1
|
van Winkel CAJ, Pierik FR, Brouwers AH, de Groot DJA, de Vries EGE, Lub-de Hooge MN. Molecular imaging supports the development of multispecific cancer antibodies. Nat Rev Clin Oncol 2024; 21:852-866. [PMID: 39327536 DOI: 10.1038/s41571-024-00946-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2024] [Indexed: 09/28/2024]
Abstract
Multispecific antibodies are engineered antibody derivatives that can bind to two or more distinct epitopes or antigens. Unlike mixtures of monospecific antibodies, the binding properties of multispecific antibodies enable two specific molecules to be physically linked, a characteristic with important applications in cancer therapy. The field of multispecific antibodies is highly dynamic and expanding rapidly; to date, 15 multispecific antibodies have been approved for clinical use, of which 11 were approved for oncological indications, and more than 100 new antibodies are currently in clinical development. Nevertheless, substantial challenges limit the applications of multispecific antibodies in cancer therapy, particularly inefficient targeting of solid tumours and substantial adverse effects. Both PET and single photon emission CT imaging can reveal the biodistribution and complex pharmacology of radiolabelled multispecific antibodies. This Review summarizes the insights obtained from preclinical and clinical molecular imaging studies of multispecific antibodies, focusing on their structural properties, such as molecular weight, shape, target specificity, affinity and avidity. The opportunities associated with use of molecular imaging studies to support the clinical development of multispecific antibody therapies are also highlighted.
Collapse
Affiliation(s)
- Claudia A J van Winkel
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Frank R Pierik
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Adrienne H Brouwers
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Derk Jan A de Groot
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Elisabeth G E de Vries
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Marjolijn N Lub-de Hooge
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.
| |
Collapse
|
2
|
Kwon LY, Cai Z, Al-Mahrouki A, Reilly RM. Bispecific radioimmunoconjugates exploit receptor heterogeneity for positron emission tomography of tumors expressing HER2 and/or EGFR. iScience 2024; 27:109750. [PMID: 38711454 PMCID: PMC11070661 DOI: 10.1016/j.isci.2024.109750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/15/2024] [Accepted: 04/11/2024] [Indexed: 05/08/2024] Open
Abstract
HER2 heterogeneity is a challenge for molecular imaging or treating HER2-positive breast cancer (BC). EGFR is coexpressed in some tumors exhibiting HER2 heterogeneity. Bispecific radioimmunoconjugates (bsRICs) that bind HER2 and EGFR were constructed by linking trastuzumab Fab through polyethyleneglycol (PEG24) to EGF. We established s.c. tumors in NOD-SCID mice that homogeneously or heterogeneously expressed HER2 and/or EGFR by the inoculation of HER2-positive/EGFR-negative SK-OV-3 cells, EGFR-positive/HER2-negative MDA-MB-468 cells or mixtures of these cells. [64Cu]Cu-NOTA-trastuzumab Fab-PEG24-EGF were compared to [64Cu]Cu-NOTA-trastuzumab Fab or [64Cu]Cu-NOTA-EGF for the PET imaging of HER2 and/or EGFR-positive tumors. [64Cu]Cu-NOTA-trastuzumab Fab-PEG24-EGF bsRICs imaged tumors expressing HER2 or EGFR or heterogeneously expressing these receptors, while monospecific agents only imaged HER2-or EGFR-positive tumors. Our results indicate that bsRICs labeled with 64Cu are able to exploit receptor heterogeneity for tumor imaging. PET may select patients for radioimmunotherapy with bsRICs complexed to the β-particle emitter, 177Lu or Auger electron-emitter, 111In in a theranostic approach.
Collapse
Affiliation(s)
- Luke Yongkyu Kwon
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Zhongli Cai
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Azza Al-Mahrouki
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Raymond M. Reilly
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON M5S 3M2, Canada
- Department of Medical Imaging, University of Toronto, Toronto, ON M5T 1W7, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada
| |
Collapse
|
3
|
Yue TC, Ge Y, Aprile FA, Ma MT, Pham TT, Long NJ. Site-Specific 68Ga Radiolabeling of Trastuzumab Fab via Methionine for ImmunoPET Imaging. Bioconjug Chem 2023; 34:1802-1810. [PMID: 37751398 PMCID: PMC10587866 DOI: 10.1021/acs.bioconjchem.3c00344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/10/2023] [Indexed: 09/28/2023]
Abstract
Bioconjugates of antibodies and their derivatives radiolabeled with β+-emitting radionuclides can be utilized for diagnostic PET imaging. Site-specific attachment of radioactive cargo to antibody delivery vectors provides homogeneous, well-defined immunoconjugates. Recent studies have demonstrated the utility of oxaziridine chemistry for site-specific labeling of methionine residues. Herein, we applied this approach to site-specifically radiolabel trastuzumab-derived Fab immunoconjugates with 68Ga, which can be used for in vivo PET imaging of HER2-positive breast cancer tumors. Initially, a reactive azide was introduced to a single solvent-accessible methionine residue in both the wild-type Fab and an engineered derivative containing methionine residue M74, utilizing the principles of oxaziridine chemistry. Subsequently, these conjugates were functionalized with a modified DFO chelator incorporating dibenzocyclooctyne. The resulting DFO-WT and DFO-M74 conjugates were radiolabeled with generator-produced [68Ga]Ga3+, to yield the novel PET radiotracers, [68Ga]Ga-DFO-WT and [68Ga]Ga-DFO-M74. In vitro and in vivo studies demonstrated that [68Ga]Ga-DFO-M74 exhibited a higher affinity for HER2 receptors. Biodistribution studies in mice bearing orthotopic HER2-positive breast tumors revealed a higher uptake of [68Ga]Ga-DFO-M74 in the tumor tissue, accompanied by rapid renal clearance, enabling clear delineation of tumors using PET imaging. Conversely, [68Ga]Ga-DFO-WT exhibited lower uptake and inferior image contrast compared to [68Ga]Ga-DFO-M74. Overall, the results demonstrate that the highly facile methionine-oxaziridine modification approach can be simply applied to the synthesis of stable and site-specifically modified radiolabeled antibody-chelator conjugates with favorable pharmacokinetics for PET imaging.
Collapse
Affiliation(s)
- Thomas
T. C. Yue
- Department
of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, Wood Lane, London W120BZ, U.K.
- School
of Biomedical Engineering and Imaging Sciences, King’s College London, Fourth Floor Lambeth Wing, St. Thomas’ Hospital, London SE17EH, U.K.
| | - Ying Ge
- Department
of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, Wood Lane, London W120BZ, U.K.
| | - Francesco A. Aprile
- Department
of Chemistry and Institute of Chemical Biology, Molecular Sciences
Research Hub, Imperial College London, White City Campus, Wood Lane, London W120BZ, U.K.
| | - Michelle T. Ma
- School
of Biomedical Engineering and Imaging Sciences, King’s College London, Fourth Floor Lambeth Wing, St. Thomas’ Hospital, London SE17EH, U.K.
| | - Truc T. Pham
- School
of Biomedical Engineering and Imaging Sciences, King’s College London, Fourth Floor Lambeth Wing, St. Thomas’ Hospital, London SE17EH, U.K.
| | - Nicholas J. Long
- Department
of Chemistry and Institute of Chemical Biology, Molecular Sciences
Research Hub, Imperial College London, White City Campus, Wood Lane, London W120BZ, U.K.
| |
Collapse
|
4
|
Ducharme M, Mansur A, Sligh L, Ulaner GA, Lapi SE, Sorace AG. Human Epidermal Growth Factor Receptor 2/Human Epidermal Growth Factor Receptor 3 PET Imaging: Challenges and Opportunities. PET Clin 2023; 18:543-555. [PMID: 37339919 DOI: 10.1016/j.cpet.2023.04.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
Human epidermal growth factor receptor 2 (HER2) and HER3 provide actionable targets for both therapy and imaging in breast cancer. Further, clinical trials have shown the prognostic impact of receptor status discordance in breast cancer. Intra- and intertumoral heterogeneity of both HER and hormone receptor expression contributes to inherent errors in tissue sampling, and single biopsies are incapable of identifying discordance in biomarker expression. Numerous PET radiopharmaceuticals have been developed to evaluate (or target for therapy) HER2 and HER3 expression. This review seeks to inform on challenges and opportunities in HER2 and HER3 PET imaging in both clinical and preclinical settings.
Collapse
Affiliation(s)
- Maxwell Ducharme
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ameer Mansur
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Luke Sligh
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Gary A Ulaner
- Molecular Imaging and Therapy, Hoag Family Cancer Institute, Irvine, CA, USA; Department of Radiology and Translational Genomics, University of Southern California, Los Angeles, CA, USA
| | - Suzanne E Lapi
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Anna G Sorace
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
5
|
McFarland J, Alečković M, Coricor G, Srinivasan S, Tso M, Lee J, Nguyen TH, Mejía Oneto JM. Click Chemistry Selectively Activates an Auristatin Protodrug with either Intratumoral or Systemic Tumor-Targeting Agents. ACS CENTRAL SCIENCE 2023; 9:1400-1408. [PMID: 37521794 PMCID: PMC10375897 DOI: 10.1021/acscentsci.3c00365] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Indexed: 08/01/2023]
Abstract
The Click Activated Protodrugs Against Cancer (CAPAC) platform enables the activation of powerful cancer drugs at tumors. CAPAC utilizes a click chemistry reaction between tetrazine and trans-cyclooctene. The reaction between activator, linked to a tumor-targeting agent, and protodrug leads to the targeted activation of the drug. Here, tumor targeting is achieved by intratumoral injection of a tetrazine-modified hyaluronate (SQL70) or by infusion of a tetrazine-modified HER2-targeting antigen-binding fragment (SQT01). Monomethyl auristatin E (a cytotoxin hindered in its clinical use by severe toxicity) was modified with a trans-cyclooctene to form the protodrug SQP22, which reduced its cytotoxicity in vitro and in vivo. Treatment of SQP22 paired with SQL70 demonstrated antitumor effects in Karpas 299 and RENCA murine tumor models, establishing the requirement of click chemistry for protodrug activation. SQP22 paired with SQT01 induced antitumor effects in the HER2-positive NCI-N87 xenograft model, showing that tumor-targeted activation could be accomplished via systemic dosing. Observed toxicities were limited, with transient myelosuppression and moderate body weight loss detected. This study highlights the capabilities of the CAPAC platform by demonstrating the activity of SQP22 with two differentiated targeting approaches and underscores the power of click chemistry to precisely control the activation of drugs at tumors.
Collapse
|
6
|
Manafi-Farid R, Ataeinia B, Ranjbar S, Jamshidi Araghi Z, Moradi MM, Pirich C, Beheshti M. ImmunoPET: Antibody-Based PET Imaging in Solid Tumors. Front Med (Lausanne) 2022; 9:916693. [PMID: 35836956 PMCID: PMC9273828 DOI: 10.3389/fmed.2022.916693] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 05/24/2022] [Indexed: 12/13/2022] Open
Abstract
Immuno-positron emission tomography (immunoPET) is a molecular imaging modality combining the high sensitivity of PET with the specific targeting ability of monoclonal antibodies. Various radioimmunotracers have been successfully developed to target a broad spectrum of molecules expressed by malignant cells or tumor microenvironments. Only a few are translated into clinical studies and barely into clinical practices. Some drawbacks include slow radioimmunotracer kinetics, high physiologic uptake in lymphoid organs, and heterogeneous activity in tumoral lesions. Measures are taken to overcome the disadvantages, and new tracers are being developed. In this review, we aim to mention the fundamental components of immunoPET imaging, explore the groundbreaking success achieved using this new technique, and review different radioimmunotracers employed in various solid tumors to elaborate on this relatively new imaging modality.
Collapse
Affiliation(s)
- Reyhaneh Manafi-Farid
- Research Center for Nuclear Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahar Ataeinia
- Department of Radiology, Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Shaghayegh Ranjbar
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Zahra Jamshidi Araghi
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mobin Moradi
- Research Center for Nuclear Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Christian Pirich
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Mohsen Beheshti
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
7
|
Nautiyal A, Jha AK, Mithun S, Shetye B, Kameswaran M, Shah S, Rangarajan V, Gupta S. Analysis of absorbed dose in radioimmunotherapy with 177Lu-trastuzumab using two different imaging scenarios: a pilot study. Nucl Med Commun 2021; 42:1382-1395. [PMID: 34406146 DOI: 10.1097/mnm.0000000000001472] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVES Internal organ dosimetry is an important procedure to demonstrate the reliable application of 177Lu-trastuzumab radioimmunotherapy for human epidermal growth factor receptor-positive metastatic breast cancers. We are reporting the first human dosimetry study for 177Lu-trastuzumab. Another objective of our study was to calculate and compare the absorbed doses for normal organs and tumor lesions in patients before radioimmunotherapy with 177Lu-trastuzumab using two different imaging scenarios. METHODS Eleven patients (48.27 ± 8.95 years) with a history of metastatic breast cancer were included in the study. Postadministration of 177Lu-trastuzumab (351.09 ± 23.89 MBq/2 mg), acquisition was performed using planar and hybrid imaging scenarios at 4, 24, 72 and 168 h. Single-photon emission computed tomography/computed tomography imaging was performed at 72 h postinjection. Acquired images were processed using Dosimetry Toolkit software for the estimation of normalized cumulated activity in organs and tumor lesions. OLINDA/EXM 2.0 software was used for absorbed dose calculation in both scenarios. RESULTS Significant difference in normalized cumulated activity and the absorbed dose is noted between two imaging scenarios for the organs and tumor lesions (P < 0.05). Mean absorbed dose (mGy/MBq) estimated from heart, lungs, liver, spleen, kidney, adrenal, pancreas and colon using planar and hybrid scenarios were 0.81 ± 0.19 and 0.63 ± 0.17; 0.75 ± 0.13 and 0.32 ± 0.06; 1.26 ± 0.25 and 1.01 ± 0.17; 0.68 ± 0.22 and 0.53 ± 0.16; 0.91 ± 0.3 and 0.69 ± 0.24; 0.18 ± 0.04 and 0.11 ± 0.02; 0.25 ± 0.22 and 0.09 ± 0.02 and 0.75 ± 0.61 and 0.44 ± 0.28, respectively. CONCLUSIONS On the basis of our dosimetric evaluation, we concluded that radioimmunotherapy with 177Lu-trastuzumab is well tolerated to be implemented in routine clinical practice against HER2 positive metastatic breast cancer. Liver is the main critical organ at risk. Hybrid scenario demonstrated significantly lower absorbed doses in organs and tumors compared to the multiplanar method.
Collapse
Affiliation(s)
- Amit Nautiyal
- Department of Nuclear Medicine and Molecular Imaging, Tata Memorial Centre, Parel
- Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Ashish K Jha
- Department of Nuclear Medicine and Molecular Imaging, Tata Memorial Centre, Parel
- Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Sneha Mithun
- Department of Nuclear Medicine and Molecular Imaging, Tata Memorial Centre, Parel
- Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Bhakti Shetye
- Department of Nuclear Medicine and Molecular Imaging, Tata Memorial Centre, Parel
- Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Mythili Kameswaran
- Department of Nuclear Medicine and Molecular Imaging, Tata Memorial Centre, Parel
- Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Sneha Shah
- Department of Nuclear Medicine and Molecular Imaging, Tata Memorial Centre, Parel
- Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Venkatesh Rangarajan
- Department of Nuclear Medicine and Molecular Imaging, Tata Memorial Centre, Parel
- Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Sudeep Gupta
- Department of Medical Oncology, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC)
- Homi Bhabha National Institute, Mumbai, Maharashtra, India
| |
Collapse
|
8
|
Jokar N, Velikyan I, Ahmadzadehfar H, Rekabpour SJ, Jafari E, Ting HH, Biersack HJ, Assadi M. Theranostic Approach in Breast Cancer: A Treasured Tailor for Future Oncology. Clin Nucl Med 2021; 46:e410-e420. [PMID: 34152118 DOI: 10.1097/rlu.0000000000003678] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
ABSTRACT Breast cancer is the most frequent invasive malignancy and the second major cause of cancer death in female subjects mostly due to the considerable diagnostic delay and failure of therapeutic strategies. Thus, early diagnosis and possibility to monitor response to the treatment are of utmost importance. Identification of valid biomarkers, in particular new molecular therapeutic targets, that would allow screening, early patient identification, prediction of disease aggressiveness, and monitoring response to the therapeutic regimen has been in the focus of breast cancer research during recent decades. One of the intensively developing fields is nuclear medicine combining molecular diagnostic imaging and subsequent (radio)therapy in the light of theranostics. This review aimed to survey the current status of preclinical and clinical research using theranostic approach in breast cancer patients with potential to translate into conventional treatment strategies alone or in combination with other common treatments, especially in aggressive and resistant types of breast cancer. In addition, we present 5 patients with breast cancer who were refractory or relapsed after conventional therapy while presumably responded to the molecular radiotherapy with 177Lu-trastuzumab (Herceptin), 177Lu-DOTATATE, and 177Lu-FAPI-46.
Collapse
Affiliation(s)
- Narges Jokar
- From the The Persian Gulf Nuclear Medicine Research Center, Department of Molecular Imaging and Radionuclide Therapy, Bushehr Medical University Hospital, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Irina Velikyan
- Section of Nuclear Medicine and PET, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | | | | | - Esmail Jafari
- From the The Persian Gulf Nuclear Medicine Research Center, Department of Molecular Imaging and Radionuclide Therapy, Bushehr Medical University Hospital, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Hong Hoi Ting
- Nanomab Technology Limited, Shanghai, People's Republic of China
| | | | - Majid Assadi
- From the The Persian Gulf Nuclear Medicine Research Center, Department of Molecular Imaging and Radionuclide Therapy, Bushehr Medical University Hospital, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| |
Collapse
|
9
|
Gyuricza B, Szabó JP, Arató V, Szücs D, Vágner A, Szikra D, Fekete A. Synthesis of Novel, Dual-Targeting 68Ga-NODAGA-LacN-E[c(RGDfK)] 2 Glycopeptide as a PET Imaging Agent for Cancer Diagnosis. Pharmaceutics 2021; 13:pharmaceutics13060796. [PMID: 34073528 PMCID: PMC8227980 DOI: 10.3390/pharmaceutics13060796] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/17/2021] [Accepted: 05/20/2021] [Indexed: 12/15/2022] Open
Abstract
Radiolabeled peptides possessing an Arg-Gly-Asp (RGD) motif are widely used radiopharmaceuticals for PET imaging of tumor angiogenesis due to their high affinity and selectivity to αvβ3 integrin. This receptor is overexpressed in tumor and tumor endothelial cells in the case of numerous cancer cell lines, therefore, it is an excellent biomarker for cancer diagnosis. The galectin-3 protein is also highly expressed in tumor cells and N-acetyllactosamine is a well-established ligand of this receptor. We have developed a synthetic method to prepare a lactosamine-containing radiotracer, namely 68Ga-NODAGA-LacN-E[c(RGDfK)]2, for cancer diagnosis. First, a lactosamine derivative with azido-propyl aglycone was synthetized. Then, NODAGA-NHS was attached to the amino group of this lactosamine derivative. The obtained compound was conjugated to an E[c(RGDfK)]2 peptide with a strain-promoted click reaction. We have accomplished the radiolabeling of the synthetized NODAGA-LacN-E[c(RGDfK)]2 precursor with a positron-emitting 68Ga isotope (radiochemical yield of >95%). The purification of the labeled compound with solid-phase extraction resulted in a radiochemical purity of >99%. Subsequently, the octanol–water partition coefficient (log P) of the labeled complex was determined to be −2.58. In addition, the in vitro stability of 68Ga-NODAGA-LacN-E[c(RGDfK)]2 was investigated and it was found that it was stable under the examined conditions.
Collapse
Affiliation(s)
- Barbara Gyuricza
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, H-4032 Debrecen, Hungary; (B.G.); (J.P.S.); (V.A.); (D.S.); (D.S.)
- Doctoral School of Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1., H-4032 Debrecen, Hungary
| | - Judit P. Szabó
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, H-4032 Debrecen, Hungary; (B.G.); (J.P.S.); (V.A.); (D.S.); (D.S.)
- Doctoral School of Clinical Medicine, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, H-4032 Debrecen, Hungary
| | - Viktória Arató
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, H-4032 Debrecen, Hungary; (B.G.); (J.P.S.); (V.A.); (D.S.); (D.S.)
- Doctoral School of Pharmaceutical Sciences, Faculty of Pharmacy, University of Debrecen, Nagyerdei krt. 98, H-4032 Debrecen, Hungary
| | - Dániel Szücs
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, H-4032 Debrecen, Hungary; (B.G.); (J.P.S.); (V.A.); (D.S.); (D.S.)
- Doctoral School of Chemistry, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1., H-4032 Debrecen, Hungary
| | - Adrienn Vágner
- Scanomed Ltd., Nagyerdei krt. 98, H-4032 Debrecen, Hungary;
| | - Dezső Szikra
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, H-4032 Debrecen, Hungary; (B.G.); (J.P.S.); (V.A.); (D.S.); (D.S.)
- Scanomed Ltd., Nagyerdei krt. 98, H-4032 Debrecen, Hungary;
| | - Anikó Fekete
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, H-4032 Debrecen, Hungary; (B.G.); (J.P.S.); (V.A.); (D.S.); (D.S.)
- Correspondence: ; Tel.: +36-52-255-510 (ext. 54470)
| |
Collapse
|
10
|
Fang H, Cavaliere A, Li Z, Huang Y, Marquez-Nostra B. Preclinical Advances in Theranostics for the Different Molecular Subtypes of Breast Cancer. Front Pharmacol 2021; 12:627693. [PMID: 33986665 PMCID: PMC8111013 DOI: 10.3389/fphar.2021.627693] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 02/22/2021] [Indexed: 12/29/2022] Open
Abstract
Breast cancer is the most common cancer in women worldwide. The heterogeneity of breast cancer and drug resistance to therapies make the diagnosis and treatment difficult. Molecular imaging methods with positron emission tomography (PET) and single-photon emission tomography (SPECT) provide useful tools to diagnose, predict, and monitor the response of therapy, contributing to precision medicine for breast cancer patients. Recently, many efforts have been made to find new targets for breast cancer therapy to overcome resistance to standard of care treatments, giving rise to new therapeutic agents to offer more options for patients with breast cancer. The combination of diagnostic and therapeutic strategies forms the foundation of theranostics. Some of these theranostic agents exhibit high potential to be translated to clinic. In this review, we highlight the most recent advances in theranostics of the different molecular subtypes of breast cancer in preclinical studies.
Collapse
Affiliation(s)
- Hanyi Fang
- PET Center, Department of Radiology and Biomedical Imaging, School of Medicine, Yale University, New Haven, CT, United States.,Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Alessandra Cavaliere
- PET Center, Department of Radiology and Biomedical Imaging, School of Medicine, Yale University, New Haven, CT, United States
| | - Ziqi Li
- PET Center, Department of Radiology and Biomedical Imaging, School of Medicine, Yale University, New Haven, CT, United States.,Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiyun Huang
- PET Center, Department of Radiology and Biomedical Imaging, School of Medicine, Yale University, New Haven, CT, United States
| | - Bernadette Marquez-Nostra
- PET Center, Department of Radiology and Biomedical Imaging, School of Medicine, Yale University, New Haven, CT, United States
| |
Collapse
|
11
|
Lee W, Bobba KN, Kim JY, Park H, Bhise A, Kim W, Lee K, Rajkumar S, Nam B, Lee KC, Lee SH, Ko S, Lee HJ, Jung ST, Yoo J. A short PEG linker alters the in vivo pharmacokinetics of trastuzumab to yield high-contrast immuno-PET images. J Mater Chem B 2021; 9:2993-2997. [DOI: 10.1039/d0tb02911d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
A PEGylated antibody with short PEG linkers was excreted faster to visualize tumors clearly with exceptionally high tumor-to-background ratio in nuclear imaging.
Collapse
|
12
|
Sugo Y, Miyachi R, Maruyama YH, Ohira SI, Mori M, Ishioka NS, Toda K. Electrodialytic Handling of Radioactive Metal Ions for Preparation of Tracer Reagents. Anal Chem 2020; 92:14953-14958. [PMID: 32959650 DOI: 10.1021/acs.analchem.0c02456] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Radioactive metals are applied in biochemistry, medical diagnosis such as positron emission tomography (PET), and cancer therapy. However, the activity of radioisotopes exponentially decreases with time; therefore, rapid and reliable probe preparation methods are strongly recommended. In the present study, electrodialytic radioactive metal ion handling is studied for counter ion conversion and in-line probe synthesis. Presently, counter ion conversion and probe synthesis are achieved by evaporative dryness and solution mixing, respectively. Evaporative dryness is time-consuming and is a possible process that can lead to loss of radioactive metal ions. Mixing of solutions for synthesis makes dilution and undesirable effects of counter ion on the synthesis. An optimized electrodialytic flow device can transfer a radioisotope, 64Cu2+, with high recovery from HCl matrices to HNO3 (∼100%). Matrices can also be transferred into acetic acid and citric acid, even though the concentration of the metal ion is at the picomolar level. The ion transfer can also be achieved with simultaneous counter ion conversion, complex synthesis, and enrichment. When the ligand was dissolved in an acceptor solution, the transferred metal ions from the donor were well mixed and formed a complex with the ligand in-line. The efficiency of the synthesis was ∼100% for 1.0 pM 64Cu. A relatively larger donor-to-acceptor flow rate can enrich the metal ion in the acceptor solution continuously. The flow rate ratio of 10 (donor/acceptor) can achieve 10 times enrichment. The present electrodialytic ion handling method can treat ultra-trace radioisotopes in a closed system. With this method, rapid, effective, and safe radioisotope treatments were achieved.
Collapse
Affiliation(s)
- Yumi Sugo
- Department of Radiation-Applied Biology Research, Takasaki Advanced Radiation Research Institute, National Institutes for Quantum and Radiological Science and Technology, 1233 Watanuki, Takasaki 370-1292, Japan
| | - Ryoma Miyachi
- Department of Chemistry, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Yo-Hei Maruyama
- Faculty of Science and Technology, Kochi University, 2-5-1, Akebono-cho, Kochi 780-8520, Japan
| | - Shin-Ichi Ohira
- Department of Chemistry, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Masanobu Mori
- Faculty of Science and Technology, Kochi University, 2-5-1, Akebono-cho, Kochi 780-8520, Japan
| | - Noriko S Ishioka
- Department of Radiation-Applied Biology Research, Takasaki Advanced Radiation Research Institute, National Institutes for Quantum and Radiological Science and Technology, 1233 Watanuki, Takasaki 370-1292, Japan
| | - Kei Toda
- Department of Chemistry, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| |
Collapse
|
13
|
Focused ultrasound for opening blood-brain barrier and drug delivery monitored with positron emission tomography. J Control Release 2020; 324:303-316. [DOI: 10.1016/j.jconrel.2020.05.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 12/14/2022]
|
14
|
Yook S, Cai Z, Jeong JJ, Lu Y, Winnik MA, Pignol JP, Reilly RM. Dual-Receptor-Targeted (DRT) Radiation Nanomedicine Labeled with 177Lu Is More Potent for Killing Human Breast Cancer Cells That Coexpress HER2 and EGFR Than Single-Receptor-Targeted (SRT) Radiation Nanomedicines. Mol Pharm 2020; 17:1226-1236. [PMID: 32022567 DOI: 10.1021/acs.molpharmaceut.9b01259] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Resistance to HER2-targeted therapies in breast cancer (BC) is associated in some cases with an increased expression of epidermal growth factor receptors (EGFR). We describe a dual-receptor-targeted (DRT) radiation nanomedicine for local intratumoral (i.t.) treatment of BC composed of 15 nm sized gold nanoparticles (AuNPs) modified with trastuzumab (TmAb) to target HER2 and panitumumab (PmAb) to target EGFR. The AuNPs were modified with poly(ethylene glycol) (PEG3k) linked to 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) chelators to complex the β-particle emitter, 177Lu. Our aim was to compare the properties of these DRT-AuNP-177Lu with single-receptor-targeted (SRT)-TmAb-AuNP-177Lu or PmAb-AuNP-177Lu or nontargeted (NT)-AuNP-177Lu using human BC cells that expressed HER2, EGFR, or both receptors. To construct these radiation nanomedicines, PEG5K was linked to TmAb or PmAb, while PEG3k was linked to DOTA. These polymers were conjugated to AuNP via two Au-thiol bonds using a terminal lipoic acid (LA) group on the polymers. NT-AuNP-177Lu were constructed without modification with TmAb or PmAb. MDA-MB-231-H2N, MDA-MB-468, and BT-474 human BC cells were designated as HER2mod/EGFRmod, EGFRhigh/HER2neg, and HER2high/EGFRlow, respectively, based on the expression of these receptors. Specific binding to HER2 and/or EGFR was assessed by incubating BC cells with DRT-AuNP-177Lu or TmAb-AuNP-177Lu or PmAb-AuNP-177Lu, or NT-AuNP-177Lu in the absence or presence of an excess of TmAb or PmAb or both competitors. Binding and internalization of AuNP by BC cells were assessed by dark-field microscopy. Cell fractionation studies were conducted to quantify AuNP-177Lu bound and internalized. The cytotoxicity of DRT-AuNP-177Lu was determined in clonogenic survival (CS) assays after an exposure of 5 × 105 BC cells to 3 MBq (1.4 × 1012 AuNP) for 16 h and then seeding and culturing the cells for 7-15 days. CS was compared to exposure to TmAb-AuNP-177Lu and PmAb-AuNP-177Lu or NT-AuNP-177Lu. The absorbed doses to the nucleus in these CS assays were estimated. DRT-AuNP-177Lu were specifically bound by BC cells that expressed HER2 or EGFR or both receptors. In contrast, SRT-TmAb-AuNP-177Lu and PmAb-AuNP-177Lu were bound and internalized only by BC cells that expressed HER2 or EGFR, respectively. NT-AuNP-177Lu exhibited very low binding to BC cells. DRT-AuNP-177Lu and SRT-TmAb-AuNP-177Lu or PmAb-AuNP-177Lu were internalized by BC cells in accordance with the receptor expression. Importantly, DRT-AuNP-177Lu were more potent in vitro than PmAb-AuNP-177Lu for killing MDA-MB-231-H2N cells that coexpress HER2 and EGFR (CS = 18.8 ± 1.0 vs 51.5 ± 10.4%; P = 0.006). Furthermore, DRT-AuNP-177Lu were more potent for killing BT-474 cells with high HER2 but low EGFR expression than TmAb-AuNP-177Lu (CS = 8.9 ± 3.3 vs 20.7 ± 2.4%; P = 0.007) or PmAb-AuNP-177Lu (CS = 63.9 ± 1.7%; P < 0.0001). Even for MDA-MB-468 cells that overexpress EGFR but have negligible HER2, DRT-AuNP-177Lu were more potent for cell killing than PmAb-AuNP-177Lu (CS = 3.2 ± 3.0 vs 7.5 ± 1.8%; P = 0.001) or TmAb-AuNP-177Lu (63.2 ± 3.2%; P = 0.0002). All targeted forms of AuNP-177Lu were more cytotoxic to BC cells than those of NT-AuNP-177Lu. High absorbed doses (36-119 Gy) were deposited in the nucleus of BC cells by DRT-AuNP-177Lu. We conclude that a DRT radiation nanomedicine is more potent for killing BC cells that coexpress HER2 and EGFR than SRT radiation nanomedicines. These results are promising for further evaluation of these DRT-AuNP-177Lu in vivo for the local radiation treatment of human BC tumors that coexpress HER2 and EGFR in mice following i.t. injection, especially tumors that are resistant to HER2-targeted therapies.
Collapse
Affiliation(s)
- Simmyung Yook
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON M5S 3M2, Canada.,College of Pharmacy, Keimyung University, Daegu 42601, South Korea
| | - Zhongli Cai
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Jenny Jooyoung Jeong
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Yijie Lu
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Mitchell A Winnik
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada.,Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E5, Canada
| | - Jean-Philippe Pignol
- Department of Radiation Oncology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Raymond M Reilly
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON M5S 3M2, Canada.,Joint Department of Medical Imaging, University Health Network, Toronto, ON 5MG 2C4, Canada.,Department of Medical Imaging, University of Toronto, Toronto, ON M5T 1W7, Canada
| |
Collapse
|
15
|
Cho H, Al-Saden N, Lam H, Möbus J, Reilly RM, Winnik MA. A comparison of DFO and DFO* conjugated to trastuzumab-DM1 for complexing 89Zr - In vitro stability and in vivo microPET/CT imaging studies in NOD/SCID mice with HER2-positive SK-OV-3 human ovarian cancer xenografts. Nucl Med Biol 2019; 84-85:11-19. [PMID: 31931305 DOI: 10.1016/j.nucmedbio.2019.12.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 12/10/2019] [Accepted: 12/22/2019] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Desferrioxamine (DFO) is conjugated to antibodies to chelate 89Zr for PET, but DFO forms a hexadentate complex with Zr4+ that exhibits instability contributing to bone uptake of 89Zr, while the cationic charge of the Zr4+-DFO complex may promote normal tissue uptake of the radioimmunoconjugates (RICs). DFO* is a novel chelator that forms a more stable octadentate and neutral complex with 89Zr. Our aim was to compare the in vitro stability of [89Zr]Zr-DFO*-human IgG (hIgG) and [89Zr]Zr-DFO-hIgG RICs, and the in vivo PET imaging properties of the antibody-drug conjugate (ADC), trastuzumab-DM1 (T-DM1), labeled with 89Zr by conjugation to DFO or DFO*. METHODS SCN-pPhe-DFO and SCN-pPhe-DFO* were reacted with hIgG at a 14.6-fold excess or with T-DM1 at a 4.1-fold or 10-fold excess, respectively, purified and labeled with 89Zr. The number of DFO* introduced was determined by measuring the absorbance at 245/252 nm and the protein concentration was measured at 280 nm. The stability of [89Zr]Zr-DFO*-hIgG was studied in vitro in human plasma, and by challenge with a 385-fold excess (0.1 mM) of DFO or EDTA. An inverse stability study was performed with [89Zr]Zr-DFO-hIgG challenged with 0.1 mM DFO*. The HER2 binding affinity of [89Zr]Zr-DFO*-T-DM1 was measured in a direct (saturation) binding assay using SK-BR-3 human breast cancer cells or SK-OV-3 human ovarian cancer cells. The biodistribution of [89Zr]Zr-DFO*-T-DM1 and [89Zr]Zr-DFO-T-DM1 were compared in non-tumor bearing Balb/c mice and in NOD/SCID mice with s.c. SK-OV-3 xenografts at 96 h post-intravenous injection (p.i.). MicroPET/CT images were obtained at 96 h p.i. of the RICs. RESULTS hIgG and T-DM1 were conjugated to 4.5-5.3 and 3.1 chelators (DFO or DFO*), respectively, and labeled with 89Zr to a final radiochemical purity of 91-99%. [89Zr]Zr-DFO*-hIgG was stable in vitro in human plasma or to challenge with 0.1 mM EDTA, but incubation with 0.1 mM DFO caused 26.0 ± 2.1% loss of 89Zr after 5 days. In contrast, incubation of [89Zr]Zr-DFO-hIgG with 0.1 mM DFO* resulted in 77.0 ± 3.9% loss of 89Zr after 5 days. [89Zr]Zr-DFO*-T-DM1 retained high affinity binding to HER2 on SK-BR-3 and SK-OV-3 cells with a Kd = 2.2 ± 0.3 nM and 1.9 ± 0.3 nM, respectively, and Bmax = 3.4 ± 0.1 × 105 and 1.1 ± 0.04 × 105 receptors/cell, respectively. Biodistribution studies of [89Zr]Zr-DFO-T-DM1 and [89Zr]Zr-DFO*-T-DM1 in Balb/c and NOD/SCID mice revealed significantly lower uptake in bone, liver, kidneys, and spleen for [89Zr]Zr-DFO*-T-DM1 than [89Zr]Zr-DFO-T-DM1. Uptake of [89Zr]Zr-DFO*-T-DM1 and [89Zr]Zr-DFO-T-DM1 in SK-OV-3 tumors was moderate [5.0 ± 1.8% injected dose/g (%ID/g) and 6.3 ± 0.6%ID/g, respectively; P = 0.18]. Tumors were imaged with both RICs. CONCLUSION We conclude that DFO* conjugated to T-DM1 provides more stable complexation of 89Zr and therefore, [89Zr]Zr-DFO*-T-DM1 would be more useful than [89Zr]Zr-DFO-T-DM1 to probe the delivery of T-DM1 to tumors by PET, which we previously found is correlated with response to treatment with T-DM1 in mouse tumor xenograft models. ADVANCES IN KNOWLEDGE AND IMPLICATION FOR PATIENT CARE This study is the first to directly compare the PET imaging properties of [89Zr]Zr-DFO*-T-DM1 and [89Zr]Zr-DFO-T-DM1 in a HER2-overexpressing tumor xenograft mouse model. Our results indicate that [89Zr]Zr-DFO*-T-DM1 provides superior imaging properties due to the greater stability of the [89Zr]Zr-DFO* than [89Zr]Zr-DFO complex.
Collapse
Affiliation(s)
- Hyungjun Cho
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
| | - Noor Al-Saden
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, Canada
| | - Heather Lam
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
| | - Juri Möbus
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
| | - Raymond M Reilly
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, Canada; Department of Medical Imaging, University of Toronto, Toronto, ON, Canada; Toronto General Research Institute, Joint Department of Medical Imaging, University Health Network, Toronto, ON, Canada.
| | - Mitchell A Winnik
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, Canada; Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
16
|
Ku A, Facca VJ, Cai Z, Reilly RM. Auger electrons for cancer therapy - a review. EJNMMI Radiopharm Chem 2019; 4:27. [PMID: 31659527 PMCID: PMC6800417 DOI: 10.1186/s41181-019-0075-2] [Citation(s) in RCA: 219] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 08/28/2019] [Indexed: 12/23/2022] Open
Abstract
Background Auger electrons (AEs) are very low energy electrons that are emitted by radionuclides that decay by electron capture (e.g. 111In, 67Ga, 99mTc, 195mPt, 125I and 123I). This energy is deposited over nanometre-micrometre distances, resulting in high linear energy transfer (LET) that is potent for causing lethal damage in cancer cells. Thus, AE-emitting radiotherapeutic agents have great potential for treatment of cancer. In this review, we describe the radiobiological properties of AEs, their radiation dosimetry, radiolabelling methods, and preclinical and clinical studies that have been performed to investigate AEs for cancer treatment. Results AEs are most lethal to cancer cells when emitted near the cell nucleus and especially when incorporated into DNA (e.g. 125I-IUdR). AEs cause DNA damage both directly and indirectly via water radiolysis. AEs can also kill targeted cancer cells by damaging the cell membrane, and kill non-targeted cells through a cross-dose or bystander effect. The radiation dosimetry of AEs considers both organ doses and cellular doses. The Medical Internal Radiation Dose (MIRD) schema may be applied. Radiolabelling methods for complexing AE-emitters to biomolecules (antibodies and peptides) and nanoparticles include radioiodination (125I and 123I) or radiometal chelation (111In, 67Ga, 99mTc). Cancer cells exposed in vitro to AE-emitting radiotherapeutic agents exhibit decreased clonogenic survival correlated at least in part with unrepaired DNA double-strand breaks (DSBs) detected by immunofluorescence for γH2AX, and chromosomal aberrations. Preclinical studies of AE-emitting radiotherapeutic agents have shown strong tumour growth inhibition in vivo in tumour xenograft mouse models. Minimal normal tissue toxicity was found due to the restricted toxicity of AEs mostly on tumour cells targeted by the radiotherapeutic agents. Clinical studies of AEs for cancer treatment have been limited but some encouraging results were obtained in early studies using 111In-DTPA-octreotide and 125I-IUdR, in which tumour remissions were achieved in several patients at administered amounts that caused low normal tissue toxicity, as well as promising improvements in the survival of glioblastoma patients with 125I-mAb 425, with minimal normal tissue toxicity. Conclusions Proof-of-principle for AE radiotherapy of cancer has been shown preclinically, and clinically in a limited number of studies. The recent introduction of many biologically-targeted therapies for cancer creates new opportunities to design novel AE-emitting agents for cancer treatment. Pierre Auger did not conceive of the application of AEs for targeted cancer treatment, but this is a tremendously exciting future that we and many other scientists in this field envision.
Collapse
Affiliation(s)
- Anthony Ku
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, Canada
| | - Valerie J Facca
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, Canada
| | - Zhongli Cai
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, Canada
| | - Raymond M Reilly
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON, Canada. .,Department of Medical Imaging, University of Toronto, Toronto, ON, Canada. .,Joint Department of Medical Imaging and Toronto General Research Institute, University Health Network, Toronto, ON, Canada. .,Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College St., Toronto, ON, M5S 3M2, Canada.
| |
Collapse
|
17
|
Wei W, Ni D, Ehlerding EB, Luo QY, Cai W. PET Imaging of Receptor Tyrosine Kinases in Cancer. Mol Cancer Ther 2019; 17:1625-1636. [PMID: 30068751 DOI: 10.1158/1535-7163.mct-18-0087] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/19/2018] [Accepted: 06/04/2018] [Indexed: 12/22/2022]
Abstract
Overexpression and/or mutations of the receptor tyrosine kinase (RTK) subfamilies, such as epidermal growth factor receptors (EGFR) and vascular endothelial growth factor receptors (VEGFR), are closely associated with tumor cell growth, differentiation, proliferation, apoptosis, and cellular invasiveness. Monoclonal antibodies (mAb) and tyrosine kinase inhibitors (TKI) specifically inhibiting these RTKs have shown remarkable success in improving patient survival in many cancer types. However, poor response and even drug resistance inevitably occur. In this setting, the ability to detect and visualize RTKs with noninvasive diagnostic tools will greatly refine clinical treatment strategies for cancer patients, facilitate precise response prediction, and improve drug development. Positron emission tomography (PET) agents using targeted radioactively labeled antibodies have been developed to visualize tumor RTKs and are changing clinical decisions for certain cancer types. In the present review, we primarily focus on PET imaging of RTKs using radiolabeled antibodies with an emphasis on the clinical applications of these immunoPET probes. Mol Cancer Ther; 17(8); 1625-36. ©2018 AACR.
Collapse
Affiliation(s)
- Weijun Wei
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Department of Radiology, University of Wisconsin-Madison, Wisconsin
| | - Dalong Ni
- Department of Radiology, University of Wisconsin-Madison, Wisconsin
| | - Emily B Ehlerding
- Department of Medical Physics, University of Wisconsin-Madison, Wisconsin
| | - Quan-Yong Luo
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.
| | - Weibo Cai
- Department of Radiology, University of Wisconsin-Madison, Wisconsin. .,Department of Medical Physics, University of Wisconsin-Madison, Wisconsin.,University of Wisconsin Carbone Cancer Center, Madison, Wisconsin
| |
Collapse
|
18
|
Ku A, Chan C, Aghevlian S, Cai Z, Cescon D, Bratman SV, Ailles L, Hedley DW, Reilly RM. MicroSPECT/CT Imaging of Cell-Line and Patient-Derived EGFR-Positive Tumor Xenografts in Mice with Panitumumab Fab Modified with Hexahistidine Peptides To Enable Labeling with 99mTc(I) Tricarbonyl Complex. Mol Pharm 2019; 16:3559-3568. [PMID: 31242384 DOI: 10.1021/acs.molpharmaceut.9b00422] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We aimed to investigate the feasibility of conjugating synthetic hexahistidine peptides (His6) peptides to panitumumab Fab (PmFab) to enable labeling with [99mTc(H2O)3(CO)3]+ complex and study these radioimmunoconjugates for imaging EGFR-overexpressing tumor xenografts in mice by microSPECT/CT. Fab were reacted with a 10-fold excess of sulfo-SMCC to introduce maleimide functional groups for reaction with the terminal thiol on peptides [CGYGGHHHHHH] that harbored the His6 motif. Modification of Fab with His6 peptides was assessed by SDS-PAGE/Western blot, and the number of His6 peptides introduced was quantified by a radiometric assay incorporating 123I-labeled peptides into the conjugation reaction. Radiolabeling was achieved by incubation of PmFab-His6 in PBS, pH 7.0, with [99mTc(H2O)3(CO)3]+ in a 1.4 MBq/μg ratio. The complex was prepared by adding [99mTcO4]- to an Isolink kit (Paul Scherrer Institute). Immunoreactivity was assessed in a direct (saturation) binding assay using MDA-MB-468 human triple-negative breast cancer (TNBC) cells. Tumor and normal tissue uptake and imaging properties of 99mTc-PmFab-His6 (70 μg; 35-40 MBq) injected i.v. (tail vein) were compared to irrelevant 99mTc-Fab 3913 in NOD/SCID mice engrafted subcutaneously (s.c.) with EGFR-overexpressing MDA-MB-468 or PANC-1 human pancreatic ductal carcinoma (PDCa) cell-line derived xenografts (CLX) at 4 and 24 h post injection (p.i.). In addition, tumor imaging studies were performed with 99mTc-PmFab-His6 in mice with patient-derived tumor xenografts (PDX) of TNBC, PDCa, and head and neck squamous cell carcinoma (HNSCC). Biodistribution studies in nontumor bearing Balb/c mice were performed to project the radiation absorbed doses for imaging studies in humans with 99mTc-PmFab-His6. PmFab was derivatized with 0.80 ± 0.03 His6 peptides. Western blot and SDS-PAGE confirmed the presence of His6 peptides. 99mTc-PmFab-His6 was labeled to high radiochemical purity (≥95%), and the Kd for binding to EGFR on MDA-MB-468 cells was 5.5 ± 0.4 × 10-8 mol/L. Tumor uptake of 99mTc-PmFab-His6 at 24 h p.i. was significantly (P < 0.05) higher than irrelevant 99mTc-Fab 3913 in mice with MDA-MB-468 tumors (14.9 ± 3.1%ID/g vs 3.0 ± 0.9%ID/g) and in mice with PANC-1 tumors (5.6 ± 0.6 vs 0.5 ± 0.1%ID/g). In mice implanted orthotopically in the pancreas with the same PDCa PDX, tumor uptake at 24 h p.i. was 4.2 ± 0.2%ID/g. Locoregional metastases of these PDCa tumors in the peritoneum exhibited slightly and significantly lower uptake than the primary tumors (3.1 ± 0.3 vs 4.2 ± 0.3%ID/g; P = 0.02). In mice implanted with different TNBC or HNSCC PDX, tumor uptake at 24 h p.i. was variable and ranged from 3.7 to 11.4%ID/g and 3.8-14.5%ID/g, respectively. MicroSPECT/CT visualized all CLX and PDX tumor xenografts at 4 and 24 h p.i. Dosimetry estimates revealed that in humans, the whole body dose from administration of 740-1110 MBq of 99mTc-PmFab-His6 would be 2-3 mSv, which is less than for a 99mTc-medronate bone scan (4 mSv).
Collapse
Affiliation(s)
- Anthony Ku
- Department of Pharmaceutical Sciences , University of Toronto , 144 College Street , Toronto , ON M5S 3M2 , Canada
| | - Conrad Chan
- Department of Pharmaceutical Sciences , University of Toronto , 144 College Street , Toronto , ON M5S 3M2 , Canada
| | - Sadaf Aghevlian
- Department of Pharmaceutical Sciences , University of Toronto , 144 College Street , Toronto , ON M5S 3M2 , Canada
| | - Zhongli Cai
- Department of Pharmaceutical Sciences , University of Toronto , 144 College Street , Toronto , ON M5S 3M2 , Canada
| | | | | | | | | | - Raymond M Reilly
- Department of Pharmaceutical Sciences , University of Toronto , 144 College Street , Toronto , ON M5S 3M2 , Canada.,Department of Medical Imaging , University of Toronto , 263 McCaul Street , Toronto , ON M5T 1W7 , Canada.,Toronto General Research Institute and Joint Department of Medical Imaging , University Health Network , 200 Elizabeth Street , Toronto , ON M5G 2C4 , Canada
| |
Collapse
|
19
|
Liu W, Zhao W, Bai X, Jin S, Li Y, Qiu C, Pan L, Ding D, Xu Y, Zhou Z, Chen S. High antitumor activity of Sortase A-generated anti-CD20 antibody fragment drug conjugates. Eur J Pharm Sci 2019; 134:81-92. [DOI: 10.1016/j.ejps.2019.04.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 03/27/2019] [Accepted: 04/11/2019] [Indexed: 12/29/2022]
|
20
|
Ion Channel Targeting with Antibodies and Antibody Fragments for Cancer Diagnosis. Antibodies (Basel) 2019; 8:antib8020033. [PMID: 31544839 PMCID: PMC6640718 DOI: 10.3390/antib8020033] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/17/2019] [Accepted: 05/20/2019] [Indexed: 12/12/2022] Open
Abstract
The antibody era has greatly impacted cancer management in recent decades. Indeed, antibodies are currently applied for both cancer diagnosis and therapy. For example, monoclonal antibodies are the main constituents of several in vitro diagnostics, which are applied at many levels of cancer diagnosis. Moreover, the great improvement provided by in vivo imaging, especially for early-stage cancer diagnosis, has traced the path for the development of a complete new class of antibodies, i.e., engineered antibody fragments. The latter embody the optimal characteristics (e.g., low renal retention, rapid clearance, and small size) which make them ideal for in vivo applications. Furthermore, the present review focuses on reviewing the main applications of antibodies and antibody fragments for solid cancer diagnosis, both in vitro and in vivo. Furthermore, we review the scientific evidence showing that ion channels represent an almost unexplored class of ideal targets for both in vitro and in vivo diagnostic purposes. In particular, we review the applications, in solid cancers, of monoclonal antibodies and engineered antibody fragments targeting the voltage-dependent ion channel Kv 11.1, also known as hERG1.
Collapse
|
21
|
Le Bihan T, Navarro AS, Le Bris N, Le Saëc P, Gouard S, Haddad F, Gestin JF, Chérel M, Faivre-Chauvet A, Tripier R. Synthesis of C-functionalized TE1PA and comparison with its analogues. An example of bioconjugation on 9E7.4 mAb for multiple myeloma 64Cu-PET imaging. Org Biomol Chem 2019; 16:4261-4271. [PMID: 29701218 DOI: 10.1039/c8ob00499d] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In view of the excellent copper(ii) and 64-copper(ii) complexation of a TE1PA ligand, a monopicolinate cyclam, in both aqueous medium and in vivo, we looked for a way to make it bifunctional, while maintaining its chelating properties. Overcoming the already known drawback of grafting via its carboxyl group, which is essential to the overall properties of the ligand, a TE1PA bifunctional derivative bearing an additional isothiocyanate coupling function on a carbon atom of the macrocyclic ring was synthesized. This led to an architecture that is comparable to that of other commercially available bifunctional copper(ii) chelators such as p-SCN-Bn-DOTA already used in clinical trials for 64Cu-immuno-PET imaging. The C-functionalization of TE1PA on one carbon atom in the β-N position of the cyclam backbone was successfully achieved by adapting our patented methodology to the huge challenge, allowing the regiospecific mono-N-functionalization of the unsymmetrical ligand. The obtained ligand p-SCN-Bn-TE1PA was coupled to a 9E7.4 murine antibody (mAb), an IgG2a anti CD-138 for multiple myeloma (MM) targeting. The conjugation efficiency was assessed by looking at the 64Cu radiolabeling and the radiopharmaceutical 64Cu-9E7.4-p-SCN-Bn-TE1PA immunoreactivity, and in particular by comparing with 9E7.4-p-SCN-Bn-NOTA and 9E7.4-p-SCN-Bn-DOTA obtained from commercial and presumably highly efficient chelators NOTA and DOTA, respectively. The results are quite clear, showing that p-SCN-Bn-TE1PA has a coupling rate 5 times higher and an immunoreactivity 1.5 to 2 times greater than those of its two competitors. p-SCN-Bn-TE1PA also outperforms TE1PA conjugated via its carboxylic function on the same antibody. The first 64Cu-immuno-PET preclinical study in a syngeneic model of MM was performed, confirming the good in vivo properties of 64Cu-9E7.4-p-SCN-Bn-TE1PA for PET imaging, considering the high clearance even after 24 h and the particularly important tumor-to-liver ratio that was increasing at 48 h.
Collapse
Affiliation(s)
- Thomas Le Bihan
- Université de Brest, UMR-CNRS 6521/IBSAM, UFR Sciences et Techniques, 6 Avenue Victor le Gorgeu, C.S. 93837, 29238 Brest, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Bumbaca B, Li Z, Shah DK. Pharmacokinetics of protein and peptide conjugates. Drug Metab Pharmacokinet 2019; 34:42-54. [PMID: 30573392 PMCID: PMC6378135 DOI: 10.1016/j.dmpk.2018.11.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 10/29/2018] [Accepted: 11/19/2018] [Indexed: 12/20/2022]
Abstract
Protein and peptide conjugates have become an important component of therapeutic and diagnostic medicine. These conjugates are primarily designed to improve pharmacokinetics (PK) of those therapeutic or imaging agents, which do not possess optimal disposition characteristics. In this review we have summarized preclinical and clinical PK of diverse protein and peptide conjugates, and have showcased how different conjugation approaches are used to obtain the desired PK. We have classified the conjugates into peptide conjugates, non-targeted protein conjugates, and targeted protein conjugates, and have highlighted diagnostic and therapeutic applications of these conjugates. In general, peptide conjugates demonstrate very short half-life and rapid renal elimination, and they are mainly designed to achieve high contrast ratio for imaging agents or to deliver therapeutic agents at sites not reachable by bulky or non-targeted proteins. Conjugates made from non-targeted proteins like albumin are designed to increase the half-life of rapidly eliminating therapeutic or imaging agents, and improve their delivery to tissues like solid tumors and inflamed joints. Targeted protein conjugates are mainly developed from antibodies, antibody derivatives, or endogenous proteins, and they are designed to improve the contrast ratio of imaging agents or therapeutic index of therapeutic agents, by enhancing their delivery to the site-of-action.
Collapse
Affiliation(s)
- Brandon Bumbaca
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, USA
| | - Zhe Li
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, USA
| | - Dhaval K Shah
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, USA.
| |
Collapse
|
23
|
Ultrasmall targeted nanoparticles with engineered antibody fragments for imaging detection of HER2-overexpressing breast cancer. Nat Commun 2018; 9:4141. [PMID: 30297810 PMCID: PMC6175906 DOI: 10.1038/s41467-018-06271-5] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 08/24/2018] [Indexed: 12/11/2022] Open
Abstract
Controlling the biodistribution of nanoparticles upon intravenous injection is the key to achieving target specificity. One of the impediments in nanoparticle-based tumor targeting is the inability to limit the trafficking of nanoparticles to liver and other organs leading to smaller accumulated amounts in tumor tissues, particularly via passive targeting. Here we overcome both these challenges by designing nanoparticles that combine the specificity of antibodies with favorable particle biodistribution profiles, while not exceeding the threshold for renal filtration as a combined vehicle. To that end, ultrasmall silica nanoparticles are functionalized with anti-human epidermal growth factor receptor 2 (HER2) single-chain variable fragments to exhibit high tumor-targeting efficiency and efficient renal clearance. This ultrasmall targeted nanotheranostics/nanotherapeutic platform has broad utility, both for imaging a variety of tumor tissues by suitably adopting the targeting fragment and as a potentially useful drug delivery vehicle.
Collapse
|
24
|
Fiedler L, Kellner M, Oos R, Böning G, Ziegler S, Bartenstein P, Zeidler R, Gildehaus FJ, Lindner S. Fully Automated Production and Characterization of 64 Cu and Proof-of-Principle Small-Animal PET Imaging Using 64 Cu-Labelled CA XII Targeting 6A10 Fab. ChemMedChem 2018; 13:1230-1237. [PMID: 29667369 DOI: 10.1002/cmdc.201800130] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/09/2018] [Indexed: 01/26/2023]
Abstract
64 Cu is a cyclotron-produced radionuclide which offers, thanks to its characteristic decay scheme, the possibility of combining positron emission tomography (PET) investigations with radiotherapy. We evaluated the Alceo system from Comecer SpA to automatically produce 64 Cu for radiolabelling purposes. We established a 64 Cu production routine with high yields and radionuclide purity in combination with excellent operator radiation protection. The carbonic anhydrase XII targeting 6A10 antibody Fab fragment was successfully radiolabelled with the produced 64 Cu, and proof-of-principle small-animal PET experiments on mice bearing glioma xenografts were performed. We obtained a high tumor-to-contralateral muscle ratio, which encourages further in vivo investigations of the radioconjugate regarding a possible application in diagnostic tumor imaging.
Collapse
Affiliation(s)
- Luise Fiedler
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany
| | - Markus Kellner
- Helmholtz-Zentrum München, German Research Center for Environmental Health, Research Group Gene Vectors, Marchioninistrasse 25, 81377, Munich, Germany
| | - Rosel Oos
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany
| | - Guido Böning
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany
| | - Sibylle Ziegler
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany
| | - Peter Bartenstein
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany
| | - Reinhard Zeidler
- Helmholtz-Zentrum München, German Research Center for Environmental Health, Research Group Gene Vectors, Marchioninistrasse 25, 81377, Munich, Germany.,Department of Otorhinolaryngology, University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany
| | - Franz Josef Gildehaus
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany
| | - Simon Lindner
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany
| |
Collapse
|
25
|
Ehlerding EB, Sun L, Lan X, Zeng D, Cai W. Dual-Targeted Molecular Imaging of Cancer. J Nucl Med 2018; 59:390-395. [PMID: 29301927 PMCID: PMC5868496 DOI: 10.2967/jnumed.117.199877] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 12/17/2017] [Indexed: 01/03/2023] Open
Abstract
Molecular imaging is critical to personalized and precision medicine. Although singly targeted imaging probes are making an impact both clinically and preclinically, molecular imaging strategies using bispecific probes have enabled improved visualization of cancer in recent years through synergistic targeting of two ligands. In this Focus on Molecular Imaging review, we outline how peptide-, antibody-, and nanoparticle-based platforms have affected this emerging strategy, providing examples and pointing out areas in which the greatest clinical impact may be realized.
Collapse
Affiliation(s)
- Emily B Ehlerding
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin
| | - Lingyi Sun
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dexing Zeng
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Weibo Cai
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin; and
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
26
|
Massicano AVF, Marquez-Nostra BV, Lapi SE. Targeting HER2 in Nuclear Medicine for Imaging and Therapy. Mol Imaging 2018; 17:1536012117745386. [PMID: 29357745 PMCID: PMC5784567 DOI: 10.1177/1536012117745386] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 09/17/2017] [Accepted: 09/22/2017] [Indexed: 12/21/2022] Open
Abstract
Since its discovery, the human epidermal growth factor 2 (HER2) has been extensively studied. Presently, there are 2 standard diagnostic techniques to assess HER2 status in biopsies: immunohistochemistry and fluorescence in situ hybridization. While these techniques have played an important role in the treatment of patients with HER2-positive cancer, they both require invasive biopsies for analysis. Moreover, the expression of HER2 is heterogeneous in breast cancer and can change over the course of the disease. Thus, the degree of HER2 expression in the small sample size of biopsied tumors at the time of analysis may not represent the overall status of HER2 expression in the whole tumor and in between tumor foci in the metastatic setting as the disease progresses. Unlike biopsy, molecular imaging using probes against HER2 allows for a noninvasive, whole-body assessment of HER2 status in real time. This technique could potentially select patients who may benefit from HER2-directed therapy and offer alternative treatments to those who may not benefit. Several antibodies and small molecules against HER2 have been labeled with different radioisotopes for nuclear imaging and/or therapy. This review presents the most recent advances in HER2 targeting in nuclear medicine focusing on preclinical and clinical studies.
Collapse
Affiliation(s)
| | | | - Suzanne E. Lapi
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
27
|
Molecularly targeted therapies in cancer: a guide for the nuclear medicine physician. Eur J Nucl Med Mol Imaging 2017; 44:41-54. [PMID: 28396911 PMCID: PMC5541087 DOI: 10.1007/s00259-017-3695-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 03/27/2017] [Indexed: 01/01/2023]
Abstract
Molecular imaging continues to influence every aspect of cancer care including detection, diagnosis, staging and therapy response assessment. Recent advances in the understanding of cancer biology have prompted the introduction of new targeted therapy approaches. Precision medicine in oncology has led to rapid advances and novel approaches optimizing the use of imaging modalities in cancer care, research and development. This article focuses on the concept of targeted therapy in cancer and the challenges that exist for molecular imaging in cancer care.
Collapse
|
28
|
Luo H, England CG, Goel S, Graves SA, Ai F, Liu B, Theuer CP, Wong HC, Nickles RJ, Cai W. ImmunoPET and Near-Infrared Fluorescence Imaging of Pancreatic Cancer with a Dual-Labeled Bispecific Antibody Fragment. Mol Pharm 2017; 14:1646-1655. [PMID: 28292180 DOI: 10.1021/acs.molpharmaceut.6b01123] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dual-targeted imaging agents have shown improved targeting efficiencies in comparison to single-targeted entities. The purpose of this study was to quantitatively assess the tumor accumulation of a dual-labeled heterobifunctional imaging agent, targeting two overexpressed biomarkers in pancreatic cancer, using positron emission tomography (PET) and near-infrared fluorescence (NIRF) imaging modalities. A bispecific immunoconjugate (heterodimer) of CD105 and tissue factor (TF) Fab' antibody fragments was developed using click chemistry. The heterodimer was dual-labeled with a radionuclide (64Cu) and fluorescent dye. PET/NIRF imaging and biodistribution studies were performed in four-to-five week old nude athymic mice bearing BxPC-3 (CD105/TF+/+) or PANC-1 (CD105/TF-/-) tumor xenografts. A blocking study was conducted to investigate the specificity of the tracer. Ex vivo tissue staining was performed to compare TF/CD105 expression in tissues with PET tracer uptake to validate in vivo results. PET imaging of 64Cu-NOTA-heterodimer-ZW800 in BxPC-3 tumor xenografts revealed enhanced tumor uptake (21.0 ± 3.4%ID/g; n = 4) compared to the homodimer of TRC-105 (9.6 ± 2.0%ID/g; n = 4; p < 0.01) and ALT-836 (7.6 ± 3.7%ID/g; n = 4; p < 0.01) at 24 h postinjection. Blocking studies revealed that tracer uptake in BxPC-3 tumors could be decreased by 4-fold with TF blocking and 2-fold with CD105 blocking. In the negative model (PANC-1), heterodimer uptake was significantly lower than that found in the BxPC-3 model (3.5 ± 1.1%ID/g; n = 4; p < 0.01). The specificity was confirmed by the successful blocking of CD105 or TF, which demonstrated that the dual targeting with 64Cu-NOTA-heterodimer-ZW800 provided an improvement in overall tumor accumulation. Also, fluorescence imaging validated the PET imaging, allowing for clear delineation of the xenograft tumors. Dual-labeled heterodimeric imaging agents, like 64Cu-NOTA-heterodimer-ZW800, may increase the overall tumor accumulation in comparison to single-targeted homodimers, leading to improved imaging of cancer and other related diseases.
Collapse
Affiliation(s)
- Haiming Luo
- Department of Radiology, University of Wisconsin-Madison , Madison, Wisconsin 53705, United States
| | - Christopher G England
- Department of Medical Physics, University of Wisconsin-Madison , Madison, Wisconsin 53705, United States
| | - Shreya Goel
- Materials Science Program, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Stephen A Graves
- Department of Medical Physics, University of Wisconsin-Madison , Madison, Wisconsin 53705, United States
| | - Fanrong Ai
- Department of Radiology, University of Wisconsin-Madison , Madison, Wisconsin 53705, United States
| | - Bai Liu
- Altor BioScience Corporation , Miramar, Florida 33025, United States
| | - Charles P Theuer
- TRACON Pharmaceuticals Incorporation , San Diego, California 92122, United States
| | - Hing C Wong
- Altor BioScience Corporation , Miramar, Florida 33025, United States
| | - Robert J Nickles
- Department of Medical Physics, University of Wisconsin-Madison , Madison, Wisconsin 53705, United States
| | - Weibo Cai
- Department of Radiology, University of Wisconsin-Madison , Madison, Wisconsin 53705, United States.,Department of Medical Physics, University of Wisconsin-Madison , Madison, Wisconsin 53705, United States.,Materials Science Program, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States.,University of Wisconsin Carbone Cancer Center , Madison, Wisconsin 53705, United States
| |
Collapse
|