1
|
Gadoya A, Dudhat K, Shah S, Borkhataria C, Pethani T, Shah V, Janbukiya N, Jyotishi S, Ansari J, Dhaval M. Amorphous Solid Dispersion/Salt of Efavirenz: Investigating the Role of Molecular Interactions on Recrystallization and In-vitro Dissolution Performance. AAPS PharmSciTech 2025; 26:89. [PMID: 40102289 DOI: 10.1208/s12249-025-03084-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 03/04/2025] [Indexed: 03/20/2025] Open
Abstract
Efavirenz (EFZ), a BCS (Biopharmaceutical classification system) class-II/IV drug, suffers from low oral bioavailability (40-50%) and significant inter/intra-individual variability due to its low solubility and poor dissolution properties. The present investigation aimed to prepare a stable amorphous system of EFZ to improve its dissolution using the slurry method with various polymers and examine the nature of the interaction between them and its impact on the stability (recrystallization) of the formed systems and their in-vitro dissolution performance. Differential Scanning Calorimetry (DSC) and Powder X-ray Diffraction (PXRD) studies proved the formation of a complete amorphous system of EFZ with Eudragit® E100, HPMC E5, and HPMCAS-LF up to 50% drug loading. During 90 days accelerated stability studies, amorphous systems prepared using Eudragit® E100 remained stable at 50% drug loading however those prepared with HPMC E5, and HPMCAS-LF only remained stable at 25% drug loading. The ability of Eudragit® E100 based system to stabilize the drug at higher drug loading was attributed to the formation of stronger ionic interaction as revealed by the Fourier-transform infrared spectroscopy (FTIR) study. During in-vitro dissolution study, Eudragit® E100 based amorphous system generated and maintained significantly higher supersaturation compared to those prepared with HPMC E5, and HPMCAS-LF due to the formation of ionic interaction between EFZ and Eudragit® E100 as revealed by solution 1H NMR study.
Collapse
Affiliation(s)
- Aastha Gadoya
- B.K. Mody Government Pharmacy College, Polytechnic Campus, Near Ajidam, Rajkot, Gujarat, 360005, India
| | - Kiran Dudhat
- R.K. School of Pharmacy, R.K. University, Rajkot, Gujarat, India
| | - Sunny Shah
- B.K. Mody Government Pharmacy College, Polytechnic Campus, Near Ajidam, Rajkot, Gujarat, 360005, India
| | - Chetan Borkhataria
- B.K. Mody Government Pharmacy College, Polytechnic Campus, Near Ajidam, Rajkot, Gujarat, 360005, India
| | - Trupesh Pethani
- Department of Pharmaceutical Sciences, Saurashtra University, Rajkot, Gujarat, India
| | | | - Nilesh Janbukiya
- B.K. Mody Government Pharmacy College, Polytechnic Campus, Near Ajidam, Rajkot, Gujarat, 360005, India
| | - Saina Jyotishi
- B.K. Mody Government Pharmacy College, Polytechnic Campus, Near Ajidam, Rajkot, Gujarat, 360005, India
| | - Jainabparvin Ansari
- B.K. Mody Government Pharmacy College, Polytechnic Campus, Near Ajidam, Rajkot, Gujarat, 360005, India
| | - Mori Dhaval
- B.K. Mody Government Pharmacy College, Polytechnic Campus, Near Ajidam, Rajkot, Gujarat, 360005, India.
| |
Collapse
|
2
|
Song S, Xu J, Chen Z, Sun CC, Munson EJ, Siegel RA. Miscibility of amorphous solid dispersions: A rheological and solid-state NMR spectroscopy study. J Pharm Sci 2025; 114:119-126. [PMID: 38796157 DOI: 10.1016/j.xphs.2024.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/15/2024] [Accepted: 05/15/2024] [Indexed: 05/28/2024]
Abstract
Miscibility is critical in the prediction of stability against crystallization of amorphous solid dispersions (ASDs) in the solid state. However, currently available approaches for its determination are limited by both theoretical and practical considerations. Recently, a rheological approach guided by the polymer overlap concentration (c*) has been proposed for miscibility quantification of ASDs [J. Pharm. Sci., 112 (2023) 204-212] and shown to be useful in predicting both accelerated and long term physical stability in the absence of moisture. However, this approach can only be performed at high temperatures (slightly above the melting temperature, Tm, of drugs), and little is known about the difference in miscibility between high and low temperatures (e.g., below the glass transition temperature, Tg). Here we compare the miscibility of nifedipine (NIF)/polyvinylpyrrolidone (PVP) ASDs as determined by the rheological approach at 175°C (∼3°C above Tm of NIF) and solid state NMR (ssNMR) 1H T1 and T1ρ relaxation times at -20°C (∼66°C below Tg of NIF). Our results indicate agreement between the two methods. For low molecular weight (Mw) PVP, T1ρ measurements are more consistent with the rheological approach, while T1 measurements are closer for relatively high Mw PVP. Our findings support the use of the c* based rheological approach for inferring miscibility of deeply cooled ASDs.
Collapse
Affiliation(s)
- Sichen Song
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN 55455, United States; School of Mathematics, University of Minnesota, Minneapolis, MN 55455, United States
| | - Jianchao Xu
- Department of Industrial and Molecular Pharmaceutics, Purdue University, West Lafayette, IN 47907, United States
| | - Zhenxuan Chen
- Analytical Research and Development, Merck & Co., Inc., Rahway, NJ 07065, United States
| | - Changquan Calvin Sun
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN 55455, United States
| | - Eric J Munson
- Department of Industrial and Molecular Pharmaceutics, Purdue University, West Lafayette, IN 47907, United States.
| | - Ronald A Siegel
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN 55455, United States; Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, United States.
| |
Collapse
|
3
|
Neusaenger AL, Fatina C, Yu J, Yu L. Effect of Polymer Architecture and Acidic Group Density on the Degree of Salt Formation in Amorphous Solid Dispersions. Mol Pharm 2024; 21:3375-3382. [PMID: 38885189 DOI: 10.1021/acs.molpharmaceut.4c00089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Recent work has shown that an amorphous drug-polymer salt can be highly stable against crystallization under hot and humid storage conditions (e.g., 40 °C/75% RH) and provide fast release and that these advantages depend on the degree of salt formation. Here, we investigate the salt formation between the basic drug lumefantrine (LMF) and several acidic polymers: poly(acrylic acid) (PAA), hypromellose phthalate (HPMCP), hypromellose acetate succinate (HPMCAS), cellulose acetate phthalate (CAP), Eudragit L100, and Eudragit L100-55. Salt formation was performed by "slurry synthesis" where dry components were mixed at room temperature in the presence of a small quantity of an organic solvent, which was subsequently removed. This method achieved more complete salt formation than the conventional methods of hot-melt extrusion and rotary evaporation. The acidic group density of a polymer was determined by nonaqueous titration in the same solvent used for slurry synthesis; the degree of LMF protonation was determined by X-ray photoelectron spectroscopy. The polymers studied show very different abilities to protonate LMF when compared at a common drug loading, following the order PAA > (HPMCP ∼ CAP ∼ L100 ∼ L100-55) > HPMCAS, but the difference largely disappears when the degree of protonation is plotted against the concentration of the available acidic groups for reaction. This indicates that the extent of salt formation is mainly controlled by the acidic group density and is less sensitive to the polymer architecture. Our results are relevant for selecting the optimal polymer to control the degree of ionization in amorphous solid dispersions.
Collapse
Affiliation(s)
- Amy Lan Neusaenger
- School of Pharmacy, University of Wisconsin, 777 Highland Ave., Madison, Wisconsin 53705, United States
| | - Caroline Fatina
- School of Pharmacy, University of Wisconsin, 777 Highland Ave., Madison, Wisconsin 53705, United States
| | - Junguang Yu
- School of Pharmacy, University of Wisconsin, 777 Highland Ave., Madison, Wisconsin 53705, United States
| | - Lian Yu
- School of Pharmacy, University of Wisconsin, 777 Highland Ave., Madison, Wisconsin 53705, United States
- Department of Chemistry, University of Wisconsin, 1101 University Ave., Madison, Wisconsin 53706, United States
| |
Collapse
|
4
|
Zhang HJ, Chiang CW, Maschmeyer-Tombs T, Conklin B, Napolitano JG, Lubach JW, Nagapudi K, Mao C, Chen Y. Generality of Enhancing the Dissolution Rates of Free Acid Amorphous Solid Dispersions by the Incorporation of Sodium Hydroxide. Mol Pharm 2024; 21:3395-3406. [PMID: 38836777 DOI: 10.1021/acs.molpharmaceut.4c00118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
The incorporation of a counterion into an amorphous solid dispersion (ASD) has been proven to be an attractive strategy to improve the drug dissolution rate. In this work, the generality of enhancing the dissolution rates of free acid ASDs by incorporating sodium hydroxide (NaOH) was studied by surface-area-normalized dissolution. A set of diverse drug molecules, two common polymer carriers (copovidone or PVPVA and hydroxypropyl methylcellulose acetate succinate or HPMCAS), and two sample preparation methods (rotary evaporation and spray drying) were investigated. When PVPVA was used as the polymer carrier for the drugs in this study, enhancements of dissolution rates from 7 to 78 times were observed by the incorporation of NaOH into the ASDs at a 1:1 molar ratio with respect to the drug. The drugs having lower amorphous solubilities showed greater enhancement ratios, providing a promising path to improve the drug release performance from their ASDs. Samples generated by rotary evaporation and spray drying demonstrated comparable dissolution rates and enhancements when NaOH was added, establishing a theoretical foundation to bridge the ASD dissolution performance for samples prepared by different solvent-removal processes. In the comparison of polymer carriers, when HPMCAS was applied in the selected system (indomethacin ASD), a dissolution rate enhancement of 2.7 times by the incorporated NaOH was observed, significantly lower than the enhancement of 53 times from the PVPVA-based ASD. This was attributed to the combination of a lower dissolution rate of HPMCAS and the competition for NaOH between IMC and HPMCAS. By studying the generality of enhancing ASD dissolution rates by the incorporation of counterions, this study provides valuable insights into further improving drug release from ASD formulations of poorly water-soluble drugs.
Collapse
Affiliation(s)
- Helen J Zhang
- Small Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
- Department of Molecular and Cell Biology, University of California, Berkeley, 142 Weill Hall #3200, Berkeley, California 94720, United States
| | - Cheng W Chiang
- Small Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Tristan Maschmeyer-Tombs
- Small Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Breanna Conklin
- Small Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Jose G Napolitano
- Small Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Joseph W Lubach
- Small Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Karthik Nagapudi
- Small Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Chen Mao
- Small Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Yinshan Chen
- Small Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
5
|
Di R, Bansal KK, Rosenholm JM, Grohganz H, Rades T. Utilizing the allyl-terminated copolymer methoxy(poly(ethylene glycol))-block-poly(jasmine lactone) in the development of amorphous solid dispersions: A comparative study of functionalized and non-functionalized polymer. Int J Pharm 2024; 657:124175. [PMID: 38685442 DOI: 10.1016/j.ijpharm.2024.124175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/26/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
Molecular interactions are crucial to stabilize amorphous drugs in amorphous solid dispersions (ASDs). Most polymers, however, have only a limited ability to form strong molecular interactions with drugs. Polymers tailored to fit the physicochemical properties of the drug molecule to be incorporated, for instance by allowing the incorporation of specific functional groups, would be highly sought-for in this regard. For this purpose, the novel allyl-terminated polymer methoxy(polyethylene glycol)-block-poly(jasmine lactone) (mPEG-b-PJL) has been synthesized and functionalized to potentially enhance specific drug-polymer interactions. This study investigated the use of mPEG-b-PJL in ASDs, using carvedilol (CAR), a weakly basic model drug. The findings revealed that the acidic functionalized form of the polymer (mPEG-b-PJL-COOH) indeed established stronger molecular interactions with CAR compared to its non-functionalized counterpart mPEG-b-PJL. Evaluations on polymer effectiveness in forming ASDs demonstrated that mPEG-b-PJL-COOH outperformed its non-functionalized counterpart in miscibility, drug loading ability, and stability, inferred from reduced molecular mobility. However, dissolution tests indicated that ASDs with mPEG-b-PJL-COOH did not significantly improve the dissolution behaviour compared to amorphous CAR alone, despite potential solubility enhancement through micelle formation. Overall, this study confirms the potential of functionalized polymers in ASD formulations, while the challenge of improving dissolution performance in these ASDs remains an area of further development.
Collapse
Affiliation(s)
- Rong Di
- University of Copenhagen, Faculty of Health and Medical Sciences, Department of Pharmacy, Copenhagen, Denmark.
| | - Kuldeep K Bansal
- Åbo Akademi University, Faculty of Science and Engineering, Pharmaceutical Sciences Laboratory, Turku, Finland.
| | - Jessica M Rosenholm
- Åbo Akademi University, Faculty of Science and Engineering, Pharmaceutical Sciences Laboratory, Turku, Finland.
| | - Holger Grohganz
- University of Copenhagen, Faculty of Health and Medical Sciences, Department of Pharmacy, Copenhagen, Denmark.
| | - Thomas Rades
- University of Copenhagen, Faculty of Health and Medical Sciences, Department of Pharmacy, Copenhagen, Denmark.
| |
Collapse
|
6
|
Bookwala M, Wildfong PLD. The Implications of Drug-Polymer Interactions on the Physical Stability of Amorphous Solid Dispersions. Pharm Res 2023; 40:2963-2981. [PMID: 37389801 DOI: 10.1007/s11095-023-03547-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/03/2023] [Indexed: 07/01/2023]
Abstract
Amorphous solid dispersions (ASDs) are a formulation and development strategy that can be used to increase the apparent aqueous solubility of poorly water-soluble drugs. Their implementation, however, can be hindered by destabilization of the amorphous form, as the drug recrystallizes from its metastable state. Factors such as the drug-polymer solubility, miscibility, mobility, and nucleation/crystal growth rates are all known to impact the physical stability of an ASD. Non-covalent interactions (NCI) between the drug and polymer have also been widely reported to influence product shelf-life. In this review, the relationship between thermodynamic/kinetic factors and adhesive NCI is assessed. Various types of NCIs reported to stabilize ASDs are described, and their role in affecting physical stability is examined. Finally, NCIs that have not yet been widely explored in ASD formulations, but may potentially impact their physical stability are also briefly described. This review aims to stimulate further theoretical and practical exploration of various NCIs and their applications in ASD formulations in the future.
Collapse
Affiliation(s)
- Mustafa Bookwala
- School of Pharmacy and Graduate School of Pharmaceutical Sciences, Duquesne University, 600 Forbes Avenue, 422C Mellon Hall, Pittsburgh, PA, 15282, USA
| | - Peter L D Wildfong
- School of Pharmacy and Graduate School of Pharmaceutical Sciences, Duquesne University, 600 Forbes Avenue, 422C Mellon Hall, Pittsburgh, PA, 15282, USA.
| |
Collapse
|
7
|
Gui Y. Solid Form Screenings in Pharmaceutical Development: a Perspective on Current Practices. Pharm Res 2023; 40:2347-2354. [PMID: 37537423 DOI: 10.1007/s11095-023-03573-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/19/2023] [Indexed: 08/05/2023]
Abstract
Solid form screening is a crucial step in new drug development because solid forms of a drug substance significantly affect stability, dissolution and manufacturing processes of its drug products. This perspective introduces solid-state science from a practical standpoint, aiming to reduce knowledge gaps and promote communications among scientists with diverse background. This perspective starts with a concise overview that followed by discussion on timeline and goals of solid form screening. Techniques for solid from identification and characterization are then discussed. Subsequently, the perspective presents commonly used methods in solid form screening and introduces criteria and strategies to effectively select a favorable solid form based on screening results. The last section summarizes current practices in pharmaceutical industries and suggests potential opportunities for future research and development.
Collapse
Affiliation(s)
- Yue Gui
- China Innovation Center of Roche, Building 5, 371 Lishizhen Road, Shanghai, China.
| |
Collapse
|
8
|
Li J, Wang Y, Yu D. Effects of Additives on the Physical Stability and Dissolution of Polymeric Amorphous Solid Dispersions: a Review. AAPS PharmSciTech 2023; 24:175. [PMID: 37603110 DOI: 10.1208/s12249-023-02622-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 07/20/2023] [Indexed: 08/22/2023] Open
Abstract
Polymeric amorphous solid dispersion (ASD) is a popular approach for enhancing the solubility of poorly water-soluble drugs. However, achieving both physical stability and dissolution performance in an ASD prepared with a single polymer can be challenging. Therefore, a secondary excipient can be added. In this paper, we review three classes of additives that can be added internally to ASDs: (i) a second polymer, to form a ternary drug-polymer-polymer ASD, (ii) counterions, to facilitate in situ salt formation, and (iii) surfactants. In an ASD prepared with a combination of polymers, each polymer exerts a unique function, such as a stabilizer in the solid state and a crystallization inhibitor during dissolution. In situ salt formation in ASD usually leads to substantial increases in the glass transition temperature, contributing to improved physical stability. Surfactants can enhance the wettability of ASD particles, thereby promoting rapid drug release. However, their potential adverse effects on physical stability and dissolution, resulting from enhanced molecular mobility and competitive molecular interaction with the polymer, respectively, warrant careful consideration. Finally, we discuss the impact of magnesium stearate and inorganic salts, excipients added externally upon downstream processing, on the solid-state stability as well as the dissolution of ASD tablets.
Collapse
Affiliation(s)
- Jinghan Li
- Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota, 55455, USA
| | - Yihan Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, 20 North Pine Street, Baltimore, Maryland, 21201, USA
| | - Dongyue Yu
- Pharmaceutical Candidate Optimization, Bristol Myers Squibb, Route 206 and Province Line Road, Princeton, New Jersey, 08540, USA.
| |
Collapse
|
9
|
Zhang J, Guo M, Luo M, Cai T. Advances in the development of amorphous solid dispersions: The role of polymeric carriers. Asian J Pharm Sci 2023; 18:100834. [PMID: 37635801 PMCID: PMC10450425 DOI: 10.1016/j.ajps.2023.100834] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/26/2023] [Accepted: 07/23/2023] [Indexed: 08/27/2023] Open
Abstract
Amorphous solid dispersion (ASD) is one of the most effective approaches for delivering poorly soluble drugs. In ASDs, polymeric materials serve as the carriers in which the drugs are dispersed at the molecular level. To prepare the solid dispersions, there are many polymers with various physicochemical and thermochemical characteristics available for use in ASD formulations. Polymer selection is of great importance because it influences the stability, solubility and dissolution rates, manufacturing process, and bioavailability of the ASD. This review article provides a comprehensive overview of ASDs from the perspectives of physicochemical characteristics of polymers, formulation designs and preparation methods. Furthermore, considerations of safety and regulatory requirements along with the studies recommended for characterizing and evaluating polymeric carriers are briefly discussed.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- College of Biological and Chemical Engineering, Changsha University, Changsha 410022, China
| | - Minshan Guo
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Minqian Luo
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Ting Cai
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
10
|
Thuy Nguyen H, Van Duong T, Taylor YS. Enteric coating of tablets containing an amorphous solid dispersion of an enteric polymer and a weakly basic drug: a strategy to enhance in vitro release. Int J Pharm 2023:123139. [PMID: 37311499 PMCID: PMC10390825 DOI: 10.1016/j.ijpharm.2023.123139] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/06/2023] [Accepted: 06/09/2023] [Indexed: 06/15/2023]
Abstract
Recent work has highlighted that amorphous solid dispersions (ASDs) containing delamanid (DLM) and an enteric polymer, hypromellose phthalate (HPMCP), appear to be susceptible to crystallization during immersion in simulated gastric fluids. The goal of this study was to minimize contact of the ASD particles with the acidic media via application of an enteric coating to tablets containing the ASD intermediate, and improve the subsequent drug release at higher pH conditions. DLM ASDs were prepared with HPMCP and formulated into a tablet that was then coated with a methacrylic acid copolymer (Acryl EZE II®). Drug release was studied in vitro using a two-stage dissolution test where the pH of the gastric compartment was altered to reflect physiological variations. The medium was subsequently switched to simulated intestinal fluid. The gastric resistance time of the enteric coating was probed over the pH range of 1.6-5.0. The enteric coating was found to be effective at protecting the drug against crystallization in pH conditions where HPMCP was insoluble. Consequently, the variability in drug release following gastric immersion under pH conditions reflecting different prandial states was notably reduced when compared to the reference product. These findings support closer examination of the potential for drug crystallization from ASDs in the gastric environment where acid-insoluble polymers may be less effective as crystallization inhibitors. Further, addition of a protective enteric coating appears to provide a promising remediation strategy to prevent crystallization at low pH environments, and may mitigate variability associated with prandial state that arises due to pH changes.
Collapse
Affiliation(s)
- Hanh Thuy Nguyen
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Tu Van Duong
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ynne S Taylor
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States.
| |
Collapse
|
11
|
Kelsall KN, Foroughi LM, Frank DS, Schenck L, LaBuda A, Matzger AJ. Structural Modifications of Polyethylenimine to Control Drug Loading and Release Characteristics of Amorphous Solid Dispersions. Mol Pharm 2023; 20:1779-1787. [PMID: 36719910 DOI: 10.1021/acs.molpharmaceut.2c00970] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Crystalline drugs with low solubility have the potential to benefit from delivery in the amorphous form. The polymers used in amorphous solid dispersions (ASDs) influence their maximum drug loading, solubility, dissolution rate, and physical stability. Herein, the influence of hydrophobicity of crosslinked polyethylenimine (PEI) is investigated for the delivery of the BCS class II nonsteroidal anti-inflammatory drug flufenamic acid (ffa). Several synthetic variables for crosslinking PEI with terephthaloyl chloride were manipulated: solvent, crosslinking density, reactant concentration, solution viscosity, reaction temperature, and molecular weight of the hyperbranched polymer. Benzoyl chloride was employed to cap amine groups to increase the hydrophobicity of the crosslinked materials. Amorphous deprotonated ffa was present in all ASDs; however, the increased hydrophobicity and reduced basicity from benzoyl functionalization led to a combination of amorphous deprotonated ffa and amorphous neutral ffa in the materials at high drug loadings (50 and 60 wt %). All ASDs demonstrated enhanced drug delivery in acidic media compared to crystalline ffa. Physical stability testing showed no evidence of crystallization after 29 weeks under various relative humidity conditions. These findings motivate the broadening of polymer classes employed in ASD formation to include polymers with very high functional group concentrations to enable loadings not readily achieved with existing polymers.
Collapse
Affiliation(s)
- Kristen N Kelsall
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States.,Macromolecular Science and Engineering Program, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Leila M Foroughi
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Derek S Frank
- Particle Engineering Lab, Process Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Luke Schenck
- Particle Engineering Lab, Process Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Anthony LaBuda
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Adam J Matzger
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States.,Macromolecular Science and Engineering Program, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
12
|
Lalge R, Kumar NSK, Suryanarayanan R. Implications of Drug-Polymer Interactions on Time-Temperature-Transformation: A Tool to Assess the Crystallization Propensity in Amorphous Solid Dispersions. Mol Pharm 2023; 20:1806-1817. [PMID: 36744878 DOI: 10.1021/acs.molpharmaceut.2c01004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The critical cooling rate (CRcrit) to prevent drug crystallization during the preparation of nifedipine amorphous solid dispersions (ASDs) was determined through the time-temperature-transformation (TTT) diagram. ASDs were prepared with polyvinylpyrrolidone, hydroxypropylmethyl cellulose acetate succinate, and poly(acrylic acid). ASDs were subjected to isothermal crystallization over a wide temperature range, and the time and temperature dependence of nifedipine crystallization onset time (tC) was determined by differential scanning calorimetry (DSC) and synchrotron X-ray diffractometry. TTT diagrams were generated for ASDs, which provided the CRcrit for the dispersions prepared with each polymer. The observed differences in CRcrit could be explained in terms of differences in the strength of interactions. Stronger drug-polymer interactions led to longer tC and decreased CRcrit. The effect of polymer concentrations (4-20% w/w) was also influenced by the strength of the interaction. The CRcrit of amorphous NIF was ∼17.5 °C/min. Addition of 20% w/w polymer resulted in a CRcrit of ∼0.05, 0.2, and 11 °C/min for the dispersions prepared with PVP, HPMCAS, and PAA, respectively.
Collapse
Affiliation(s)
- Rahul Lalge
- Department of Pharmaceutics, College of Pharmacy, University of Minnesota, 9-177 WDH, 308 Harvard Street S.E., Minneapolis, Minnesota55455, United States
| | - N S Krishna Kumar
- Department of Pharmaceutics, College of Pharmacy, University of Minnesota, 9-177 WDH, 308 Harvard Street S.E., Minneapolis, Minnesota55455, United States
| | - Raj Suryanarayanan
- Department of Pharmaceutics, College of Pharmacy, University of Minnesota, 9-177 WDH, 308 Harvard Street S.E., Minneapolis, Minnesota55455, United States
| |
Collapse
|
13
|
Neusaenger AL, Yao X, Yu J, Kim S, Hui HW, Huang L, Que C, Yu L. Amorphous Drug-Polymer Salts: Maximizing Proton Transfer to Enhance Stability and Release. Mol Pharm 2023; 20:1347-1356. [PMID: 36668815 PMCID: PMC9906740 DOI: 10.1021/acs.molpharmaceut.2c00942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
An amorphous drug-polymer salt (ADPS) can be remarkably stable against crystallization at high temperature and humidity (e.g., 40°C/75% RH) and provide fast release. Here, we report that process conditions strongly influence the degree of proton transfer (salt formation) between a drug and a polymer and in turn the product's stability and release. For lumefantrine (LMF) formulated with poly(acrylic acid) (PAA), we first show that the amorphous materials prepared by slurry conversion and antisolvent precipitation produce a single trend in which the degree of drug protonation increases with PAA concentration from 0% for pure LMF to ∼100% above 70 wt % PAA, independent of PAA's molecular weight (1.8, 450, and 4000 kg/mol). This profile describes the equilibrium for salt formation and can be modeled as a chemical equilibrium in which the basic molecules compete for the acidic groups on the polymer chain. Relative to this equilibrium, the literature methods of hot-melt extrusion (HME) and rotary evaporation (RE) reached much lower degrees of salt formation. For example, at 40 wt % drug loading, HME reached 5% salt formation and RE 15%, both well below the equilibrium value of 85%. This is noteworthy given the common use of HME and RE in manufacturing amorphous formulations, indicating a need for careful control of process conditions to ensure the full interaction between the drug and the polymer. This need arises due to the low mobility of macromolecules and the mutual hindrance of adjacent reaction sites. We find that a high degree of salt formation enhances drug stability and release. For example, at 50% drug loading, an HME-like formulation with 19% salt formation crystallized faster and released only 20% of the drug relative to a slurry-prepared formulation with 70% salt formation. Based on this work, we recommend slurry conversion as the method for preparing ADPS for its ability to enhance salt formation and continuously adjust drug loading. While this work focused on salt formation, the impact of process conditions on the molecular-level interactions between a drug and a polymer is likely a general issue for amorphous solid dispersions, with consequences on product stability and drug release.
Collapse
Affiliation(s)
- Amy Lan Neusaenger
- School
of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, United States
| | - Xin Yao
- School
of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, United States
| | - Junguang Yu
- School
of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, United States
| | - Soojin Kim
- School
of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, United States
| | - Ho-Wah Hui
- Drug
Product Development, Bristol Myers Squibb, Summit, New Jersey 07901, United States
| | - Lian Huang
- Drug
Product Development, Bristol Myers Squibb, Summit, New Jersey 07901, United States
| | - Chailu Que
- Drug
Product Development, Bristol Myers Squibb, Summit, New Jersey 07901, United States
| | - Lian Yu
- School
of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, United States,Department
of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, United States,
| |
Collapse
|
14
|
Considerations in the Development of Physically Stable High Drug Load API- Polymer Amorphous Solid Dispersions in the Glassy State. J Pharm Sci 2023; 112:8-18. [PMID: 35948156 DOI: 10.1016/j.xphs.2022.08.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/04/2022] [Accepted: 08/04/2022] [Indexed: 02/05/2023]
Abstract
In this Commentary, the authors expand on their earlier studies of the solid-state long-term isothermal crystallization of amorphous API from the glassy state in amorphous solid dispersions, and focus on the effects of polymer concentration, and its implications for producing high load API doses with minimum polymer concentration. After presenting an overview of the various mechanistic factors which influence the ability of polymers to inhibit API crystallization, including the chemical structure of the polymer relative to the API, the nature and strength of API-polymer noncovalent interactions, polymer molecular weight, impact on primary diffusive molecular mobility, as well as on secondary motions in the bulk and surface phases of the glass, we consider in more detail, the effects of polymer concentration. Here, we examine the factors that appear to allow relatively low polymer concentrations, i.e., less than 10%w/w polymer, to greatly reduce crystallization, including a focus on the heterogeneous structure of the glassy state, and the possible spatial distribution and concentration of polymer in certain key regions of the glass. This is followed by a review and analysis of examples in the recent literature focused on determining the minimum polymer concentration in an amorphous solid dispersion, capable of producing optimally stable high drug load amorphous dispersions.
Collapse
|
15
|
Adhikari BR, Gordon KC, Das SC. Solid state of inhalable high dose powders. Adv Drug Deliv Rev 2022; 189:114468. [PMID: 35917868 DOI: 10.1016/j.addr.2022.114468] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/14/2022] [Accepted: 07/26/2022] [Indexed: 01/24/2023]
Abstract
High dose inhaled powders have received increased attention for treating lung infections. These powders can be prepared using techniques such as spray drying, spray-freeze drying, crystallization, and milling. The selected preparation technique is known to influence the solid state of the powders, which in turn can potentially modulate aerosolization and aerosolization stability. This review focuses on how and to what extent the change in solid state of high dose powders can influence aerosolization. It also discusses the commonly used solid state characterization techniques and the application of potential strategies to improve the physical and chemical stability of the amorphous powders for high dose delivery.
Collapse
Affiliation(s)
| | - Keith C Gordon
- The Dodd-Walls Centre for Photonic and Quantum Technologies, Department of Chemistry, University of Otago, Dunedin 9016, New Zealand
| | - Shyamal C Das
- School of Pharmacy, University of Otago, Dunedin 9054, New Zealand.
| |
Collapse
|
16
|
Lalge R, Kaur N, Duggirala NK, Suryanarayanan R. Dual Functionality of Bile Acid: Physical Stabilization of Drugs in the Amorphous Form and Solubility Enhancement in Solution. Mol Pharm 2022; 19:2595-2606. [PMID: 35687125 DOI: 10.1021/acs.molpharmaceut.2c00294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Drugs containing an amino aromatic nitrogen moiety were stabilized in the amorphous form by the surfactant cholic acid (CA). Coamorphous systems of lamotrigine (LAM), pyrimethamine (PYR), and trimethoprim (TRI) were each prepared with CA. Drug-CA interactions, investigated by IR and solid-sate NMR spectroscopy, revealed deprotonation of the carboxylic acid group in CA and the protonation of the most basic nitrogen of the drug. The coamorphous systems exhibited exceptional physical stability and resisted crystallization at (i) elevated temperatures (>100 °C) and (ii) accelerated storage conditions, 40 °C/75% relative humidity for 15 months. The dissolution performance of each coamorphous system was compared with the respective crystalline drug based on the area under the curve (AUC) of the concentration-time profiles. A 25-fold increase in AUC was observed in the PYR-CA coamorphous system. The solubility enhancement is attributed not only due to drug amorphization but also due to solubilization by CA. The supramolecular synthon approach, through a drug-CA interaction, yielded physically stable coamorphous systems with enhanced aqueous drug solubility.
Collapse
Affiliation(s)
- Rahul Lalge
- Department of Pharmaceutics, College of Pharmacy, University of Minnesota, 9-177 WDH, 308 Harvard Street S.E., Minneapolis, Minnesota 55455, United States
| | - Navpreet Kaur
- Department of Pharmaceutics, College of Pharmacy, University of Minnesota, 9-177 WDH, 308 Harvard Street S.E., Minneapolis, Minnesota 55455, United States
| | - Naga Kiran Duggirala
- Department of Pharmaceutics, College of Pharmacy, University of Minnesota, 9-177 WDH, 308 Harvard Street S.E., Minneapolis, Minnesota 55455, United States
| | - Raj Suryanarayanan
- Department of Pharmaceutics, College of Pharmacy, University of Minnesota, 9-177 WDH, 308 Harvard Street S.E., Minneapolis, Minnesota 55455, United States
| |
Collapse
|
17
|
Duong TV, Nguyen HT, Taylor LS. Combining enabling formulation strategies to generate supersaturated solutions of delamanid: in situ salt formation during amorphous solid dispersion fabrication for more robust release profiles. Eur J Pharm Biopharm 2022; 174:131-143. [PMID: 35413402 PMCID: PMC9084191 DOI: 10.1016/j.ejpb.2022.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/01/2022] [Accepted: 04/07/2022] [Indexed: 12/01/2022]
Affiliation(s)
- Tu Van Duong
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, IN 47907, United States
| | - Hanh Thuy Nguyen
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, IN 47907, United States
| | - Lynne S Taylor
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, IN 47907, United States.
| |
Collapse
|
18
|
pH-Dependent supersaturation from amorphous solid dispersions of weakly basic drugs. Pharm Res 2021; 39:2919-2936. [PMID: 34890018 DOI: 10.1007/s11095-021-03147-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/19/2021] [Indexed: 10/19/2022]
Abstract
PURPOSE In amorphous solid dispersions (ASDs), the chemical potential of a drug can be reduced due to mixing with the polymer in the solid matrix, and this can lead to reduced drug release when the polymer is insoluble in the dissolution media. If both the drug and the polymer composing an ASD are ionizable, drug release from the ASD becomes pH-dependent. The goal of this study was to gain insights into the pH-dependent solubility suppression from ASD formulations. METHODS The maximum release of clotrimazole, a weakly basic drug, from ASDs formulated with insoluble and pH-responsive polymers, was determined as a function of solution pH. Drug-polymer interactions in ASDs were probed using melting point depression, moisture sorption, and solid-state Nuclear Magnetic Resonance spectroscopy (SSNMR) measurements. RESULTS The extent of solubility suppression was dependent on polymer type and drug loading. The strength of drug-polymer interactions was found to correlate well with the degree of solubility suppression. For the same ASD, the degree of solubility suppression was nearly constant across the solution pH range studied, suggesting that polymer-drug interactions in residual ASD solids was independent of solution pH. The total drug release agrees with the Henderson-Hasselbalch relationship if the suppressed amorphous solubility of the free drug is independent of solution pH. CONCLUSIONS The mechanism of solubility suppression at different solution pHs appeared to be drug-polymer interactions in the solid-state, where the concentration of the free drug remains the same at variable pHs and the total drug concentration follows the Henderson-Hasselbalch relationship.
Collapse
|
19
|
Yu D, Li J, Wang H, Pan H, Li T, Bu T, Zhou W, Zhang X. Role of polymers in the physical and chemical stability of amorphous solid dispersion: A case study of carbamazepine. Eur J Pharm Sci 2021; 169:106086. [PMID: 34861411 DOI: 10.1016/j.ejps.2021.106086] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 10/30/2021] [Accepted: 11/27/2021] [Indexed: 01/11/2023]
Abstract
Incorporating the amorphous drug in polymeric components has been demonstrated as a feasible approach to enhance the bioavailability of poorly water-soluble drugs. The objective of this study was to investigate the role of polymers in the stability of amorphous solid dispersion (ASD) by evaluating the drug-polymer interaction, microenvironmental pH, and stability of ASD. Carbamazepine (CBZ), a Biopharmaceutics Classification System Class II compound, was utilized as a model drug. Polyvinylpyrrolidone (PVP), poly(1-vinylpyrrolidone-co-vinyl acetate) (PVPVA), polyacrylic acid (PAA), and hydroxypropyl methylcellulose (HPMCAS) were selected as model polymers. CBZ ASDs were characterized by X-ray diffractometry (XRD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), Fourier transform infrared (FTIR) spectroscopy, and dissolution studies. Molecular modeling was conducted to understand the strength of interaction between CBZ and each polymer. FTIR spectroscopy and molecular modeling results show that the interaction between CBZ and PAA is the strongest among all the ASDs, as PAA is an acidic polymer with the potential to form strong hydrogen bonding with CBZ. Besides, hydrophobic interaction is detected between CBZ and HPMCAS. CBZ-PAA and CBZ-HPMCAS ASDs reveal better physical stability than CBZ-PVP and CBZ-PVPVA ASDs under 40 °C/75% RH for 8 weeks. However, CBZ-PAA ASD shows chemical degradation after stability testing due to its acidic microenvironmental pH. This paper shows that strong intermolecular interactions between CBZ and polymers contribute to the physical stability of the ASDs. Additionally, acidic polymers yield an acidic microenvironment pH of the ASDs that causes chemical degradation during storage. Hence, a balance between the ability of a given polymer to promote physical stability and chemical stability may need to be considered.
Collapse
Affiliation(s)
- Dongyue Yu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, 20 North Pine Street, Baltimore, MD, 21201, USA
| | - Jinghan Li
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Hanxun Wang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Hao Pan
- School of Pharmacy, Liaoning University, 66 Chongshan Mid Road, Shenyang, 110036, China
| | - Ting Li
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Tianshi Bu
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Wei Zhou
- Survey of Hydrogeology, Engineering & Environmental Geology in Qinghai, No. 4 Sujiahewan, Xining, 810008, China; Key Laboratory of Hydrogeological and Geothermal Geological of Qinghai Province, No.4 Sujiahewan, Xining 810008, China
| | - Xiangrong Zhang
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China.
| |
Collapse
|
20
|
Sip S, Rosiak N, Miklaszewski A, Talarska P, Dudziec E, Cielecka-Piontek J. Amorphous Form of Carvedilol Phosphate-The Case of Divergent Properties. Molecules 2021; 26:molecules26175318. [PMID: 34500748 PMCID: PMC8434513 DOI: 10.3390/molecules26175318] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/27/2021] [Accepted: 08/29/2021] [Indexed: 01/03/2023] Open
Abstract
The amorphous form of carvedilol phosphate (CVD) was obtained as a result of grinding. The identity of the obtained amorphous form was confirmed by powder X-ray diffraction (PXRD), different scanning calorimetry (DSC), and FT-IR spectroscopy. The process was optimized in order to obtain the appropriate efficiency and time. The crystalline form of CVD was used as the reference standard. Solid dispersions of crystalline and amorphous CVD forms with hydrophilic polymers (hydroxypropyl-β-cyclodextrin, Pluronic® F-127, and Soluplus®) were obtained. Their solubility at pH 1.2 and 6.8 was carried out, as well as their permeation through a model system of biological membranes suitable for the gastrointestinal tract (PAMPA-GIT) was established. The influence of selected polymers on CVD properties was defined for the amorphous form regarding the crystalline form of CVD. As a result of grinding (four milling cycles lasting 15 min with 5 min breaks), amorphous CVD was obtained. Its presence was confirmed by the “halo effect” on the diffraction patterns, the disappearance of the peak at 160.5 °C in the thermograms, and the changes in position/disappearance of many characteristic bands on the FT-IR spectra. As a result of changes in the CVD structure, its lower solubility at pH 1.2 and pH 6.8 was noted. While the amorphous dispersions of CVD, especially with Pluronic® F-127, achieved better solubility than combinations of crystalline forms with excipients. Using the PAMPA-GIT model, amorphous CVD was assessed as high permeable (Papp > 1 × 10−6 cm/s), similarly with its amorphous dispersions with excipients (hydroxypropyl-β-cyclodextrin, Pluronic® F-127, and Soluplus®), although in their cases, the values of apparent constants permeability were decreased.
Collapse
Affiliation(s)
- Szymon Sip
- Department of Pharmacognosy, Poznan University of Medical Sciences, 4 Swiecickiego Street, 60-781 Poznan, Poland; (S.S.); (N.R.)
| | - Natalia Rosiak
- Department of Pharmacognosy, Poznan University of Medical Sciences, 4 Swiecickiego Street, 60-781 Poznan, Poland; (S.S.); (N.R.)
| | - Andrzej Miklaszewski
- Institute of Materials Science and Engineering, Poznan University of Technology, Jana Pawła II 24, 61-138 Poznan, Poland;
| | - Patrycja Talarska
- Department of Immunobiology, Poznan University of Medical Sciences, ul. Rokietnicka 8, 60-806 Poznan, Poland;
| | - Ewa Dudziec
- Department of Rheumatology and Rehabilitation, Poznan University of Medical Sciences, ul. 28 Czerwca 1956 r. 135/147, 61-545 Poznan, Poland;
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy, Poznan University of Medical Sciences, 4 Swiecickiego Street, 60-781 Poznan, Poland; (S.S.); (N.R.)
- Correspondence:
| |
Collapse
|
21
|
Yao X, Neusaenger AL, Yu L. Amorphous Drug-Polymer Salts. Pharmaceutics 2021; 13:pharmaceutics13081271. [PMID: 34452231 PMCID: PMC8401805 DOI: 10.3390/pharmaceutics13081271] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/28/2021] [Accepted: 07/28/2021] [Indexed: 12/20/2022] Open
Abstract
Amorphous formulations provide a general approach to improving the solubility and bioavailability of drugs. Amorphous medicines for global health should resist crystallization under the stressful tropical conditions (high temperature and humidity) and often require high drug loading. We discuss the recent progress in employing drug–polymer salts to meet these goals. Through local salt formation, an ultra-thin polyelectrolyte coating can form on the surface of amorphous drugs, immobilizing interfacial molecules and inhibiting fast crystal growth at the surface. The coated particles show improved wetting and dissolution. By forming an amorphous drug–polymer salt throughout the bulk, stability can be vastly enhanced against crystallization under tropical conditions without sacrificing the dissolution rate. Examples of these approaches are given, along with suggestions for future work.
Collapse
|
22
|
Yao X, Kim S, Gui Y, Chen Z, Yu J, Jones KJ, Yu L. Amorphous drug-polymer salt with high stability under tropical conditions and fast dissolution: The challenging case of lumefantrine-PAA. J Pharm Sci 2021; 110:3670-3677. [PMID: 34371071 DOI: 10.1016/j.xphs.2021.07.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 07/27/2021] [Accepted: 07/27/2021] [Indexed: 11/19/2022]
Abstract
Lumefantrine (LMF), a high-mobility and easy-to-crystallize WHO drug for treating malaria, can form an amorphous salt with poly(acrylic acid) (PAA) that is remarkably stable against crystallization at high humidity and temperature and has fast dissolution rate. The amorphous salt up to 75 % drug loading was synthesized under a mild slurry condition easily implemented in basic facilities for global health. Salt formation was confirmed by IR spectroscopy and the much elevated glass transition temperature. At 50 % drug loading, the amorphous salt resists crystallization for at least 18 months under the highly stressful condition of 40°C and 75 % RH. In contrast, the dispersion containing neutral LMF in PVP fully crystallized in 4 d and the dispersion in HPMCAS, a weak polyelectrolyte of lower charge density than PAA, crystallized by 50 % in 7 d. The amorphous salt at 50 % drug loading showed much faster dissolution than crystalline LMF: In SGF, the area under the curve (AUC) was 30 times larger within the gastric emptying time (4 h); in FaSSIF, the enhancement was even larger - by 200 times. Nanodroplets were detected during the dissolution in SGF, possibly accounting for the apparent enhancement of dissolution rate. The LMF-PAA example as a challenging case, along with the previously reported clofazimine-PAA, demonstrates the general utility of amorphous drug-polymer salts to achieve high stability under tropical conditions and enhanced dissolution and bioavailability.
Collapse
Affiliation(s)
- Xin Yao
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Soojin Kim
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Yue Gui
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Zhenxuan Chen
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Junguang Yu
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Karen J Jones
- Zeeh Pharmaceutical Experiment Station, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Lian Yu
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA.
| |
Collapse
|
23
|
Mukesh S, Joshi P, Bansal AK, Kashyap MC, Mandal SK, Sathe V, Sangamwar AT. Amorphous Salts Solid Dispersions of Celecoxib: Enhanced Biopharmaceutical Performance and Physical Stability. Mol Pharm 2021; 18:2334-2348. [PMID: 34003656 DOI: 10.1021/acs.molpharmaceut.1c00144] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Numerous amorphous solid dispersion (ASD) formulations of celecoxib (CEL) have been attempted for enhancing the solubility, dissolution rate, and in vivo pharmacokinetics via high drug loading, polymer combination, or by surfactant addition. However, physical stability for long-term shelf life and desired in vivo pharmacokinetics remains elusive. Therefore, newer formulation strategies are always warranted to address poor aqueous solubility and oral bioavailability with extended shelf life. The present investigation elaborates a combined strategy of amorphization and salt formation for CEL, providing the benefits of enhanced solubility, dissolution rate, in vivo pharmacokinetics, and physical stability. We generated amorphous salts solid dispersion (ASSD) formulations of CEL via an in situ acid-base reaction involving counterions (Na+ and K+) and a polymer (Soluplus) using the spray-drying technique. The generated CEL-Na and CEL-K salts were homogeneously and molecularly dispersed in the matrix of Soluplus polymer. The characterization of generated ASSDs by differential scanning calorimetry revealed a much higher glass-transition temperature (Tg) than the pure amorphous CEL, confirming the salt formation of CEL in solid dispersions. The micro-Raman and proton nuclear magnetic resonance spectroscopy further confirmed the formation of salt at the -S═O position in the CEL molecules. CEL-Na-Soluplus ASSD exhibited a synergistic enhancement in the aqueous solubility (332.82-fold) and in vivo pharmacokinetics (9.83-fold enhancement in the blood plasma concentration) than the crystalline CEL. Furthermore, ASSD formulations were physically stable for nearly 1 year (352 days) in long-term stability studies at ambient conditions. Hence, we concluded that the ASSD is a promising strategy for CEL in improving the physicochemical properties and biopharmaceutical performance.
Collapse
Affiliation(s)
- Sumit Mukesh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, Punjab 160062, India
| | - Prachi Joshi
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, Punjab 160062, India
| | - Arvind K Bansal
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, Punjab 160062, India
| | - Mahesh Chand Kashyap
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, Punjab 160062, India
| | - Sanjay K Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohali, Sector-81, S.A.S. Nagar, Punjab 140306, India
| | - Vasant Sathe
- University Grant Commission-Department of Atomic Energy Consortium for Scientific Research, University Campus, Indore, Madhya Pradesh 452017, India
| | - Abhay T Sangamwar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, Punjab 160062, India
| |
Collapse
|