1
|
Wang X, Song B, Wu M, Qin L, Liang W. Immune cell targeting-mediated cytomimetic drug delivery system for BBB-penetrating and precise therapy of in situ glioma. Mater Today Bio 2025; 32:101694. [PMID: 40225137 PMCID: PMC11986483 DOI: 10.1016/j.mtbio.2025.101694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/07/2025] [Accepted: 03/20/2025] [Indexed: 04/15/2025] Open
Abstract
Gliomas are a group of highly malignant tumors that are prone to recurrence after surgery. Due to the limitation of the blood-brain barrier (BBB), most antitumor drugs cannot cross it. Therefore, improving the delivery efficiency of antitumor drugs in their treatment remains a significant challenge. Herein, we report a unique cellular biomimetic drug delivery system (CTP@RAW) that benefits from the exceptional immune homing and long-term tracking ability of RAW 264.7 cells to specifically penetrate BBB and target tumor sites. The drug (TMZ) is encapsulated in RAW264.7 to avoid being cleared or degraded by the blood, improve bioavailability and reduce systemic toxicity. And that, owning to polydopamine (PDA) coating on the quantum dots-drug nanoparticles, which can endogenously and controllably release TMZ in response to certain tumor microenvironment (high GSH and low pH). This delivery system can also achieve precise localization and real-time visualization of tumors via fluorescence imaging. The released drugs effectively inhibit tumor growth by regulating cytokine expression levels, including GFAP, Ki67, Caspase-3, and TNF-α. Our study demonstrates that this drug delivery system can cross BBB, improve drug delivery efficiency, and has excellent potential for visualization and precision treatment of in situ gliomas.
Collapse
Affiliation(s)
- Xiu Wang
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, China
- State Laboratory of Advanced Drug Delivery and Control Release System, Shandong First Medical University, China
| | - Baoqin Song
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, China
| | - Mengru Wu
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, China
| | - Lijing Qin
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, China
| | - Wanjun Liang
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, China
- State Laboratory of Advanced Drug Delivery and Control Release System, Shandong First Medical University, China
- Key Laboratory for Biotechnology Drugs of National Health Commission, Shandong Academy of Medical Sciences, China
| |
Collapse
|
2
|
Xiang X, Shao Y, Xiang L, Jiao Q, Zhang W, Qin Y, Chen Y. Suppression of Liver Fibrogenesis with Photothermal Sorafenib Nanovesicles via Selectively Inhibiting Glycolysis and Amplification of Active HSCs. Mol Pharm 2025; 22:1939-1957. [PMID: 40053386 DOI: 10.1021/acs.molpharmaceut.4c01135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2025]
Abstract
As the major driving factor of hepatic fibrosis, the activated hepatic stellate cells (aHSCs) rely on active glycolysis to support their aberrant proliferation and secretion of the extracellular matrix. Sorafenib (Sor) can combat liver fibrosis by suppressing HIF-1α and glycolysis, but its poor solubility, rapid metabolism, and low bioavailability restrict such a clinical application. Here, Sor was loaded onto polydopamine nanoparticles and then encapsulated by a retinoid-decorated red blood cell membrane, yielding HSC-targeted Sor nanovesicles (PDA/Sor@RMV-VA) with a high Sor-loading capacity and photothermally controlled drug release for antifibrotic treatment. These Sor RMVs not only exhibited a good particle size, dispersity and biocompatibility, prolonged circulation time, enhanced aHSC targetability, and hepatic accumulation both in vitro and in vivo, but also displayed a mild photothermal activity proper for promoting sorafenib release and accumulation in CCl4-induced fibrotic mouse livers without incurring phototoxicity. Compared with nontargeting Sor formulations, PDA/Sor@RMV-VA more effectively downregulated HIF-1α and glycolytic enzyme in both cultured aHSCs and fibrotic mice and reversed myofibroblast phenotype and amplification of aHSCs and thus more significantly improved liver damage, inflammation, and fibrosis, all of which could be even further advanced with NIR irradiation. These results fully demonstrate the antifibrotic power and therapeutic potential of PDA/Sor@RMV-VA as an antifibrotic nanomedicine, which would support a new clinical treatment for hepatic fibrosis.
Collapse
Affiliation(s)
- Xianjing Xiang
- School of Pharmaceutical Sciences, University of South China, Hengyang 410001, China
| | - Yaru Shao
- School of Pharmaceutical Sciences, University of South China, Hengyang 410001, China
| | - Li Xiang
- School of Pharmaceutical Sciences, University of South China, Hengyang 410001, China
- Hengyang Medical School, University of South China, Hengyang, Hunan 410001, China
| | - Qiangqiang Jiao
- School of Pharmaceutical Sciences, University of South China, Hengyang 410001, China
| | - Wenhui Zhang
- School of Pharmaceutical Sciences, University of South China, Hengyang 410001, China
| | - Yuting Qin
- School of Pharmaceutical Sciences, University of South China, Hengyang 410001, China
| | - Yuping Chen
- School of Pharmaceutical Sciences, University of South China, Hengyang 410001, China
- Hengyang Medical School, University of South China, Hengyang, Hunan 410001, China
- MOE Key Laboratory of Rare Pediatric Diseases, Hengyang Medical School, University of South China, Hengyang, Hunan 410001, China
| |
Collapse
|
3
|
Wu S, Chen Y, Wang K, Huang M, Yang L, Yang J, Wei Q, Tao C, Li C, Zhou M. Multifunctional mesoporous polydopamine nanoplatforms for synergistic photothermal-chemotherapy and enhanced immunotherapy in breast cancer treatment. Colloids Surf B Biointerfaces 2025; 248:114483. [PMID: 39740488 DOI: 10.1016/j.colsurfb.2024.114483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/10/2024] [Accepted: 12/26/2024] [Indexed: 01/02/2025]
Abstract
Breast cancer remains one of the most prevalent and deadly cancers among women worldwide, necessitating the development of more effective and comprehensive treatment strategies. In this study, we successfully synthesized mesoporous polydopamine (MPDA) with photothermal effects for the co-delivery of the chemotherapeutic drug doxorubicin (DOX) and the immune adjuvant imiquimod (R837), resulting in the development of a multifunctional nanoplatforms termed MDR. MDR displayed excellent photothermal conversion efficiency and pH-responsive drug release behavior. In vitro assessments revealed significant cytotoxicity of MDR against 4T1 cells under 808 nm laser irradiation, with enhanced cellular uptake in both 4T1 cells and bone marrow-derived dendritic cells (BMDCs). Additionally, the expression levels of the costimulatory molecules CD80 and CD86 were remarkably higher in the MDR-treated group than free R837 after co-incubation with immature BMDCs, indicating a stronger ability to promote BMDC maturation and effectively stimulate immune response activation. Intratumoral injection in breast cancer-bearing mice further demonstrated that the MDR + NIR group significantly inhibited tumor growth compared to other groups, with no apparent side effects. In conclusion, the multifunctional nanoplatforms integrating photothermal therapy, chemotherapy, and immunotherapy are expected to provide a novel therapeutic approach for the multimodal treatment of breast cancer.
Collapse
Affiliation(s)
- Siqiong Wu
- Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China; Department of Pharmacy, Xianning Hospital of Traditional Chinese Medicine, Xianning, Hubei 437100, China
| | - Yongjun Chen
- Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Ke Wang
- Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China; Department of Clinical Pharmacy, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Mingquan Huang
- Sichuan Treatment Center for Gynaecologic and Breast Diseases (Breast Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Liuxuan Yang
- Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Jing Yang
- Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Qiming Wei
- Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Chao Tao
- Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China; Department of Clinical Pharmacy, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Chunhong Li
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China.
| | - Meiling Zhou
- Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China.
| |
Collapse
|
4
|
Liao Y, Li B, Chen H, Ma Y, Wang F, Huang L, Shen B, Song H, Yue P. Stimuli-responsive mesoporous silica nanoplatforms for smart antibacterial therapies: From single to combination strategies. J Control Release 2025; 378:60-91. [PMID: 39615754 DOI: 10.1016/j.jconrel.2024.11.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/08/2024] [Accepted: 11/23/2024] [Indexed: 12/13/2024]
Abstract
The demand for new antibacterial therapies is urgent and crucial in the clinical setting because of the growing degree of antibiotic resistance and the limits of conventional antibacterial therapies. Stimuli- responsive nanoplatforms, are sensitive to endogenous or exogenous stimulus (pH, temperature, light, and magnetic fields, etc.) which activate cargo release locally and on-demand, hold great potential in developing next generation personalized precision medicine. For instance, pH-sensitive nanoplatforms can selectively release antibacterial agents in the acidic environment of infection sites. To achieve the stimuli-responsive delivery, mesoporous silica nanoplatforms (MSNs) have demonstrated as prospective candidates for efficient cargo loading and controlled release through strategies such as tunable pore engineering, versatile surface modification/coating, and tailored framework composition. Furthermore, aiming for more precise delivery of MSNs, current research interests are increasingly shifting from single-stimuli antibacterial strategy to integrated strategy that combine multiple-stimulus. In this review, we briefly discuss the microenvironment of bacterial infections and provide a comprehensive summary of current stimuli-responsive strategies, and associated materials design principles of stimuli-responsive mesoporous silica-based smart nanoplatforms (SRMSNs). Additionally, integrative antibacterial strategies with synergistic effects, combining chemodynamic, photodynamic, photothermal, sonodynamic and gas therapies, have also been elaborated. Present research advances and limitations of SRMSNs-based antibacterial therapies, such as limited biodegradability and potential cytotoxicity, have been overviewed with future outlooks presented. This review aims to inspire and guide future research in developing novel antibacterial strategies with integrative solutions.
Collapse
Affiliation(s)
- Yan Liao
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Biao Li
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Hongxin Chen
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Yueqin Ma
- Department of Pharmaceutics, 908th Hospital of Joint Logistics Support Force of PLA, Nanchang 330000, China
| | - Fengxia Wang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Lizhen Huang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Baode Shen
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Hao Song
- Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, Brisbane, QLD 4072, Australia; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 20139, USA.
| | - Pengfei Yue
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China.
| |
Collapse
|
5
|
Yang B, Liang H, Xu J, Liu Y, Ma S, Li Y, Wang C. Multi-drug sequential release systems: Construction and application for synergistic tumor treatment. Int J Pharm 2025; 670:125156. [PMID: 39746586 DOI: 10.1016/j.ijpharm.2024.125156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/25/2024] [Accepted: 12/30/2024] [Indexed: 01/04/2025]
Abstract
In tumor treatment, the sequence and timing of drug action have a large influence on therapeutic efficacy. Multi-drug sequential release systems (MDSRS) enable the sequential and/or on-demand release of multiple drugs following the single administration of a therapeutic agent. Several researchers have explored MDSRS, providing fresh strategies for synergistic cancer therapy. This review article first introduces the main characteristics of MDSRS. It then elaborates on the design principles of MDSRS. Subsequently, it summarizes the various structures of carriers used for constructing MDSRS, including core-shell structure, Layer-by-layer structure, Janus structure and hydrogel. Next, through specific examples, the article emphasizes the application of MDSRS in cancer treatment, focusing on their role in remodeling the tumor microenvironment (TME) and enhancing therapeutic effects through multiple mechanisms. Finally, the article discusses the current limitations and challenges of these systems and proposes potential future solutions. Overall, this review underscores the importance of the sequence and timing of drug therapy in cancer treatment, providing valuable theoretical and technical guidance for pharmaceutical research.
Collapse
Affiliation(s)
- Boyuan Yang
- School of Life Science and Technology, Kunming University of Science and Technology, China
| | - Huijuan Liang
- School of Life Science and Technology, Kunming University of Science and Technology, China
| | - Jiahao Xu
- School of Life Science and Technology, Kunming University of Science and Technology, China
| | - Yanchi Liu
- School of Life Science and Technology, Kunming University of Science and Technology, China
| | - Sha Ma
- School of Life Science and Technology, Kunming University of Science and Technology, China
| | - Yuqiu Li
- School of Life Science and Technology, Kunming University of Science and Technology, China
| | - Chengxiao Wang
- School of Life Science and Technology, Kunming University of Science and Technology, China.
| |
Collapse
|
6
|
Zhang Z, Zhang T, Li Z, Zeng Z. Construction of anticancer drug incorporated aptamer-functionalized cationic β-lactoglobulin: induction of cell cycle arrest and apoptosis in colorectal cancer. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2025; 36:351-370. [PMID: 39410825 DOI: 10.1080/09205063.2024.2402142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 08/29/2024] [Indexed: 02/12/2025]
Abstract
Nanoscale drug delivery systems that are both multifunctional and targeted have been developed using proteins as a basis, thanks to their attractive biomacromolecule properties. A novel nanocarrier, aptamer (AS1411)-conjugated β-lactoglobulin/poly-l-lysine (BLG/Ap/PL) nanoparticles, was developed in this study. To this unique formulation, the as-prepared nanocarrier blends the distinctive features of an aptamer as a chemotherapeutic targeting agent with those of protein nanocarriers. By loading cabazitaxel (CTX) onto the nanocarriers, the therapeutic potential of BLG/Ap/PL could be demonstrated. The CTX-loaded BLG/Ap/PL (CTX@BLG/Ap/PL) showed a regulated drug release profile in an acidic milieu, which could improve therapeutic efficacy in cancer cells and have a high drug encapsulation efficacy of up to 93%. However, compared to free CTX, CTX@BLG/Ap/PL killed colorectal HCT116 cancer cells with a higher efficacy at 24 and 48 h. Further investigation confirms the apoptosis by acridine orange and ethidium bromide (AO/EB), and DAPI staining confirms the morphological changes, chromatin condensation, and membrane blebbing in the treated cell through flow cytometry displayed the release of higher percentages of apoptosis. Cell cycle analysis revealed that CTX@BLG/Ap/PL induced sub-G1 and G2/M phase (apoptosis) at 24 and 48 h. Annexin V/propidium iodide (PI) flow cytometry analysis confirmed that CTX@BLG/Ap/PL induces apoptosis in HCT116 cells. Overall, this study proved that CTX@BLG/Ap/PL had several advantages over free chemotherapeutic drugs and showed promise as a solution to the clinical problems associated with targeted antitumor drug delivery systems.
Collapse
Affiliation(s)
- Zhipeng Zhang
- Department of Geriatric Surgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Tianran Zhang
- Department of Geriatric Surgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zimeng Li
- Department of Geriatric Surgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhijun Zeng
- Department of Geriatric Surgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
7
|
García-García G, Lázaro M, Urquiza P, Romacho T, Delgado ÁV, Iglesias GR. Polydopamine Coated Nonspherical Magnetic Nanocluster for Synergistic Dual Magneto-Photothermal Cancer Therapy. Polymers (Basel) 2024; 17:85. [PMID: 39795489 PMCID: PMC11723388 DOI: 10.3390/polym17010085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/24/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025] Open
Abstract
Local hyperthermia is gaining considerable interest due to its promising antitumor effects. In this context, dual magneto-photothermal cancer therapy holds great promise. For this purpose, the use of nanomaterials has been proposed. Therefore, the aim of this research is to develop a dual magneto-photothermal agent consisting of polydopamine-coated nonspherical magnetic nanoclusters. The physicochemical characterization of the nanoclusters was performed by electron microscopy, electron dispersive X-ray, dynamic light scattering, electrophoretic mobility, thermogravimetric analysis, and Fourier transform infrared spectroscopy. The biocompatibility of the nanoclusters was evaluated using human skin M1 fibroblasts. The potential of the nanoclusters as dual magneto-photothermal agents was investigated by applying an alternating magnetic field (18 kA/m and 165 kHz) and/or NIR laser (850 nm, 0.75 W/cm2). Nanoclusters showed a size of 350 nm consisting of nonspherical magnetic particles of 11 nm completely coated with polydopamine. In addition, they were superparamagnetic and did not significantly affect cell viability at concentrations below 200 µg/mL. Finally, the SAR values obtained for the nanoclusters demonstrated their suitability for magnetotherapy and phototherapy (71 and 41 W/g, respectively), with a synergistic effect when used together (176 W/g). Thus, this work has successfully developed polymeric-coated magnetic nanoclusters with the potential for dual magneto-photothermal cancer therapy.
Collapse
Affiliation(s)
- Gracia García-García
- Department of Nursing, Physiotherapy and Medicine, University of Almería, 04120 Almería, Spain;
- Chronic Complications Diabetes Lab (ChroCoDiL), University of Almería, 04120 Almería, Spain
- NanoMag Lab, Department of Applied Physics, Faculty of Science University of Granada, Planta-1, Edificio I+D Josefina Castro, Av. de Madrid, 28, 18012 Granada, Spain; (M.L.); (Á.V.D.)
| | - Marina Lázaro
- NanoMag Lab, Department of Applied Physics, Faculty of Science University of Granada, Planta-1, Edificio I+D Josefina Castro, Av. de Madrid, 28, 18012 Granada, Spain; (M.L.); (Á.V.D.)
- Department of Applied Physics, School of Sciences, University of Granada, 18071 Granada, Spain
- Biosanitary Research Institute of Granada (ibs.GRANADA), University of Granada, 18001 Granada, Spain
| | - Pedro Urquiza
- Biomedical Research Unit-Biotechnology Laboratory, Torrecárdenas University Hospital, C/Hermandad de Donantes de Sangre s/n, 04009 Almería, Spain;
| | - Tania Romacho
- Department of Nursing, Physiotherapy and Medicine, University of Almería, 04120 Almería, Spain;
- Chronic Complications Diabetes Lab (ChroCoDiL), University of Almería, 04120 Almería, Spain
| | - Ángel V. Delgado
- NanoMag Lab, Department of Applied Physics, Faculty of Science University of Granada, Planta-1, Edificio I+D Josefina Castro, Av. de Madrid, 28, 18012 Granada, Spain; (M.L.); (Á.V.D.)
- Department of Applied Physics, School of Sciences, University of Granada, 18071 Granada, Spain
- Biosanitary Research Institute of Granada (ibs.GRANADA), University of Granada, 18001 Granada, Spain
- MNat Unit of Excellence, University of Granada, 18001 Granada, Spain
| | - Guillermo R. Iglesias
- NanoMag Lab, Department of Applied Physics, Faculty of Science University of Granada, Planta-1, Edificio I+D Josefina Castro, Av. de Madrid, 28, 18012 Granada, Spain; (M.L.); (Á.V.D.)
- Department of Applied Physics, School of Sciences, University of Granada, 18071 Granada, Spain
- Biosanitary Research Institute of Granada (ibs.GRANADA), University of Granada, 18001 Granada, Spain
- MNat Unit of Excellence, University of Granada, 18001 Granada, Spain
| |
Collapse
|
8
|
Sanati M, Figueroa-Espada CG, Han EL, Mitchell MJ, Yavari SA. Bioengineered Nanomaterials for siRNA Therapy of Chemoresistant Cancers. ACS NANO 2024; 18:34425-34463. [PMID: 39666006 DOI: 10.1021/acsnano.4c11259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Chemoresistance remains a long-standing challenge after cancer treatment. Over the last two decades, RNA interference (RNAi) has emerged as a gene therapy modality to sensitize cancer cells to chemotherapy. However, the use of RNAi, specifically small-interfering RNA (siRNA), is hindered by biological barriers that limit its intracellular delivery. Nanoparticles can overcome these barriers by protecting siRNA in physiological environments and facilitating its delivery to cancer cells. In this review, we discuss the development of nanomaterials for siRNA delivery in cancer therapy, current challenges, and future perspectives for their implementation to overcome cancer chemoresistance.
Collapse
Affiliation(s)
- Mehdi Sanati
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand 97178, Iran
| | - Christian G Figueroa-Espada
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, Philadelphia, Pennsylvania 19104, United States
| | - Emily L Han
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, Philadelphia, Pennsylvania 19104, United States
| | - Michael J Mitchell
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, Philadelphia, Pennsylvania 19104, United States
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Penn Institute for RNA Innovation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Saber Amin Yavari
- Department of Orthopedics, University Medical Center Utrecht, 3584 Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, 3584 Utrecht, The Netherlands
| |
Collapse
|
9
|
Omidian H, Wilson RL. Polydopamine Applications in Biomedicine and Environmental Science. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3916. [PMID: 39203091 PMCID: PMC11355457 DOI: 10.3390/ma17163916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/15/2024] [Accepted: 08/05/2024] [Indexed: 09/03/2024]
Abstract
This manuscript explores the multifaceted applications of polydopamine (PDA) across various scientific and industrial domains. It covers the chemical aspects of PDA and its potential in bone tissue engineering, implant enhancements, cancer treatment, and nanotechnology. The manuscript investigates PDA's roles in tissue engineering, cell culture technologies, surface modifications, drug delivery systems, and sensing techniques. Additionally, it highlights PDA's contributions to microfabrication, nanoengineering, and environmental applications. Through detailed testing and assessment, the study identifies limitations in PDA-related research, such as synthesis complexity, incomplete mechanistic understanding, and biocompatibility variability. It also proposes future research directions aimed at improving synthesis techniques, expanding biomedical applications, and enhancing sensing technologies to optimize PDA's efficacy and scalability.
Collapse
Affiliation(s)
- Hossein Omidian
- Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA;
| | | |
Collapse
|
10
|
Carmignani A, Battaglini M, Marino A, Pignatelli F, Ciofani G. Drug-Loaded Polydopamine Nanoparticles for Chemo/Photothermal Therapy against Colorectal Cancer Cells. ACS APPLIED BIO MATERIALS 2024; 7:2205-2217. [PMID: 38489294 DOI: 10.1021/acsabm.3c01203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
Colorectal cancer (CRC) is a common and deadly malignancy, ranking second in terms of mortality and third in terms of incidence on a global scale. The survival rates for CRC patients are unsatisfactory primarily because of the absence of highly effective clinical strategies. The efficacy of existing CRC treatments, such as chemotherapy (CT), is constrained by issues such as drug resistance and damage to healthy tissues. Alternative approaches such as photothermal therapy (PTT), while offering advantages over traditional therapies, suffer instead from a low efficiency in killing tumor cells when used alone. In this context, nanostructures can efficiently contribute to a selective and targeted treatment. Here, we combined CT and PTT by developing a nanoplatform based on polydopamine nanoparticles (PDNPs), selected for their biocompatibility, drug-carrying capabilities, and ability to produce heat upon exposure to near-infrared (NIR) irradiation. As a chemotherapy drug, sorafenib has been selected, a multikinase inhibitor already approved for clinical use. By encapsulating sorafenib in polydopamine nanoparticles (Sor-PDNPs), we were able to successfully improve the drug stability in physiological media and the consequent uptake by CRC cells, thereby increasing its therapeutic effects. Upon NIR stimulus, Sor-PDNPs can induce a temperature increment of about 10 °C, encompassing both PTT and triggering a localized and massive drug release. Sor-PDNPs were tested on healthy colon cells, showing minimal adverse outcomes; conversely, they demonstrated excellent efficacy against CRC cells, with a strong capability to hinder cancer cell proliferation and induce apoptosis. Obtained findings pave the way to new synergistic chemo-photothermal approaches, maximizing the therapeutic outcomes against CRC while minimizing side effects on healthy cells.
Collapse
Affiliation(s)
- Alessio Carmignani
- Smart Bio-Interfaces, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
- Scuola Superiore Sant'Anna, The Biorobotics Institute, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
| | - Matteo Battaglini
- Smart Bio-Interfaces, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
| | - Attilio Marino
- Smart Bio-Interfaces, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
| | - Francesca Pignatelli
- Smart Bio-Interfaces, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
| | - Gianni Ciofani
- Smart Bio-Interfaces, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
| |
Collapse
|
11
|
Li Y, Yang J, Chen X, Hu H, Lan N, Zhao J, Zheng L. Mitochondrial-targeting and NIR-responsive Mn 3O 4@PDA@Pd-SS31 nanozymes reduce oxidative stress and reverse mitochondrial dysfunction to alleviate osteoarthritis. Biomaterials 2024; 305:122449. [PMID: 38194734 DOI: 10.1016/j.biomaterials.2023.122449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/11/2024]
Abstract
Mitochondrial reactive oxygen species (mROS) play a crucial role in the process of osteoarthritis (OA), which may be a promising target for therapy of OA. In this study, novel mitochondrial-targeting and SOD-mimic Mn3O4@PDA@Pd-SS31 nanozymes with near-infrared (NIR) responsiveness and synergistic cascade to scavenge mROS were designed for the therapy of OA. Results showed that the nanozymes accelerated the release of Pd and Mn3O4 under NIR irradiation, exhibiting enhanced activities of SOD and CAT mimic enzymes with reversed mitochondrial dysfunction and promoted mitophagy to effectively scavenge mROS from chondrocytes, modulate the microenvironment of oxidative stress, and eventually inhibit the inflammatory response. Nanozymes were excreted in vivo through intestinal metabolic pathway and had good biocompatibility, effectively reducing the inflammatory response and relieving articular cartilage degeneration in OA joints, with a reduction of 93.7 % and 93.8 % in OARSCI scores for 4 and 8 weeks respectively. Thus, this study demonstrated that the mitochondria targeting and NIR responsive Mn3O4@PDA@Pd-SS31 nanozymes could efficiently scavenge mROS, repair damaged mitochondrial function and promote cartilage regeneration, which are promising for the treatment of OA in clinical applications.
Collapse
Affiliation(s)
- Yuquan Li
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China; Collaborative Innovation Centre of Regenerative Medicine and Medical Bioresource Development and Application, Guangxi Key Laboratory of Regenerative Medicine,The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China; Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China; Department of Orthopedics, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530005, China
| | - Junxu Yang
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China; Collaborative Innovation Centre of Regenerative Medicine and Medical Bioresource Development and Application, Guangxi Key Laboratory of Regenerative Medicine,The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China; Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Xiaoming Chen
- Department of Spine Osteopathia, The First Affifiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Hao Hu
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China; Collaborative Innovation Centre of Regenerative Medicine and Medical Bioresource Development and Application, Guangxi Key Laboratory of Regenerative Medicine,The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China; Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441100, China
| | - Nihan Lan
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China; Collaborative Innovation Centre of Regenerative Medicine and Medical Bioresource Development and Application, Guangxi Key Laboratory of Regenerative Medicine,The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China; Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China.
| | - Jinmin Zhao
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China; Collaborative Innovation Centre of Regenerative Medicine and Medical Bioresource Development and Application, Guangxi Key Laboratory of Regenerative Medicine,The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China; Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.
| | - Li Zheng
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China; Collaborative Innovation Centre of Regenerative Medicine and Medical Bioresource Development and Application, Guangxi Key Laboratory of Regenerative Medicine,The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.
| |
Collapse
|
12
|
Li K, Chen W, Ma L, Yan L, Wang B. Approaches for reducing chemo/radiation-induced cardiotoxicity by nanoparticles. ENVIRONMENTAL RESEARCH 2024; 244:117264. [PMID: 37776941 DOI: 10.1016/j.envres.2023.117264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/13/2023] [Accepted: 09/27/2023] [Indexed: 10/02/2023]
Abstract
Nanoparticles are fascinating and encouraging carriers for cancer treatment due to their extraordinary properties and potential applications in targeted drug delivery, treatment, and diagnosis. Experimental studies including in vitro and in vivo examinations show that nanoparticles can cause a revolution in different aspects of cancer therapy. Normal tissue toxicity and early and late consequences are the major limitations of cancer therapy by radiotherapy and chemotherapy. However, the delivery of drugs into tumors or reducing the accumulation of drugs in normal tissues can permit a more satisfactory response of malignancies to therapy with more inferior side effects. Cardiac toxicity is one of the major problems for chemotherapy and radiotherapy. Therefore, several experimental studies have been performed to minimize the degenerative impacts of cancer treatment on the heart and also enhance the influences of radiotherapy and chemotherapy agents in cancers. This review article emphasizes the benefits of nanoparticle-based drug delivery techniques, including minimizing the exposure of the heart to anticancer drugs, enhancing the accumulation of drugs in cancers, and expanding the effectiveness of radiotherapy. The article also discusses the challenges and problems accompanied with nanoparticle-based drug delivery techniques such as toxicity, which need to be addressed through further research. Moreover, the article emphasizes the importance of developing safe and effective nanoparticle-based therapies that can be translated into clinical practice.
Collapse
Affiliation(s)
- Ketao Li
- Department of Cardiology, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, Zhejiang, 310022, China
| | - Wan Chen
- Department of Cardiology, Jiulongpo First People's Hospital, Chongqing, 400051, China
| | - Liping Ma
- Department of Cardiology, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, Zhejiang, 310022, China
| | - Laixing Yan
- Department of Cardiology, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, Zhejiang, 310022, China
| | - Bing Wang
- Department of Cardiology, Zouping People's Hospital, Zouping, shandong, 256299, China.
| |
Collapse
|
13
|
Singh S, Pal K. Actively targeted gold-polydopamine (PDA@Au) nanocomplex for sequential drug release and combined synergistic chemo-photothermal therapeutic effects. Int J Pharm 2023; 645:123374. [PMID: 37673278 DOI: 10.1016/j.ijpharm.2023.123374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/30/2023] [Accepted: 09/03/2023] [Indexed: 09/08/2023]
Abstract
Multifunctional nanoparticles for treatment in cancer are getting more and more attention recently. In this study, we employed a novel polydopamine (PDA) framework-based gold nanoparticles as a carrier of an antimetabolite drug, 5-Fluorouracil (5-FU). Folic acid (FA) was embellished onto the surface of nanoparticle imparting the nanosystem with remarkable tumor-targeting abilities through its precise binding with FA receptor that is notably overexpressed in breast cancer cells. PDA served as a photothermal treatment (PTT) agent and a gatekeeper to regulate drug release since it is highly pH-sensitive and might lengthen the residency period while simultaneously enhancing water solubility and biological compatibility of nanomaterials. Gold nanoparticles (Au NPs) end up serving as both a drug delivery platform and a source of substantial photothermal effects, culminating in synergistically coupled chemo-photothermal therapy. The PDA@Au@FA nanocomplex, loaded with 5-FU, is biocompatible, features strong NIR absorption and photothermal conversion, and can control drug release in pH/NIR dual response environment. The cell viability in PDA@Au@5-FU-FA group with NIR irradiation in 48 h was only 20.1 ± 2.6%. In addition, apoptosis staining experiments revealed greater cellular uptake of PDA@Au@5-FU-FA by MCF-7 cells. Therefore, PDA@Au@5-FU-FA nanocomplex that we postulated herein may be a potential contender for effective curative treatment for breast cancer.
Collapse
Affiliation(s)
- Swati Singh
- Center for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Kaushik Pal
- Center for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, India; Department of Mechanical and Industrial Engineering, Indian Institute of Technology Roorkee, Roorkee, 247667, India.
| |
Collapse
|
14
|
Singh S, Pal K. Folic-acid adorned alginate-polydopamine modified paclitaxel/Zn-CuO nanocomplex for pH triggered drug release and synergistic antitumor efficacy. Int J Biol Macromol 2023; 234:123602. [PMID: 36773860 DOI: 10.1016/j.ijbiomac.2023.123602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/23/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023]
Abstract
Targeted chemotherapy is a prominent cancer treatment research trend that intends to boost the efficacy of drug delivery to cancer cells. The present work aimed to design, a folate-decorated biologically inspired alginate-polydopamine capped zinc doped copper oxide nanoparticles (Zn-CuO) loaded with paclitaxel (Zn-CuO@PTX/AlgPDA-FA) as a simple, efficient, and versatile nanoplatform. Interestingly, Zn species doped in CuO frameworks significantly improved paclitaxel (PTX) molecule loading efficiency without requiring any additional functionalization and fostered the increased antitumor efficacy by precisely delivering them in tumor's acidic microenvironment by obliterating the formed coordination connections between the host as well as guest species. According to DLS, average size of nanocomplex was 196 ± 5.01 nm with ȥ-potential -31.4 ± 1.54 mV. PTX encapsulation and loading efficiencies were 75.2 ± 1.54 % and 18.54 ± 2.31 %, respectively. Furthermore, nanocomplex demonstrates high stability and biocompatibility in vitro. Under an acidic environment (pH 5.0), there was greater PTX release compared to normal physiological conditions. Moreover, Zn-CuO@PTX/AlgPDA-FA NPs showed remarkable internalization efficiency in MCF-7 cells and demonstrated strong cytotoxicity with IC50 (150 ± 2.58 μg/mL) along with improved ROS generation and changed mitochondrial membrane potential level. Therefore, our approach could suggest excellent potential for tumor targeting in cancer therapy with reduced off-target toxicity, and desirable therapeutic effects.
Collapse
Affiliation(s)
- Swati Singh
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Kaushik Pal
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India; Department of Mechanical and Industrial Engineering, Indian Institute of Technology Roorkee, Roorkee 247667, India.
| |
Collapse
|
15
|
Xiao R, Liu Y, Li Y, Shen Y, Zhou S, Cui P, Hu H, Jiang P, Qiu L, Wang C, Wang J. Polymerized Tannic Acid Offers a Nanosized Platform to Combat Bacterial Infection. ACS Biomater Sci Eng 2022; 8:5008-5017. [DOI: 10.1021/acsbiomaterials.2c00974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ru Xiao
- School of Pharmacy, Changzhou University, No. 21 Middle Gehu Road, Wujin District, Changzhou, Jiangsu 213164, P. R. China
| | - Yadong Liu
- School of Pharmacy, Changzhou University, No. 21 Middle Gehu Road, Wujin District, Changzhou, Jiangsu 213164, P. R. China
| | - Yuting Li
- School of Pharmacy, Changzhou University, No. 21 Middle Gehu Road, Wujin District, Changzhou, Jiangsu 213164, P. R. China
| | - Yaoyan Shen
- School of Pharmacy, Changzhou University, No. 21 Middle Gehu Road, Wujin District, Changzhou, Jiangsu 213164, P. R. China
| | - Shuwen Zhou
- School of Pharmacy, Changzhou University, No. 21 Middle Gehu Road, Wujin District, Changzhou, Jiangsu 213164, P. R. China
| | - Pengfei Cui
- School of Pharmacy, Changzhou University, No. 21 Middle Gehu Road, Wujin District, Changzhou, Jiangsu 213164, P. R. China
| | - Huaanzi Hu
- School of Pharmacy, Changzhou University, No. 21 Middle Gehu Road, Wujin District, Changzhou, Jiangsu 213164, P. R. China
| | - Pengju Jiang
- School of Pharmacy, Changzhou University, No. 21 Middle Gehu Road, Wujin District, Changzhou, Jiangsu 213164, P. R. China
| | - Lin Qiu
- School of Pharmacy, Changzhou University, No. 21 Middle Gehu Road, Wujin District, Changzhou, Jiangsu 213164, P. R. China
| | - Cheng Wang
- School of Pharmacy, Changzhou University, No. 21 Middle Gehu Road, Wujin District, Changzhou, Jiangsu 213164, P. R. China
- Second People’s Hospital of Changzhou, Nanjing Medical University, Changzhou 213003, P. R. China
| | - Jianhao Wang
- School of Pharmacy, Changzhou University, No. 21 Middle Gehu Road, Wujin District, Changzhou, Jiangsu 213164, P. R. China
| |
Collapse
|
16
|
Chang Y, Rui W, Zhang M, Zhou S, Qiu L, Cui P, Hu H, Jiang P, Du X, Ni X, Wang C, Wang J. Facile preparation of copper-gallic acid nanoparticles as a high reproducible and drug loading platform for doxorubicin. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Dai Q, Cao B, Zhao S, Zhang A. Synergetic Thermal Therapy for Cancer: State-of-the-Art and the Future. Bioengineering (Basel) 2022; 9:bioengineering9090474. [PMID: 36135020 PMCID: PMC9495761 DOI: 10.3390/bioengineering9090474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 11/24/2022] Open
Abstract
As a safe and minimal-invasive modality, thermal therapy has become an effective treatment in cancer treatment. Other than killing the tumor cells or destroying the tumor entirely, the thermal modality results in profound molecular, cellular and biological effects on both the targeted tissue, surrounding environments, and even the whole body, which has triggered the combination of the thermal therapy with other traditional therapies as chemotherapy and radiation therapy or new therapies like immunotherapy, gene therapy, etc. The combined treatments have shown encouraging therapeutic effects both in research and clinic. In this review, we have summarized the outcomes of the existing synergistic therapies, the underlying mechanisms that lead to these improvements, and the latest research in the past five years. Limitations and future directions of synergistic thermal therapy are also discussed.
Collapse
|
18
|
Chinchulkar SA, Patra P, Dehariya D, Yu A, Rengan AK. Polydopamine nanocomposites and their biomedical applications: A review. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | - Paloma Patra
- Department of Biomedical Engineering Indian Institute of Technology Hyderabad Sangareddy India
| | - Dheeraj Dehariya
- Department of Biomedical Engineering Indian Institute of Technology Hyderabad Sangareddy India
| | - Aimin Yu
- Faculty of Science Engineering and Technology Department of Chemistry, Biotechnology Swinburne University of Technology Hawthorn Victoria Australia
| | - Aravind Kumar Rengan
- Department of Biomedical Engineering Indian Institute of Technology Hyderabad Sangareddy India
| |
Collapse
|
19
|
Wang X, Wu B, Zhang Y, Dou X, Zhao C, Feng C. Polydopamine-doped supramolecular chiral hydrogels for postoperative tumor recurrence inhibition and simultaneously enhanced wound repair. Acta Biomater 2022; 153:204-215. [PMID: 36108967 DOI: 10.1016/j.actbio.2022.09.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/31/2022] [Accepted: 09/07/2022] [Indexed: 12/23/2022]
Abstract
Cancer recurrence remains a major challenge after primary tumor excision, and the inflammation of tumor-caused wounds can hinder wound healing and potentially promote tumor growth. Herein, a chiral L-phenylalanine-based (LPFEG) supramolecular hydrogel system encapsulated with polydopamine nanoparticles (PDA-NPs) has been developed in order to prevent tumor relapse after surgery and promote wound repair. PDA-NPs allow for near-infrared (NIR) light-triggered photothermal therapy, especially, it can scavenge free radicals in the surgical wound. LPFEG can mimic native extracellular matrix (ECM) structure to create a chiral microenvironment that enhances fibroblast adhesion, proliferation, and new tissue regeneration. With anticancer drug doxorubicin (DOX) loaded into the composite hydrogel, the antitumor effect is significantly enhanced by the integration of chemo-photothermal therapy both in vitro and in vivo. The PDA-based chiral supramolecular composite hydrogel as an effective postoperative adjuvant possesses promising applicable prospects in inhibiting tumor recurrence and accelerating wound healing after operation. STATEMENT OF SIGNIFICANCE: After primary tumor excision, cancer recurrence remains a severe concern, and the inflammation induced by tumor-related wounds can delay wound healing. Herein, we designed a chiral L-phenylalanine-based (LPFEG) supramolecular hydrogel platform that was co-assembled with polydopamine nanoparticles (PDA-NPs). Among them, PDA-NPs can offer photothermal therapy and scavenge free radicals in surgical wounds. LPFEG can create a chiral microenvironment that promotes fibroblast adhesion, proliferation, and new tissue regeneration. Furthermore, with anticancer drug doxorubicin (DOX) loaded into the composite hydrogel, the antitumor effect is considerably boosted. Therefore, the PDA-based chiral supramolecular hydrogel shows high application potential as a postoperative adjuvant in preventing tumor relapse as well as accelerating wound healing after surgery.
Collapse
Affiliation(s)
- Xueqian Wang
- State Key Lab of Metal Matrix Composites, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Beibei Wu
- State Key Lab of Metal Matrix Composites, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yaqian Zhang
- State Key Lab of Metal Matrix Composites, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoqiu Dou
- State Key Lab of Metal Matrix Composites, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Changli Zhao
- State Key Lab of Metal Matrix Composites, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chuanliang Feng
- State Key Lab of Metal Matrix Composites, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
20
|
Li J, Zhang Q, Cai J, Yang Y, Zhang J, Gao Y, Liu S, Li K, Shi M, Liu Z, Gao L. A Double-Chamber “Dandelion” Appearance Sequential Drug Delivery System for Synergistic Treatment of Malignant Tumors. Int J Nanomedicine 2022; 17:3821-3839. [PMID: 36072959 PMCID: PMC9444041 DOI: 10.2147/ijn.s369732] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 08/29/2022] [Indexed: 11/23/2022] Open
Abstract
Introduction During the combined treatment of tumors, the non-interfering transportation of drugs with different solubilities and the controllable sequential release are the main challenges. Here, we reported a double-chamber “Dandelion” -like sequential drug delivery system to realize the sequential release of different drugs for treating malignant tumors synergistically. Methods After synthesizing mesoporous silica nanoparticles (MSN) by template method, a hydrophilic chemotherapy drug doxorubicin (DOX) was loaded into the channels of mesoporous silica (MSN) and locked with polydopamine (PDA) coating. Next, β-cyclodextrin (β-CDs) was decorated on PDA by Michael addition reaction, and the hydrophobic photosensitizer chlorin e6 (Ce6) was encapsulated into the hydrophobic chambers of β-CDs. Finally, AS1411 was modified on the surface of PDA and obtained DOX@MSN@PDA-β-CD/Ce6-AS1411 nanoparticles (DMPCCA) through which orthogonal loading and effective controlled release of different drugs were realized. Results Under the sequential irradiations of 808 nm and 660 nm near-infrared (NIR) laser, PDA promoted the extensive release of Ce6 firstly while playing the effect of photothermal therapy (PTT), further to achieve the effect of photodynamic therapy (PDT) of Ce6. Meanwhile, the rapid release of DOX loaded in MSN channels showed a time lag of about 5 h after Ce6 release, through which it maximized the chemotherapeutic effect. Besides, the present drug loading nano-platform combined passive tumor-targeting effect given by EPR and active tumor-targeting effect endowed by AS1411 realized PTT-PDT-chemotherapy triple mode synergistic combination. Conclusion We offer a general solution to address the key limitations for the delivery and sequential release of different drugs with different solubilities.
Collapse
Affiliation(s)
- Jian Li
- College of Environmental & Chemical Engineering, Yanshan University, Qinhuangdao, People’s Republic of China
- Applied Chemistry Key Laboratory of Hebei Province, Yanshan University, Qinhuangdao, People’s Republic of China
- Key Laboratory of Nanobiotechnology of Hebei Province, Yanshan University, Qinhuangdao, People’s Republic of China
- Correspondence: Jian Li, College of Environment & Chemical Engineering, Yanshan University, No. 438 Hebei Street, Qinhuangdao, 066004, People’s Republic of China, Tel +86-335-8061569, Fax +86-335-8061569, Email
| | - Qing Zhang
- College of Environmental & Chemical Engineering, Yanshan University, Qinhuangdao, People’s Republic of China
- Applied Chemistry Key Laboratory of Hebei Province, Yanshan University, Qinhuangdao, People’s Republic of China
- Key Laboratory of Nanobiotechnology of Hebei Province, Yanshan University, Qinhuangdao, People’s Republic of China
| | - Jiahui Cai
- College of Environmental & Chemical Engineering, Yanshan University, Qinhuangdao, People’s Republic of China
- Applied Chemistry Key Laboratory of Hebei Province, Yanshan University, Qinhuangdao, People’s Republic of China
- Key Laboratory of Nanobiotechnology of Hebei Province, Yanshan University, Qinhuangdao, People’s Republic of China
| | - Yibo Yang
- College of Environmental & Chemical Engineering, Yanshan University, Qinhuangdao, People’s Republic of China
- Applied Chemistry Key Laboratory of Hebei Province, Yanshan University, Qinhuangdao, People’s Republic of China
- Key Laboratory of Nanobiotechnology of Hebei Province, Yanshan University, Qinhuangdao, People’s Republic of China
| | - Jia Zhang
- College of Environmental & Chemical Engineering, Yanshan University, Qinhuangdao, People’s Republic of China
- Applied Chemistry Key Laboratory of Hebei Province, Yanshan University, Qinhuangdao, People’s Republic of China
- Key Laboratory of Nanobiotechnology of Hebei Province, Yanshan University, Qinhuangdao, People’s Republic of China
| | - Yanting Gao
- College of Environmental & Chemical Engineering, Yanshan University, Qinhuangdao, People’s Republic of China
- Applied Chemistry Key Laboratory of Hebei Province, Yanshan University, Qinhuangdao, People’s Republic of China
- Key Laboratory of Nanobiotechnology of Hebei Province, Yanshan University, Qinhuangdao, People’s Republic of China
| | - Shihe Liu
- College of Environmental & Chemical Engineering, Yanshan University, Qinhuangdao, People’s Republic of China
- Applied Chemistry Key Laboratory of Hebei Province, Yanshan University, Qinhuangdao, People’s Republic of China
- Key Laboratory of Nanobiotechnology of Hebei Province, Yanshan University, Qinhuangdao, People’s Republic of China
| | - Kun Li
- College of Environmental & Chemical Engineering, Yanshan University, Qinhuangdao, People’s Republic of China
- Applied Chemistry Key Laboratory of Hebei Province, Yanshan University, Qinhuangdao, People’s Republic of China
- Key Laboratory of Nanobiotechnology of Hebei Province, Yanshan University, Qinhuangdao, People’s Republic of China
| | - Ming Shi
- College of Environmental & Chemical Engineering, Yanshan University, Qinhuangdao, People’s Republic of China
- Applied Chemistry Key Laboratory of Hebei Province, Yanshan University, Qinhuangdao, People’s Republic of China
- Key Laboratory of Nanobiotechnology of Hebei Province, Yanshan University, Qinhuangdao, People’s Republic of China
| | - Zhiwei Liu
- College of Environmental & Chemical Engineering, Yanshan University, Qinhuangdao, People’s Republic of China
- Applied Chemistry Key Laboratory of Hebei Province, Yanshan University, Qinhuangdao, People’s Republic of China
- Key Laboratory of Nanobiotechnology of Hebei Province, Yanshan University, Qinhuangdao, People’s Republic of China
| | - Liming Gao
- Oncology Department, the First Hospital of Qinhuangdao, Qinhuangdao, People’s Republic of China
| |
Collapse
|
21
|
Yin X, Ran S, Cheng H, Zhang M, Sun W, Wan Y, Shao C, Zhu Z. Polydopamine-modified ZIF-8 nanoparticles as a drug carrier for combined chemo-photothermal osteosarcoma therapy. Colloids Surf B Biointerfaces 2022; 216:112507. [PMID: 35523102 DOI: 10.1016/j.colsurfb.2022.112507] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/07/2022] [Accepted: 04/14/2022] [Indexed: 12/19/2022]
Abstract
Single chemotherapy often causes severe adverse effects and chemoresistance which limits therapeutic efficacy. Recently, combination of chemotherapy with photothermal therapy (PTT) have received broad attention for synergistic treatment of osteosarcoma, ultimately resulting in the enhancement of therapeutic efficacy of anticancer drugs. In this study, we have developed a novel drug delivery system based on polydopamine (pDA)-modified ZIF-8 nanoparticles loaded with methotrexate (MTX) (pDA/MTX@ZIF-8 NPs). Herein, pDA modification avoided the explosive release of the drug, and improved the biocompatibility and near-infrared (NIR) light absorbance performance of nanoparticles. The as-prepared pDA/MTX@ZIF-8 NPs could be used as drug targeting delivery system and simultaneously displayed excellent photothermal effects under NIR irradiation. Biology assays in vitro indicated that the pDA/MTX@ZIF-8 NPs were able to efficiently induce MG63 cell apoptosis through reducing mitochondrial membrane potentials (MMPs), and the introduction of photothermal agents enhanced the antitumor effect and decreased the dose of chemotherapeutic drugs. Moreover, the optimized pDA/MTX@ZIF-8 NPs (40 μg/mL) exhibited better photothermal conversion performance and facilitated tumor cells death. These results triumphantly exhibit that the pDA/MTX@ZIF-8 NPs have a synergistic effect of chemo-photothermal therapy (combination index CI = 0.346) and excellent biocompatibility, which has unexceptionable prospects for the therapy of osteosarcoma.
Collapse
Affiliation(s)
- Xueling Yin
- Institute of Nano-science and Nano-technology, College of Physical Science and Technology, Central China Normal University, Wuhan, Hubei 430079, China
| | - Siyi Ran
- Institute of Nano-science and Nano-technology, College of Physical Science and Technology, Central China Normal University, Wuhan, Hubei 430079, China
| | - Haoyan Cheng
- Institute of Materials Science and Engineering, Henan University of Science and Technology, Luoyang, Henan 471000, China
| | - Meng Zhang
- Institute of Nano-science and Nano-technology, College of Physical Science and Technology, Central China Normal University, Wuhan, Hubei 430079, China
| | - Wei Sun
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, Hainan 571158, China
| | - Ying Wan
- College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China.
| | - Chunsheng Shao
- Department of Stomatology, Third Xiangya Hospital, Central South University, Changsha 410083, Hunan, China.
| | - Zhihong Zhu
- Institute of Nano-science and Nano-technology, College of Physical Science and Technology, Central China Normal University, Wuhan, Hubei 430079, China.
| |
Collapse
|
22
|
Du T, Zhao S, Dong W, Ma W, Zhou X, Wang Y, Zhang M. Surface Modification of Carbon Fiber-Reinforced Polyetheretherketone with MXene Nanosheets for Enhanced Photothermal Antibacterial Activity and Osteogenicity. ACS Biomater Sci Eng 2022; 8:2375-2389. [PMID: 35652599 DOI: 10.1021/acsbiomaterials.2c00095] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Ideal bone implant materials need to provide multiple functions such as biocompatibility, non-cytotoxicity, and bone tissue regeneration guidance. To tackle this challenge, according to our previous work, carbon fiber (40 mm)-reinforced polyetheretherketone (CFPEEK) composites were developed by using 3D needle-punched CFPEEK preform molding technology. Because of the excellent mechanical properties, the CFPEEK needled felt matrix composites have a broad application prospect in orthopedic internal fixation and implant materials. In order to expand the application range of composite materials, it is very necessary to improve the surface bioactivity of composite materials. The surface modification of CFPEEK with 2D titanium carbide (MXene) nanosheets (sulfonated CFPEEK (SCFPEEK)-polydopamine (PDA)-Ti3C2Tx) for enhanced photothermal antibacterial activity and osteogenicity was explored in this study. Here, the new composites we constructed are composed of Ti3C2Tx nanosheets, PDA, and biologically inert SCFPEEK, which gave the bio-inert composites bimodal therapeutic features: photothermal antibacterial activity and in vivo osseointegration. To our knowledge, this is the first time that a CFPEEK implant with a bioactive surface modified by Ti3C2Tx nanosheets was demonstrated. Due to the synergistic photothermal therapy (PTT) treatment of Ti3C2Tx/PDA, SCFPEEK-PDA-Ti3C2Tx (SCP-PDA-Ti) absorbed heat and the temperature increased to 40.8-59.6 °C─the high temperature led to bacterial apoptosis. The SCP-PDA-Ti materials could effectively kill bacteria after 10 min of near-infrared (NIR) irradiation at 808 nm. SCP-PDA-Ti (2.5) and SCP-PDA-Ti (3.0) achieved a 100% bacteriostasis rate. More importantly, the multifunctional implant SCP-PDA-Ti shows good cytocompatibility and an excellent ability to promote bone formation in terms of cytotoxicity, diffusion, alkaline phosphatase activity, alizarin red activity, real-time polymerase chain reaction analysis, and in vivo bone defect osteogenesis experiments. This provides a more extendable development idea for the application of carbon fiber-reinforced composites as orthopedic implants.
Collapse
Affiliation(s)
- Tianhui Du
- Key Laboratory of High Performance Plastics, Ministry of Education, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Shanshan Zhao
- Key Laboratory of High Performance Plastics, Ministry of Education, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Wenying Dong
- Key Laboratory of High Performance Plastics, Ministry of Education, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Wendi Ma
- Key Laboratory of High Performance Plastics, Ministry of Education, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Xingyu Zhou
- Key Laboratory of High Performance Plastics, Ministry of Education, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Yilong Wang
- Key Laboratory of High Performance Plastics, Ministry of Education, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Mei Zhang
- Key Laboratory of High Performance Plastics, Ministry of Education, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
23
|
Hu H, Liu X, Hong J, Ye N, Xiao C, Wang J, Li Z, Xu D. Mesoporous polydopamine-based multifunctional nanoparticles for enhanced cancer phototherapy. J Colloid Interface Sci 2022; 612:246-260. [PMID: 34995863 DOI: 10.1016/j.jcis.2021.12.172] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/12/2021] [Accepted: 12/26/2021] [Indexed: 01/10/2023]
Abstract
Cancer phototherapy has attracted increasing attention for its effectiveness, relatively low side effect, and noninvasiveness. The combination of photothermal therapy (PTT) and photodynamic therapy (PDT) has been shown to exhibit promising prospects in cancer treatment. However, the tumor hypoxia, high level of intracellular glutathione (GSH), and insufficient photosensitizer uptake significantly limit the PDT efficacy. In this work, we combine oxygen supply, GSH depletion, and tumor targeting in one nanoplatform, folate-decorated mesoporous polydopamine nanoparticles (FA-MPPD) co-loaded with new indocyanine green (IR-820) and perfluorooctane (PFO) (IR-820/PFO@FA-MPPD), to overcome the PDT resistance for enhanced cancer PDT/PTT. IR-820/PFO@FA-MPPD exhibit efficient singlet oxygen generation and photothermal effect under 808 nm laser irradiation, GSH-promoted IR-820 release, and efficient cellular uptake, resulting in high intracellular reactive oxygen species (ROS) level under 808 nm laser irradiation and strong photocytotoxicity in vitro. Following intratumoral injection, IR-820/PFO@FA-MPPD can relieve tumor hypoxia sustainably by PFO-mediated oxygen transport and deplete intracellular GSH by the Michael addition reaction, which boost the PDT effect and lead to the most potent antitumor effect upon 808 nm laser irradiation. The multifunctional IR-820/PFO@FA-MPPD developed in this work offer a relatively simple and effective strategy to potentiate PDT for efficient cancer phototherapy.
Collapse
Affiliation(s)
- Hang Hu
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Xin Liu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Hong
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Ningbing Ye
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Chen Xiao
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Jianhao Wang
- School of Pharmacy, Changzhou University, Changzhou 213164, China.
| | - Zifu Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Huazhong University of Science and Technology, Wuhan, China; Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan, China.
| | - Defeng Xu
- School of Pharmacy, Changzhou University, Changzhou 213164, China.
| |
Collapse
|
24
|
Li Y, Su Y, Pan H, Deng W, Wang J, Liu D, Pan W. Nanodiamond-based multifunctional platform for oral chemo-photothermal combinational therapy of orthotopic colon cancer. Pharmacol Res 2022; 176:106080. [PMID: 35032663 DOI: 10.1016/j.phrs.2022.106080] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/03/2022] [Accepted: 01/10/2022] [Indexed: 02/06/2023]
Abstract
Combination therapy system has become a promising strategy for achieving favorable antitumor efficacy. Herein, a novel oral drug delivery system with colon localization and tumor targeting functions was designed for orthotopic colon cancer chemotherapy and photothermal combinational therapy. The polydopamine coated nanodiamond (PND) was used as the photothermal carrier, through the coupling of sulfhydryl-polyethylene glycol-folate (SH-PEG-FA) on the surface of PND to achieve systematic colon tumor targeting, curcumin (CUR) was loaded as the model drug, and then coated with chitosan (CS) to achieve the long gastrointestinal tract retention and colon localization functions to obtain PND-PEG-FA/CUR@CS nanoparticles. It has high photothermal conversion efficiency and good photothermal stability and exhibited near-infrared (NIR) laser-responsive drug release behavior. Folate (FA) modification effectively promotes the intracellular uptake of nanoparticles by CT26 cells, and the combination of chemotherapy and photothermal therapy (CT/PTT) can enhance cytotoxicity. Compared with free CUR group, nanoparticles prolonged the gastrointestinal tract retention time, accumulated more in colon tumor tissues, and exhibited good photothermal effect in vivo. More importantly, the CT/PTT group exhibited satisfactory tumor growth inhibition effects with good biocompatibility in vivo. In summary, this oral drug delivery system is an efficient platform for chemotherapy and photothermal combinational therapy of orthotopic colon cancer.
Collapse
Affiliation(s)
- Yunjian Li
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Yupei Su
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Hao Pan
- College of Pharmacy, Liaoning University, Shenyang 110036, PR China
| | - Wenbin Deng
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Jiahui Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Dandan Liu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, PR China; School of Biomedical & Chemical Engineering, Liaoning Institute of Science and Technology, Benxi 117004, PR China.
| | - Weisan Pan
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, PR China.
| |
Collapse
|
25
|
Han N, Shi Q, Wang X, Huang X, Ruan M, Ren L, Lang X, Wu K, Du S. Liposome co-loaded with β-elemene and IR780 for combined chemo-phototherapy. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
26
|
Huang J, Zhang X, Fu K, Wei G, Su Z. Stimulus-responsive nanomaterials under physical regulation for biomedical applications. J Mater Chem B 2021; 9:9642-9657. [PMID: 34807221 DOI: 10.1039/d1tb02130c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Cancer is a growing threat to human beings. Traditional treatments for malignant tumors usually involve invasive means to healthy human tissues, such as surgical treatment and chemotherapy. In recent years the use of specific stimulus-responsive materials in combination with some non-contact, non-invasive stimuli can lead to better efficacy and has become an important area of research. It promises to develop personalized treatment systems for four types of physical stimuli: light, ultrasound, magnetic field, and temperature. Nanomaterials that are responsive to these stimuli can be used to enhance drug delivery, cancer treatment, and tissue engineering. This paper reviews the principles of the stimuli mentioned above, their effects on materials, and how they work with nanomaterials. For this aim, we focus on specific applications in controlled drug release, cancer therapy, tissue engineering, and virus detection, with particular reference to recent photothermal, photodynamic, sonodynamic, magnetothermal, radiation, and other types of therapies. It is instructive for the future development of stimulus-responsive nanomaterials for these aspects.
Collapse
Affiliation(s)
- Jinzhu Huang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Xiaoyuan Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Kun Fu
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Gang Wei
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China.
| | - Zhiqiang Su
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
27
|
Yang H, Cao Q, Yuan Z, Wu X, Li M. Enhanced therapeutic efficacy of a novel self-micellizing nanoformulation-loading fisetin against acetaminophen-induced liver injury. Nanomedicine (Lond) 2021; 16:2431-2448. [PMID: 34632809 DOI: 10.2217/nnm-2021-0232] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Aim: To evaluate the feasibility of using dipotassium glycyrrhizinate (DG) as a nanocarrier-loading fisetin (FIT) with strengthened treatment efficacies against liver injury induced by acetaminophen overdose. Methods: DG-FIT was prepared, and its efficacy against liver injury induced by acetaminophen overdose was evaluated. Results: DG-FIT was successfully fabricated with excellent physicochemical properties. DG-FIT could be easily dissolved in water to form a clear micelle solution with high FIT encapsulation efficiency. FIT in DG-FIT exhibited a dramatically improved aqueous solubility. DG-FIT improved intestinal permeation. Regarding in vivo efficacies, DG-FIT exhibited significant effect against acetaminophen overdose by suppressing oxidative stress and proinflammatory cytokines involved. Conclusion: DG-FIT formulation possibly represents a promising method for strengthening the efficacy of FIT against acetaminophen-induced liver injury.
Collapse
Affiliation(s)
- Hui Yang
- College of Chemical Engineering, Qingdao University of Science & Technology, Qingdao, China.,Qingdao Women and Children's Hospital, Qingdao, 266034, China
| | - Qilong Cao
- Qingdao Haier Biotech Co. Ltd, Qingdao, China
| | - Zhixin Yuan
- Qingdao Haier Biotech Co. Ltd, Qingdao, China
| | - Xianggen Wu
- College of Chemical Engineering, Qingdao University of Science & Technology, Qingdao, China
| | - Mengshuang Li
- College of Chemical Engineering, Qingdao University of Science & Technology, Qingdao, China.,Qingdao Women and Children's Hospital, Qingdao, 266034, China
| |
Collapse
|
28
|
Xu J, Jia Y, Liu M, Gu X, Li P, Fan Y. Preparation of Magnetic-Luminescent Bifunctional Rapeseed Pod-Like Drug Delivery System for Sequential Release of Dual Drugs. Pharmaceutics 2021; 13:pharmaceutics13081116. [PMID: 34452077 PMCID: PMC8398606 DOI: 10.3390/pharmaceutics13081116] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/04/2021] [Accepted: 07/08/2021] [Indexed: 11/16/2022] Open
Abstract
Drug delivery systems (DDSs) limited to a single function or single-drug loading are struggling to meet the requirements of clinical medical applications. It is of great significance to fabricate DDSs with multiple functions such as magnetic targeting or fluorescent labeling, as well as with multiple-drug loading for enhancing drug efficacy and accelerating actions. In this study, inspired by the dual-chamber structure of rapeseed pods, biomimetic magnetic–luminescent bifunctional drug delivery carriers (DDCs) of 1.9 ± 0.3 μm diameter and 19.6 ± 4.4 μm length for dual drug release were fabricated via double-needle electrospraying. Morphological images showed that the rapeseed pod-like DDCs had a rod-like morphology and Janus dual-chamber structure. Magnetic nanoparticles and luminescent materials were elaborately designed to be dispersed in two different chambers to endow the DDCs with excellent magnetic and luminescent properties. Synchronously, the Janus structure of DDCs promoted the luminescent intensity by at least threefold compared to single-chamber DDCs. The results of the hemolysis experiment and cytotoxicity assay suggested the great blood and cell compatibilities of DDCs. Further inspired by the core–shell structure of rapeseeds containing oil wrapped in rapeseed pods, DDCs were fabricated to carry benzimidazole molecules and doxorubicin@chitosan nanoparticles in different chambers, realizing the sequential release of benzimidazole within 12 h and of doxorubicin from day 3 to day 18. These rapeseed pod-like DDSs with excellent magnetic and luminescent properties and sequential release of dual drugs have potential for biomedical applications such as targeted drug delivery, bioimaging, and sustained treatment of diseases.
Collapse
Affiliation(s)
- Junwei Xu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China; (J.X.); (Y.J.); (M.L.); (X.G.)
| | - Yunxue Jia
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China; (J.X.); (Y.J.); (M.L.); (X.G.)
| | - Meili Liu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China; (J.X.); (Y.J.); (M.L.); (X.G.)
| | - Xuenan Gu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China; (J.X.); (Y.J.); (M.L.); (X.G.)
| | - Ping Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China; (J.X.); (Y.J.); (M.L.); (X.G.)
- Correspondence: (P.L.); (Y.F.); Tel.: +86-010-8233-9811 (P.L.); +86-010-8233-9428 (Y.F.)
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China; (J.X.); (Y.J.); (M.L.); (X.G.)
- School of Medical Science and Engineering, Beihang University, Beijing 100191, China
- Correspondence: (P.L.); (Y.F.); Tel.: +86-010-8233-9811 (P.L.); +86-010-8233-9428 (Y.F.)
| |
Collapse
|