartamide Derivatives for Rapid and Transient Expression of Messenger RNA Directed Toward Genome Engineering in Brain. ACS CENTRAL SCIENCE 2019; 5:1866-1875. [PMID: 31807688 PMCID: PMC6891845 DOI: 10.1021/acscentsci.9b00843] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Indexed: 05/14/2023]
Abstract
Rapid and transient expression of in vitro transcribed mRNA (IVT mRNA) in target cells is a current major challenge in genome engineering therapy. To improve mRNA delivery efficiency, a series of amphiphilic polyaspartamide derivatives were synthesized to contain various hydrophobic moieties with cationic diethylenetriamine (DET) moieties in the side chain and systematically compared as mRNA delivery vehicles (or mRNA-loaded polyplexes). The obtained results demonstrated that the side chain structures of polyaspartamide derivatives were critical for the mRNA delivery efficiency of polyplexes. Interestingly, when the mRNA delivery efficiencies (or the luciferase expression levels in cultured cells) were plotted against an octanol-water partition coefficient (log P) as an indicator of hydrophobicity, a log P threshold was clearly observed to obtain high levels of mRNA expression. Indeed, 3.5 orders of magnitude difference in the expression level is observed between -2.45 and -2.31 in log P. This threshold of log P for the mRNA transfection efficiency apparently correlated with those for the polyplex stability and cellular uptake efficiency. Among the polyaspartamide derivatives with log P > -2.31, a polyaspartamide derivative with 11 residues of 2-cyclohexylethyl (CHE) moieties and 15 residues of DET moieties in the side chains elicited the highest mRNA expression in cultured cells. The optimized polyplex further accomplished highly efficient, rapid, and transient IVT mRNA expression in mouse brain after intracerebroventricular and intrathecal injection. Ultimately, the polyplex allowed for the highly efficient target gene deletion via the expression of Streptococcus pyogenes Cas9 nuclease-coding IVT mRNA in the ependymal layer of ventricles in a reporter mouse model. These results demonstrate the utility of log P driven polymer design for in vivo IVT mRNA delivery.
Collapse
Affiliation(s)
- Hyun Jin Kim
- Center
for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- E-mail:
| | - Satomi Ogura
- Department
of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takahiro Otabe
- Graduate
School of Arts and Sciences, The University
of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Rimpei Kamegawa
- Department
of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Moritoshi Sato
- Graduate
School of Arts and Sciences, The University
of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Kazunori Kataoka
- Innovation
Center of NanoMedicine, Kawasaki Institute
of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
- Institute
for Future Initiatives, The University of
Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kanjiro Miyata
- Department
of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- E-mail:
| |
Collapse
|
30
|
Varlas S, Foster JC, Arkinstall LA, Jones JR, Keogh R, Mathers RT, O’Reilly RK. Predicting Monomers for Use in Aqueous Ring-Opening Metathesis Polymerization-Induced Self-Assembly. ACS Macro Lett 2019; 8:466-472. [PMID: 31007970 PMCID: PMC6471431 DOI: 10.1021/acsmacrolett.9b00117] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 03/19/2019] [Indexed: 01/02/2023]
Abstract
Aqueous polymerization-induced self-assembly (PISA) is a well-established methodology enabling in situ synthesis of polymeric nanoparticles of controllable morphology. Notably, PISA via ring-opening metathesis polymerization (ROMPISA) is an emerging technology for block copolymer self-assembly, mainly due to its high versatility and robustness. However, a limited number of monomers suitable for core-forming blocks in aqueous ROMPISA have been reported to date. In this work, we identified seven monomers for use as either corona- or core-forming blocks during aqueous ROMPISA by in silico calculation of relative hydrophobicity for corresponding oligomeric models. The predicted monomers were validated experimentally by conducting ROMPISA using our previously reported two-step approach. In addition to predictive data, our computational model was exploited to identify trends between polymer hydrophobicity and the morphology of the self-assembled nano-objects they formed. We expect that this methodology will greatly expand the scope of aqueous ROMPISA, as monomers can be easily identified based on the structure-property relationships observed herein.
Collapse
Affiliation(s)
- Spyridon Varlas
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
| | - Jeffrey C. Foster
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
| | - Lucy A. Arkinstall
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
| | - Joseph R. Jones
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
| | - Robert Keogh
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K.
| | - Robert T. Mathers
- Department
of Chemistry, Pennsylvania State University, New Kensington, Pennsylvania 15068, United States
| | - Rachel K. O’Reilly
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
| |
Collapse
|