1
|
Fetouh HA, Aleem EEA, Mohammed NH, Aldesouky JMAA, Ismail AM. Formulation of new drug delivery systems for insulin from natural bioactive biocompatible polymers. Sci Rep 2025; 15:3941. [PMID: 39890852 PMCID: PMC11785760 DOI: 10.1038/s41598-025-86938-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 01/15/2025] [Indexed: 02/03/2025] Open
Abstract
New insulin drug delivery systems (IDDs): insulin@chitin; insulin@chitin-grafted (g)-guar gum were prepared by using a modified sol-gel method. Insulin vials were loaded on the safe natural inert bioactive polymers (chitin and chitin-g-GG copolymer) carriers using water green solvent. Traces amount additives were below toxicity limits. Guar gum increased the numbers of the functional groups of the polymer carrier. Insulin release monitored at 37 ± 0.5 °C and buffer solutions of pH (1.2, 6.8 and 7.4) simulating physiological body fluids: stomach, intestine colon and blood stream. Insulin released from insulin@chitin only at pH 7.4. No release observed at pH 1.2, 6.8 due strong bonding to acetyl group of chitin. Insulin@chitin-GG system showed sustained targeting insulin-release at pH: 6.8 > 7.4 > 1.2. Release data obeyed pseudo second order kinetic model indicating that IDDs is heterogeneous solid surface of energetically different active sites. Each insulin molecule occupied two active sites. The slow release at pH 1.2 indicated protection against stomach juice. Release kinetic depend on physicochemical characteristics (porosity, swelling ratio as well as peptide and amino acid sequence). Both IDDs showed negative zeta potential indicating stability against aggregation. Gaur gum improved particle size distribution and insulin release.
Collapse
Affiliation(s)
- Howida A Fetouh
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt.
| | - Engy E A Aleem
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Najiyah H Mohammed
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | | | - Amel M Ismail
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| |
Collapse
|
2
|
Low CY, Gan WL, Lai SJ, Tam RSM, Tan JF, Dietl S, Chuah LH, Voelcker N, Bakhtiar A. Critical updates on oral insulin drug delivery systems for type 2 diabetes mellitus. J Nanobiotechnology 2025; 23:16. [PMID: 39815320 PMCID: PMC11737240 DOI: 10.1186/s12951-024-03062-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 12/05/2024] [Indexed: 01/18/2025] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a metabolic disorder characterized by insulin resistance, leading to elevated blood sugar levels. Exogenous insulin can counteract the diminished response to insulin and effectively controlling blood glucose levels, thereby minimizing diabetes-related complications. However, given the injectable nature of exogenous insulin, apprehensions regarding its safety and the difficulties associated with its administration have hindered its widespread and prompt utilization. In this context, advanced oral insulin formulations can improve medication adherence in patients with diabetes and enhance their quality of life. Over the last 20 years, sophisticated pharmaceutical technologies have been utilized to provide insulin through oral formulations. Despite the limited absorption of oral insulin, these studies have demonstrated encouraging outcomes in translating clinical discoveries into commercialization. This review examines the advancements of several oral insulin formulations in preclinical and clinical trials, their effectiveness and safety characteristics, and potential implications for future treatment options.
Collapse
Affiliation(s)
- Chan Yew Low
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Wei Ling Gan
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Su Jeat Lai
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Rachel Su-May Tam
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Jie Fei Tan
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Stefanie Dietl
- Monash Institute of Pharmaceutical Sciences (MIPS), Monash University Parkville Campus, 381 Royal Parade, Parkville, Australia
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, København, Denmark
| | - Lay Hong Chuah
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Nicolas Voelcker
- Monash Institute of Pharmaceutical Sciences (MIPS), Monash University Parkville Campus, 381 Royal Parade, Parkville, Australia
| | - Athirah Bakhtiar
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
3
|
Alfatama M, Choukaife H, Al Rahal O, Zin NZM. Thymoquinone Pectin Beads Produced via Electrospray: Enhancing Oral Targeted Delivery for Colorectal Cancer Therapy. Pharmaceutics 2024; 16:1460. [PMID: 39598583 PMCID: PMC11597643 DOI: 10.3390/pharmaceutics16111460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/08/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024] Open
Abstract
Background/Objectives: Thymoquinone (TQ) exhibits diverse biological activities, but its poor solubility and bioavailability limit its cancer efficacy, requiring innovative solutions. This study explores the development of an oral delivery system targeting colon cancer based on TQ pectin beads (TQ-PBs) produced through an adjustable electrospray technique. This study hypothesised that adjusting bead diameter through the electrospray technique enables precise control over water absorption and erosion rates, thereby achieving a controlled release profile for encapsulated TQ, which enhances targeted delivery to the colon. Methods: TQ-PBs were synthesised and optimised using an electrospray technique based on the ionic gelation method. The prepared beads were characterised based on particle size, sphericity, encapsulation efficiency (EE), water uptake, erosion, surface morphology, molecular interactions, and texture. The cumulative TQ release studies, an accelerated stability test, and cytotoxicity evaluation against the colon cancer HT-29 cell line were also assessed. Results: The optimised TQ-PB formulation demonstrated an average bead size of 2.05 ± 0.14 mm, a sphericity of 0.96 ± 0.05, and an EE of 90.32 ± 1.04%. The water uptake was 287.55 ± 10.14% in simulated gastric fluid (SGF), 462.15 ± 12.73% in simulated intestinal fluid (SIF), and 772.41 ± 13.03% in simulated colonic fluid (SCF), with an erosion rate of 45.23 ± 5.22%. TQ release was minimal in SGF (8.13 ± 1.94% after 2 h), controlled in SIF (29.35 ± 3.65% after 4 h), and accelerated in SCF (94.43 ± 2.4% after 3 h). Stability studies over one month showed a size reduction of 17.50% and a 6.59% decrease in TQ content. Cytotoxicity assessments revealed significant anticancer activity of TQ-PB, with an IC50 of 80.59 ± 2.2 μg/mL. Conclusions: These findings underscore the potential of TQ-PB as an effective oral drug delivery system for targeted colorectal cancer therapy.
Collapse
Affiliation(s)
- Mulham Alfatama
- Faculty of Pharmacy, Universiti Sultan Zainal Abidin, Besut Campus, Besut 22200, Malaysia;
| | - Hazem Choukaife
- Faculty of Pharmacy, Universiti Sultan Zainal Abidin, Besut Campus, Besut 22200, Malaysia;
| | - Okba Al Rahal
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK;
| | | |
Collapse
|
4
|
Seyam S, Choukaife H, Al Rahal O, Alfatama M. Colonic targeting insulin-loaded trimethyl chitosan nanoparticles coated pectin for oral delivery: In vitro and In vivo studies. Int J Biol Macromol 2024; 281:136549. [PMID: 39401622 DOI: 10.1016/j.ijbiomac.2024.136549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/08/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024]
Abstract
Colon-targeted delivery offers several benefits for oral protein delivery, such as low proteolytic enzyme activity, a natural pH environment, and extended residence time, which improve the bioavailability of the encapsulated protein. Therefore, we hypothesize that developing a novel colonic nanocarrier system, featuring modified chitosan that is soluble at physiological pH and coated with a colon-degradable polymer, will provide an effective delivery system for oral insulin. This study aims to synthesize insulin-loaded pectin-trimethyl chitosan nanoparticles (Ins-P-TMC-NPs) as an oral insulin delivery system and to evaluate its efficacy both in vitro and in vivo. N-trimethyl chitosan (TMC), synthesized via a methylation method, was used to prepare insulin-TMC nanoparticles coated with pectin via the ionic gelation method. The nanoparticles were characterized for their physicochemical properties, cumulative release profile, and surface morphology. The in vitro biological cytotoxicity and cellular uptake of the nanoparticles were evaluated against HT-29 cells. The in vivo blood glucose-lowering effect and histological toxicity were assessed in diabetic male Sprague-Dawley rats. The results showed that Ins-P-TMC-NPs were spherical, with an average size of 379.40 ± 40.26 nm, a polydispersity index of 24.10 ± 1.03 %, a zeta potential of +17.20 ± 0.52 mV, and a loading efficiency of 83.21 ± 1.23 %. Compared to uncoated TMC nanoparticles, Ins-P-TMC-NPs reduced insulin loss in simulated gastrointestinal fluid by approximately 67.23 ± 0.97 % and provided controlled insulin release in simulated colonic fluid. In vitro bioactivity studies revealed that Ins-P-TMC-NPs were non-toxic, with cell viability of 91.12 ± 0.91 % after 24 h of treatment, and exhibited high cellular uptake in the HT-29 cell line with a fluorescence intensity of 37.80 ± 2.40 after 4 h of incubation. Furthermore, the in vivo study demonstrated a sustained reduction in blood glucose levels after oral administration of Ins-P-TMC-NPs, peaking after 8 h with a blood glucose reduction of 87 ± 1.03 %. Histological sections showed no signs of toxicity when compared to those of healthy rats. Overall, the developed colon-targeted oral insulin delivery system exhibits strong potential as a candidate for effective oral insulin administration.
Collapse
Affiliation(s)
- Salma Seyam
- Faculty of Pharmacy, Universiti Sultan Zainal Abidin, Besut Campus, Besut 22200, Terengganu, Malaysia; Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200 Kepala Batas, Penang, Malaysia
| | - Hazem Choukaife
- Faculty of Pharmacy, Universiti Sultan Zainal Abidin, Besut Campus, Besut 22200, Terengganu, Malaysia
| | - Okba Al Rahal
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Mulham Alfatama
- Faculty of Pharmacy, Universiti Sultan Zainal Abidin, Besut Campus, Besut 22200, Terengganu, Malaysia.
| |
Collapse
|
5
|
Paul S, Bhuyan S, Balasoupramanien DD, Palaniappan A. Muco-Adhesive and Muco-Penetrative Formulations for the Oral Delivery of Insulin. ACS OMEGA 2024; 9:24121-24141. [PMID: 38882129 PMCID: PMC11170654 DOI: 10.1021/acsomega.3c10305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 04/18/2024] [Accepted: 04/23/2024] [Indexed: 06/18/2024]
Abstract
Insulin, a pivotal anabolic hormone, regulates glucose homeostasis by facilitating the conversion of blood glucose to energy or storage. Dysfunction in insulin activity, often associated with pancreatic β cells impairment, leads to hyperglycemia, a hallmark of diabetes. Type 1 diabetes (T1D) results from autoimmune destruction of β cells, while type 2 diabetes (T2D) stems from genetic, environmental, and lifestyle factors causing β cell dysfunction and insulin resistance. Currently, insulin therapy is used for most of the cases of T1D, while it is used only in a few persistent cases of T2D, often supplemented with dietary and lifestyle changes. The key challenge in oral insulin delivery lies in overcoming gastrointestinal (GI) barriers, including enzymatic degradation, low permeability, food interactions, low bioavailability, and long-term safety concerns. The muco-adhesive (MA) and muco-penetrative (MP) formulations aim to enhance oral insulin delivery by addressing these challenges. The mucus layer, a hydrogel matrix covering epithelial cells in the GI tract, poses significant barriers to oral insulin absorption. Its structure, composition, and turnover rate influence interactions with insulin and other drug carriers. Some of the few factors that influence mucoadhesion and mucopenetration are particle size, surface charge distribution, and surface modifications. This review discusses the challenges associated with oral insulin delivery, explores the properties of mucus, and evaluates the strategies for achieving excellent MA and MP formulations, focusing on nanotechnology-based approaches. The development of effective oral insulin formulations holds the potential to revolutionize diabetes management, providing patients with a more convenient and patient-friendly alternative to traditional insulin administration methods.
Collapse
Affiliation(s)
- Srijita Paul
- School of Biosciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
- Advanced Academic Programs, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore Maryland21218, United States
| | - Snigdha Bhuyan
- School of Biosciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
- Department of Biomedical Engineering, National University of Singapore, Singapore 119077
| | | | - Arunkumar Palaniappan
- Human Organ Manufacturing Engineering (HOME) Lab, Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| |
Collapse
|
6
|
Patra S, Sahu KM, Mahanty J, Swain SK. Ex Vivo Glucose Detection in Human Blood Serums with Carbon Quantum Dot-Doped Oleic Acid-Treated Chitosan Nanocomposites. ACS APPLIED BIO MATERIALS 2023; 6:5730-5745. [PMID: 37972392 DOI: 10.1021/acsabm.3c00851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Herein, carbon quantum dot (CQD)-doped oleic acid (OL)-treated chitosan (Ch) nanocomposites (Ch-OL/CQD) are prepared by a simple solution technique for nonenzymatic ex vivo detection of glucose in human blood samples. From the architecture of the structure, it is observed that the agglomeration of CQD is restricted by OL-treated Ch polymeric chain, and simultaneously the inhibition in the entanglement of Ch-OL polymeric chains in the matrix is attained by the incorporation of CQD, thereby proving the high stability of the nanocomposite. In vitro detection of glucose is studied by the "Turn ON-OFF" fluorescence technique which is again evidenced by the shining core image of nanocomposites in HRTEM. A highly selective glucose sensing against interfering sugars due to the specific spatial arrangement of the hydroxyl groups of glucose, leading to prominent hydrogen-bonding interaction is established, with a very low limit of detection (LOD) of 1.51 μM, covering a wide linear domain from 0 to 104 μM, R2 = 0.98. Moreover, the calculated glucose levels in real human blood serums by Ch-OL/CQD nanocomposites are compared with a commercial glucometer, with recovery percentages from 95.8 to 107.3%. The clinical potential is supported by studying the stimuli responsiveness of the nanocomposites as a function of pH and ionic strength, encouraging the operation of the sensor in a complex biological scenario. The present work may offer an opportunity for the monitoring of glucose in the blood for successful diabetes management.
Collapse
Affiliation(s)
- Swapnita Patra
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur, Odisha 768018, India
| | - Krishna Manjari Sahu
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur, Odisha 768018, India
| | - Jharana Mahanty
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur, Odisha 768018, India
| | - Sarat K Swain
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur, Odisha 768018, India
| |
Collapse
|
7
|
Mir M, Akhter MH, Afzal O, Rab SO, Altamimi ASA, Alossaimi MA, Nasar Mir Najib Ullah S, Jaremko M, Emwas AH, Ahmad S, Alam N, Ali MS. Design-of-Experiment-Assisted Fabrication of Biodegradable Polymeric Nanoparticles: In Vitro Characterization, Biological Activity, and In Vivo Assessment. ACS OMEGA 2023; 8:38806-38821. [PMID: 37901564 PMCID: PMC10601053 DOI: 10.1021/acsomega.3c01153] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/21/2023] [Indexed: 10/31/2023]
Abstract
Berberine (BER) is an alkaloid obtained from berberis plant having broad biological activities including anticancer. BER-encapsulated alginate (ALG)/chitosan (CHS) nanoparticles (BER-ALG/CHS-NPs) were developed for long-acting improved treatment in breast cancer. The surface of the NPs was activated by a conjugation reaction, and thereafter, the BER-ALG/CHS-NP surface was grafted with folic acid (BER-ALG/CHS-NPs-F) for specific targeting in breast cancer. BER-ALG/CHS-NPs-F was optimized by applying the Box-Behnken design using Expert design software. Moreover, formulations are extensively evaluated in vitro for biopharmaceutical performances and tested for cell viability, cellular uptake, and antioxidant activity. The comparative pharmacokinetic study of formulation and free BER was carried out in animals for estimation of bioavailability. The particle size recorded for the diluted sample using a Malvern Zetasizer was 240 ± 5.6 nm. The ζ-potential and the predicted % entrapment efficiency versus (vs) observed were +18 mV and 83.25 ± 2.3% vs 85 ± 3.5%. The high % drug release from the NPs was recorded. The analytical studies executed using infrared spectroscopy, differential scanning calorimetry, and X-ray diffraction expressed safe combinations of the components in the formulation and physical state of the drug revealed to be amorphous in the formulation. Cytotoxicity testing demonstrated that the formulation effectively lowered the cell viability and IC50 of the tested cell line in comparison to a raw drug. The cellular uptake of BER-ALG/CHS-NPs-F was 5.5-fold higher than that of BER-suspension. The antioxidant capacities of BER-ALG/CHS-NPs-F vs BER-suspension by the DPPH assay were measured to be 62.3 ± 2.5% vs 30 ± 6%, indicating good radical scavenging power of folate-conjugated NPs. The developed formulation showed a 4.4-fold improved oral bioavailability compared to BER-suspension. The hemolytic assay intimated <2% destruction of erythrocytes by the developed formulation. The observed experimental characterization results such as cytotoxicity, cellular uptake, antioxidant activity, and improved absorption suggested the effectiveness of BER-ALG/CHS-NPs-F toward breast cancer.
Collapse
Affiliation(s)
- Mushtaq
Ahmad Mir
- Department
of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 62521, Saudi Arabia
| | - Md Habban Akhter
- School
of Pharmaceutical and Population Health Informatics (SoPPHI), DIT University, Dehradun 248009, India
| | - Obaid Afzal
- Department
of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Safia Obaidur Rab
- Department
of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 62521, Saudi Arabia
| | - Abdulmalik S. A. Altamimi
- Department
of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Manal A. Alossaimi
- Department
of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | | | - Mariusz Jaremko
- Smart-Health
Initiative (SHI) and Red Sea Research Center (RSRC), Division of Biological
and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Abdul-Hamid Emwas
- Core Labs, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955, Saudi Arabia
| | - Sarfaraz Ahmad
- Department
of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Nawazish Alam
- Department
of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Md Sajid Ali
- Department
of Pharmaceutics, College of Pharmacy, Jazan
University, Jazan 45142, Saudi Arabia
| |
Collapse
|
8
|
Yuan H, Guo C, Liu L, Zhao L, Zhang Y, Yin T, He H, Gou J, Pan B, Tang X. Progress and prospects of polysaccharide-based nanocarriers for oral delivery of proteins/peptides. Carbohydr Polym 2023; 312:120838. [PMID: 37059563 DOI: 10.1016/j.carbpol.2023.120838] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/17/2023] [Accepted: 03/19/2023] [Indexed: 04/03/2023]
Abstract
The oral route has long been recognized as the most preferred route for drug delivery as it offers high patient compliance and requires minimal expertise. Unlike small molecule drugs, the harsh environment of the gastrointestinal tract and low permeability across the intestinal epithelium make oral delivery extremely ineffective for macromolecules. Accordingly, delivery systems that are rationally constructed with suitable materials to overcome barriers to oral delivery are exceptionally promising. Among the most ideal materials are polysaccharides. Depending on the interaction between polysaccharides and proteins, the thermodynamic loading and release of proteins in the aqueous phase can be realized. Specific polysaccharides (dextran, chitosan, alginate, cellulose, etc.) endow systems with functional properties, including muco-adhesiveness, pH-responsiveness, and prevention of enzymatic degradation. Furthermore, multiple groups in polysaccharides can be modified, which gives them a variety of properties and enables them to suit specific needs. This review provides an overview of different types of polysaccharide-based nanocarriers based on different kinds of interaction forces and the influencing factors in the construction of polysaccharide-based nanocarriers. Strategies of polysaccharide-based nanocarriers to improve the bioavailability of orally administered proteins/peptides were described. Additionally, current restrictions and future trends of polysaccharide-based nanocarriers for oral delivery of proteins/peptides were also covered.
Collapse
Affiliation(s)
- Haoyang Yuan
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Chen Guo
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Lei Liu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Linxuan Zhao
- Department of Pharmaceutics, College of Pharmacy Sciences, Jilin University, Changchun 130021, China
| | - Yu Zhang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Tian Yin
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Haibing He
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jingxin Gou
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Bochen Pan
- Center for Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang 110022, China.
| | - Xing Tang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
9
|
Chellathurai MS, Yong CL, Sofian ZM, Sahudin S, Hasim NBM, Mahmood S. Self-assembled chitosan-insulin oral nanoparticles - A critical perspective review. Int J Biol Macromol 2023:125125. [PMID: 37263321 DOI: 10.1016/j.ijbiomac.2023.125125] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/03/2023]
Abstract
Chitosan is an abundant natural cationic polysaccharide with excellent biodegradability, bioadhesion, and biocompatibility. Chitosan is extensively researched for various particulate oral insulin drug delivery systems. Oral insulin is economically efficient and more convenient than injections, with greater patient compliance. Electrostatic ionic interaction between cationic chitosan and anionic polymer or insulin leads to the formation of spontaneously self-assembled nanoparticles. This simple technique attracted many researchers as it can be carried out quickly in mild conditions without harmful solvents, such as surfactants or chemical cross-linkers that might degrade the insulin structure. The formulated chitosan nanoparticles help to protect the core insulin from enzymatic degradation in the digestive system and improve paracellular intestinal uptake from the enterocytes due to mucoadhesion and reversible tight junction opening. Moreover, functionalized chitosan nanoparticles create newer avenues for targeted and prolonged delivery. This review focuses on modified chitosan-insulin nanoparticles and their implications on oral insulin delivery. Dependent variables and their optimal concentration ranges used in self-assembly techniques for chitosan-insulin nanoparticular synthesis are summarized. This review provides a comprehensive guide to fine-tune the essential factors to formulate stable insulin-chitosan nanoparticles using mild ionic interactions.
Collapse
Affiliation(s)
- Melbha Starlin Chellathurai
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University Malaya, Kuala Lumpur 50603, Malaysia
| | - Chung Lip Yong
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University Malaya, Kuala Lumpur 50603, Malaysia
| | - Zarif Mohamed Sofian
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University Malaya, Kuala Lumpur 50603, Malaysia
| | - Shariza Sahudin
- Department of Pharmaceutics, University Technology MARA, Selangor, Shah Alam 40450, Malaysia
| | - Najihah Binti Mohd Hasim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University Malaya, Kuala Lumpur 50603, Malaysia
| | - Syed Mahmood
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University Malaya, Kuala Lumpur 50603, Malaysia.
| |
Collapse
|
10
|
Berraaouan D, Essifi K, Addi M, Hano C, Fauconnier ML, Tahani A. Hybrid Microcapsules for Encapsulation and Controlled Release of Rosemary Essential Oil. Polymers (Basel) 2023; 15:polym15040823. [PMID: 36850108 PMCID: PMC9968220 DOI: 10.3390/polym15040823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/02/2023] [Accepted: 02/04/2023] [Indexed: 02/10/2023] Open
Abstract
The foremost objective of this work is to assess the microcapsules composition (polymer-based and polymer/clay-based) effect, on the release of rosemary essential oil into w/o medium and evaluate their antioxidant activity. Calcium alginate (CA) and calcium alginate/montmorillonite hybrid (CA-MTN) microcapsules were developed following an ionotropic crosslinking gelation and were used as host materials for the encapsulation of rosemary essential oil. The unloaded/loaded CA and hybrid CA-MTN microcapsules were characterized by Fourier transform infra-red (FT-ATR) spectroscopy, thermal analysis (TGA), scanning electron microscopy (SEM) and DPPH assay. The evaluation of the microcapsule's physicochemical properties has shown that the clay filling with montmorillonite improved the microcapsule's properties. The encapsulation efficiency improved significantly in hybrid CA-MTN microcapsules and exhibited higher values ranging from 81 for CA to 83% for hybrid CA-MTN and a loading capacity of 71 for CA and 73% for hybrid CA-MTN, owing to the large adsorption capacity of the sodic clay. Moreover, the hybrid CA-MTN microcapsules showed a time-extended release of rosemary essential oil compared to CA microcapsules. Finally, the DPPH assay displayed a higher reduction of free radicals in hybrid CA-MNT-REO (12.8%) than CA-REO (10%) loaded microcapsules. These results proved that the clay-alginate combination provides microcapsules with enhanced properties compared to the polymer-based microcapsules.
Collapse
Affiliation(s)
- Doha Berraaouan
- Physical Chemistry of Natural Substances and Process Research Team, Laboratory of Applied Chemistry and Environment (LCAE-CPSUNAP), Faculty of Sciences, Université Mohamed Premier, BV Mohammed VI BP 717, Oujda 60000, Morocco
| | - Kamal Essifi
- Physical Chemistry of Natural Substances and Process Research Team, Laboratory of Applied Chemistry and Environment (LCAE-CPSUNAP), Faculty of Sciences, Université Mohamed Premier, BV Mohammed VI BP 717, Oujda 60000, Morocco
| | - Mohamed Addi
- Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculty of Sciences, Université Mohamed Premier, BV Mohammed VI BP 717, Oujda 60000, Morocco
- Correspondence: (M.A.); (A.T.); Tel.: +212-(0)641612183 (M.A.); +212-(0)667086196 (A.T.)
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, INRAE USC1328, Campus Eure et Loir, Orleans University, 28000 Chartres, France
| | - Marie-Laure Fauconnier
- Laboratory of Chemistry of Natural Molecules, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium
| | - Abdesselam Tahani
- Physical Chemistry of Natural Substances and Process Research Team, Laboratory of Applied Chemistry and Environment (LCAE-CPSUNAP), Faculty of Sciences, Université Mohamed Premier, BV Mohammed VI BP 717, Oujda 60000, Morocco
- Correspondence: (M.A.); (A.T.); Tel.: +212-(0)641612183 (M.A.); +212-(0)667086196 (A.T.)
| |
Collapse
|
11
|
Nano-enabled agglomerates and compact: Design aspects of challenges. Asian J Pharm Sci 2023; 18:100794. [PMID: 37035131 PMCID: PMC10074506 DOI: 10.1016/j.ajps.2023.100794] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 01/20/2023] [Accepted: 01/31/2023] [Indexed: 02/24/2023] Open
Abstract
Nanoscale medicine confers passive and active targeting potential. The development of nanomedicine is however met with processing, handling and administration hurdles. Excessive solid nanoparticle aggregation and caking result in low product yield, poor particle flowability and inefficient drug administration. These are overcome by converting the nanoparticles into a microscale dosage form via agglomeration or compaction techniques. Agglomeration and compaction nonetheless predispose the nanoparticles to risks of losing their nanogeometry, surface composition or chemistry being altered and negating biological performance. This study reviews risk factors faced during agglomeration and compaction that could result in these changes to nanoparticles. The potential risk factors pertain to materials choice in nanoparticle and microscale dosage form development, and their interplay effects with process temperature, physical forces and environmental stresses. To render the physicochemical and biological behaviour of the nanoparticles unaffected by agglomeration or compaction, modes to modulate the interplay effects of material and formulation with processing and environment variables are discussed.
Collapse
|
12
|
Ullah S, Nawaz A, Farid A, Latif MS, Fareed M, Ghazanfar S, Galanakis CM, Alamri AS, Alhomrani M, Asdaq SMB. Folate-Modified Chitosan 5-Flourouraci Nanoparticles-Embedded Calcium Alginate Beads for Colon Targeted Delivery. Pharmaceutics 2022; 14:1366. [PMID: 35890262 PMCID: PMC9315928 DOI: 10.3390/pharmaceutics14071366] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 02/04/2023] Open
Abstract
Gel beads are formed when alginate acid reacts with divalent cations, particularly Ca2+. As a result of this feature, it is one of the best materials for making gel beads. Furthermore, it swells only slightly at acidic pH, resulting in stable alginate acid beads, but swells and dissolves rapidly at higher pH values, leading to pH-responsive release. Our current study aimed to embed folate-modified chitosan 5FU nanoparticles (FA-CS-5FU-NPs) into calcium alginate beads for colon-targeted delivery. Calcium alginate beads were developed successfully. Based on the method of drying, two types of beads were obtained: freeze-dried folate-modified chitosan 5FU nanoparticles-embedded beads (FA-CS-5FU-NP-Bf) and oven-dried folate-modified chitosan 5FU nanoparticles-embedded beads (FA-CS-5FU-NP-Bo). The size of (FA-CS-5FU-NP-Bf) was significantly larger than (FA-CS-5FU-NP-Bo). Swelling index (SI), erosion index (EI), and water-uptake index (WUI) of (FA-CS-5FU-NP-Bf) beads were significantly higher than FA-CS-5FU-NP-Bo beads at simulated intestinal pH. An insignificant difference was observed in the release rate of 5FU between (FA-CS-5FU-NP-Bf) and FA-CS-5FU-NP-Bo. The release rate of FA-CS-5FU-NPs was significantly higher than FA-CS-5FU-NP-Bf and FA-CS-5FU-NP-Bo. Pharmacokinetic parameters of 5FU solution, FA-CS-5FU-NPs, and FA-CS-5FU-NP-Bo were analyzed. Solution of pure 5FU showed significantly higher Cmax and lower AUC, T1/2, and Vd than both FA-CS-5FU-NPs and FA-CS-5FU-NPs-Bo, suggesting that FA-CS-5FU-NPs and FA-CS-5FU-NPs-Bo have sustained-release behavior. Biodistribution studies also show that maximum drug amounts were found in the colon from nanoparticles-embedded beads. FA-CS-5FU-NPs-Bo avoid releasing drugs in the stomach and small intestine and make them available in the colon region in higher concentrations to target the colon region specifically.
Collapse
Affiliation(s)
- Shafi Ullah
- Advanced Drug Delivery Lab, Gomal Centre of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan; (S.U.); (M.S.L.); (M.F.)
| | - Asif Nawaz
- Advanced Drug Delivery Lab, Gomal Centre of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan; (S.U.); (M.S.L.); (M.F.)
| | - Arshad Farid
- Gomal Center of Biochemistry and Biotechnology, Gomal University, Dera Ismail Khan 29050, Pakistan
| | - Muhammad Shahid Latif
- Advanced Drug Delivery Lab, Gomal Centre of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan; (S.U.); (M.S.L.); (M.F.)
| | - Muhammad Fareed
- Advanced Drug Delivery Lab, Gomal Centre of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan; (S.U.); (M.S.L.); (M.F.)
| | - Shakira Ghazanfar
- Functional Genomics and Bioinformatics, National Agricultural Research Centre, Islamabad 45500, Pakistan;
| | - Charis M. Galanakis
- Department of Research and Innovation, Galanakis Laboratories, Skalidi 34, GR-73131 Chania, Greece;
- Department of Biology, College of Science, Taif University, Taif 21944, Saudi Arabia
- Food Waste Recovery Group, ISEKI Food Association, 1190 Vienna, Austria
| | - Abdulhakeem S. Alamri
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia; (A.S.A.); (M.A.)
- Centre of Biomedical Sciences Research (CBSR), Deanship of Scientific Research, Taif University, Taif 21944, Saudi Arabia
| | - Majid Alhomrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia; (A.S.A.); (M.A.)
- Centre of Biomedical Sciences Research (CBSR), Deanship of Scientific Research, Taif University, Taif 21944, Saudi Arabia
| | | |
Collapse
|
13
|
Vitulo M, Gnodi E, Meneveri R, Barisani D. Interactions between Nanoparticles and Intestine. Int J Mol Sci 2022; 23:4339. [PMID: 35457155 PMCID: PMC9024817 DOI: 10.3390/ijms23084339] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/10/2022] [Accepted: 04/12/2022] [Indexed: 02/01/2023] Open
Abstract
The use of nanoparticles (NPs) has surely grown in recent years due to their versatility, with a spectrum of applications that range from nanomedicine to the food industry. Recent research focuses on the development of NPs for the oral administration route rather than the intravenous one, placing the interactions between NPs and the intestine at the centre of the attention. This allows the NPs functionalization to exploit the different characteristics of the digestive tract, such as the different pH, the intestinal mucus layer, or the intestinal absorption capacity. On the other hand, these same characteristics can represent a problem for their complexity, also considering the potential interactions with the food matrix or the microbiota. This review intends to give a comprehensive look into three main branches of NPs delivery through the oral route: the functionalization of NPs drug carriers for systemic targets, with the case of insulin carriers as an example; NPs for the delivery of drugs locally active in the intestine, for the treatment of inflammatory bowel diseases and colon cancer; finally, the potential concerns and side effects of the accidental and uncontrolled exposure to NPs employed as food additives, with focus on E171 (titanium dioxide) and E174 (silver NPs).
Collapse
Affiliation(s)
| | | | | | - Donatella Barisani
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (M.V.); (E.G.); (R.M.)
| |
Collapse
|
14
|
Li Y, Zhang W, Zhao R, Zhang X. Advances in oral peptide drug nanoparticles for diabetes mellitus treatment. Bioact Mater 2022; 15:392-408. [PMID: 35386357 PMCID: PMC8958389 DOI: 10.1016/j.bioactmat.2022.02.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 02/18/2022] [Accepted: 02/18/2022] [Indexed: 12/11/2022] Open
Abstract
Peptide drugs play an important role in diabetes mellitus treatment. Oral administration of peptide drugs is a promising strategy for diabetes mellitus because of its convenience and high patient compliance compared to parenteral administration routes. However, there are a series of formidable unfavorable conditions present in the gastrointestinal (GI) tract after oral administration, which result in the low oral bioavailability of these peptide drugs. To overcome these challenges, various nanoparticles (NPs) have been developed to improve the oral absorption of peptide drugs due to their unique in vivo properties and high design flexibility. This review discusses the unfavorable conditions present in the GI tract and provides the corresponding strategies to overcome these challenges. The review provides a comprehensive overview on the NPs that have been constructed for oral peptide drug delivery in diabetes mellitus treatment. Finally, we will discuss the rational application and give some suggestions that can be utilized for the development of oral peptide drug NPs. Our aim is to provide a systemic and comprehensive review of oral peptide drug NPs that can overcome the challenges in GI tract for efficient treatment of diabetes mellitus. •Oral administration of peptide drugs is a promising strategy for diabetes mellitus treatment •A series of formidable unfavorable conditions in gastrointestinal tract result in the low oral bioavailability of peptide drugs •Nanoparticles can improve the oral bioavailability of peptide drugs
Collapse
Affiliation(s)
- Yan Li
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China
| | - Wen Zhang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China
| | - Ruichen Zhao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, PR China.,School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Xin Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, PR China
| |
Collapse
|
15
|
Li S, Zhang H, Chen K, Jin M, Vu SH, Jung S, He N, Zheng Z, Lee MS. Application of chitosan/alginate nanoparticle in oral drug delivery systems: prospects and challenges. Drug Deliv 2022; 29:1142-1149. [PMID: 35384787 PMCID: PMC9004504 DOI: 10.1080/10717544.2022.2058646] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Oral drug delivery systems (ODDSs) have various advantages of simple operation and few side effects. ODDSs are highly desirable for colon-targeted therapy (e.g. ulcerative colitis and colorectal cancer), as they improve therapeutic efficiency and reduce systemic toxicity. Chitosan/alginate nanoparticles (CANPs) show strong electrostatic interaction between the carboxyl group of alginates and the amino group of chitosan which leads to shrinkage and gel formation at low pH, thereby protecting the drugs from the gastrointestinal tract (GIT) and aggressive gastric environment. Meanwhile, CANPs as biocompatible polymer, show intestinal mucosal adhesion, which could extend the retention time of drugs on inflammatory sites. Recently, CANPs have attracted increasing interest as colon-targeted oral drug delivery system for intestinal diseases. The purpose of this review is to summarize the application and treatment of CANPs in intestinal diseases and insulin delivery. And then provide a future perspective of the potential and development direction of CANPs as colon-targeted ODDSs.
Collapse
Affiliation(s)
- Shangyong Li
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, China.,Molecular Cancer Biology Laboratory, Cellular Heterogeneity Research Center, Department of Biosystem, Sookmyung Women's University, Seoul, Korea
| | - Hui Zhang
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Kaiwei Chen
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Mengfei Jin
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Son Hai Vu
- Molecular Cancer Biology Laboratory, Cellular Heterogeneity Research Center, Department of Biosystem, Sookmyung Women's University, Seoul, Korea.,Institute of Applied Sciences, Ho Chi Minh City University of Technology HUTECH, Ho Chi Minh City, Viet Nam
| | - Samil Jung
- Molecular Cancer Biology Laboratory, Cellular Heterogeneity Research Center, Department of Biosystem, Sookmyung Women's University, Seoul, Korea
| | - Ningning He
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Zhou Zheng
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resource, Qingdao, China
| | - Myeong-Sok Lee
- Molecular Cancer Biology Laboratory, Cellular Heterogeneity Research Center, Department of Biosystem, Sookmyung Women's University, Seoul, Korea
| |
Collapse
|
16
|
Preman NK, Jain S, Sanjeeva SG, Johnson RP. Alginate derived nanoassemblies in drug delivery and tissue engineering. POLYSACCHARIDE NANOPARTICLES 2022:247-280. [DOI: 10.1016/b978-0-12-822351-2.00011-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
17
|
Alfatama M, Lim LY, Wong TW. Chitosan oleate-tripolyphosphate complex-coated calcium alginate bead: Physicochemical aspects of concurrent core-coat formation. Carbohydr Polym 2021; 273:118487. [PMID: 34560934 DOI: 10.1016/j.carbpol.2021.118487] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/25/2021] [Accepted: 07/22/2021] [Indexed: 01/17/2023]
Abstract
This study designed chitosan species-coated calcium alginate beads through concurrent core-coat formation. Chitosan oleate was synthesized by carbodiimide chemistry and characterized by 1H NMR and FTIR techniques. Chitosan or chitosan oleate was coated onto the forming alginate or alginate/tripolyphosphate core using vibratory nozzle extrusion-microencapsulation approach, followed by calcium crosslinking. Chlorpheniramine maleate served as a model water-soluble drug. The molecular characteristics, size, shape, morphology, swelling, erosion, water uptake, drug content and drug release profiles of beads were evaluated. Discrete spherical coated beads were obtained through minimizing successive bead adhesion through an interplay of nozzle vibrational frequency and polymeric solution flow rate. The tripolyphosphate ions in the core possessed higher diffusional kinetics than alginate and were better able to attract chitosan species onto bead surfaces to facilitate alginate-chitosan coacervation. Amphiphilic chitosan oleate formed smaller aggregates than chitosan. It interacted with greater ease with core alginate and tripolyphosphate. The gain in alginate/tripolyphosphate interaction with chitosan oleate at the core-coat interface enhanced bead robustness against swelling and water uptake with drug release consequently dependent on the loss of alginate-drug interaction.
Collapse
Affiliation(s)
- Mulham Alfatama
- Non-Destructive Biomedical and Pharmaceutical Research Centre, Smart Manufacturing Research Institute, Universiti Teknologi MARA Selangor, 42300 Puncak Alam, Selangor, Malaysia; Particle Design Research Group, Faculty of Pharmacy, Universiti Teknologi MARA Selangor, 42300 Puncak Alam, Selangor, Malaysia; Faculty of Pharmacy, Universiti Sultan Zainal Abidin, Besut Campus, 22200, Malaysia
| | - Lee Yong Lim
- Pharmacy, School of Allied Health, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia
| | - Tin Wui Wong
- Non-Destructive Biomedical and Pharmaceutical Research Centre, Smart Manufacturing Research Institute, Universiti Teknologi MARA Selangor, 42300 Puncak Alam, Selangor, Malaysia; Particle Design Research Group, Faculty of Pharmacy, Universiti Teknologi MARA Selangor, 42300 Puncak Alam, Selangor, Malaysia; Sino-Malaysia Molecular Oncology and Traditional Chinese Medicine Delivery Joint Research Centre, Medical College, Yangzhou University, 136, Jiangyang Middle Road, Yangzhou, Jiangsu Province, China.
| |
Collapse
|
18
|
Nanocomposite sponges for enhancing intestinal residence time following oral administration. J Control Release 2021; 333:579-592. [PMID: 33838210 DOI: 10.1016/j.jconrel.2021.04.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/31/2021] [Accepted: 04/05/2021] [Indexed: 01/25/2023]
Abstract
In this work, nanocomposites that combine mucopenetrating and mucoadhesive properties in a single system are proposed as innovative strategy to increase drug residence time in the intestine following oral administration. To this aim, novel mucoadhesive chitosan (CH) sponges loaded with mucopenetrating nanoemulsions (NE) were developed via freeze-casting technique. The NE mucopenetration ability was determined studying the surface affinity and thermodynamic binding of the nanosystem with mucins. The ability of nanoparticles to penetrate across a preformed mucins layer was validated by 3D-time laps Confocal Laser Scanning Microscopy imaging. Microscopy observations (Scanning Electron Microscopy and Optical Microscopy) showed that NE participated in the structure of the sponge affecting its stability and in vitro release kinetics. When incubated with HCT 116 and Caco-2 cell lines, the NE proved to be cytocompatible over a wide concentration range. Finally, the in vivo biodistribution of the nanocomposite was evaluated after oral gavage in healthy mice. The intestinal retention of NE was highly enhanced when loaded in the sponge compared to the NE suspension. Overall, our results demonstrated that the developed nanocomposite sponge is a promising system for sustained drug intestinal delivery.
Collapse
|
19
|
Wong CYJ, Al-Salami H, Dass CR. β-Cyclodextrin-containing chitosan-oligonucleotide nanoparticles improve insulin bioactivity, gut cellular permeation and glucose consumption. J Pharm Pharmacol 2021; 73:726-739. [PMID: 33769519 DOI: 10.1093/jpp/rgaa052] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 12/08/2020] [Indexed: 01/25/2023]
Abstract
OBJECTIVES The main objective of the present study was to develop a nanoparticulate drug delivery system that can protect insulin against harsh conditions in the gastrointestinal (GI) tract. The effects of the following employed techniques, including lyophilisation, cross-linking and nanoencapsulation, on the physicochemical properties of the formulation were investigated. METHODS We herein developed a nanocarrier via ionotropic gelation by using positively charged chitosan and negatively charged Dz13Scr. The lyophilised nanoparticles with optimal concentrations of tripolyphosphate (cross-linking agent) and β-cyclodextrin (stabilising agent) were characterised by using physical and cellular assays. KEY FINDINGS The addition of cryoprotectants (1% sucrose) in lyophilisation improved the stability of nanoparticles, enhanced the encapsulation efficiency, and ameliorated the pre-mature release of insulin at acidic pH. The developed lyophilised nanoparticles did not display any cytotoxic effects in C2C12 and HT-29 cells. Glucose consumption assays showed that the bioactivity of entrapped insulin was maintained post-incubation in the enzymatic medium. CONCLUSIONS Freeze-drying with appropriate cryoprotectant could conserve the physiochemical properties of the nanoparticles. The bioactivity of the entrapped insulin was maintained. The prepared nanoparticles could facilitate the permeation of insulin across the GI cell line.
Collapse
Affiliation(s)
- Chun Yuen Jerry Wong
- School of Pharmacy and Biomedical Sciences, Curtin University, Bentley,Australia.,Curtin Health Innovation Research Institute, Bentley,Australia
| | - Hani Al-Salami
- Biotechnology and Drug Development Research Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Bentley,Australia
| | - Crispin R Dass
- School of Pharmacy and Biomedical Sciences, Curtin University, Bentley,Australia.,Curtin Health Innovation Research Institute, Bentley,Australia
| |
Collapse
|
20
|
Feng K, Li SF, Wei YS, Zong MH, Hu TG, Wu H, Han SY. Fabrication of nanostructured multi-unit vehicle for intestinal-specific delivery and controlled release of peptide. NANOTECHNOLOGY 2021; 32:245101. [PMID: 33690179 DOI: 10.1088/1361-6528/abed07] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 03/09/2021] [Indexed: 06/12/2023]
Abstract
An oral multi-unit delivery system was developed by incorporating the nanoparticle (NP) into the nanofiber mat and its efficiency for intestinal-specific delivery and controlled release of a peptide (insulin) was investigated. Initially, the influence of deacetylation degree (DD) of chitosan and ionic gelation methods on the properties of NPs was studied. High DD (95%) chitosan was attributed to higher encapsulation efficiency and stability when crosslinked with polyanion tripolyphosphate. Subsequently, the multi-unit system was fabricated using a pH-sensitive polymer (sodium alginate) as the coating layer to further encapsulate the NP. Fiber mat with an average diameter of 481 ± 47 nm could significantly decrease the burst release of insulin in acidic condition and release most amount of insulin (>60%) in the simulated intestinal medium. Furthermore, the encapsulated peptide remained in good integrity. This multi-unit carrier provides the better-designed vehicle for intestinal-specific delivery and controlled release of the peptide.
Collapse
Affiliation(s)
- Kun Feng
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, People's Republic of China
| | - Shu-Fang Li
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, People's Republic of China
| | - Yun-Shan Wei
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, People's Republic of China
| | - Min-Hua Zong
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, People's Republic of China
| | - Teng-Gen Hu
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences; Key Laboratory of Functional Foods, Ministry of Agriculture, Guangdong Key Laboratory of Agricultural Products Processing, People's Republic of China
| | - Hong Wu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, People's Republic of China
| | - Shuang-Yan Han
- College of Biosciences and Bioengineering, South China University of Technology, Guangzhou 510640, People's Republic of China
| |
Collapse
|
21
|
Wong CY, Al-Salami H, Dass CR. Fabrication techniques for the preparation of orally administered insulin nanoparticles. J Drug Target 2021; 29:365-386. [PMID: 32876505 DOI: 10.1080/1061186x.2020.1817042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The development of orally administered protein drugs is challenging due to their intrinsic unfavourable features, including large molecular size and poor chemical stability, both of which limit gastrointestinal (GI) absorption efficiency. Nanoparticles can overcome the GI barriers effectively and improve the oral bioavailability of proteins in the GI tract. They possess large surface area to volume ratio, and can facilitate the GI absorption of nanoparticles via the paracellular and transcellular routes. Nanoparticles can be prepared by various fabrication techniques that can encapsulate the fragile therapeutic proteins via hydrophobic bonding and electrostatic interaction. A desirable technique should involve minimal harsh conditions and encapsulate therapeutic proteins with preserved functionalities. The current review examines the characteristics of each preparation technique, and illustrates the examples of insulin-loaded nanoparticles that have been developed in each fabrication method. The following techniques, which include nanoprecipitation, hydrophobic conjugation, flash nanocomplexation, double emulsion, ionotropic gelation, and layer-by-layer adsorption, have been used to formulate ligand-modified nanoparticles for targeted delivery of insulin. Other techniques, including reduction, complex coacervation (polyelectrolyte complexation), hydrophobic ion pairing and emulsion solvent diffusion method, and sol-gel technology, were also discussed in the latter part of the review due to their extensive use in fabrication of insulin nanoparticles. This review also discusses the strategies that have been utilised during the formulation process to improve the stability and bioactivity of therapeutic proteins.
Collapse
Affiliation(s)
- Chun Y Wong
- School of Pharmacy and Biomedical Sciences, Curtin University, Bentley, Australia.,Curtin Health Innovation Research Institute, Bentley, Australia
| | - Hani Al-Salami
- Biotechnology and Drug Development Research Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Bentley, Australia
| | - Crispin R Dass
- School of Pharmacy and Biomedical Sciences, Curtin University, Bentley, Australia.,Curtin Health Innovation Research Institute, Bentley, Australia
| |
Collapse
|
22
|
Andretto V, Rosso A, Briançon S, Lollo G. Nanocomposite systems for precise oral delivery of drugs and biologics. Drug Deliv Transl Res 2021; 11:445-470. [PMID: 33534107 DOI: 10.1007/s13346-021-00905-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2021] [Indexed: 12/15/2022]
Abstract
Oral delivery is considered the favoured route of administration for both local and systemic delivery of active molecules. Formulation of drugs in conventional systems and nanoparticles has provided opportunities for targeting the gastrointestinal (GI) tract, increasing drug solubility and bioavailability. Despite the achievements of these delivery approaches, the development of a product with the ability of delivering drug molecules at a specific site and according to patients' needs remains a challenging endeavour. The complexity of the physicochemical properties of colloidal systems, their stability in different regions of the gastrointestinal tract, and interaction with the restrictive biological barriers hampered their success for oral precise medicine. To overcome these issues, nanoparticles have been combined with polymers to create hybrid nanosystems, namely nanocomposites. They offer enormous possibilities of structural and mechanical modifications to both nanoparticles and polymeric matrixes to generate systems with new properties, functions, and applications for oral delivery. In this review, nanocomposites' physicochemical and functional properties intended to target specific regions of the GI tract-oral cavity, stomach, small bowel, and colon-are analysed. In parallel, it is provided an insight in the nanocomposite solutions for oral delivery intended for systemic and local absorption, together with a focus on inflammatory bowel diseases (IBDs). Additional difficulties in managing IBD related to the alteration in the physiology of the intestine are described. Finally, future perspectives and opportunities for advancement in this field are discussed.
Collapse
Affiliation(s)
- Valentina Andretto
- LAGEPP UMR 5007, Univ Lyon, Université Claude Bernard Lyon 1, CNRS, 43 Boulevard du 11 Novembre 1918, 69100, Villeurbanne, France
| | - Annalisa Rosso
- LAGEPP UMR 5007, Univ Lyon, Université Claude Bernard Lyon 1, CNRS, 43 Boulevard du 11 Novembre 1918, 69100, Villeurbanne, France
| | - Stéphanie Briançon
- LAGEPP UMR 5007, Univ Lyon, Université Claude Bernard Lyon 1, CNRS, 43 Boulevard du 11 Novembre 1918, 69100, Villeurbanne, France
| | - Giovanna Lollo
- LAGEPP UMR 5007, Univ Lyon, Université Claude Bernard Lyon 1, CNRS, 43 Boulevard du 11 Novembre 1918, 69100, Villeurbanne, France.
| |
Collapse
|
23
|
Microencapsulation of black seed oil in alginate beads for stability and taste masking. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.102030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
24
|
Shaedi N, Naharudin I, Choo CY, Wong TW. Design of oral intestinal-specific alginate-vitexin nanoparticulate system to modulate blood glucose level of diabetic rats. Carbohydr Polym 2020; 254:117312. [PMID: 33357875 DOI: 10.1016/j.carbpol.2020.117312] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/23/2020] [Accepted: 10/18/2020] [Indexed: 01/20/2023]
Abstract
Vitexin of Ficus deltoidea exhibits intestinal α-glucosidase inhibitory and blood glucose lowering effects. This study designs oral intestinal-specific alginate nanoparticulate system of vitexin. Nanospray-dried alginate, alginate/stearic acid and alginate-C18 conjugate nanoparticles were prepared. Stearic acid was adopted to hydrophobize the matrix and minimize premature vitexin release in stomach, whereas C-18 conjugate as immobilized fatty acid to sustain hydrophobic effect and drug release. Nanoparticles were compacted with polyethylene glycol (PEG 3000, 10,000 and 20,000). The physicochemical, drug release, in vivo blood glucose lowering and intestinal vitexin content of nanoparticles and compact were determined. Hydrophobization of alginate nanoparticles promoted premature vitexin release. Compaction of nanoparticles with PEG minimized vitexin release in the stomach, with stearic acid loaded nanoparticles exhibiting a higher vitexin release in the intestine. The introduction of stearic acid reduced vitexin-alginate interaction, conferred alginate-stearic acid mismatch, and dispersive stearic acid-induced particle breakdown with intestinal vitexin release. Use of PEG 10,000 in compaction brought about PEG-nanoparticles interaction that negated initial vitexin release. The PEG dissolution in intestinal phase subsequently enabled particle breakdown and vitexin release. The PEG compacted nanoparticles exhibited oral intestinal-specific vitexin release, with positive blood glucose lowering and enhanced intestinal vitexin content in vivo.
Collapse
Affiliation(s)
- Nafisha Shaedi
- Non-Destructive Biomedical and Pharmaceutical Research Centre, iPROMISE, Universiti Teknologi MARA Selangor, 42300 Puncak Alam, Selangor, Malaysia; Particle Design Research Group, Faculty of Pharmacy, Universiti Teknologi MARA Selangor, 42300 Puncak Alam, Selangor, Malaysia
| | - Idanawati Naharudin
- Non-Destructive Biomedical and Pharmaceutical Research Centre, iPROMISE, Universiti Teknologi MARA Selangor, 42300 Puncak Alam, Selangor, Malaysia; Particle Design Research Group, Faculty of Pharmacy, Universiti Teknologi MARA Selangor, 42300 Puncak Alam, Selangor, Malaysia
| | - Chee Yan Choo
- Faculty of Pharmacy, Universiti Teknologi MARA Selangor, 42300 Puncak Alam, Selangor, Malaysia
| | - Tin Wui Wong
- Non-Destructive Biomedical and Pharmaceutical Research Centre, iPROMISE, Universiti Teknologi MARA Selangor, 42300 Puncak Alam, Selangor, Malaysia; Particle Design Research Group, Faculty of Pharmacy, Universiti Teknologi MARA Selangor, 42300 Puncak Alam, Selangor, Malaysia; Sino-Malaysia Molecular Oncology and Traditional Chinese Medicine Delivery Joint Research Centre, Medical College, Yangzhou University, China.
| |
Collapse
|
25
|
Choukaife H, Doolaanea AA, Alfatama M. Alginate Nanoformulation: Influence of Process and Selected Variables. Pharmaceuticals (Basel) 2020; 13:E335. [PMID: 33114120 PMCID: PMC7690787 DOI: 10.3390/ph13110335] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/19/2020] [Accepted: 10/21/2020] [Indexed: 12/13/2022] Open
Abstract
Nanocarriers are defined as structures and devices that are constructed using nanomaterials which add functionality to the encapsulants. Being small in size and having a customized surface, improved solubility and multi-functionality, it is envisaged that nanoparticles will continue to create new biomedical applications owing to their stability, solubility, and bioavailability, as well as controlled release of drugs. The type and physiochemical as well as morphological attributes of nanoparticles influence their interaction with living cells and determine the route of administration, clearance, as well as related toxic effects. Over the past decades, biodegradable polymers such as polysaccharides have drowned a great deal of attention in pharmaceutical industry with respect to designing of drug delivery systems. On this note, biodegradable polymeric nanocarrier is deemed to control the release of the drug, stabilize labile molecules from degradation and site-specific drug targeting, with the main aim of reducing the dosing frequency and prolonging the therapeutic outcomes. Thus, it is essential to select the appropriate biopolymer material, e.g., sodium alginate to formulate nanoparticles for controlled drug delivery. Alginate has attracted considerable interest in pharmaceutical and biomedical applications as a matrix material of nanocarriers due to its inherent biological properties, including good biocompatibility and biodegradability. Various techniques have been adopted to synthesize alginate nanoparticles in order to introduce more rational, coherent, efficient and cost-effective properties. This review highlights the most used and recent manufacturing techniques of alginate-based nanoparticulate delivery system, including emulsification/gelation complexation, layer-by-layer, spray drying, electrospray and electrospinning methods. Besides, the effects of the main processing and formulation parameters on alginate nanoparticles are also summarized.
Collapse
Affiliation(s)
- Hazem Choukaife
- Faculty of Pharmacy, Universiti Sultan Zainal Abidin, Besut Campus, Terengganu 22200, Malaysia;
| | - Abd Almonem Doolaanea
- Department of Pharmaceutical Technology, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Pahang, Malaysia;
| | - Mulham Alfatama
- Faculty of Pharmacy, Universiti Sultan Zainal Abidin, Besut Campus, Terengganu 22200, Malaysia;
| |
Collapse
|
26
|
Razali S, Bose A, Chong PW, Benetti C, Colombo P, Wong TW. Design of multi-particulate "Dome matrix" with sustained-release melatonin and delayed-release caffeine for jet lag treatment. Int J Pharm 2020; 587:119618. [PMID: 32673769 DOI: 10.1016/j.ijpharm.2020.119618] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/14/2020] [Accepted: 07/01/2020] [Indexed: 02/06/2023]
Abstract
Multi-particulate Dome matrix with sustained-release melatonin and delayed-release caffeine was designed to restore jet lag sleep-wake cycle. The polymeric pellets were produced using extrusion-spheronization technique and fluid-bed coated when applicable. The compact and Dome module were produced by compressing pellets with cushioning agent. Dome matrix was assembly of modules with pre-determined compact formulation and drug release characteristics. The physicochemical and in vivo pharmacokinetics of delivery systems were examined. Melatonin loaded alginate/chitosan-less matrix exhibited full drug release within 8 h gastrointestinal transit with low viscosity hydroxypropymethylcellulose as cushioning agent. The cushioning agent reduced burst drug release and omission of alginate-chitosan enabled full drug release. Delayed-release alginate-chitosan caffeine matrix was not attainable through polymer coating due to premature coat detachment. Admixing of cushioning agent high viscosity hydroxypropylmethylcellulose and high viscosity ethylcellulose (9:1 wt ratio) with coat-free caffeine loaded particulates introduced delayed-release response via hydroxypropylmethylcellulose swelled in early dissolution phase and ethylcellulose sustained matrix hydrophobicity at prolonged phase. The caffeine was released substantially in colonic fluid in response to matrix polymers being degraded by rat colonic content. Dome matrix with dual drug release kinetics and modulated pharmacokinetics is produced to introduce melatonin-induced sleep phase then caffeine-stimulated wake phase.
Collapse
Affiliation(s)
- Sharipah Razali
- Non-Destructive Biomedical and Pharmaceutical Research Centre, iPROMISE, Universiti Teknologi MARA Selangor, 42300 Puncak Alam, Selangor, Malaysia; Particle Design Research Group, Faculty of Pharmacy, Universiti Teknologi MARA Selangor, 42300 Puncak Alam, Selangor, Malaysia
| | - Anirbandeep Bose
- Taab Biostudy Services, Jadavpur University, Jadavpur, Kolkata 32, India
| | - Pee Win Chong
- InQpharm Group Sdn Bhd, Plaza Mont Kiara, 2, Jalan Kiara, 50480 Kuala Lumpur, Malaysia
| | - Camillo Benetti
- Non-Destructive Biomedical and Pharmaceutical Research Centre, iPROMISE, Universiti Teknologi MARA Selangor, 42300 Puncak Alam, Selangor, Malaysia; Dipartimento di Farmacia, Università degli Studi di Parma, Parma, Italy
| | - Paolo Colombo
- Dipartimento di Farmacia, Università degli Studi di Parma, Parma, Italy
| | - Tin Wui Wong
- Non-Destructive Biomedical and Pharmaceutical Research Centre, iPROMISE, Universiti Teknologi MARA Selangor, 42300 Puncak Alam, Selangor, Malaysia; Particle Design Research Group, Faculty of Pharmacy, Universiti Teknologi MARA Selangor, 42300 Puncak Alam, Selangor, Malaysia.
| |
Collapse
|
27
|
Wong CY, Martinez J, Zhao J, Al-Salami H, Dass CR. Development of orally administered insulin-loaded polymeric-oligonucleotide nanoparticles: statistical optimization and physicochemical characterization. Drug Dev Ind Pharm 2020; 46:1238-1252. [PMID: 32597264 DOI: 10.1080/03639045.2020.1788061] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
INTRODUCTION Therapeutic peptides are administered via parenteral route due to poor absorption in the gastrointestinal (GI) tract, instability in gastric acid, and GI enzymes. Polymeric drug delivery systems have achieved significant interest in pharmaceutical research due to its feasibility in protecting proteins, tissue targeting, and controlled drug release pattern. MATERIALS AND METHODS In this study, the size, polydispersity index, and zeta potential of insulin-loaded nanoparticles were characterized by dynamic light scattering and laser Doppler micro-electrophoresis. The main and interaction effects of chitosan concentration and Dz13Scr concentration on the physicochemical properties of the prepared insulin-loaded nanoparticles (size, polydispersity index, and zeta potential) were evaluated statistically using analysis of variance. A robust procedure of reversed-phase high-performance liquid chromatography was developed to quantify insulin release in simulated GI buffer. Results and discussion: We reported on the effect of two independent parameters, including polymer concentration and oligonucleotide concentration, on the physical characteristics of particles. Chitosan concentration was significant in predicting the size of insulin-loaded CS-Dz13Scr particles. In terms of zeta potential, both chitosan concentration and squared term of chitosan were significant factors that affect the surface charge of particles, which was attributed to the availability of positively-charged amino groups during interaction with negatively-charged Dz13Scr. The excipients used in this study could fabricate nanoparticles with negligible toxicity in GI cells and skeletal muscle cells. The developed formulation could conserve the physicochemical properties after being stored for 1 month at 4 °C. CONCLUSION The obtained results revealed satisfactory results for insulin-loaded CS-Dz13Scr nanoparticles (159.3 nm, pdi 0.331, -1.08 mV). No such similar study has been reported to date to identify the main and interactive significance of the above parameters for the characterization of insulin-loaded polymeric-oligonucleotide nanoparticles. This research is of importance for the understanding and development of protein-loaded nanoparticles for oral delivery.
Collapse
Affiliation(s)
- Chun Y Wong
- School of Pharmacy and Biomedical Sciences, Curtin University, Bentley, Australia.,Curtin Health Innovation Research Institute, Bentley, Australia
| | - Jorge Martinez
- School of Pharmacy and Biomedical Sciences, Curtin University, Bentley, Australia
| | - Jian Zhao
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK.,NIHR Bristol Biomedical Research Centre, University of Bristol, Bristol, UK.,Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Hani Al-Salami
- Biotechnology and Drug Development Research Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Bentley, Australia
| | - Crispin R Dass
- School of Pharmacy and Biomedical Sciences, Curtin University, Bentley, Australia.,Curtin Health Innovation Research Institute, Bentley, Australia
| |
Collapse
|
28
|
Verma ML, Dhanya B, Sukriti, Rani V, Thakur M, Jeslin J, Kushwaha R. Carbohydrate and protein based biopolymeric nanoparticles: Current status and biotechnological applications. Int J Biol Macromol 2020; 154:390-412. [DOI: 10.1016/j.ijbiomac.2020.03.105] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/03/2020] [Accepted: 03/12/2020] [Indexed: 12/14/2022]
|
29
|
Wong CY, Al-Salami H, Dass CR. Formulation and characterisation of insulin-loaded chitosan nanoparticles capable of inducing glucose uptake in skeletal muscle cells in vitro. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101738] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
30
|
Feng K, Huang RM, Wu RQ, Wei YS, Zong MH, Linhardt RJ, Wu H. A novel route for double-layered encapsulation of probiotics with improved viability under adverse conditions. Food Chem 2020; 310:125977. [DOI: 10.1016/j.foodchem.2019.125977] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 11/07/2019] [Accepted: 11/28/2019] [Indexed: 01/08/2023]
|
31
|
Wong CY, Al-Salami H, Dass CR. Lyophilisation Improves Bioactivity and Stability of Insulin-Loaded Polymeric-Oligonucleotide Nanoparticles for Diabetes Treatment. AAPS PharmSciTech 2020; 21:108. [PMID: 32215761 DOI: 10.1208/s12249-020-01648-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 02/21/2020] [Indexed: 12/23/2022] Open
Abstract
The oral bioavailability of therapeutic proteins is limited by the gastrointestinal barriers. Encapsulation of labile proteins into nanoparticles is a promising strategy. In order to improve the stability of nanoparticles, lyophilisation has been used to remove water molecules from the suspension. Although various cryoprotections were employed in the preparation of lyophilised nanoparticles, the selection of cryoprotectant type and concentration in majority of the developed formulation was not justified. In this study, nanoparticles were fabricated by cationic chitosan and anionic Dz13Scr using complex coacervation. The effect of cryoprotectant types (mannitol, sorbitol, sucrose and trehalose) and their concentrations (1, 3, 5, 7, 10% w/v) on physiochemical properties of nanoparticles were measured. Cellular assays were performed to investigate the impact of selected cryoprotectant on cytotoxicity, glucose consumption, oral absorption mechanism and gastrointestinal permeability. The obtained results revealed that mannitol (7% w/v) could produce nanoparticles with small size (313.2 nm), slight positive charge and uniform size distribution. The addition of cryoprotectant could preserve the bioactivity of entrapped insulin and improve the stability of nanoparticles against mechanical stress during lyophilisation. The gastrointestinal absorption of nanoparticles is associated with both endocytic and paracellular pathways. With the use of 7% mannitol, lyophilised nanoparticles induced a significant glucose uptake in C2C12 cells. This work illustrated the importance of appropriate cryoprotectant in conservation of particle physiochemical properties, structural integrity and bioactivity. An incompatible cryoprotectant and inappropriate concentration could lead to cake collapse and formation of heterogeneous particle size populations.
Collapse
|
32
|
Wong CY, Al-Salami H, Dass CR. Cellular assays and applied technologies for characterisation of orally administered protein nanoparticles: a systematic review. J Drug Target 2020; 28:585-599. [DOI: 10.1080/1061186x.2020.1726356] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Chun Y. Wong
- School of Pharmacy and Biomedical Science, Curtin University, Bentley, Australia
- Curtin Health Innovation Research Institute, Bentley, Australia
| | - Hani. Al-Salami
- School of Pharmacy and Biomedical Science, Curtin University, Bentley, Australia
- Curtin Health Innovation Research Institute, Bentley, Australia
- Biotechnology and Drug Development Research Laboratory, Curtin University, Bentley, Australia
| | - Crispin R. Dass
- School of Pharmacy and Biomedical Science, Curtin University, Bentley, Australia
- Curtin Health Innovation Research Institute, Bentley, Australia
| |
Collapse
|
33
|
Rezaie Shirmard L, Ghofrani M, Bahari Javan N, Bayrami S, Tavassoli A, Rezaie A, Amini M, Kebriaee-Zadeh A, Rouini MR, Dinarvand R, Rafiee-Tehrani M, Dorkoosh FA. Improving the in-vivo biological activity of fingolimod loaded PHBV nanoparticles by using hydrophobically modified alginate. Drug Dev Ind Pharm 2020; 46:318-328. [PMID: 31976771 DOI: 10.1080/03639045.2020.1721524] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Uncontrolled distribution of nanoparticles (NPs) within the body can significantly decrease the efficiency of drug therapy and is considered among the main restrictions of NPs application. The aim of this study was to develop a depot combination delivery system (CDS) containing fingolimod loaded poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) NPs dispersed into a matrix of oleic acid-grafted-aminated alginate (OA-g-AAlg) to minimize the nonspecific biodistribution (BD) of PHBV NPs. OA-g-AAlg was synthesized in two step; First, Alg was aminated by using adipic dihydrazide (ADH). The degree of hyrazide group substitution of Alg was determined by trinitro-benzene-sulfonic acid (TNBS) assay. Second, OA was attached to AAlg through formation of an amide bond. Chemical structure of OA-g-AAlg was confirmed with FTIR and HNMR spectroscopy. Furthermore, rheological properties of OA-g-AAlg with different grafting ratios were evaluated. In-vitro release studies indicated that 47% of fingolimod was released from the CDS within 28 days. Blood and tissue samples were analyzed using liquid chromatography/tandem mass spectrometry following subcutaneous (SC) injection of fingolimod-CDS into Wistar rats. The elimination phase half-life of CDS-fingolimod was significantly higher than that of fingolimod (∼32 d vs. ∼20 h). To investigate the therapeutic efficacy, lymphocyte count was assessed over a 40 day period in Wistar rats. Peripheral blood lymphocyte count decreased from baseline by 27 ± 8% in 2 days after injection. Overall, the designed CDS represented promising results in improving the pharmacokinetic properties of fingolimod. Therefore, we believe that this sustained release formulation has a great potential to be applied to delivery of various therapeutics.
Collapse
Affiliation(s)
- Leila Rezaie Shirmard
- Department of Pharmaceutics, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mahdieh Ghofrani
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Nika Bahari Javan
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Samane Bayrami
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Abdollah Tavassoli
- Department of Analytical chemistry, University of Mazandaran, Babolsar, Iran
| | - Amir Rezaie
- School of Dentistry, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mohsen Amini
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Drug Design and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Kebriaee-Zadeh
- Department of Pharmacoeconomy and Pharmaceutical Administration, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad-Reza Rouini
- Biopharmaceutics and Pharmacokinetic Division, Department of Pharmaceutics, Faculty of Pharmacy, University of Medical Sciences, Tehran, Iran
| | - Rassoul Dinarvand
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Morteza Rafiee-Tehrani
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Farid Abedin Dorkoosh
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Medical Biomaterial Research Centre (MBRC), Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
34
|
Xie YL, Jiang W, Li F, Zhang Y, Liang XY, Wang M, Zhou X, Wu SY, Zhang CH. Controlled Release of Spirotetramat Using Starch-Chitosan-Alginate-Encapsulation. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 104:149-155. [PMID: 31784766 DOI: 10.1007/s00128-019-02752-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 11/15/2019] [Indexed: 06/10/2023]
Abstract
This study was intended to develop an environment-friendly controlled release system for spirotetramat in an alginate matrix. Four formulations, starch-chitosan-calcium alginate (SCCA), starch-calcium alginate (SCA), chitosan-calcium alginate (CCA), and calcium alginate (CA) complex gel beads, were prepared by the extrusion-exogenous gelation method. The properties of the formulations were studied. The results showed that the release behaviors of the formulations in water could be well described by the logistic model, and the release occurred through Fickian diffusion. Among the four formulations, SCCA showed the highest entrapment efficiency, drug loading and the slowest release rate. Degradation studies revealed that the SCCA formulation exhibited an obvious slower degradation rate of spirotetramat in soils than the commercially available formulation. The estimated half-life of the SCCA formulation was 2.31, 3.25, and 4.51 days in waterloggogenic paddy soil, purplish soil, and montmorillonite, respectively, when the soils were moistened to 60% of its dry weight. This study provided a possible approach to prolong the duration of spirotetramat and to reduce environmental contamination.
Collapse
Affiliation(s)
- Yan-Li Xie
- College of Ecology and Environment, Hainan University, Haikou, 570228, China
- Analysis and Testing Center, Hainan University, Haikou, 570228, China
- Laboratory of Quality and Safety Risk Assessment for Agro-Products (Haikou), Ministry of Agriculture, Haikou, 571101, China
| | - Wayne Jiang
- Department of Entomology, Michigan State University, East Lansing, MI, 48824, USA
| | - Fen Li
- College of Plant Protection, Hainan University, Haikou, 570228, China
| | - Yu Zhang
- Laboratory of Quality and Safety Risk Assessment for Agro-Products (Haikou), Ministry of Agriculture, Haikou, 571101, China
- College of Plant Protection, Hainan University, Haikou, 570228, China
| | - Xiao-Yu Liang
- Laboratory of Quality and Safety Risk Assessment for Agro-Products (Haikou), Ministry of Agriculture, Haikou, 571101, China
- College of Plant Protection, Hainan University, Haikou, 570228, China
| | - Meng Wang
- Laboratory of Quality and Safety Risk Assessment for Agro-Products (Haikou), Ministry of Agriculture, Haikou, 571101, China
- College of Plant Protection, Hainan University, Haikou, 570228, China
| | - Xueqing Zhou
- Analysis and Testing Center, Hainan University, Haikou, 570228, China
- Laboratory of Quality and Safety Risk Assessment for Agro-Products (Haikou), Ministry of Agriculture, Haikou, 571101, China
| | - Shao-Ying Wu
- College of Plant Protection, Hainan University, Haikou, 570228, China.
| | - Cheng-Hui Zhang
- Laboratory of Quality and Safety Risk Assessment for Agro-Products (Haikou), Ministry of Agriculture, Haikou, 571101, China.
| |
Collapse
|
35
|
Khursheed R, Singh SK, Wadhwa S, Kapoor B, Gulati M, Kumar R, Ramanunny AK, Awasthi A, Dua K. Treatment strategies against diabetes: Success so far and challenges ahead. Eur J Pharmacol 2019; 862:172625. [DOI: 10.1016/j.ejphar.2019.172625] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 08/11/2019] [Accepted: 08/20/2019] [Indexed: 12/18/2022]
|
36
|
Andreani T, Fangueiro JF, Severino P, Souza ALRD, Martins-Gomes C, Fernandes PMV, Calpena AC, Gremião MP, Souto EB, Silva AM. The Influence of Polysaccharide Coating on the Physicochemical Parameters and Cytotoxicity of Silica Nanoparticles for Hydrophilic Biomolecules Delivery. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1081. [PMID: 31357658 PMCID: PMC6723031 DOI: 10.3390/nano9081081] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 07/22/2019] [Accepted: 07/25/2019] [Indexed: 01/09/2023]
Abstract
The present work reports the effect of polysaccharides (chitosan and sodium alginate) on silica nanoparticles (SiNP) for hydrophilic molecules delivery taking insulin as model drug. The influence of tetraethyl orthosilicate (TEOS) and homogenization speed on SiNP properties was assessed by a 22 factorial design achieving as optimal parameters: 0.43 mol/L of TEOS and homogenization speed of 5000 rpm. SiNP mean particle size (Z-Ave) was of 256.6 nm and polydispersity index (PI) of 0.218. SiNP coated with chitosan (SiNP-CH) or sodium alginate (SiNP-SA) increased insulin association efficacy; reaching 84.6% (SiNP-SA) and 90.8% (SiNP-CH). However, coated SiNP released 50%-60% of the peptide during the first 45 min at acidic environment, while uncoated SiNP only released 30%. Similar results were obtained at pH 6.8. The low Akaike's (AIC) values indicated that drug release followed Peppas model for SiNP-SA and second order for uncoated SiNP and SiNP-CH (pH 2.0). At pH 6.8, the best fitting was Boltzmann for Ins-SiNP. However, SiNP-CH and SiNP-SA showed a first-order behavior. Cytotoxicity of nanoparticles, assessed in Caco-2 and HepG2 cells, showed that 100 to 500 µg/mL SiNP-CH and SiNP-SA slightly decreased cell viability, comparing with SiNP. In conclusion, coating SiNP with selected polysaccharides influenced the nanoparticles physicochemical properties, the insulin release, and the effect of these nanoparticles on cell viability.
Collapse
Affiliation(s)
- Tatiana Andreani
- CITAB - Centre for Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes e Alto Douro, Quinta de Prados, 5001-801 Vila Real, Portugal.
- Department of Biology and Environment, University of Trás-os-Montes e Alto Douro, 5001-801 Vila Real, Portugal.
- CIQUP - Research Center in Chemistry, Department of Chemistry and Biochemistry, Faculty of Sciences, Porto University, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal.
| | - Joana F Fangueiro
- CITAB - Centre for Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes e Alto Douro, Quinta de Prados, 5001-801 Vila Real, Portugal
| | - Patrícia Severino
- Institute of Technology and Research, University of Tiradentes, Avenida Murilo Dantas, Farolândia, Aracaju, Brazil
| | - Ana Luiza R de Souza
- Faculty of Pharmaceutical Sciences, Universidade Estadual Paulista, UNESP, Rodovia Araraquara-Jau, Km. 01, Araraquara, São Paulo, Brazil
| | - Carlos Martins-Gomes
- CITAB - Centre for Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes e Alto Douro, Quinta de Prados, 5001-801 Vila Real, Portugal
- Department of Biology and Environment, University of Trás-os-Montes e Alto Douro, 5001-801 Vila Real, Portugal
| | - Paula M V Fernandes
- CIQUP - Research Center in Chemistry, Department of Chemistry and Biochemistry, Faculty of Sciences, Porto University, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Ana C Calpena
- Biopharmacy and Pharmacokinetic Unit, Pharmacy and Pharmaceutical Technology Department, School of Pharmacy, University of Barcelona, Av. Joan XXIII, s/n, 8028 Barcelona, Spain
| | - Maria P Gremião
- Faculty of Pharmaceutical Sciences, Universidade Estadual Paulista, UNESP, Rodovia Araraquara-Jau, Km. 01, Araraquara, São Paulo, Brazil
| | - Eliana B Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra (FFUC), Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal.
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar 4710-057 Braga, Portugal.
| | - Amélia M Silva
- CITAB - Centre for Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes e Alto Douro, Quinta de Prados, 5001-801 Vila Real, Portugal.
- Department of Biology and Environment, University of Trás-os-Montes e Alto Douro, 5001-801 Vila Real, Portugal.
| |
Collapse
|