1
|
Maeshima R, Tagalakis AD, Gyftaki-Venieri D, Jones SA, Rye PD, Tøndervik A, Åstrand OAH, Hart SL. Low Molecular Weight Alginate Oligosaccharides as Alternatives to PEG for Enhancement of the Diffusion of Cationic Nanoparticles Through Cystic Fibrosis Mucus. Adv Healthc Mater 2025; 14:e2400510. [PMID: 39533498 DOI: 10.1002/adhm.202400510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 10/18/2024] [Indexed: 11/16/2024]
Abstract
Airway mucus is a major barrier to the delivery of lipid-based nanoparticles in chronic airway diseases such as cystic fibrosis (CF). Receptor-Targeted Nanocomplexes (RTN), comprise mixtures of cationic lipids and bifunctional peptides with receptor-targeting and nucleic acid packaging properties. The aim of this study is to improve the mucus-penetrating properties of cationic siRNA and mRNA RTNs by combining them with low molecular weight alginate oligosaccharides, OligoG and OligoM. Cationic RTNs formulated with either alginate become strongly anionic, while PEGylated messenger RNA (mRNA) and short interfering RNA (siRNA) RTNs remain cationic. Both alginates enhance mucus diffusion rates of cationic siRNA and mRNA RTNs in a static mucus barrier diffusion model, with OligoG particularly effective. PEGylation also enhance mucus diffusion rates of siRNA RTNs but not mRNA RTNs. Electron microscopy shows that RTNs remained intact after mucosal transit. The transfection efficiency of OligoM-coated mRNA RTNs is better than those coated with OligoG or PEG, and similar to cationic RTNs. In siRNA RTN transfections, OligoM is better than OligoG although 1% PEG is slightly better than both. The combination of cationic RTNs and alginate oligosaccharides represents a promising alternative to PEGylation for epithelial delivery of genetic therapies across the mucus barrier while retaining transfection efficiency.
Collapse
Affiliation(s)
- Ruhina Maeshima
- Department of Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London, WC1N 1EH, UK
| | - Aristides D Tagalakis
- Department of Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London, WC1N 1EH, UK
| | - Dafni Gyftaki-Venieri
- Department of Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London, WC1N 1EH, UK
| | - Stuart A Jones
- Institute of Pharmaceutical Science, Faculty of Life Science and Medicine, King's College London, 15- Stamford Street, London, SE1 9NH, UK
| | - Philip D Rye
- AlgiPharma AS, Industriveien 33, Sandvika, Akershus, 1337, Norway
| | - Anne Tøndervik
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Strindvegen 4, Trondheim, 7034, Norway
| | | | - Stephen L Hart
- Department of Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London, WC1N 1EH, UK
| |
Collapse
|
2
|
Gravdahl M, Aarstad OA, Petersen AB, Karlsen SG, Donati I, Czjzek M, Åstrand OAH, Rye PD, Tøndervik A, Sletta H, Aachmann FL, Skjåk-Bræk G. A chemo-enzymatic method for preparation of saturated oligosaccharides from alginate and other uronic acid-containing polysaccharides. Carbohydr Polym 2024; 343:122487. [PMID: 39174105 DOI: 10.1016/j.carbpol.2024.122487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 08/24/2024]
Abstract
Oligosaccharides from uronic acid-containing polysaccharides can be produced either by chemical or enzymatic degradation. The benefit of using enzymes, called lyases, is their high specificity for various glycosidic linkages. Lyases cleave the polysaccharide chain by an β-elimination reaction, yielding oligosaccharides with an unsaturated sugar (4-deoxy-l-erythro-hex-4-enepyranosyluronate) at the non-reducing end. In this work we have systematically studied acid degradation of unsaturated uronic acid oligosaccharides. Based on these findings, a method for preparing saturated oligosaccharides by enzymatic degradation of uronic acid-containing polysaccharides was developed. This results in oligosaccharides with a pre-defined distribution and proportion of sugar residues compared to the products of chemical degradation, while maintaining the chemical structure of the non-reducing end. The described method was demonstrated for generating saturated oligosaccharides of alginate, heparin and polygalacturonic acid. In the case of alginate, the ratio of hydrolysis rate of Δ-G and Δ-M linkages to that of G-G and M-M linkages, respectively, was found to be approximately 65 and 43, at pH* 3.4, 90 °C. Finally, this method has been demonstrated to be superior in the production of α-l-guluronate oligosaccharides with a lower content of β-d-mannuronate residues compared to what can be achieved using chemical depolymerization alone.
Collapse
Affiliation(s)
- Mina Gravdahl
- Norwegian Biopolymer Laboratory (NOBIPOL), Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Sem Sælands vei 6-8, N-7491 Trondheim, Norway.
| | - Olav A Aarstad
- Norwegian Biopolymer Laboratory (NOBIPOL), Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Sem Sælands vei 6-8, N-7491 Trondheim, Norway.
| | - Agnes B Petersen
- Norwegian Biopolymer Laboratory (NOBIPOL), Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Sem Sælands vei 6-8, N-7491 Trondheim, Norway.
| | - Stina G Karlsen
- Norwegian Biopolymer Laboratory (NOBIPOL), Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Sem Sælands vei 6-8, N-7491 Trondheim, Norway.
| | - Ivan Donati
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 5, I-34127 Trieste, Italy.
| | - Mirjam Czjzek
- Station Biologique de Roscoff (SBR), Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), 29680 Roscoff, Bretagne, France.
| | | | - Philip D Rye
- AlgiPharma AS, Industriveien 33, Sandvika N-1337, Norway.
| | - Anne Tøndervik
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Richard Birkelands vei 3B, 7034 Trondheim, Norway.
| | - Håvard Sletta
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Richard Birkelands vei 3B, 7034 Trondheim, Norway.
| | - Finn L Aachmann
- Norwegian Biopolymer Laboratory (NOBIPOL), Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Sem Sælands vei 6-8, N-7491 Trondheim, Norway.
| | - Gudmund Skjåk-Bræk
- Norwegian Biopolymer Laboratory (NOBIPOL), Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Sem Sælands vei 6-8, N-7491 Trondheim, Norway.
| |
Collapse
|
3
|
Herrmann C, Lingner M, Herrmann S, Brockhausen I, Tümmler B. Mucin adhesion of serial cystic fibrosis airways Pseudomonas aeruginosa isolates. Front Cell Infect Microbiol 2024; 14:1448104. [PMID: 39239637 PMCID: PMC11374773 DOI: 10.3389/fcimb.2024.1448104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 07/30/2024] [Indexed: 09/07/2024] Open
Abstract
The chronic airway infections with Pseudomonas aeruginosa are the major co-morbidity in people with cystic fibrosis (CF). Within CF lungs, P. aeruginosa persists in the conducting airways together with human mucins as the most abundant structural component of its microenvironment. We investigated the adhesion of 41 serial CF airway P. aeruginosa isolates to airway mucin preparations from CF sputa. Mucins and bacteria were retrieved from five modulator-naïve patients with advanced CF lung disease. The P. aeruginosa isolates from CF airways and non-CF reference strains showed a strain-specific signature in their adhesion to ovine, porcine and bovine submaxillary mucins and CF airway mucins ranging from no or low to moderate and strong binding. Serial CF clonal isolates and colony morphotypes from the same sputum sample were as heterogeneous in their affinity to mucin as representatives of other clones thus making 'mucin binding' one of the most variable intraclonal phenotypic traits of P. aeruginosa known to date. Most P. aeruginosa CF airway isolates did not adhere more strongly to CF airway mucins than to plastic surfaces. The strong binders, however, exhibited a strain-specific affinity gradient to O-glycans, CF airway and mammalian submaxillary mucins.
Collapse
Affiliation(s)
- Christian Herrmann
- Institut für Biophysikalische Chemie, Medizinische Hochschule Hannover, Hannover, Germany
- Klinik für Pädiatrische Pneumologie, Allergologie und Neonatologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Meike Lingner
- Institut für Biophysikalische Chemie, Medizinische Hochschule Hannover, Hannover, Germany
- Klinik für Pädiatrische Pneumologie, Allergologie und Neonatologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Susanne Herrmann
- Institut für Biophysikalische Chemie, Medizinische Hochschule Hannover, Hannover, Germany
- Klinik für Pädiatrische Pneumologie, Allergologie und Neonatologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Inka Brockhausen
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Burkhard Tümmler
- Institut für Biophysikalische Chemie, Medizinische Hochschule Hannover, Hannover, Germany
- Klinik für Pädiatrische Pneumologie, Allergologie und Neonatologie, Medizinische Hochschule Hannover, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), German Center for Lung Research, Hannover, Germany
| |
Collapse
|
4
|
Chung J, Eisha S, Park S, Morris AJ, Martin I. How Three Self-Secreted Biofilm Exopolysaccharides of Pseudomonas aeruginosa, Psl, Pel, and Alginate, Can Each Be Exploited for Antibiotic Adjuvant Effects in Cystic Fibrosis Lung Infection. Int J Mol Sci 2023; 24:ijms24108709. [PMID: 37240055 DOI: 10.3390/ijms24108709] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/29/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
In cystic fibrosis (CF), pulmonary infection with Pseudomonas aeruginosa is a cause of increased morbidity and mortality, especially in patients for whom infection becomes chronic and there is reliance on long-term suppressive therapies. Current antimicrobials, though varied mechanistically and by mode of delivery, are inadequate not only due to their failure to eradicate infection but also because they do not halt the progression of lung function decline over time. One of the reasons for this failure is thought to be the biofilm mode of growth of P. aeruginosa, wherein self-secreted exopolysaccharides (EPSs) provide physical protection against antibiotics and an array of niches with resulting metabolic and phenotypic heterogeneity. The three biofilm-associated EPSs secreted by P. aeruginosa (alginate, Psl, and Pel) are each under investigation and are being exploited in ways that potentiate antibiotics. In this review, we describe the development and structure of P. aeruginosa biofilms before examining each EPS as a potential therapeutic target for combating pulmonary infection with P. aeruginosa in CF, with a particular focus on the current evidence for these emerging therapies and barriers to bringing these therapies into clinic.
Collapse
Affiliation(s)
- Jonathan Chung
- Department of Translational Medicine, Research Institute, The Hospital for Sick Children, University of Toronto, 686 Bay Street, Toronto, ON M5G 0A4, Canada
| | - Shafinaz Eisha
- Department of Translational Medicine, Research Institute, The Hospital for Sick Children, University of Toronto, 686 Bay Street, Toronto, ON M5G 0A4, Canada
| | - Subin Park
- Department of Translational Medicine, Research Institute, The Hospital for Sick Children, University of Toronto, 686 Bay Street, Toronto, ON M5G 0A4, Canada
| | - Amanda J Morris
- Department of Translational Medicine, Research Institute, The Hospital for Sick Children, University of Toronto, 686 Bay Street, Toronto, ON M5G 0A4, Canada
| | - Isaac Martin
- Department of Translational Medicine, Research Institute, The Hospital for Sick Children, University of Toronto, 686 Bay Street, Toronto, ON M5G 0A4, Canada
- Division of Respiratory Medicine, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, 555 University Avenue, Toronto, ON M5G 1X8, Canada
| |
Collapse
|
5
|
Song Y, Li S, Gong H, Yip RCS, Chen H. Biopharmaceutical applications of microbial polysaccharides as materials: A review. Int J Biol Macromol 2023; 239:124259. [PMID: 37003381 DOI: 10.1016/j.ijbiomac.2023.124259] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 03/06/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
Biological characteristics of natural polymers make microbial polysaccharides an excellent choice for biopharmaceuticals. Due to its easy purifying procedure and high production efficiency, it is capable of resolving the existing application issues associated with some plant and animal polysaccharides. Furthermore, microbial polysaccharides are recognized as prospective substitutes for these polysaccharides based on the search for eco-friendly chemicals. In this review, the microstructure and properties of microbial polysaccharides are utilized to highlight their characteristics and potential medical applications. From the standpoint of pathogenic processes, in-depth explanations are provided on the effects of microbial polysaccharides as active ingredients in the treatment of human diseases, anti-aging, and drug delivery. In addition, the scholarly developments and commercial applications of microbial polysaccharides as medical raw materials are also discussed. The conclusion is that understanding the use of microbial polysaccharides in biopharmaceuticals is essential for the future development of pharmacology and therapeutic medicine.
Collapse
Affiliation(s)
- Yige Song
- Marine College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, PR China
| | - Shuxin Li
- SDU-ANU Joint Science College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, PR China
| | - Hao Gong
- SDU-ANU Joint Science College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, PR China
| | - Ryan Chak Sang Yip
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Hao Chen
- Marine College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, PR China.
| |
Collapse
|
6
|
Preparation methods, biological activities, and potential applications of marine algae oligosaccharides: a review. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.07.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
7
|
Alginates Combined with Natural Polymers as Valuable Drug Delivery Platforms. Mar Drugs 2022; 21:md21010011. [PMID: 36662184 PMCID: PMC9861938 DOI: 10.3390/md21010011] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Alginates (ALG) have been used in biomedical and pharmaceutical technologies for decades. ALG are natural polymers occurring in brown algae and feature multiple advantages, including biocompatibility, low toxicity and mucoadhesiveness. Moreover, ALG demonstrate biological activities per se, including anti-hyperlipidemic, antimicrobial, anti-reflux, immunomodulatory or anti-inflammatory activities. ALG are characterized by gelling ability, one of the most frequently utilized properties in the drug form design. ALG have numerous applications in pharmaceutical technology that include micro- and nanoparticles, tablets, mucoadhesive dosage forms, wound dressings and films. However, there are some shortcomings, which impede the development of modified-release dosage forms or formulations with adequate mechanical strength based on pure ALG. Other natural polymers combined with ALG create great potential as drug carriers, improving limitations of ALG matrices. Therefore, in this paper, ALG blends with pectins, chitosan, gelatin, and carrageenans were critically reviewed.
Collapse
|
8
|
Cao S, Li L, Zhu B, Yao Z. Alginate modifying enzymes: An updated comprehensive review of the mannuronan C5-epimerases. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
9
|
Hill DB, Button B, Rubinstein M, Boucher RC. Physiology and pathophysiology of human airway mucus. Physiol Rev 2022; 102:1757-1836. [PMID: 35001665 PMCID: PMC9665957 DOI: 10.1152/physrev.00004.2021] [Citation(s) in RCA: 124] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 12/13/2021] [Accepted: 12/19/2021] [Indexed: 01/27/2023] Open
Abstract
The mucus clearance system is the dominant mechanical host defense system of the human lung. Mucus is cleared from the lung by cilia and airflow, including both two-phase gas-liquid pumping and cough-dependent mechanisms, and mucus transport rates are heavily dependent on mucus concentration. Importantly, mucus transport rates are accurately predicted by the gel-on-brush model of the mucociliary apparatus from the relative osmotic moduli of the mucus and periciliary-glycocalyceal (PCL-G) layers. The fluid available to hydrate mucus is generated by transepithelial fluid transport. Feedback interactions between mucus concentrations and cilia beating, via purinergic signaling, coordinate Na+ absorptive vs Cl- secretory rates to maintain mucus hydration in health. In disease, mucus becomes hyperconcentrated (dehydrated). Multiple mechanisms derange the ion transport pathways that normally hydrate mucus in muco-obstructive lung diseases, e.g., cystic fibrosis (CF), chronic obstructive pulmonary disease (COPD), non-CF bronchiectasis (NCFB), and primary ciliary dyskinesia (PCD). A key step in muco-obstructive disease pathogenesis is the osmotic compression of the mucus layer onto the airway surface with the formation of adherent mucus plaques and plugs, particularly in distal airways. Mucus plaques create locally hypoxic conditions and produce airflow obstruction, inflammation, infection, and, ultimately, airway wall damage. Therapies to clear adherent mucus with hydrating and mucolytic agents are rational, and strategies to develop these agents are reviewed.
Collapse
Affiliation(s)
- David B Hill
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Joint Department of Biomedical Engineering, The University of North Carolina and North Carolina State University, Chapel Hill, North Carolina
| | - Brian Button
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Michael Rubinstein
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Mechanical Engineering and Materials Science, Biomedical Engineering, Physics, and Chemistry, Duke University, Durham, North Carolina
| | - Richard C Boucher
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
10
|
Russo C, Colaianni V, Ielo G, Valle MS, Spicuzza L, Malaguarnera L. Impact of Lung Microbiota on COPD. Biomedicines 2022; 10:biomedicines10061337. [PMID: 35740358 PMCID: PMC9219765 DOI: 10.3390/biomedicines10061337] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 05/28/2022] [Accepted: 06/02/2022] [Indexed: 11/16/2022] Open
Abstract
There is a fine balance in maintaining healthy microbiota composition, and its alterations due to genetic, lifestyle, and environmental factors can lead to the onset of respiratory dysfunctions such as chronic obstructive pulmonary disease (COPD). The relationship between lung microbiota and COPD is currently under study. Little is known about the role of the microbiota in patients with stable or exacerbated COPD. Inflammation in COPD disorders appears to be characterised by dysbiosis, reduced lung activity, and an imbalance between the innate and adaptive immune systems. Lung microbiota intervention could ameliorate these disorders. The microbiota’s anti-inflammatory action could be decisive in the onset of pathologies. In this review, we highlight the feedback loop between microbiota dysfunction, immune response, inflammation, and lung damage in relation to COPD status in order to encourage the development of innovative therapeutic goals for the prevention and management of this disease.
Collapse
Affiliation(s)
- Cristina Russo
- Section of Pathology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (C.R.); (V.C.)
| | - Valeria Colaianni
- Section of Pathology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (C.R.); (V.C.)
| | - Giuseppe Ielo
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy; (G.I.); (L.S.)
| | - Maria Stella Valle
- Laboratory of Neuro-Biomechanics, Section of Physiology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy
- Correspondence: (M.S.V.); (L.M.)
| | - Lucia Spicuzza
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy; (G.I.); (L.S.)
| | - Lucia Malaguarnera
- Section of Pathology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (C.R.); (V.C.)
- Correspondence: (M.S.V.); (L.M.)
| |
Collapse
|
11
|
Czechtizky W, Su W, Ripa L, Schiesser S, Höijer A, Cox RJ. Advances in the design of new types of inhaled medicines. PROGRESS IN MEDICINAL CHEMISTRY 2022; 61:93-162. [PMID: 35753716 DOI: 10.1016/bs.pmch.2022.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Inhalation of small molecule drugs has proven very efficacious for the treatment of respiratory diseases due to enhanced efficacy and a favourable therapeutic index compared with other dosing routes. It enables targeted delivery to the lung with rapid onset of therapeutic action, low systemic drug exposure, and thereby reduced systemic side effects. An increasing number of pharmaceutical companies and biotechs are investing in new modalities-for this review defined as therapeutic molecules with a molecular weight >800Da and therefore beyond usual inhaled small molecule drug-like space. However, our experience with inhaled administration of PROTACs, peptides, oligonucleotides (antisense oligonucleotides, siRNAs, miRs and antagomirs), diverse protein scaffolds, antibodies and antibody fragments is still limited. Investigating the retention and metabolism of these types of molecules in lung tissue and fluid will contribute to understanding which are best suited for inhalation. Nonetheless, the first such therapeutic molecules have already reached the clinic. This review will provide information on the physiology of healthy and diseased lungs and their capacity for drug metabolism. It will outline the stability, aggregation and immunogenicity aspects of new modalities, as well as recap on formulation and delivery aspects. It concludes by summarising clinical trial outcomes with inhaled new modalities based on information available at the end of 2021.
Collapse
Affiliation(s)
- Werngard Czechtizky
- Department of Medicinal Chemistry, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Mölndal, Sweden.
| | - Wu Su
- Department of Medicinal Chemistry, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Mölndal, Sweden
| | - Lena Ripa
- Department of Medicinal Chemistry, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Mölndal, Sweden
| | - Stefan Schiesser
- Department of Medicinal Chemistry, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Mölndal, Sweden
| | - Andreas Höijer
- Cardiovascular, Renal & Metabolism CMC Projects, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Rhona J Cox
- Department of Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal & Metabolism, BioPharmaceuticals R&D, AstraZeneca, Mölndal, Sweden
| |
Collapse
|
12
|
Bi D, Yang X, Lu J, Xu X. Preparation and potential applications of alginate oligosaccharides. Crit Rev Food Sci Nutr 2022; 63:10130-10147. [PMID: 35471191 DOI: 10.1080/10408398.2022.2067832] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Alginate, a linear polymer consisting of β-D-mannuronic acid (M) and α-L-guluronic acid (G) with 1,4-glycosidic linkages and comprising 40% of the dry weight of algae, possesses various applications in the food and nutraceutical industries. However, the potential applications of alginate are restricted in some fields because of its low water solubility and high solution viscosity. Alginate oligosaccharides (AOS) on the other hand, have low molecular weight which result in better water solubility. Hence, it becomes a more popular target to be researched in recent years for its use in foods and nutraceuticals. AOS can be obtained by multiple degradation methods, including enzymatic degradation, from alginate or alginate-derived poly G and poly M. AOS have unique bioactivity and can bring human health benefits, which render them potentials to be developed/incorporated into functional food. This review comprehensively covers methods of the preparation and analysis of AOS, and discussed the potential applications of AOS in foods and nutraceuticals.
Collapse
Affiliation(s)
- Decheng Bi
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, and Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, PR China
- School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Xu Yang
- School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Jun Lu
- School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
- School of Public Health and Interdisciplinary Studies, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Xu Xu
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, and Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, PR China
| |
Collapse
|
13
|
Alginate oligosaccharides enhance diffusion and activity of colistin in a mucin-rich environment. Sci Rep 2022; 12:4986. [PMID: 35322119 PMCID: PMC8943044 DOI: 10.1038/s41598-022-08927-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/10/2022] [Indexed: 11/16/2022] Open
Abstract
In a number of chronic respiratory diseases e.g. cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD), the production of viscous mucin reduces pulmonary function and represents an effective barrier to diffusion of inhaled therapies e.g. antibiotics. Here, a 2-compartment Transwell model was developed to study impaired diffusion of the antibiotic colistin across an artificial sputum (AS) matrix/medium and to quantify its antimicrobial activity against Pseudomonas aeruginosa NH57388A biofilms (alone and in combination with mucolytic therapy). High-performance liquid chromatography coupled with fluorescence detection (HPLC-FLD) revealed that the presence of AS medium significantly reduced the rate of colistin diffusion (> 85% at 48 h; p < 0.05). Addition of alginate oligosaccharide (OligoG CF-5/20) significantly improved colistin diffusion by 3.7 times through mucin-rich AS medium (at 48 h; p < 0.05). Increased diffusion of colistin with OligoG CF-5/20 was shown (using confocal laser scanning microscopy and COMSTAT image analysis) to be associated with significantly increased bacterial killing (p < 0.05). These data support the use of this model to study drug and small molecule delivery across clinically-relevant diffusion barriers. The findings indicate the significant loss of colistin and reduced effectiveness that occurs with mucin binding, and support the use of mucolytics to improve antimicrobial efficacy and lower antibiotic exposure.
Collapse
|
14
|
Combination and nanotechnology based pharmaceutical strategies for combating respiratory bacterial biofilm infections. Int J Pharm 2022; 616:121507. [PMID: 35085729 DOI: 10.1016/j.ijpharm.2022.121507] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/31/2021] [Accepted: 01/20/2022] [Indexed: 12/14/2022]
Abstract
Respiratory infections are one of the major global health problems. Among them, chronic respiratory infections caused by biofilm formation are difficult to treat because of both drug tolerance and poor drug penetration into the complex biofilm structure. A major part of the current research on combating respiratory biofilm infections have been focused on destroying the matrix of extracellular polymeric substance and eDNA of the biofilm or promoting the penetration of antibiotics through the extracellular polymeric substance via delivery technologies in order to kill the bacteria inside. There are also experimental data showing that certain inhaled antibiotics with simple formulations can effectively penetrate EPS to kill surficially located bacteria and centrally located dormant bacteria or persisters. This article aims to review recent advances in the pharmaceutical strategies for combating respiratory biofilm infections with a focus on nanotechnology-based drug delivery approaches. The formation and characteristics of bacterial biofilm infections in the airway mucus are presented, which is followed by a brief review on the current clinical approaches to treat respiratory biofilm infections by surgical removal and antimicrobial therapy, and also the emerging clinical treatment approaches. The current combination of antibiotics and non-antibiotic adjuvants to combat respiratory biofilm infections are also discussed.
Collapse
|
15
|
Li H, Song Y, Chen X, Sun H. Nursing Progress of Hypertonic Saline Inhalation in the Treatment of Infantile Bronchitis Based on Image Enhancement. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:5092969. [PMID: 35103070 PMCID: PMC8800604 DOI: 10.1155/2022/5092969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/30/2021] [Accepted: 12/08/2021] [Indexed: 11/17/2022]
Abstract
The onset of bronchiolitis is closely related to the anatomical characteristics of the bronchi in children of this age. This kind of injury is caused by epithelial necrosis, nasal mucosa, and mucosal edema caused by narrowing and blockage of the trachea. Children with this serious phenomenon will have respiratory and heart failure, which threatens the life of children to a large extent. In this paper, based on image enhancement technology, hypertonic saline aerosol inhalation treatment of pediatric bronchiolitis nursing care, through related cases, the application of image enhancement technology in hypertonic saline aerosol inhalation therapy and pediatric bronchiolitis is analyzed, and the tone mapping function is used. Tone mapping functions, hereditary arithmetics, and slope regimes for experimental field capture and detection were used for the objective of therapeutic approaches for the treatment of pediatric capillary pneumonia by hypertonic inhalation. Experimental results show that imaging technology hypertonic inhalation can control the main symptoms of bronchiolitis in infants and young children. Inhalation of 3% saline can shorten the course of moderately chronic children to half a year and can reduce the length of hospital stay by a quarter of the original requires hospitalization time, and the cure rate of pediatric bronchiolitis is increased to 93.7%.
Collapse
Affiliation(s)
- Haiyan Li
- Sunshine Union Hospital, Shandong Province 261000, China
| | - Yangang Song
- Sunshine Union Hospital, Shandong Province 261000, China
| | - Xue Chen
- Sunshine Union Hospital, Shandong Province 261000, China
| | - Hesheng Sun
- Sunshine Union Hospital, Shandong Province 261000, China
| |
Collapse
|
16
|
Evaluating the alginate oligosaccharide (OligoG) as a therapy for Burkholderia cepacia complex cystic fibrosis lung infection. J Cyst Fibros 2022; 21:821-829. [DOI: 10.1016/j.jcf.2022.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/15/2021] [Accepted: 01/09/2022] [Indexed: 11/15/2022]
|
17
|
Pseudomonas aeruginosa in the Cystic Fibrosis Lung. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1386:347-369. [DOI: 10.1007/978-3-031-08491-1_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
18
|
Rosiak P, Latanska I, Paul P, Sujka W, Kolesinska B. Modification of Alginates to Modulate Their Physic-Chemical Properties and Obtain Biomaterials with Different Functional Properties. Molecules 2021; 26:7264. [PMID: 34885846 PMCID: PMC8659150 DOI: 10.3390/molecules26237264] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 11/27/2021] [Accepted: 11/28/2021] [Indexed: 01/02/2023] Open
Abstract
Modified alginates have a wide range of applications, including in the manufacture of dressings and scaffolds used for regenerative medicine, in systems for selective drug delivery, and as hydrogel materials. This literature review discusses the methods used to modify alginates and obtain materials with new or improved functional properties. It discusses the diverse biological and functional activity of alginates. It presents methods of modification that utilize both natural and synthetic peptides, and describes their influence on the biological properties of the alginates. The success of functionalization depends on the reaction conditions being sufficient to guarantee the desired transformations and provide modified alginates with new desirable properties, but mild enough to prevent degradation of the alginates. This review is a literature description of efficient methods of alginate functionalization using biologically active ligands. Particular attention was paid to methods of alginate functionalization with peptides, because the combination of the properties of alginates and peptides leads to the obtaining of conjugates with properties resulting from both components as well as a completely new, different functionality.
Collapse
Affiliation(s)
- Piotr Rosiak
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland; (P.R.); (P.P.)
| | - Ilona Latanska
- Tricomed S.A., Swietojanska 5/9, 93-493 Lodz, Poland; (I.L.); (W.S.)
| | - Paulina Paul
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland; (P.R.); (P.P.)
| | - Witold Sujka
- Tricomed S.A., Swietojanska 5/9, 93-493 Lodz, Poland; (I.L.); (W.S.)
| | - Beata Kolesinska
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland; (P.R.); (P.P.)
| |
Collapse
|
19
|
Qian Y, Kumar R, Chug MK, Massoumi H, Brisbois EJ. Therapeutic Delivery of Nitric Oxide Utilizing Saccharide-Based Materials. ACS APPLIED MATERIALS & INTERFACES 2021; 13:52250-52273. [PMID: 34714640 PMCID: PMC9050970 DOI: 10.1021/acsami.1c10964] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
As a gasotransmitter, nitric oxide (NO) regulates physiological pathways and demonstrates therapeutic effects such as vascular relaxation, anti-inflammation, antiplatelet, antithrombosis, antibacterial, and antiviral properties. However, gaseous NO has high reactivity and a short half-life, so NO delivery and storage are critical questions to be solved. One way is to develop stable NO donors and the other way is to enhance the delivery and storage of NO donors from biomaterials. Most of the researchers studying NO delivery and applications are using synthetic polymeric materials, and they have demonstrated significant therapeutic effects of these NO-releasing polymeric materials on cardiovascular diseases, respiratory disease, bacterial infections, etc. However, some researchers are exploring saccharide-based materials to fulfill the same tasks as their synthetic counterparts while avoiding the concerns of biocompatibility, biodegradability, and sustainability. Saccharide-based materials are abundant in nature and are biocompatible and biodegradable, with wide applications in bioengineering, drug delivery, and therapeutic disease treatments. Saccharide-based materials have been implemented with various NO donors (like S-nitrosothiols and N-diazeniumdiolates) via both chemical and physical methods to deliver NO. These NO-releasing saccharide-based materials have exhibited controlled and sustained NO release and demonstrated biomedical applications in various diseases (respiratory, Crohn's, cardiovascular, etc.), skin or wound applications, antimicrobial treatment, bone regeneration, anticoagulation, as well as agricultural and food packaging. This review aims to highlight the studies in methods and progress in developing saccharide-based NO-releasing materials and investigating their potential applications in biomedical, bioengineering, and disease treatment.
Collapse
Affiliation(s)
- Yun Qian
- School of Chemical, Materials & Biomedical Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Rajnish Kumar
- School of Chemical, Materials & Biomedical Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Manjyot Kaur Chug
- School of Chemical, Materials & Biomedical Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Hamed Massoumi
- School of Chemical, Materials & Biomedical Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Elizabeth J Brisbois
- School of Chemical, Materials & Biomedical Engineering, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
20
|
Li Y, Zheng Y, Zhang Y, Yang Y, Wang P, Imre B, Wong ACY, Hsieh YSY, Wang D. Brown Algae Carbohydrates: Structures, Pharmaceutical Properties, and Research Challenges. Mar Drugs 2021; 19:620. [PMID: 34822491 PMCID: PMC8623139 DOI: 10.3390/md19110620] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 11/17/2022] Open
Abstract
Brown algae (Phaeophyceae) have been consumed by humans for hundreds of years. Current studies have shown that brown algae are rich sources of bioactive compounds with excellent nutritional value, and are considered functional foods with health benefits. Polysaccharides are the main constituents of brown algae; their diverse structures allow many unique physical and chemical properties that help to moderate a wide range of biological activities, including immunomodulation, antibacterial, antioxidant, prebiotic, antihypertensive, antidiabetic, antitumor, and anticoagulant activities. In this review, we focus on the major polysaccharide components in brown algae: the alginate, laminarin, and fucoidan. We explore how their structure leads to their health benefits, and their application prospects in functional foods and pharmaceuticals. Finally, we summarize the latest developments in applied research on brown algae polysaccharides.
Collapse
Affiliation(s)
- Yanping Li
- College of Food Science, Southwest University, Chongqing 400715, China; (Y.L.); (Y.Z.); (Y.Z.); (Y.Y.); (P.W.)
| | - Yuting Zheng
- College of Food Science, Southwest University, Chongqing 400715, China; (Y.L.); (Y.Z.); (Y.Z.); (Y.Y.); (P.W.)
| | - Ye Zhang
- College of Food Science, Southwest University, Chongqing 400715, China; (Y.L.); (Y.Z.); (Y.Z.); (Y.Y.); (P.W.)
| | - Yuanyuan Yang
- College of Food Science, Southwest University, Chongqing 400715, China; (Y.L.); (Y.Z.); (Y.Z.); (Y.Y.); (P.W.)
| | - Peiyao Wang
- College of Food Science, Southwest University, Chongqing 400715, China; (Y.L.); (Y.Z.); (Y.Z.); (Y.Y.); (P.W.)
| | - Balázs Imre
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110301, Taiwan; (B.I.); (A.C.Y.W.)
| | - Ann C. Y. Wong
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110301, Taiwan; (B.I.); (A.C.Y.W.)
| | - Yves S. Y. Hsieh
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110301, Taiwan; (B.I.); (A.C.Y.W.)
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology (KTH), AlbaNova University Centre, 11421 Stockholm, Sweden
| | - Damao Wang
- College of Food Science, Southwest University, Chongqing 400715, China; (Y.L.); (Y.Z.); (Y.Z.); (Y.Y.); (P.W.)
| |
Collapse
|
21
|
Zhang C, Li M, Rauf A, Khalil AA, Shan Z, Chen C, Rengasamy KRR, Wan C. Process and applications of alginate oligosaccharides with emphasis on health beneficial perspectives. Crit Rev Food Sci Nutr 2021; 63:303-329. [PMID: 34254536 DOI: 10.1080/10408398.2021.1946008] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alginates are linear polymers comprising 40% of the dry weight of algae possess various applications in food and biomedical industries. Alginate oligosaccharides (AOS), a degradation product of alginate, is now gaining much attention for their beneficial role in food, pharmaceutical and agricultural industries. Hence this review was aimed to compile the information on alginate and AOS (prepared from seaweeds) during 1994-2020. As per our knowledge, this is the first review on the potential use of alginate oligosaccharides in different fields. The alginate derivatives are grouped according to their applications. They are involved in the isolation process and show antimicrobial, antioxidant, anti-inflammatory, antihypertension, anticancer, and immunostimulatory properties. AOS also have significant applications in prebiotics, nutritional supplements, plant growth development and others products.
Collapse
Affiliation(s)
- Chunhua Zhang
- College of Agriculture and Forestry, Pu'er University, Pu'er, Yunnan, China
| | - Mingxi Li
- Research Center of Tea and Tea Culture, College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Khyber Pakhtunkhwa (KP), Pakistan
| | - Anees Ahmed Khalil
- University Institute of Diet and Nutritional Sciences, Faculty of Diet and Nutritional Sciences, The University of Lahore, Lahore, Pakistan
| | - Zhiguo Shan
- College of Agriculture and Forestry, Pu'er University, Pu'er, Yunnan, China
| | - Chuying Chen
- Research Center of Tea and Tea Culture, College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Kannan R R Rengasamy
- Green Biotechnologies Research Centre of Excellence, University of Limpopo, Polokwane, Sovenga, South Africa
| | - Chunpeng Wan
- Research Center of Tea and Tea Culture, College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| |
Collapse
|
22
|
Wang M, Chen L, Zhang Z. Potential applications of alginate oligosaccharides for biomedicine - A mini review. Carbohydr Polym 2021; 271:118408. [PMID: 34364551 DOI: 10.1016/j.carbpol.2021.118408] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/23/2021] [Accepted: 07/03/2021] [Indexed: 01/02/2023]
Abstract
Extensive research on marine algae, especially on their health-promoting properties, has been conducted. Various ingredients with potential biomedical applications have been discovered and extracted from marine algae. Alginate oligosaccharides are low molecular weight alginate polysaccharides present in cell walls of brown algae. They exhibit various health benefits such as anti-inflammatory, anti-microbial, anti-oxidant, anti-tumor and immunomodulation. Their low-toxicity, non-immunogenicity, and biodegradability make them an excellent material in biomedicine. Alginate oligosaccharides can be chemically or biochemically modified to enhance their biological activity and potential in pharmaceutical applications. This paper provides a brief overview on alginate oligosaccharides characteristics, modification patterns and highlights their vital health promoting properties.
Collapse
Affiliation(s)
- Mingpeng Wang
- College of Life Science, Qufu Normal University, Qufu 273100, China
| | - Lei Chen
- College of Life Science, Qufu Normal University, Qufu 273100, China.
| | - Zhaojie Zhang
- Department of Zoology and Physiology, University of Wyoming, Laramie, Wyoming, USA
| |
Collapse
|
23
|
Gui X, Yang Z, Li MD. Effect of Cigarette Smoke on Gut Microbiota: State of Knowledge. Front Physiol 2021; 12:673341. [PMID: 34220536 PMCID: PMC8245763 DOI: 10.3389/fphys.2021.673341] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/11/2021] [Indexed: 12/20/2022] Open
Abstract
Cigarette smoke is a representative source of toxic chemical exposures to humans, and the adverse consequences of cigarette smoking are mediated by its effect on both neuronal and immune-inflammatory systems. Cigarette smoking also is a major risk factor for intestinal disorders, such as Crohn's disease and peptic ulcer. On the other hand, cigarette smoking is protective against developing ulcerative colitis. The effects of cigarette smoking on intestinal disorders include changes in intestinal irrigation and microbiome, increases in permeability of the mucosa, and impaired mucosal immune responses. However, the underlying mechanism linking cigarette smoking with intestinal microbiota dysbiosis is largely unknown. In this communication, we first review the current knowledge about the mechanistic interaction between cigarette smoke and intestinal microbiota dysbiosis, which include the likely actions of nicotine, aldehydes, polycyclic aromatic hydrocarbons, heavy metals, volatile organic compounds and toxic gases, and then reveal the potential mechanisms of the lung-gut cross talk and skin-gut cross talk in regulating the balance of intestinal microbiota and the interrelation of intestinal microbiota dysbiosis and systemic disorders.
Collapse
Affiliation(s)
- Xiaohua Gui
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhongli Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ming D. Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Research Center for Air Pollution and Health, Zhejiang University, Hangzhou, China
| |
Collapse
|
24
|
Shteinberg M, Haq IJ, Polineni D, Davies JC. Cystic fibrosis. Lancet 2021; 397:2195-2211. [PMID: 34090606 DOI: 10.1016/s0140-6736(20)32542-3] [Citation(s) in RCA: 390] [Impact Index Per Article: 97.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 10/03/2020] [Accepted: 11/20/2020] [Indexed: 12/11/2022]
Abstract
Cystic fibrosis is a monogenic disease considered to affect at least 100 000 people worldwide. Mutations in CFTR, the gene encoding the epithelial ion channel that normally transports chloride and bicarbonate, lead to impaired mucus hydration and clearance. Classical cystic fibrosis is thus characterised by chronic pulmonary infection and inflammation, pancreatic exocrine insufficiency, male infertility, and might include several comorbidities such as cystic fibrosis-related diabetes or cystic fibrosis liver disease. This autosomal recessive disease is diagnosed in many regions following newborn screening, whereas in other regions, diagnosis is based on a group of recognised multiorgan clinical manifestations, raised sweat chloride concentrations, or CFTR mutations. Disease that is less easily diagnosed, and in some cases affecting only one organ, can be seen in the context of gene variants leading to residual protein function. Management strategies, including augmenting mucociliary clearance and aggressively treating infections, have gradually improved life expectancy for people with cystic fibrosis. However, restoration of CFTR function via new small molecule modulator drugs is transforming the disease for many patients. Clinical trial pipelines are actively exploring many other approaches, which will be increasingly needed as survival improves and as the population of adults with cystic fibrosis increases. Here, we present the current understanding of CFTR mutations, protein function, and disease pathophysiology, consider strengths and limitations of current management strategies, and look to the future of multidisciplinary care for those with cystic fibrosis.
Collapse
Affiliation(s)
- Michal Shteinberg
- Pulmonology Institute and CF Center, Carmel Medical Center, Haifa, Israel; Rappaport Faculty of Medicine, The Technion-Israel Institute of Technology, Haifa, Israel
| | - Iram J Haq
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK; Great North Children's Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | | | - Jane C Davies
- National Heart and Lung Institute, Imperial College London, London, UK; Royal Brompton and Harefield, Guy's and St Thomas' NHS Foundation Trust, London, UK.
| |
Collapse
|
25
|
Stuart-Walker W, Mahon CS. Glycomacromolecules: Addressing challenges in drug delivery and therapeutic development. Adv Drug Deliv Rev 2021; 171:77-93. [PMID: 33539854 DOI: 10.1016/j.addr.2021.01.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/15/2021] [Accepted: 01/23/2021] [Indexed: 12/18/2022]
Abstract
Carbohydrate-based materials offer exciting opportunities for drug delivery. They present readily available, biocompatible components for the construction of macromolecular systems which can be loaded with cargo, and can enable targeting of a payload to particular cell types through carbohydrate recognition events established in biological systems. These systems can additionally be engineered to respond to environmental stimuli, enabling triggered release of payload, to encompass multiple modes of therapeutic action, or to simultaneously fulfil a secondary function such as enabling imaging of target tissue. Here, we will explore the use of glycomacromolecules to deliver therapeutic benefits to address key health challenges, and suggest future directions for development of next-generation systems.
Collapse
|
26
|
Martin I, Waters V, Grasemann H. Approaches to Targeting Bacterial Biofilms in Cystic Fibrosis Airways. Int J Mol Sci 2021; 22:ijms22042155. [PMID: 33671516 PMCID: PMC7926955 DOI: 10.3390/ijms22042155] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/14/2021] [Accepted: 02/15/2021] [Indexed: 12/12/2022] Open
Abstract
The treatment of lung infection in the context of cystic fibrosis (CF) is limited by a biofilm mode of growth of pathogenic organisms. When compared to planktonically grown bacteria, bacterial biofilms can survive extremely high levels of antimicrobials. Within the lung, bacterial biofilms are aggregates of microorganisms suspended in a matrix of self-secreted proteins within the sputum. These structures offer both physical protection from antibiotics as well as a heterogeneous population of metabolically and phenotypically distinct bacteria. The bacteria themselves and the components of the extracellular matrix, in addition to the signaling pathways that direct their behaviour, are all potential targets for therapeutic intervention discussed in this review. This review touches on the successes and failures of current anti-biofilm strategies, before looking at emerging therapies and the mechanisms by which it is hoped they will overcome current limitations.
Collapse
Affiliation(s)
- Isaac Martin
- Division of Respiratory Medicine, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON M5G 1X8, Canada;
- Correspondence:
| | - Valerie Waters
- Division of Infectious Diseases, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON M5G 1X8, Canada;
- Department of Paediatrics and Translational Medicine, Research Institute, The Hospital for Sick Children, University of Toronto, Toronto, ON M5G 0A4, Canada
| | - Hartmut Grasemann
- Division of Respiratory Medicine, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON M5G 1X8, Canada;
- Department of Paediatrics and Translational Medicine, Research Institute, The Hospital for Sick Children, University of Toronto, Toronto, ON M5G 0A4, Canada
| |
Collapse
|
27
|
Phenotypic and Genotypic Adaptations in Pseudomonas aeruginosa Biofilms following Long-Term Exposure to an Alginate Oligomer Therapy. mSphere 2021; 6:6/1/e01216-20. [PMID: 33472983 PMCID: PMC7845618 DOI: 10.1128/msphere.01216-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Chronic Pseudomonas aeruginosa lung infections in cystic fibrosis (CF) evolve to generate environmentally adapted biofilm communities, leading to increased patient morbidity and mortality. OligoG CF-5/20, a low-molecular-weight inhaled alginate oligomer therapy, is currently in phase IIb/III clinical trials in CF patients. Experimental evolution of P. aeruginosa in response to OligoG CF-5/20 was assessed using a bead biofilm model allowing continuous passage (45 days; ∼245 generations). Mutants isolated after OligoG CF-5/20 treatment typically had a reduced biofilm-forming ability and altered motility profile. Genotypically, OligoG CF-5/20 provided no selective pressure on genomic mutations within morphotypes. Chronic exposure to azithromycin, a commonly prescribed antibiotic in CF patients, with or without OligoG CF-5/20 in the biofilm evolution model also had no effect on rates of resistance acquisition. Interestingly, however, cross-resistance to other antibiotics (e.g., aztreonam) was reduced in the presence of OligoG CF-5/20. Collectively, these findings show no apparent adverse effects from long-term exposure to OligoG CF-5/20, instead resulting in both fewer colonies with multidrug resistance (MDR)-associated phenotypes and improved antibiotic susceptibility of P. aeruginosa IMPORTANCE The emergence of multidrug-resistant (MDR) pathogens within biofilms in the cystic fibrosis lung results in increased morbidity. An inhalation therapy derived from alginate, OligoG CF-5/20, is currently in clinical trials for cystic fibrosis patients. OligoG CF-5/20 has been shown to alter sputum viscoelasticity, disrupt mucin polymer networks, and disrupt MDR pseudomonal biofilms. Long-term exposure to inhaled therapeutics may induce selective evolutionary pressures on bacteria within the lung biofilm. Here, a bead biofilm model with repeated exposure of P. aeruginosa to OligoG CF-5/20 (alone and in combination with azithromycin) was conducted to study these long-term effects and characterize the phenotypic and genotypic adaptations which result. These findings, over 6 weeks, show that long-term use of OligoG CF-5/20 does not lead to extensive mutational changes and may potentially decrease the pathogenicity of the bacterial biofilm and improve the susceptibility of P. aeruginosa to other classes of antibiotics.
Collapse
|
28
|
Weiser R, Rye PD, Mahenthiralingam E. Implementation of microbiota analysis in clinical trials for cystic fibrosis lung infection: Experience from the OligoG phase 2b clinical trials. J Microbiol Methods 2021; 181:106133. [PMID: 33421446 DOI: 10.1016/j.mimet.2021.106133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/02/2021] [Accepted: 01/04/2021] [Indexed: 11/28/2022]
Abstract
Culture-independent microbiota analysis is widely used in research and being increasingly used in translational studies. However, methods for standardisation and application of these analyses in clinical trials are limited. Here we report the microbiota analysis that accompanied two phase 2b clinical trials of the novel, non-antibiotic therapy OligoG CF-5/20 for cystic fibrosis (CF) lung infection. Standardised protocols (DNA extraction, PCR, qPCR and 16S rRNA gene sequencing analysis) were developed for application to the Pseudomonas aeruginosa (NCT02157922) and Burkholderia cepacia complex (NCT02453789) clinical trials involving 45 and 13 adult trial participants, respectively. Microbiota analysis identified that paired sputum samples from an individual participant, taken within 2 h of each other, had reproducible bacterial diversity profiles. Although culture microbiology had identified patients as either colonised by P. aeruginosa or B. cepacia complex species at recruitment, microbiota analysis revealed patient lung infection communities were not always dominated by these key CF pathogens. Microbiota profiles were patient-specific and remained stable over the course of both clinical trials (6 sampling points over the course of 140 days). Within the Burkholderia trial, participants were infected with B. cenocepacia (n = 4), B. multivorans (n = 6), or an undetermined species (n = 3). Colonisation with either B. cenocepacia or B. multivorans influenced the overall bacterial community structure in sputum. Overall, we have shown that sputum microbiota in adults with CF is stable over a 2 h time-frame, suggesting collection of a single sample on a collection day is sufficient to capture the microbiota diversity. Despite the uniform pathogen culture-positivity status at recruitment, trial participants were highly heterogeneous in their lung microbiota. Understanding the microbiota profiles of individuals with CF ahead of future clinical trials would be beneficial in the context of patient stratification and trial design.
Collapse
Affiliation(s)
- Rebecca Weiser
- Microbiomes, Microbes and Informatics Group, Organisms and Environment Division, School of Biosciences, Cardiff University, The Sir Martin Evans Building, Museum Avenue, Cardiff, Wales, CF10 3AX, UK.
| | - Philip D Rye
- AlgiPharma AS, Industriveien 33, N-1337, Sandvika, Norway.
| | - Eshwar Mahenthiralingam
- Microbiomes, Microbes and Informatics Group, Organisms and Environment Division, School of Biosciences, Cardiff University, The Sir Martin Evans Building, Museum Avenue, Cardiff, Wales, CF10 3AX, UK.
| |
Collapse
|
29
|
Laubach J, Joseph M, Brenza T, Gadhamshetty V, Sani RK. Exopolysaccharide and biopolymer-derived films as tools for transdermal drug delivery. J Control Release 2021; 329:971-987. [DOI: 10.1016/j.jconrel.2020.10.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 02/06/2023]
|
30
|
Chen D, Liu J, Wu J, Suk JS. Enhancing nanoparticle penetration through airway mucus to improve drug delivery efficacy in the lung. Expert Opin Drug Deliv 2020; 18:595-606. [PMID: 33218265 DOI: 10.1080/17425247.2021.1854222] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Introduction: Airway mucus gel layer serves as a key delivery barrier that limits the performance of inhaled drug delivery nanoparticles. Conventional nanoparticles are readily trapped by the airway mucus and rapidly cleared from the lung via mucus clearance mechanisms. These nanoparticles cannot distribute throughout the lung airways, long-reside in the lung and/or reach the airway epithelium. To address this challenge, strategies to enhance particle penetration through the airway mucus have been developed and proof-of-concept has been established using mucus model systems..Areas covered: In this review, we first overview the biochemical and biophysical characteristics that render the airway mucus a challenging delivery barrier. We then introduce strategies to improve particle penetration through the airway mucus. Specifically, we walk through two classes of approaches, including modification of physicochemical properties of nanoparticles and modulation of barrier properties of airway mucus.Expert opinion: State-of-the-art strategies to overcome the airway mucus barrier have been introduced and experimentally validated. However, data should be interpreted in the comprehensive context of therapeutic delivery from the site of administration to the final destination to determine clinically-relevant approaches. Further, safety should be carefully monitored, particularly when it comes to mucus-altering strategies that may perturb physiological functions of airway mucus.
Collapse
Affiliation(s)
- Daiqin Chen
- The Center for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Ophthalmology, Johns Hopkins University, Baltimore, MD, USA
| | - Jinhao Liu
- The Center for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jerry Wu
- The Center for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jung Soo Suk
- The Center for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Ophthalmology, Johns Hopkins University, Baltimore, MD, USA.,Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
31
|
Cheng D, Jiang C, Xu J, Liu Z, Mao X. Characteristics and applications of alginate lyases: A review. Int J Biol Macromol 2020; 164:1304-1320. [PMID: 32745554 DOI: 10.1016/j.ijbiomac.2020.07.199] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/09/2020] [Accepted: 07/22/2020] [Indexed: 12/26/2022]
Abstract
Brown algae, as the main source of alginate, are a type of marine biomass with a very high output. Alginate, a polysaccharide composed of β-D-mannuronic acid (M) and α-L-guluronic acid (G), has great potential for applications in the food, cosmetic and pharmaceutical industries. Alginate lyases (Alys) can degrade alginate polymers into oligosaccharides or monosaccharides, resulting in a broad application field. Alys can be used for both the production of alginate oligosaccharides and the biorefinery of brown algae. In view of their important functions, an increasing number of Alys have been isolated and characterized. For better application, a comprehensive understanding of Alys is essential. Therefore, in this paper, we summarized recently discovered Alys, discussed their characteristics, and introduced their structural properties, degradation patterns and biological roles in alginate-degrading organisms. In addition, applications of Alys have been illustrated with examples. This paper provides a relatively comprehensive description of Alys, which is significant for Alys exploration and application.
Collapse
Affiliation(s)
- Danyang Cheng
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Chengcheng Jiang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Jiachao Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Zhen Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China.
| | - Xiangzhao Mao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
32
|
Tøndervik A, Aarstad OA, Aune R, Maleki S, Rye PD, Dessen A, Skjåk-Bræk G, Sletta H. Exploiting Mannuronan C-5 Epimerases in Commercial Alginate Production. Mar Drugs 2020; 18:E565. [PMID: 33218095 PMCID: PMC7698916 DOI: 10.3390/md18110565] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/09/2020] [Accepted: 11/12/2020] [Indexed: 12/11/2022] Open
Abstract
Alginates are one of the major polysaccharide constituents of marine brown algae in commercial manufacturing. However, the content and composition of alginates differ according to the distinct parts of these macroalgae and have a direct impact on the concentration of guluronate and subsequent commercial value of the final product. The Azotobacter vinelandii mannuronan C-5 epimerases AlgE1 and AlgE4 were used to determine their potential value in tailoring the production of high guluronate low-molecular-weight alginates from two sources of high mannuronic acid alginates, the naturally occurring harvested brown algae (Ascophyllum nodosum, Durvillea potatorum, Laminaria hyperborea and Lessonia nigrescens) and a pure mannuronic acid alginate derived from fermented production of the mutant strain of Pseudomonas fluorescens NCIMB 10,525. The mannuronan C-5 epimerases used in this study increased the content of guluronate from 32% up to 81% in both the harvested seaweed and bacterial fermented alginate sources. The guluronate-rich alginate oligomers subsequently derived from these two different sources showed structural identity as determined by proton nuclear magnetic resonance (1H NMR), high-performance anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD) and size-exclusion chromatography with online multi-angle static laser light scattering (SEC-MALS). Functional identity was determined by minimum inhibitory concentration (MIC) assays with selected bacteria and antibiotics using the previously documented low-molecular-weight guluronate enriched alginate OligoG CF-5/20 as a comparator. The alginates produced using either source showed similar antibiotic potentiation effects to the drug candidate OligoG CF-5/20 currently in development as a mucolytic and anti-biofilm agent. These findings clearly illustrate the value of using epimerases to provide an alternative production route for novel low-molecular-weight alginates.
Collapse
Affiliation(s)
- Anne Tøndervik
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Richard Birkelands vei 3B, N-7034 Trondheim, Norway; (R.A.); (S.M.); (H.S.)
| | - Olav A. Aarstad
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, NTNU, Sem Sælands vei 6-8, N-7491 Trondheim, Norway; (O.A.A.); (G.S.-B.)
| | - Randi Aune
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Richard Birkelands vei 3B, N-7034 Trondheim, Norway; (R.A.); (S.M.); (H.S.)
| | - Susan Maleki
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Richard Birkelands vei 3B, N-7034 Trondheim, Norway; (R.A.); (S.M.); (H.S.)
| | - Philip D. Rye
- AlgiPharma AS, Industriveien 33, N-1337 Sandvika, Norway; (P.D.R.); (A.D.)
| | - Arne Dessen
- AlgiPharma AS, Industriveien 33, N-1337 Sandvika, Norway; (P.D.R.); (A.D.)
| | - Gudmund Skjåk-Bræk
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, NTNU, Sem Sælands vei 6-8, N-7491 Trondheim, Norway; (O.A.A.); (G.S.-B.)
| | - Håvard Sletta
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Richard Birkelands vei 3B, N-7034 Trondheim, Norway; (R.A.); (S.M.); (H.S.)
| |
Collapse
|
33
|
van Koningsbruggen-Rietschel S, Davies JC, Pressler T, Fischer R, MacGregor G, Donaldson SH, Smerud K, Meland N, Mortensen J, Fosbøl MØ, Downey DG, Myrset AH, Flaten H, Rye PD. Inhaled dry powder alginate oligosaccharide in cystic fibrosis: a randomised, double-blind, placebo-controlled, crossover phase 2b study. ERJ Open Res 2020; 6:00132-2020. [PMID: 33123558 PMCID: PMC7569163 DOI: 10.1183/23120541.00132-2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 07/25/2020] [Indexed: 11/21/2022] Open
Abstract
Background OligoG is a low molecular-weight alginate oligosaccharide that improves the viscoelastic properties of cystic fibrosis (CF) mucus and disrupts biofilms, thereby potentiating the activity of antimicrobial agents. The efficacy of inhaled OligoG was evaluated in adult patients with CF. Methods A randomised, double-blind, placebo-controlled multicentre crossover study was used to demonstrate safety and efficacy of inhaled dry powder OligoG. Subjects were randomly allocated to receive OligoG 1050 mg per day (10 capsules three times daily) or matching placebo for 28 days, with 28-day washout periods following each treatment period. The primary end-point was absolute change in percentage predicted forced expiratory volume in 1 s (FEV1) at the end of 28-day treatment. The intention-to-treat (ITT) population (n=65) was defined as randomised to treatment with at least one administration of study medication and post-dosing evaluation. Results In this study, 90 adult subjects were screened and 65 were randomised. Statistically significant improvement in FEV1 was not observed in the ITT population. Adverse events included nasopharyngitis, cough and pulmonary exacerbation. The number and proportions of patients with adverse events and serious adverse events were similar between OligoG and placebo group. Conclusions Inhalation of OligoG-dry powder over 28 days was safe in adult CF subjects. Statistically significant improvement of FEV1 was not reached. The planned analyses did not indicate a significant treatment benefit with OligoG compared to placebo. Post hoc exploratory analyses showed subgroup results that indicate that further studies of OligoG in this patient population are justified. Inhalation of OligoG-DPI over 28 days was shown to be safe in adult CF subjects. Statistically significant improvement of FEV1 was not reached. Post hoc subgroup analyses support mechanism of action for OligoG and warrant further prospective studies.https://bit.ly/2PHq6Z0
Collapse
Affiliation(s)
| | - Jane C Davies
- Dept of Paediatric Respiratory Medicine, National Heart and Lung Institute, Imperial College London, and Royal Brompton and Harefield NHS Foundation Trust, London, UK
| | | | | | - Gordon MacGregor
- Dept of Respiratory Medicine, Queen Elizabeth University Hospital, Glasgow, UK
| | | | - Knut Smerud
- SMERUD Medical Research International AS, Oslo, Norway
| | - Nils Meland
- SMERUD Medical Research International AS, Oslo, Norway
| | - Jann Mortensen
- Copenhagen CF Centre, Rigshospitalet, Copenhagen, Denmark
| | - Marie Ø Fosbøl
- Copenhagen CF Centre, Rigshospitalet, Copenhagen, Denmark
| | - Damian G Downey
- Centre for Experimental Medicine, Queen's University, Belfast, UK
| | | | | | | |
Collapse
|
34
|
Cattelan G, Guerrero Gerbolés A, Foresti R, Pramstaller PP, Rossini A, Miragoli M, Caffarra Malvezzi C. Alginate Formulations: Current Developments in the Race for Hydrogel-Based Cardiac Regeneration. Front Bioeng Biotechnol 2020; 8:414. [PMID: 32457887 PMCID: PMC7226066 DOI: 10.3389/fbioe.2020.00414] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 04/14/2020] [Indexed: 12/13/2022] Open
Abstract
Cardiovascular diseases, including myocardial infarction (MI), represent the main worldwide cause of mortality and morbidity. In this scenario, to contrast the irreversible damages following MI, cardiac regeneration has emerged as a novel and promising solution for in situ cellular regeneration, preserving cell behavior and tissue cytoarchitecture. Among the huge variety of natural, synthetic, and hybrid compounds used for tissue regeneration, alginate emerged as a good candidate for cellular preservation and delivery, becoming one of the first biomaterial tested in pre-clinical research and clinical trials concerning cardiovascular diseases. Although promising results have been obtained, recellularization and revascularization of the infarcted area present still major limitations. Therefore, the demand is rising for alginate functionalization and its combination with molecules, factors, and drugs capable to boost the regenerative potential of the cardiac tissue. The focus of this review is to elucidate the promising properties of alginate and to highlight its benefits in clinical trials in relation to cardiac regeneration. The definition of hydrogels, the alginate characteristics, and recent biomedical applications are herewith described. Afterward, the review examines in depth the ongoing developments to refine the material relevance in cardiac recovery and regeneration after MI and presents current clinical trials based on alginate.
Collapse
Affiliation(s)
- Giada Cattelan
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Amparo Guerrero Gerbolés
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy.,Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Ruben Foresti
- Department of Medicine and Surgery, University of Parma, Parma, Italy.,CERT, Center of Excellence for Toxicological Research, University of Parma, Parma, Italy
| | - Peter P Pramstaller
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Alessandra Rossini
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Michele Miragoli
- Department of Medicine and Surgery, University of Parma, Parma, Italy.,CERT, Center of Excellence for Toxicological Research, University of Parma, Parma, Italy
| | | |
Collapse
|
35
|
Liu J, Yang S, Li X, Yan Q, Reaney MJT, Jiang Z. Alginate Oligosaccharides: Production, Biological Activities, and Potential Applications. Compr Rev Food Sci Food Saf 2019; 18:1859-1881. [DOI: 10.1111/1541-4337.12494] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/09/2019] [Accepted: 07/29/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Jun Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthCollege of Food Science and Nutritional EngineeringChina Agricultural Univ. Beijing 100083 China
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthBeijing Technology and Business Univ. Beijing 100048 China
| | - Shaoqing Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthCollege of Food Science and Nutritional EngineeringChina Agricultural Univ. Beijing 100083 China
| | - Xiuting Li
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthBeijing Technology and Business Univ. Beijing 100048 China
| | - Qiaojuan Yan
- Bioresource Utilization LaboratoryCollege of EngineeringChina Agricultural Univ. Beijing 100083 China
| | - Martin J. T. Reaney
- Dept. of Plant SciencesUniv. of Saskatchewan Saskatoon SK S7N 5A8 Canada
- Guangdong Saskatchewan Oilseed Joint Laboratory (GUSTO)Dept. of Food Science and EngineeringJinan Univ. Guangzhou 510632 China
| | - Zhengqiang Jiang
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthCollege of Food Science and Nutritional EngineeringChina Agricultural Univ. Beijing 100083 China
| |
Collapse
|
36
|
Ahonen MJR, Dorrier JM, Schoenfisch MH. Antibiofilm Efficacy of Nitric Oxide-Releasing Alginates against Cystic Fibrosis Bacterial Pathogens. ACS Infect Dis 2019; 5:1327-1335. [PMID: 31136714 PMCID: PMC6773255 DOI: 10.1021/acsinfecdis.9b00016] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Colonization of the lungs by biofilm-forming pathogens is a major cause of mortality in cystic fibrosis (CF). In CF patients, these pathogens are difficult to treat due to the additional protection provided by both the biofilm exopolysaccharide matrix and thick, viscous mucus. The antibiofilm efficacy of nitric oxide (NO)-releasing alginates was evaluated against Pseudomonas aeruginosa, Burkholderia cepacia, Staphylococcus aureus, and methicillin-resistant S. aureus biofilms in both aerobic and anaerobic environments. Varying the amine precursor grafted onto alginate oligosaccharides imparted tunable NO storage (∼0.1-0.3 μmol/mg) and release kinetics (∼4-40 min half-lives) in the artificial sputum media used for biofilm testing. The NO-releasing alginates were highly antibacterial against the four CF-relevant pathogens, achieving a 5-log reduction in biofilm viability after 24 h of treatment, with biocidal efficacy dependent on NO-release kinetics. Aerobic biofilms required greater starting NO doses to achieve killing relative to the anaerobic biofilms. Relative to tobramycin (the minimum concentration of antibacterial agent required to achieve a 5-log reduction in viability after 24 h, MBEC24h, of ≥2000 μg/mL) and vancomycin (MBEC24h ≥ 1000 μg/mL), the NO-releasing alginates proved to be more effective (NO dose ≤ 520 μg/mL) regardless of growth conditions.
Collapse
Affiliation(s)
- Mona Jasmine R. Ahonen
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, CB 3290, NC 27599, United States
| | - Jamie M. Dorrier
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, CB 3290, NC 27599, United States
| | - Mark H. Schoenfisch
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, CB 3290, NC 27599, United States
| |
Collapse
|
37
|
Jack AA, Nordli HR, Powell LC, Farnell DJJ, Pukstad B, Rye PD, Thomas DW, Chinga-Carrasco G, Hill KE. Cellulose Nanofibril Formulations Incorporating a Low-Molecular-Weight Alginate Oligosaccharide Modify Bacterial Biofilm Development. Biomacromolecules 2019; 20:2953-2961. [PMID: 31251598 DOI: 10.1021/acs.biomac.9b00522] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cellulose nanofibrils (CNFs) from wood pulp are a renewable material possessing advantages for biomedical applications because of their customizable porosity, mechanical strength, translucency, and environmental biodegradability. Here, we investigated the growth of multispecies wound biofilms on CNF formulated as aerogels and films incorporating the low-molecular-weight alginate oligosaccharide OligoG CF-5/20 to evaluate their structural and antimicrobial properties. Overnight microbial cultures were adjusted to 2.8 × 109 colony-forming units (cfu) mL-1 in Mueller Hinton broth and growth rates of Pseudomonas aeruginosa PAO1 and Staphylococcus aureus 1061A monitored for 24 h in CNF dispersions sterilized by γ-irradiation. Two CNF formulations were prepared (20 g m-2) with CNF as air-dried films or freeze-dried aerogels, with or without incorporation of an antimicrobial alginate oligosaccharide (OligoG CF-5/20) as a surface coating or bionanocomposite, respectively. The materials were structurally characterized by scanning electron microscopy (SEM) and laser profilometry (LP). The antimicrobial properties of the formulations were assessed using single- and mixed-species biofilms grown on the materials and analyzed using LIVE/DEAD staining with confocal laser scanning microscopy (CLSM) and COMSTAT software. OligoG-CNF suspensions significantly decreased the growth of both bacterial strains at OligoG concentrations >2.58% (P < 0.05). SEM showed that aerogel-OligoG bionanocomposite formulations had a more open three-dimensional structure, whereas LP showed that film formulations coated with OligoG were significantly smoother than untreated films or films incorporating PEG400 as a plasticizer (P < 0.05). CLSM of biofilms grown on films incorporating OligoG demonstrated altered biofilm architecture, with reduced biomass and decreased cell viability. The OligoG-CNF formulations as aerogels or films both inhibited pyocyanin production (P < 0.05). These novel CNF formulations or bionanocomposites were able to modify bacterial growth, biofilm development, and virulence factor production in vitro. These data support the potential of OligoG and CNF bionanocomposites for use in biomedical applications where prevention of infection or biofilm growth is required.
Collapse
Affiliation(s)
- Alison A Jack
- Advanced Therapies Group, Oral and Biomedical Sciences , Cardiff University School of Dentistry , Cardiff CF14 4XY , U.K
| | - Henriette R Nordli
- Department of Cancer Research and Molecular Medicine , NTNU , NO-7491 Trondheim , Norway
| | - Lydia C Powell
- Advanced Therapies Group, Oral and Biomedical Sciences , Cardiff University School of Dentistry , Cardiff CF14 4XY , U.K
| | - Damian J J Farnell
- Advanced Therapies Group, Oral and Biomedical Sciences , Cardiff University School of Dentistry , Cardiff CF14 4XY , U.K
| | - Brita Pukstad
- Department of Cancer Research and Molecular Medicine , NTNU , NO-7491 Trondheim , Norway.,Department of Dermatology, St. Olavs Hospital , Trondheim University Hospital , 7030 Trondheim , Norway
| | | | - David W Thomas
- Advanced Therapies Group, Oral and Biomedical Sciences , Cardiff University School of Dentistry , Cardiff CF14 4XY , U.K
| | | | - Katja E Hill
- Advanced Therapies Group, Oral and Biomedical Sciences , Cardiff University School of Dentistry , Cardiff CF14 4XY , U.K
| |
Collapse
|
38
|
Ahonen MJR, Hill DB, Schoenfisch MH. Nitric oxide-releasing alginates as mucolytic agents. ACS Biomater Sci Eng 2019; 5:3409-3418. [PMID: 32309634 DOI: 10.1021/acsbiomaterials.9b00482] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The excessive production of thick, viscous mucus in severe respiratory diseases leads to obstruction of the airways and provides a suitable environment for the colonization of pathogenic bacteria. The effect of nitric oxide (NO)-releasing alginates with varying NO release kinetics on the viscoelastic properties of human bronchial epithelial (HBE) mucus was evaluated as a function of the NO-release kinetics using parallel plate rheology. Low molecular weight (~5 kDa) alginates with high NO flux (~4000 ppb/mg) and sustained release (half-life ~0.3 h) proved to be most effective in reducing both mucus elasticity and viscosity (≥60% reduction for both). The efficacy of the NO-releasing alginates was shown to be dose-dependent, with high concentrations of NO-releasing alginates (~80 mg•mL-1) resulting in greater reduction of the viscosity and elasticity of the mucus samples. Greater reduction in mucus rheology was also achieved with NO-releasing alginates at lower concentrations when compared to both NO-releasing chitosan, a similarly biocompatible cationic polymer, and N-acetyl cysteine (NAC), a conventional mucolytic agent.
Collapse
Affiliation(s)
- Mona Jasmine R Ahonen
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - David B Hill
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7248, United States
| | - Mark H Schoenfisch
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| |
Collapse
|
39
|
Shahin HI, Vinjamuri BP, Mahmoud AA, Shamma RN, Mansour SM, Ammar HO, Ghorab MM, Chougule MB, Chablani L. Design and evaluation of novel inhalable sildenafil citrate spray-dried microparticles for pulmonary arterial hypertension. J Control Release 2019; 302:126-139. [DOI: 10.1016/j.jconrel.2019.03.029] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/28/2019] [Accepted: 03/29/2019] [Indexed: 10/27/2022]
|
40
|
Fernandez-Petty CM, Hughes GW, Bowers HL, Watson JD, Rosen BH, Townsend SM, Santos C, Ridley CE, Chu KK, Birket SE, Li Y, Leung HM, Mazur M, Garcia BA, Evans TIA, Libby EF, Hathorne H, Hanes J, Tearney GJ, Clancy JP, Engelhardt JF, Swords WE, Thornton DJ, Wiesmann WP, Baker SM, Rowe SM. A glycopolymer improves vascoelasticity and mucociliary transport of abnormal cystic fibrosis mucus. JCI Insight 2019; 4:125954. [PMID: 30996141 DOI: 10.1172/jci.insight.125954] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 02/28/2019] [Indexed: 01/05/2023] Open
Abstract
Cystic fibrosis (CF) is characterized by increased mucus viscosity and delayed mucociliary clearance that contributes to progressive decline of lung function. Mucus in the respiratory and GI tract is excessively adhesive in the presence of airway dehydration and excess extracellular Ca2+ upon mucin release, promoting hyperviscous, densely packed mucins characteristic of CF. Therapies that target mucins directly through ionic interactions remain unexploited. Here we show that poly (acetyl, arginyl) glucosamine (PAAG), a polycationic biopolymer suitable for human use, interacts directly with mucins in a Ca2+-sensitive manner to reduce CF mucus viscoelasticity and improve its transport. Notably, PAAG induced a linear structure of purified MUC5B and altered its sedimentation profile and viscosity, indicative of proper mucin expansion. In vivo, PAAG nebulization improved mucociliary transport in CF rats with delayed mucus clearance, and cleared mucus plugging in CF ferrets. This study demonstrates the potential use of a synthetic glycopolymer PAAG as a molecular agent that could benefit patients with a broad array of mucus diseases.
Collapse
Affiliation(s)
| | - Gareth W Hughes
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, United Kingdom
| | - Hannah L Bowers
- Department of Medicine, University of Alabama at Birmingham (UAB), Birmingham, Alabama, USA
| | - John D Watson
- Department of Medicine, University of Alabama at Birmingham (UAB), Birmingham, Alabama, USA
| | - Bradley H Rosen
- Department of Anatomy & Cell Biology and.,Department of Medicine, University of Iowa, Iowa City, Iowa, USA
| | | | | | - Caroline E Ridley
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, United Kingdom
| | - Kengyeh K Chu
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Dermatology, Massachusetts General Hospital, Boston, Massachusetts, USA,Harvard Medical School, Boston, Massachusetts, USA.,Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts, USA.,Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Susan E. Birket
- Department of Medicine, University of Alabama at Birmingham (UAB), Birmingham, Alabama, USA.,Gregory Fleming James Cystic Fibrosis Research Center
| | - Yao Li
- Department of Medicine, University of Alabama at Birmingham (UAB), Birmingham, Alabama, USA.,Gregory Fleming James Cystic Fibrosis Research Center
| | - Hui Min Leung
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Dermatology, Massachusetts General Hospital, Boston, Massachusetts, USA,Harvard Medical School, Boston, Massachusetts, USA.,Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts, USA.,Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Marina Mazur
- Gregory Fleming James Cystic Fibrosis Research Center
| | - Bryan A Garcia
- Department of Medicine, University of Alabama at Birmingham (UAB), Birmingham, Alabama, USA.,Gregory Fleming James Cystic Fibrosis Research Center
| | | | | | - Heather Hathorne
- Gregory Fleming James Cystic Fibrosis Research Center,Department of Pediatrics, UAB, Birmingham, Alabama, USA
| | - Justin Hanes
- Center for Nanomedicine and Departments of Biomedical Engineering, Chemical & Biomolecular Sciences, Johns Hopkins University, Baltimore, Maryland, USA
| | - Guillermo J Tearney
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Dermatology, Massachusetts General Hospital, Boston, Massachusetts, USA,Harvard Medical School, Boston, Massachusetts, USA.,Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts, USA.,Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - John P Clancy
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - John F Engelhardt
- Department of Anatomy & Cell Biology and.,Department of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - William E Swords
- Department of Medicine, University of Alabama at Birmingham (UAB), Birmingham, Alabama, USA.,Gregory Fleming James Cystic Fibrosis Research Center
| | - David J Thornton
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, United Kingdom
| | | | | | - Steven M Rowe
- Department of Medicine, University of Alabama at Birmingham (UAB), Birmingham, Alabama, USA.,Gregory Fleming James Cystic Fibrosis Research Center,Department of Pediatrics, UAB, Birmingham, Alabama, USA.,Department of Cell Developmental & Integrative Biology, UAB, Birmingham, Alabama, USA
| |
Collapse
|
41
|
Li J, Cai C, Yang C, Li J, Sun T, Yu G. Recent Advances in Pharmaceutical Potential of Brown Algal Polysaccharides and their Derivatives. Curr Pharm Des 2019; 25:1290-1311. [PMID: 31237200 DOI: 10.2174/1381612825666190618143952] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 05/31/2019] [Indexed: 02/07/2023]
Abstract
Marine plants, animals and microorganisms display steady growth in the ocean and are abundant carbohydrate resources. Specifically, natural polysaccharides obtained from brown algae have been drawing increasing attention owing to their great potential in pharmaceutical applications. This review describes the structural and biological features of brown algal polysaccharides, including alginates, fucoidans, and laminarins, and it highlights recently developed approaches used to obtain the oligo- and polysaccharides with defined structures. Functional modification of these polysaccharides promotes their advanced applications in biomedical materials for controlled release and targeted drug delivery, etc. Moreover, brown algal polysaccharides and their derivatives possess numerous biological activities with anticancer, anticoagulant, wound healing, and antiviral properties. In addition, we also discuss carbohydrate- based substrates from brown algae, which are currently in clinical and preclinical studies, as well as the marine drugs that are already on the market. The present review summarizes the recent development in carbohydratebased products from brown algae, with promising findings that could rapidly facilitate the future discovery of novel marine drugs.
Collapse
Affiliation(s)
- Jun Li
- Key Laboratory of Marine Drugs, Ministry of Education & Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Chao Cai
- Key Laboratory of Marine Drugs, Ministry of Education & Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| | - Chendong Yang
- Key Laboratory of Marine Drugs, Ministry of Education & Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Jianghua Li
- Key Laboratory of Marine Drugs, Ministry of Education & Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Tiantian Sun
- Key Laboratory of Marine Drugs, Ministry of Education & Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Guangli Yu
- Key Laboratory of Marine Drugs, Ministry of Education & Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| |
Collapse
|
42
|
Powell LC, Pritchard MF, Ferguson EL, Powell KA, Patel SU, Rye PD, Sakellakou SM, Buurma NJ, Brilliant CD, Copping JM, Menzies GE, Lewis PD, Hill KE, Thomas DW. Targeted disruption of the extracellular polymeric network of Pseudomonas aeruginosa biofilms by alginate oligosaccharides. NPJ Biofilms Microbiomes 2018; 4:13. [PMID: 29977590 PMCID: PMC6026129 DOI: 10.1038/s41522-018-0056-3] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 05/20/2018] [Accepted: 06/06/2018] [Indexed: 11/29/2022] Open
Abstract
Acquisition of a mucoid phenotype by Pseudomonas sp. in the lungs of cystic fibrosis (CF) patients, with subsequent over-production of extracellular polymeric substance (EPS), plays an important role in mediating the persistence of multi-drug resistant (MDR) infections. The ability of a low molecular weight (Mn = 3200 g mol−1) alginate oligomer (OligoG CF-5/20) to modify biofilm structure of mucoid Pseudomonas aeruginosa (NH57388A) was studied in vitro using scanning electron microscopy (SEM), confocal laser scanning microscopy (CLSM) with Texas Red (TxRd®)-labelled OligoG and EPS histochemical staining. Structural changes in treated biofilms were quantified using COMSTAT image-analysis software of CLSM z-stack images, and nanoparticle diffusion. Interactions between the oligomers, Ca2+ and DNA were studied using molecular dynamics (MD) simulations, Fourier transform infrared spectroscopy (FTIR) and isothermal titration calorimetry (ITC). Imaging demonstrated that OligoG treatment (≥0.5%) inhibited biofilm formation, revealing a significant reduction in both biomass and biofilm height (P < 0.05). TxRd®-labelled oligomers readily diffused into established (24 h) biofilms. OligoG treatment (≥2%) induced alterations in the EPS of established biofilms; significantly reducing the structural quantities of EPS polysaccharides, and extracellular (e)DNA (P < 0.05) with a corresponding increase in nanoparticle diffusion (P < 0.05) and antibiotic efficacy against established biofilms. ITC demonstrated an absence of rapid complex formation between DNA and OligoG and confirmed the interactions of OligoG with Ca2+ evident in FTIR and MD modelling. The ability of OligoG to diffuse into biofilms, potentiate antibiotic activity, disrupt DNA-Ca2+-DNA bridges and biofilm EPS matrix highlights its potential for the treatment of biofilm-related infections. Small carbohydrate molecules derived from marine algae show potential for inhibiting biofilm formation in multi-drug resistant infections. A research team led by Lydia Powell at Cardiff University, UK, investigated the action of carbohydrates called alginate oligosaccharides, composed of a small number of linked sugar molecules. The oligosaccharides modified and disrupted the structure of cultured biofilms of Pseudomonas aeruginosa, the cause of many serious drug resistant infections. This effect significantly inhibited the formation and maintenance of the biofilm state, which is known to be a crucial factor allowing the bacteria to resist drug treatment. Antibiotics proved more effective following the oligosaccharide intervention. The researchers uncovered key molecular details involved in the ability of the oligosaccharides to diffuse into and disrupt biofilms. The therapeutic potential of these small carbohydrates is currently being investigated in clinical trials.
Collapse
Affiliation(s)
- Lydia C Powell
- 1Advanced Therapies Group, Cardiff University School of Dentistry, Heath Park, Cardiff, CF14 4XY UK
| | - Manon F Pritchard
- 1Advanced Therapies Group, Cardiff University School of Dentistry, Heath Park, Cardiff, CF14 4XY UK
| | - Elaine L Ferguson
- 1Advanced Therapies Group, Cardiff University School of Dentistry, Heath Park, Cardiff, CF14 4XY UK
| | - Kate A Powell
- 1Advanced Therapies Group, Cardiff University School of Dentistry, Heath Park, Cardiff, CF14 4XY UK
| | - Shree U Patel
- 1Advanced Therapies Group, Cardiff University School of Dentistry, Heath Park, Cardiff, CF14 4XY UK
| | | | | | - Niklaas J Buurma
- 3Physical Organic Chemistry Centre, School of Chemistry, Cardiff University, Cardiff, UK
| | | | - Jack M Copping
- 4Respiratory Diagnostics Group, Swansea University, Swansea, UK
| | | | - Paul D Lewis
- 4Respiratory Diagnostics Group, Swansea University, Swansea, UK
| | - Katja E Hill
- 1Advanced Therapies Group, Cardiff University School of Dentistry, Heath Park, Cardiff, CF14 4XY UK
| | - David W Thomas
- 1Advanced Therapies Group, Cardiff University School of Dentistry, Heath Park, Cardiff, CF14 4XY UK
| |
Collapse
|
43
|
Ferreira LM, Alonso JD, Kiill CP, Ferreira NN, Buzzá HH, Martins de Godoi DR, de Britto D, Assis OBG, Seraphim TV, Borges JC, Gremião MPD. Exploiting supramolecular interactions to produce bevacizumab-loaded nanoparticles for potential mucosal delivery. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.04.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
44
|
Abstract
Low and high molecular weight alginate biopolymers were chemically modified to store and release potentially therapeutic levels of nitric oxide (NO). Carbodiimide chemistry was first used to modify carboxylic acid functional groups with a series of small molecule alkyl amines. The resulting secondary amines were subsequently converted to N-diazeniumdiolate NO donors via reaction with NO gas under basic conditions. NO donor-modified alginates stored between 0.4-0.6 μmol NO·mg-1. In aqueous solution, the NO-release kinetics were diverse (0.3-13 h half-lives), dependent on the precursor amine structure. The liberated NO showed bactericidal activity against Pseudomonas aeruginosa and Staphylococcus aureus with pathogen eradication efficiency dependent on both molecular weight and NO-release kinetics. The combination of lower molecular weight (∼5 kDa) alginates with moderate NO-release durations (half-life of ∼4 h) resulted in enhanced killing of both planktonic and biofilm-based bacteria. Toxicity against human respiratory epithelial (A549) cells proved negligible at NO-releasing alginate concentrations required to achieve a 5-log reduction in viability in the biofilm eradication assay.
Collapse
Affiliation(s)
- Mona Jasmine R. Ahonen
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, CB 3290, NC 27599, United States
| | - Dakota J. Suchyta
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, CB 3290, NC 27599, United States
| | - Huanyu Zhu
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, CB 3290, NC 27599, United States
| | - Mark H. Schoenfisch
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, CB 3290, NC 27599, United States
| |
Collapse
|
45
|
Miao T, Wang J, Zeng Y, Liu G, Chen X. Polysaccharide-Based Controlled Release Systems for Therapeutics Delivery and Tissue Engineering: From Bench to Bedside. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1700513. [PMID: 29721408 PMCID: PMC5908359 DOI: 10.1002/advs.201700513] [Citation(s) in RCA: 174] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 09/19/2017] [Indexed: 05/08/2023]
Abstract
Polysaccharides or polymeric carbohydrate molecules are long chains of monosaccharides that are linked by glycosidic bonds. The naturally based structural materials are widely applied in biomedical applications. This article covers four different types of polysaccharides (i.e., alginate, chitosan, hyaluronic acid, and dextran) and emphasizes their chemical modification, preparation approaches, preclinical studies, and clinical translations. Different cargo fabrication techniques are also presented in the third section. Recent progresses in preclinical applications are then discussed, including tissue engineering and treatment of diseases in both therapeutic and monitoring aspects. Finally, clinical translational studies with ongoing clinical trials are summarized and reviewed. The promise of new development in nanotechnology and polysaccharide chemistry helps clinical translation of polysaccharide-based drug delivery systems.
Collapse
Affiliation(s)
- Tianxin Miao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational MedicineSchool of Public HealthXiamen UniversityXiamen361102China
- School of Chemical & Biomolecular EngineeringGeorgia Institute of TechnologyAtlantaGA30332USA
| | - Junqing Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational MedicineSchool of Public HealthXiamen UniversityXiamen361102China
- Collaborative Innovation Center of Guangxi Biological Medicine and theMedical and Scientific Research CenterGuangxi Medical UniversityNanning530021China
| | - Yun Zeng
- Department of PharmacologyXiamen Medical CollegeXiamen361008China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational MedicineSchool of Public HealthXiamen UniversityXiamen361102China
- State Key Laboratory of Cellular Stress BiologyInnovation Center for Cell BiologySchool of Life SciencesXiamen UniversityXiamen361102China
- State Key Laboratory of Physical Chemistry of Solid Surfaces and The MOE Key Laboratory of Spectrochemical Analysis & InstrumentationCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and NanomedicineNational Institute of Biomedical Imaging and BioengineeringNational Institutes of HealthBethesdaMD20892USA
| |
Collapse
|
46
|
Kootala S, Filho L, Srivastava V, Linderberg V, Moussa A, David L, Trombotto S, Crouzier T. Reinforcing Mucus Barrier Properties with Low Molar Mass Chitosans. Biomacromolecules 2018; 19:872-882. [PMID: 29451983 DOI: 10.1021/acs.biomac.7b01670] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The mucus gel covers the wet epithelia that forms the inner lining of the body. It constitutes our first line of defense protecting the body from infections and other deleterious molecules. Failure of the mucus barrier can lead to the inflammation of the mucosa such as in inflammatory bowel diseases. Unfortunately, there are no effective strategies that reinforce the mucus barrier properties to recover or enhance its ability to protect the epithelium. Herein, we describe a mucus engineering approach that addresses this issue where we physically cross-link the mucus gel with low molar mass chitosan variants to reinforce its barrier functions. We tested the effect of these chitosans on mucus using in-lab purified porcine gastric mucins, which mimic the native properties of mucus, and on mucus-secreting HT29-MTX epithelial cell cultures. We found that the lowest molar mass chitosan variant (degree of polymerization of 8) diffuses deep into the mucus gels while physically cross-linking the mucin polymers, whereas the higher molar mass chitosan variants (degree of polymerization of 52 and 100) interact only superficially. The complexation resulted in a tighter mucin polymer mesh that slowed the diffusion of dextran polymers and of the cholera toxin B subunit protein through the mucus gels. These results uncover a new use for low molar mass mucoadhesive polymers such as chitosans as noncytotoxic mucosal barrier enhancers that could be valuable in the prevention and treatment of mucosal diseases.
Collapse
Affiliation(s)
- Sujit Kootala
- KTH Royal Institute of Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Chemistry , Division of Glycoscience , SE-100 44 Stockholm , Sweden
| | - Luimar Filho
- Department of Engineering Sciences, Applied Materials Science , Uppsala University , 752 37 Uppsala , Sweden
| | - Vaibhav Srivastava
- KTH Royal Institute of Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Chemistry , Division of Glycoscience , SE-100 44 Stockholm , Sweden
| | - Victoria Linderberg
- KTH Royal Institute of Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Chemistry , Division of Glycoscience , SE-100 44 Stockholm , Sweden
| | - Amani Moussa
- Ingénierie des Matériaux Polymères (IMP), CNRS UMR 5223 , Université Claude Bernard Lyon 1, Univ Lyon , 69622 Villeurbanne , France
| | - Laurent David
- Ingénierie des Matériaux Polymères (IMP), CNRS UMR 5223 , Université Claude Bernard Lyon 1, Univ Lyon , 69622 Villeurbanne , France
| | - Stéphane Trombotto
- Ingénierie des Matériaux Polymères (IMP), CNRS UMR 5223 , Université Claude Bernard Lyon 1, Univ Lyon , 69622 Villeurbanne , France
| | - Thomas Crouzier
- KTH Royal Institute of Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Chemistry , Division of Glycoscience , SE-100 44 Stockholm , Sweden
| |
Collapse
|
47
|
Nordgård CT, Draget KI. Co association of mucus modulating agents and nanoparticles for mucosal drug delivery. Adv Drug Deliv Rev 2018; 124:175-183. [PMID: 29307632 DOI: 10.1016/j.addr.2018.01.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 11/26/2017] [Accepted: 01/02/2018] [Indexed: 01/27/2023]
Abstract
Nanoparticulate drug delivery systems (nDDS) offer a variety of options when it comes to routes of administration. One possible path is crossing mucosal barriers, such as in the airways and in the GI tract, for systemic distribution or local treatment. The main challenge with this administration route is that the size and surface properties of the nanoparticles, as opposed to small molecular drugs, very often results in mucosal capture, immobilization and removal, which in turn results in a very low bioavailability. Strategies to overcome this challenge do exist, like surface 'stealth' modification with PEG. Here we review an alternative or supplemental strategy, co-association of mucus modulating agents with the nDDS to improve bioavailability, where the nDDS may be surface modified or unmodified. This contribution presents some examples on how possible co-association systems may be achieved, using currently marketed mucolytic drugs, alternative formulations or novel agents.
Collapse
Affiliation(s)
- Catherine Taylor Nordgård
- NOBIPOL, Department of Biotechnology and Food Science, Norwegian University of Science and Technology NTNU, 7491 Trondheim, Norway.
| | - Kurt I Draget
- NOBIPOL, Department of Biotechnology and Food Science, Norwegian University of Science and Technology NTNU, 7491 Trondheim, Norway.
| |
Collapse
|
48
|
Alginate Oligomers and Their Use as Active Pharmaceutical Drugs. SPRINGER SERIES IN BIOMATERIALS SCIENCE AND ENGINEERING 2018. [DOI: 10.1007/978-981-10-6910-9_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
49
|
Dhand R. The Rationale and Evidence for Use of Inhaled Antibiotics to Control Pseudomonas aeruginosa Infection in Non-cystic Fibrosis Bronchiectasis. J Aerosol Med Pulm Drug Deliv 2017; 31:121-138. [PMID: 29077527 PMCID: PMC5994662 DOI: 10.1089/jamp.2017.1415] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Non-cystic fibrosis bronchiectasis (NCFBE) is a chronic inflammatory lung disease characterized by irreversible dilation of the bronchi, symptoms of persistent cough and expectoration, and recurrent infective exacerbations. The prevalence of NCFBE is on the increase in the United States and Europe, but no licensed therapies are currently available for its treatment. Although there are many similarities between NCFBE and cystic fibrosis (CF) in terms of respiratory symptoms, airway microbiology, and disease progression, there are key differences, for example, in response to treatment, suggesting differences in pathogenesis. This review discusses possible reasons underlying differences in response to inhaled antibiotics in people with CF and NCFBE. Pseudomonas aeruginosa infections are associated with the most severe forms of bronchiectasis. Suboptimal levels of antibiotics in the lung increase the mutation frequency of P. aeruginosa and lead to the development of mucoid strains characterized by formation of a protective polysaccharide biofilm. Mucoid strains of P. aeruginosa are associated with a chronic infection stage, requiring long-term antibiotic therapy. Inhaled antibiotics provide targeted delivery to the lung with minimal systemic toxicity and adverse events compared with oral/intravenous routes of administration, and they could be alternative treatment options to help address some of the treatment challenges in the management of severe cases of NCFBE. This review provides an overview of completed and ongoing trials that evaluated inhaled antibiotic therapy for NCFBE. Recently, several investigators conducted phase 3 randomized controlled trials with inhaled aztreonam and ciprofloxacin in patients with NCFBE. While the aztreonam trial results were not associated with significant clinical benefit in NCFBE, initial results reported from the inhaled ciprofloxacin (dry powder for inhalation and liposome-encapsulated/dual-release formulations) trials hold promise. A more targeted approach could identify specific populations of NCFBE patients who benefit from inhaled antibiotics.
Collapse
Affiliation(s)
- Rajiv Dhand
- Department of Medicine, University of Tennessee Graduate School of Medicine , Knoxville, Tennessee
| |
Collapse
|
50
|
Lee YE, Kim H, Seo C, Park T, Lee KB, Yoo SY, Hong SC, Kim JT, Lee J. Marine polysaccharides: therapeutic efficacy and biomedical applications. Arch Pharm Res 2017; 40:1006-1020. [PMID: 28918561 PMCID: PMC7090684 DOI: 10.1007/s12272-017-0958-2] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 09/10/2017] [Indexed: 12/22/2022]
Abstract
The ocean contains numerous marine organisms, including algae, animals, and plants, from which diverse marine polysaccharides with useful physicochemical and biological properties can be extracted. In particular, fucoidan, carrageenan, alginate, and chitosan have been extensively investigated in pharmaceutical and biomedical fields owing to their desirable characteristics, such as biocompatibility, biodegradability, and bioactivity. Various therapeutic efficacies of marine polysaccharides have been elucidated, including the inhibition of cancer, inflammation, and viral infection. The therapeutic activities of these polysaccharides have been demonstrated in various settings, from in vitro laboratory-scale experiments to clinical trials. In addition, marine polysaccharides have been exploited for tissue engineering, the immobilization of biomolecules, and stent coating. Their ability to detect and respond to external stimuli, such as pH, temperature, and electric fields, has enabled their use in the design of novel drug delivery systems. Thus, along with the promising characteristics of marine polysaccharides, this review will comprehensively detail their various therapeutic, biomedical, and miscellaneous applications.
Collapse
Affiliation(s)
- Young-Eun Lee
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, South Korea
| | - Hyeongmin Kim
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, South Korea
| | - Changwon Seo
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, South Korea
| | - Taejun Park
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, South Korea
| | - Kyung Bin Lee
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, South Korea
| | - Seung-Yup Yoo
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, South Korea
| | - Seong-Chul Hong
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, South Korea
| | - Jeong Tae Kim
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, South Korea
| | - Jaehwi Lee
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, South Korea.
| |
Collapse
|