1
|
Shamul JG, Wang Z, Gong H, Ou W, White AM, Moniz-Garcia DP, Gu S, Clyne AM, Quiñones-Hinojosa A, He X. Meta-analysis of the make-up and properties of in vitro models of the healthy and diseased blood-brain barrier. Nat Biomed Eng 2025; 9:566-598. [PMID: 39304761 PMCID: PMC11922799 DOI: 10.1038/s41551-024-01250-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/08/2024] [Indexed: 09/22/2024]
Abstract
In vitro models of the human blood-brain barrier (BBB) are increasingly used to develop therapeutics that can cross the BBB for treating diseases of the central nervous system. Here we report a meta-analysis of the make-up and properties of transwell and microfluidic models of the healthy BBB and of BBBs in glioblastoma, Alzheimer's disease, Parkinson's disease and inflammatory diseases. We found that the type of model, the culture method (static or dynamic), the cell types and cell ratios, and the biomaterials employed as extracellular matrix are all crucial to recapitulate the low permeability and high expression of tight-junction proteins of the BBB, and to obtain high trans-endothelial electrical resistance. Specifically, for models of the healthy BBB, the inclusion of endothelial cells and pericytes as well as physiological shear stresses (~10-20 dyne cm-2) are necessary, and when astrocytes are added, astrocytes or pericytes should outnumber endothelial cells. We expect this meta-analysis to facilitate the design of increasingly physiological models of the BBB.
Collapse
Affiliation(s)
- James G Shamul
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
- RNA Mediated Gene Regulation Section, RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Zhiyuan Wang
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Hyeyeon Gong
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Wenquan Ou
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Alisa M White
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | | | - Shuo Gu
- RNA Mediated Gene Regulation Section, RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Alisa Morss Clyne
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
- Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD, USA
- Brain and Behavior Institute, University of Maryland, College Park, MD, USA
| | | | - Xiaoming He
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA.
- Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD, USA.
- Brain and Behavior Institute, University of Maryland, College Park, MD, USA.
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD, USA.
| |
Collapse
|
2
|
Song Z, Chen H, Wang X, Zhang Z, Li H, Zhao H, Liu Y, Han Q, Zhang J. Napabucasin-loaded PLGA nanoparticles trigger anti-HCC immune responses by metabolic reprogramming of tumor-associated macrophages. J Transl Med 2024; 22:1125. [PMID: 39707412 DOI: 10.1186/s12967-024-05917-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/25/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND JAK/STAT3 is one of the critical signaling pathways involved in the occurrence and development of hepatocellular carcinoma (HCC). BBI608 (Napabucasin), as a novel small molecule inhibitor of STAT3, has shown previously excellent anti-HCC effects in vitro and in mouse models. However, low bioavailability, high cytotoxicity and other shortcomings limit its clinical application. In this study, PLGA was selected to prepare Napabucasin PLGA nanoparticles (NPs) by solvent evaporation method, overcoming these limitations and improving the passive targeting effect that nanoparticle mediated. Base on this, we systematically evaluated the anti-HCC effect of Napabucasin-PLGA NPs and explored the underlying mechanisms. METHODS Napabucasin-PLGA NPs were prepared by solvent evaporation method. CCK-8 assay, Annexin V/PI double staining, RT-qPCR, colony formation assay, and Western blotting were performed to evaluate the anti-HCC effect of Napabucasin-PLGA NPs in vitro. Proliferation assay and migration assay were used to detect the effects of Napabucasin-PLGA NPs-treated HCC-TAMs on tumor biological characteristics of HCC cells. Flow cytometry was used to detect anti-HCC immune responses induced by Napabucasin-PLGA NPs in vivo. RESULTS Our results demonstrated that Napabucasin-PLGA NPs could improve the bioavailability of Napabucasin and enhance Napabucasin-mediated the anti-HCC effects in vitro and in vivo with no significant drug toxicity. In addition to the direct inhibitory effects on the tumor biological characteristics of HCC cells, Napabucasin-PLGA NPs could promote the polarization of macrophages from tumor-promoting M2-type to anti-tumor M1-type, improving the tumor immune microenvironment and augmenting T cell-mediated anti-tumor responses. The underlining mechanisms showed Napabucasin-PLGA NPs suppressed the STAT3/FAO signaling axis in HCC-induced tumor-associated macrophages (TAMs). CONCLUSIONS These findings demonstrated Napabucasin-PLGA NPs is a potential therapeutic candidate for HCC, and provided a new theoretical and experimental basis for further development and clinical application of Napabucasin.
Collapse
Affiliation(s)
- Zhenwei Song
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Hongfei Chen
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Xueyao Wang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Zhiyue Zhang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Hui Li
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Huajun Zhao
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Yang Liu
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Qiuju Han
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Jian Zhang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, China.
| |
Collapse
|
3
|
Shahi M, Pringle S, Morris M, Garcia DM, Quiñones-Hinojosa A, Cooks RG. Detection of IDH mutation in glioma by desorption electrospray ionization (DESI) tandem mass spectrometry. Sci Rep 2024; 14:26865. [PMID: 39500924 PMCID: PMC11538546 DOI: 10.1038/s41598-024-77044-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/18/2024] [Indexed: 11/08/2024] Open
Abstract
Desorption electrospray ionization (DESI) tandem mass spectrometry (MS) is used to assess mutation status of isocitrate dehydrogenase (IDH) in human gliomas. Due to the diffuse nature of gliomas, total gross resection is not normally achieved during surgery, leading to tumor recurrence. The mutation status of IDH has clinical significance due to better prognosis in IDH-mutant patients. The mutant IDH converts alpha-ketoglutaric acid (α-KG) into 2-hydroxyglutarate (2HG), which accumulates abnormally in cells. Immunohistochemical staining (IHC) and genetic testing, the gold standards, are incompatible with intraoperative applications but DESI tandem mass spectrometry (MS/MS) can be used to assess the mutation status of IDH enzyme from tissue intraoperatively. Here, on off-line evaluation is made of the performance of two different types of mass spectrometers in characterization of IDH mutation status. The intensity of 2HG is measured against glutamate (Glu), an intrinsic reference molecule, in both tandem MS measurements. In both cases using DESI clear separation between IDH-mutant (mut) and IDH-wildtype (wt) samples (p < 0.0001) is observed, despite the short analysis time. Due to the higher detection sensitivity, multiple reaction monitoring experiments using a triple quadrupole show slightly better performance compared to product ion MS/MS performed on a simple linear ion trap. Both DESI-MS platforms are capable of providing information on IDH mutation status, which might in future be used at the time of surgery to support decision-making on resection regions, especially at tumor margins.
Collapse
Affiliation(s)
- Mahdiyeh Shahi
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | | | | | | | | | - R Graham Cooks
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
4
|
Al‐Kharboosh R, Bechtle A, Tzeng SY, Zheng J, Mondal SK, Wilson DR, Perez‐Vega C, Green JJ, Quiñones‐Hinojosa A. Therapeutic potential and impact of nanoengineered patient-derived mesenchymal stem cells in a murine resection and recurrence model of human glioblastoma. Bioeng Transl Med 2024; 9:e10675. [PMID: 39545093 PMCID: PMC11558202 DOI: 10.1002/btm2.10675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 11/17/2024] Open
Abstract
Confounding results of engineered mesenchymal stem cells (MSCs) used as cellular vehicles has plagued technologies whereby success or failure of novel approaches may be dismissed or inaccurately ascribed solely to the biotechnology platform rather than suitability of the human donor. Polymeric materials were screened for non-viral engineering of MSCs from multiple human donors to deliver bone morphogenic protein-4 (BMP4), a protein previously investigated in clinical trials for glioblastoma (GBM) to combat a subpopulation of highly invasive and tumorigenic clones. A "smart technology" that target the migratory and stem-like nature of GBM will require: (1) a cellular vehicle (MSC) which can scavenge and target residual cells left behind after surgical debulking and deliver; (2) anti-glioma cargo (BMP4). Multiple MSC donors are safely engineered, though varied in susceptibility to accept BMP4 due to intrinsic characteristics revealed by their molecular signatures. Efficiency is compared via secretion, downstream signaling, differentiation, and anti-proliferative properties across all donors. In a clinically relevant resection and recurrence model of patient-derived human GBM, we demonstrate that nanoengineered MSCs are not "donor agnostic" and efficacy is influenced by the inherent suitability of the MSC to the cargo. Therefore, donor profiles hold greater influence in determining downstream outcomes than the technical capabilities of the engineering technology.
Collapse
Affiliation(s)
- Rawan Al‐Kharboosh
- Department of NeurosurgeryMayo ClinicJacksonvilleFloridaUSA
- Department of NeuroscienceMayo Clinic Graduate SchoolJacksonvilleFloridaUSA
- AtPoint tx Co.WashingtonDistrict of ColumbiaUSA
| | - Alex Bechtle
- Department of NeurosurgeryMayo ClinicJacksonvilleFloridaUSA
| | - Stephany Y. Tzeng
- Department of Biomedical EngineeringJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Johns Hopkins Translational Immuno Engineering Center, Translational Tissue Engineering Center, and Institute for NanobiotechnologyJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Jiaying Zheng
- Department of NeuroscienceMayo Clinic Graduate SchoolJacksonvilleFloridaUSA
| | | | - David R. Wilson
- Department of Biomedical EngineeringJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Johns Hopkins Translational Immuno Engineering Center, Translational Tissue Engineering Center, and Institute for NanobiotechnologyJohns Hopkins UniversityBaltimoreMarylandUSA
| | | | - Jordan J. Green
- Department of Biomedical EngineeringJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Johns Hopkins Translational Immuno Engineering Center, Translational Tissue Engineering Center, and Institute for NanobiotechnologyJohns Hopkins UniversityBaltimoreMarylandUSA
- Departments of Neurosurgery, Oncology, Ophthalmology, Materials Science & Engineering, and Chemical & Biomolecular EngineeringJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | | |
Collapse
|
5
|
Huang HC, Wang TY, Rousseau J, Orlando M, Mungaray M, Michaud C, Plaisier C, Chen ZB, Wang KC. Biomimetic nanodrug targets inflammation and suppresses YAP/TAZ to ameliorate atherosclerosis. Biomaterials 2024; 306:122505. [PMID: 38359507 PMCID: PMC11479593 DOI: 10.1016/j.biomaterials.2024.122505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 01/21/2024] [Accepted: 02/07/2024] [Indexed: 02/17/2024]
Abstract
Atherosclerosis, a chronic inflammatory disease, is the primary cause of myocardial infarction and ischemic stroke. Recent studies have demonstrated that dysregulation of yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding domain (TAZ) contributes to plaque development, making YAP/TAZ potential therapeutic targets. However, systemic modulation of YAP/TAZ expression or activities risks serious off-target effects, limiting clinical applicability. To address the challenge, this study develops monocyte membrane-coated nanoparticles (MoNP) as a targeted delivery system for activated and inflamed endothelium lining the plaque surface. The MoNP system is used to deliver verteporfin (VP), aimed at inhibiting YAP/TAZ specifically within arterial regions prone to atherosclerosis. The results reveal that MoNP significantly enhance payload delivery to inflamed endothelial cells (EC) while avoiding phagocytic cells. When administered in mice, MoNP predominantly accumulate in intima of the atheroprone artery. MoNP-mediated delivery of VP substantially reduces YAP/TAZ expression, thereby suppressing inflammatory gene expression and macrophage infiltration in cultured EC and mouse arteries exposed to atherogenic stimuli. Importantly, this targeted VP nanodrug effectively decreases plaque development in mice without causing noticeable histopathological changes in major organs. Collectively, these findings demonstrate a lesion-targeted and pathway-specific biomimetic nanodrug, potentially leading to safer and more effective treatments for atherosclerosis.
Collapse
Affiliation(s)
- Hui-Chun Huang
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, 85287, USA
| | - Ting-Yun Wang
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, 85287, USA; School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, 85287, USA
| | - Joshua Rousseau
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, 85287, USA
| | - Mark Orlando
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, 85287, USA
| | - Michelle Mungaray
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, 85287, USA
| | - Chamonix Michaud
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, 85287, USA
| | - Christopher Plaisier
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, 85287, USA
| | - Zhen Bouman Chen
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA, 91010, USA
| | - Kuei-Chun Wang
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, 85287, USA.
| |
Collapse
|
6
|
Perez-Vega C, Akinduro OO, Ruiz-Garcia HJ, Ghaith AKA, Almeida JP, Jentoft ME, Mahajan A, Janus JR, Bendok BR, Choby GW, Middlebrooks EH, Trifiletti DM, Chaichana KL, Laack NN, Quinones-Hinojosa A, Van Gompel JJ. Extent of Surgical Resection as a Predictor of Tumor Progression in Skull Base Chordomas: A Multicenter Volumetric Analysis. World Neurosurg 2024; 181:e620-e627. [PMID: 37898264 DOI: 10.1016/j.wneu.2023.10.101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/19/2023] [Accepted: 10/21/2023] [Indexed: 10/30/2023]
Abstract
INTRODUCTION Skull-base chordomas are aggressive tumors with a propensity for recurrence/progression. Even with standard of care (SoC), 5-year recurrence rates are variable (19%-54%). This high recurrence/progression rate correlates with increased morbidity and mortality. We sought to analyze a multicenter cohort of skull base chordomas to identify predictors of progression in patients receiving SoC. METHODS The [Blinded]-Neurosurgery data registry was queried for skull base chordomas treated from 2008-2020. Patients with the histopathologic diagnosis of chordoma were included. The cohort was composed of patients with preoperative and postoperative magnetic resonance imaging. Tumor volume and radiologic characteristics were obtained from axial T2 sequences using a Digital Imaging and Communications in Medicine viewer. Survival analysis was performed using Kaplan-Meier method, and time-to-event multivariate regression was performed to identify independent predictors of progression. RESULTS The cohort included 195 patients, of which 66 patients met inclusion criteria; median age was 44, and 28 (42%) were females. Fifty-four (82%) received SoC, 7 (11%) resection only, and 5 (8%) radiotherapy only. Median preoperative and postoperative tumor volumes were 11.55 cm3 (0.33-54.89) and 0.34 cm3 (0-42.52), respectively. Recurrence rate with SoC was 37%. Postoperative tumor volume (P = 0.010) correlated with progression. A postoperative volume of >4.9 cm3 (P = 0.044), ≤81.3% of tumor resection (P = 0.02), and lower-clivus location (P < 0.005) correlated with decreased time to progression. CONCLUSIONS Skull base chordomas can be challenging to resect. Even though maximal resection and radiotherapy improve rate of tumor progression, many of these lesions eventually recur. We have identified a postoperative tumor volume of ≥4.9 cm3 and extent of resection of ≤81.3% in this cohort as predictors of progression in patients receiving SoC.
Collapse
Affiliation(s)
- Carlos Perez-Vega
- Department of Neurologic Surgery, Mayo Clinic, Jacksonville, Florida, USA
| | | | | | | | - Joao P Almeida
- Department of Neurologic Surgery, Mayo Clinic, Jacksonville, Florida, USA
| | - Mark E Jentoft
- Department of Lab Medicine and Pathology, Jacksonville, Florida, USA
| | - Anita Mahajan
- Department of Radiation Oncology, Rochester, Minnesota, USA
| | | | | | - Garret W Choby
- Department of Otolaryngology, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | | | - Nadia N Laack
- Department of Radiation Oncology, Rochester, Minnesota, USA
| | | | - Jamie J Van Gompel
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota, USA.
| |
Collapse
|
7
|
Osama M, Essibayi MA, Osama M, Ibrahim IA, Nasr Mostafa M, Şakir Ekşi M. The impact of interaction between verteporfin and yes-associated protein 1/transcriptional coactivator with PDZ-binding motif-TEA domain pathway on the progression of isocitrate dehydrogenase wild-type glioblastoma. J Cent Nerv Syst Dis 2023; 15:11795735231195760. [PMID: 37600236 PMCID: PMC10439684 DOI: 10.1177/11795735231195760] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 08/02/2023] [Indexed: 08/22/2023] Open
Abstract
Verteporfin and 5-ALA are used for visualizing malignant tissue components in different body tumors and as photodynamic therapy in treating isocitrate dehydrogenase (IDH) wild-type glioblastoma (GBM). Additionally, verteporfin interferes with Yes-associated protein 1 (YAP)/Transcriptional coactivator with PDZ-binding motif - TEA domain (TAZ-TEAD) pathway, thus inhibiting the downstream effect of these oncogenes and reducing the malignant properties of GBM. Animal studies have shown verteporfin to be successful in increasing survival rates, which have led to the conduction of phase 1 and 2 clinical trials to further investigate its efficacy in treating GBM. In this article, we aimed to review the novel mechanism of verteporfin's action, the impact of its interaction with YAP/TAZ-TEAD, its effect on glioblastoma stem cells, and its role in inducing ferroptosis.
Collapse
Affiliation(s)
- Mahmoud Osama
- Department of Neurosurgery, Nasser Institute for Research and Treatment, Cairo, Egypt
- Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Muhammed Amir Essibayi
- Department of Neurosurgery, Albert Einstein College of Medicine, New York City, NY, USA
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Mona Osama
- Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Ismail A. Ibrahim
- Department of Physical Therapy and Rehabilitation, Fenerbahce University, Istanbul, Turkey
| | | | - Murat Şakir Ekşi
- Neurosurgery Clinic, FSM Training and Research Hospital, Istanbul, Turkey
| |
Collapse
|
8
|
Pavelić K, Pavelić SK, Bulog A, Agaj A, Rojnić B, Čolić M, Trivanović D. Nanoparticles in Medicine: Current Status in Cancer Treatment. Int J Mol Sci 2023; 24:12827. [PMID: 37629007 PMCID: PMC10454499 DOI: 10.3390/ijms241612827] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/13/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Cancer is still a leading cause of deaths worldwide, especially due to those cases diagnosed at late stages with metastases that are still considered untreatable and are managed in such a way that a lengthy chronic state is achieved. Nanotechnology has been acknowledged as one possible solution to improve existing cancer treatments, but also as an innovative approach to developing new therapeutic solutions that will lower systemic toxicity and increase targeted action on tumors and metastatic tumor cells. In particular, the nanoparticles studied in the context of cancer treatment include organic and inorganic particles whose role may often be expanded into diagnostic applications. Some of the best studied nanoparticles include metallic gold and silver nanoparticles, quantum dots, polymeric nanoparticles, carbon nanotubes and graphene, with diverse mechanisms of action such as, for example, the increased induction of reactive oxygen species, increased cellular uptake and functionalization properties for improved targeted delivery. Recently, novel nanoparticles for improved cancer cell targeting also include nanobubbles, which have already demonstrated increased localization of anticancer molecules in tumor tissues. In this review, we will accordingly present and discuss state-of-the-art nanoparticles and nano-formulations for cancer treatment and limitations for their application in a clinical setting.
Collapse
Affiliation(s)
- Krešimir Pavelić
- Faculty of Medicine, Juraj Dobrila University of Pula, Zagrebačka 30, 52100 Pula, Croatia
| | - Sandra Kraljević Pavelić
- Faculty of Health Studies, University of Rijeka, Ulica Viktora Cara Emina 5, 51000 Rijeka, Croatia
| | - Aleksandar Bulog
- Teaching Institute for Public Health of Primorsko-Goranska County, Krešimirova Ulica 52, 51000 Rijeka, Croatia
- Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
| | - Andrea Agaj
- Faculty of Medicine, Juraj Dobrila University of Pula, Zagrebačka 30, 52100 Pula, Croatia
| | - Barbara Rojnić
- Faculty of Medicine, Juraj Dobrila University of Pula, Zagrebačka 30, 52100 Pula, Croatia
| | - Miroslav Čolić
- Clear Water Technology Inc., 13008 S Western Avenue, Gardena, CA 90429, USA;
| | - Dragan Trivanović
- Faculty of Medicine, Juraj Dobrila University of Pula, Zagrebačka 30, 52100 Pula, Croatia
- Department of Oncology and Hematology, General Hospital Pula, Santorijeva 24a, 52200 Pula, Croatia
| |
Collapse
|
9
|
Huang HC, Wang TY, Rousseau J, Mungaray M, Michaud C, Plaisier C, Chen ZB, Wang KC. Lesion-specific suppression of YAP/TAZ by biomimetic nanodrug ameliorates atherosclerosis development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.24.537992. [PMID: 37163067 PMCID: PMC10168204 DOI: 10.1101/2023.04.24.537992] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Atherosclerosis, characterized by the buildup of lipid-rich plaque on the vessel wall, is the primary cause of myocardial infarction and ischemic stroke. Recent studies have demonstrated that dysregulation of yes-associated protein 1 (YAP) and transcriptional coactivator with PDZ-binding domain (TAZ) contributes to plaque development, making YAP/TAZ potential therapeutic targets. However, systemic modulation of YAP/TAZ expression or activities risks serious off-target effects, limiting clinical applicability. To address the challenge, this study develops monocyte membrane-coated nanoparticles (MoNP) as a drug delivery vehicle targeting activated endothelium lining the plaque surface and utilizes MoNP to deliver verteporfin (VP), a potent YAP/TAZ inhibitor, for lesion-specific treatment of atherosclerosis. The results reveal that MoNP significantly enhance payload delivery to inflamed endothelial cells (EC) while avoiding phagocytic cells, and preferentially accumulate in atherosclerotic regions. MoNP-mediated delivery of VP substantially reduces YAP/TAZ expression, suppressing inflammatory gene expression and macrophage infiltration in cultured EC and mouse arteries exposed to atherogenic stimuli. Importantly, this lesion-targeted VP nanodrug effectively decreases plaque development in mice without causing noticeable histopathological changes in major organs. Collectively, these findings demonstrate a plaque-targeted and pathway-specific biomimetic nanodrug, potentially leading to safer and more effective treatments for atherosclerosis.
Collapse
|
10
|
Lu Y, Cheng D, Niu B, Wang X, Wu X, Wang A. Properties of Poly (Lactic-co-Glycolic Acid) and Progress of Poly (Lactic-co-Glycolic Acid)-Based Biodegradable Materials in Biomedical Research. Pharmaceuticals (Basel) 2023; 16:ph16030454. [PMID: 36986553 PMCID: PMC10058621 DOI: 10.3390/ph16030454] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/09/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
In recent years, biodegradable polymers have gained the attention of many researchers for their promising applications, especially in drug delivery, due to their good biocompatibility and designable degradation time. Poly (lactic-co-glycolic acid) (PLGA) is a biodegradable functional polymer made from the polymerization of lactic acid (LA) and glycolic acid (GA) and is widely used in pharmaceuticals and medical engineering materials because of its biocompatibility, non-toxicity, and good plasticity. The aim of this review is to illustrate the progress of research on PLGA in biomedical applications, as well as its shortcomings, to provide some assistance for its future research development.
Collapse
Affiliation(s)
- Yue Lu
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, School of Pharmacy, Yantai University, Yantai 264005, China
- Yantai Key Laboratory of Nanomedicine and Advanced Preparations, Yantai Institute of Materia Medica, Yantai 264000, China
| | - Dongfang Cheng
- Yantai Key Laboratory of Nanomedicine and Advanced Preparations, Yantai Institute of Materia Medica, Yantai 264000, China
| | - Baohua Niu
- Yantai Key Laboratory of Nanomedicine and Advanced Preparations, Yantai Institute of Materia Medica, Yantai 264000, China
| | - Xiuzhi Wang
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
| | - Xiaxia Wu
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, School of Pharmacy, Yantai University, Yantai 264005, China
- Yantai Key Laboratory of Nanomedicine and Advanced Preparations, Yantai Institute of Materia Medica, Yantai 264000, China
| | - Aiping Wang
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, School of Pharmacy, Yantai University, Yantai 264005, China
- Correspondence:
| |
Collapse
|
11
|
Condurat AL, Aminzadeh-Gohari S, Malnar M, Schider N, Opitz L, Thomas R, Menon V, Kofler B, Pruszak J. Verteporfin-induced proteotoxicity impairs cell homeostasis and survival in neuroblastoma subtypes independent of YAP/TAZ expression. Sci Rep 2023; 13:3760. [PMID: 36882436 PMCID: PMC9992669 DOI: 10.1038/s41598-023-29796-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 02/10/2023] [Indexed: 03/09/2023] Open
Abstract
Neuroblastoma (NB) is a highly aggressive extracranial solid tumor in children. Due to its heterogeneity, NB remains a therapeutic challenge. Several oncogenic factors, including the Hippo effectors YAP/TAZ, are associated with NB tumorigenesis. Verteporfin (VPF) is an FDA-approved drug shown to directly inhibit YAP/TAZ activity. Our study aimed to investigate VPF's potential as a therapeutic agent in NB. We show that VPF selectively and efficiently impairs the viability of YAP/TAZ-expressing NB GI-ME-N and SK-N-AS cells, but not of non-malignant fibroblasts. To investigate whether VPF-mediated NB cell killing is YAP-dependent, we tested VPF potency in CRISPR-mediated YAP/TAZ knock-out GI-ME-N cells, and BE(2)-M17 NB cells (a MYCN-amplified, predominantly YAP-negative NB subtype). Our data shows that VPF-mediated NB cell killing is not dependent on YAP expression. Moreover, we determined that the formation of higher molecular weight (HMW) complexes is an early and shared VPF-induced cytotoxic mechanism in both YAP-positive and YAP-negative NB models. The accumulation of HMW complexes, involving STAT3, GM130 and COX IV proteins, impaired cell homeostasis and triggered cell stress and cell death mechanisms. Altogether, our study shows significant in vitro and in vivo VPF-induced suppression of NB growth, making VPF a potential therapeutic candidate against NB.
Collapse
Affiliation(s)
- Alexandra-Larisa Condurat
- Emmy Noether-Group for Stem Cell Biology, Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine and Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Sepideh Aminzadeh-Gohari
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Mirjana Malnar
- Institute of Anatomy and Cell Biology, Paracelsus Medical University, Salzburg, Austria
- Center for Anatomy and Cell Biology, Salzburg and Nuremberg, Paracelsus Medical University, Salzburg, Austria
| | - Nicole Schider
- Institute of Anatomy and Cell Biology, Paracelsus Medical University, Salzburg, Austria
- Center for Anatomy and Cell Biology, Salzburg and Nuremberg, Paracelsus Medical University, Salzburg, Austria
| | - Leonie Opitz
- Institute of Anatomy and Cell Biology, Paracelsus Medical University, Salzburg, Austria
- Center for Anatomy and Cell Biology, Salzburg and Nuremberg, Paracelsus Medical University, Salzburg, Austria
| | - Ria Thomas
- Emmy Noether-Group for Stem Cell Biology, Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine and Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Vishal Menon
- Emmy Noether-Group for Stem Cell Biology, Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine and Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Barbara Kofler
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Jan Pruszak
- Emmy Noether-Group for Stem Cell Biology, Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- Institute of Anatomy and Cell Biology, Paracelsus Medical University, Salzburg, Austria.
- Center for Anatomy and Cell Biology, Salzburg and Nuremberg, Paracelsus Medical University, Salzburg, Austria.
| |
Collapse
|
12
|
Saeui CT, Shah SR, Fernandez-Gil BI, Zhang C, Agatemor C, Dammen-Brower K, Mathew MP, Buettner M, Gowda P, Khare P, Otamendi-Lopez A, Yang S, Zhang H, Le A, Quinoñes-Hinojosa A, Yarema KJ. Anticancer Properties of Hexosamine Analogs Designed to Attenuate Metabolic Flux through the Hexosamine Biosynthetic Pathway. ACS Chem Biol 2023; 18:151-165. [PMID: 36626752 DOI: 10.1021/acschembio.2c00784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Altered cellular metabolism is a hallmark of cancer pathogenesis and progression; for example, a near-universal feature of cancer is increased metabolic flux through the hexosamine biosynthetic pathway (HBP). This pathway produces uridine diphosphate N-acetylglucosamine (UDP-GlcNAc), a potent oncometabolite that drives multiple facets of cancer progression. In this study, we synthesized and evaluated peracetylated hexosamine analogs designed to reduce flux through the HBP. By screening a panel of analogs in pancreatic cancer and glioblastoma multiform (GBM) cells, we identified Ac4Glc2Bz─a benzyl-modified GlcNAc mimetic─as an antiproliferative cancer drug candidate that down-regulated oncogenic metabolites and reduced GBM cell motility at concentrations non-toxic to non-neoplastic cells. More specifically, the growth inhibitory effects of Ac4Glc2Bz were linked to reduced levels of UDP-GlcNAc and concomitant decreases in protein O-GlcNAc modification in both pancreatic cancer and GBM cells. Targeted metabolomics analysis in GBM cells showed that Ac4Glc2Bz disturbed glucose metabolism, amino acid pools, and nucleotide precursor biosynthesis, consistent with reduced proliferation and other anti-oncogenic properties of this analog. Furthermore, Ac4Glc2Bz reduced the invasion, migration, and stemness of GBM cells. Importantly, normal metabolic functions mediated by UDP-GlcNAc were not disrupted in non-neoplastic cells, including maintenance of endogenous levels of O-GlcNAcylation with no global disruption of N-glycan production. Finally, a pilot in vivo study showed that a potential therapeutic window exists where animals tolerated 5- to 10-fold higher levels of Ac4Glc2Bz than projected for in vivo efficacy. Together, these results establish GlcNAc analogs targeting the HBP through salvage mechanisms as a new therapeutic approach to safely normalize an important facet of aberrant glucose metabolism associated with cancer.
Collapse
Affiliation(s)
- Christopher T Saeui
- Department of Biomedical Engineering and The Translational Tissue Engineering Center, The Johns Hopkins University and Johns Hopkins School of Medicine, Baltimore, Maryland 21231, United States
| | - Sagar R Shah
- Department of Biomedical Engineering and The Translational Tissue Engineering Center, The Johns Hopkins University and Johns Hopkins School of Medicine, Baltimore, Maryland 21231, United States
| | | | - Cissy Zhang
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States.,Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland 21205, United States
| | - Christian Agatemor
- Department of Biomedical Engineering and The Translational Tissue Engineering Center, The Johns Hopkins University and Johns Hopkins School of Medicine, Baltimore, Maryland 21231, United States
| | - Kris Dammen-Brower
- Department of Biomedical Engineering and The Translational Tissue Engineering Center, The Johns Hopkins University and Johns Hopkins School of Medicine, Baltimore, Maryland 21231, United States
| | - Mohit P Mathew
- Department of Biomedical Engineering and The Translational Tissue Engineering Center, The Johns Hopkins University and Johns Hopkins School of Medicine, Baltimore, Maryland 21231, United States
| | - Matthew Buettner
- Department of Biomedical Engineering and The Translational Tissue Engineering Center, The Johns Hopkins University and Johns Hopkins School of Medicine, Baltimore, Maryland 21231, United States
| | - Prateek Gowda
- Department of Biomedical Engineering and The Translational Tissue Engineering Center, The Johns Hopkins University and Johns Hopkins School of Medicine, Baltimore, Maryland 21231, United States
| | - Pratik Khare
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States.,Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland 21205, United States
| | | | - Shuang Yang
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland 21287, United States
| | - Hui Zhang
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland 21287, United States
| | - Anne Le
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States.,Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland 21205, United States
| | | | - Kevin J Yarema
- Department of Biomedical Engineering and The Translational Tissue Engineering Center, The Johns Hopkins University and Johns Hopkins School of Medicine, Baltimore, Maryland 21231, United States
| |
Collapse
|
13
|
Gu Z, Chen H, Zhao H, Yang W, Song Y, Li X, Wang Y, Du D, Liao H, Pan W, Li X, Gao Y, Han H, Tong Z. New insight into brain disease therapy: nanomedicines-crossing blood-brain barrier and extracellular space for drug delivery. Expert Opin Drug Deliv 2022; 19:1618-1635. [PMID: 36285632 DOI: 10.1080/17425247.2022.2139369] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
INTRODUCTION Brain diseases including brain tumor, Alzheimer's disease, Parkinson's disease, etc. are difficult to treat. The blood-brain barrier (BBB) is a major obstacle for drug delivery into the brain. Although nano-package and receptor-mediated delivery of nanomedicine markedly increases BBB penetration, it yet did not extensively improve clinical cure rate. Recently, brain extracellular space (ECS) and interstitial fluid (ISF) drainage in ECS have been found to determine whether a drug dissolved in ISF can reach its target cells. Notably, an increase in tortuosity of ECS associated with slower ISF drainage induced by the accumulated harmful substances, such as: amyloid-beta (Aβ), α-synuclein, and metabolic wastes, causes drug delivery failure. AREAS COVERED The methods of nano-package and receptor-mediated drug delivery and the penetration efficacy of nanomedicines across BBB and ECS are assessed. EXPERT OPINION Invasive delivering drug via ECS and noninvasive near-infrared photo-sensitive nanomedicines may provide a promising benefit to patients with brain disease.
Collapse
Affiliation(s)
- Ziqi Gu
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Oujiang Laboratory, School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Haishu Chen
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Oujiang Laboratory, School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Han Zhao
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Oujiang Laboratory, School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Wanting Yang
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Oujiang Laboratory, School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Yilan Song
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Oujiang Laboratory, School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Xiang Li
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Oujiang Laboratory, School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Yang Wang
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China.,Department of Radiology, Peking University Third Hospital, Beijing, China
| | - Dan Du
- Department of Radiology, Peking University Third Hospital, Beijing, China.,Department of Magnetic Resonance Imaging, Qinhuangdao Municipal No. 1 Hospital, Qinhuangdao, China.,Beijing Key Laboratory of Magnetic Resonance Imaging Devices and Technology, Peking University Third Hospital, Beijing, China
| | - Haikang Liao
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Oujiang Laboratory, School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Wenhao Pan
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Oujiang Laboratory, School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Xi Li
- The Affiliated Kangning Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yajuan Gao
- Department of Radiology, Peking University Third Hospital, Beijing, China.,NMPA key Laboratory for Evaluation of Medical Imaging Equipment and Technique, Beijing, China
| | - Hongbin Han
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China.,Department of Radiology, Peking University Third Hospital, Beijing, China.,Beijing Key Laboratory of Magnetic Resonance Imaging Devices and Technology, Peking University Third Hospital, Beijing, China.,Peking University Shenzhen Graduate School, Shenzhen, China
| | - Zhiqian Tong
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Oujiang Laboratory, School of Mental Health, Wenzhou Medical University, Wenzhou, China.,The Affiliated Kangning Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
14
|
Jeising S, Geerling G, Guthoff R, Hänggi D, Sabel M, Rapp M, Nickel AC. In-Vitro Use of Verteporfin for Photodynamic Therapy in Glioblastoma. Photodiagnosis Photodyn Ther 2022; 40:103049. [PMID: 35932958 DOI: 10.1016/j.pdpdt.2022.103049] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/12/2022] [Accepted: 08/02/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Stummer et al. established fluorescence-guided surgery (FGS) for glioblastoma (GBM) using 5-aminolevulinic acid (5-ALA). Its metabolite, protoporphyrin IX (PPIX), is also a photosensitizer and can be used for photodynamic therapy (PDT) using a laser beam of 635 nm. The porphyrin derivate verteporfin (VP) was discovered to have properties to penetrate the brain, pharmacologically target glioma cells, and is approved for PDT of choroidal neovascularization in wet age-related macular degeneration at 689 nm. OBJECTIVE To elucidate whether GBM cell lines are susceptible to PDT with second-generation photosensitizer VP. METHODS Human glioma cell lines LN229, HSR-GBM1, and a low-passage patient-derived GBM cell line P1 were treated with variable concentrations of VP for 24 h, followed by PDT at 689 nm using a diode laser light. Cell viability was measured using the MTT assay and VP uptake was measured using a desktop cytometer. RESULTS Significantly higher cell death following PDT with VP compared to VP treatment alone or no treatment was detected in all cell models (LN229, HSR-GBM1, P1). Flowcytometric measurements revealed a concentration-dependent cellular uptake of VP after 24 h incubation up to 99% at 10 µM (HSR-GBM1). CONCLUSION This study demonstrates that PDT with VP causes cell death in GBM cells at marginal concentrations. Additionally, red spectrum fluorescence was detected at therapeutic concentrations in all cell lines, validating the cellular uptake of VP in GBM cells. VP, therefore, is not only a potential drug for targeting GBM pharmacologically but can be used as an optical imaging dye in surgery and photosensitizer to make GBM susceptible to PDT.
Collapse
Affiliation(s)
- Sebastian Jeising
- Department of Neurosurgery, University Hospital Düsseldorf, Düsseldorf, Germany.
| | - Gerd Geerling
- Department of Ophthalmology, University Hospital Düsseldorf, Düsseldorf, Germany.
| | - Rainer Guthoff
- Department of Ophthalmology, University Hospital Düsseldorf, Düsseldorf, Germany.
| | - Daniel Hänggi
- Department of Neurosurgery, University Hospital Düsseldorf, Düsseldorf, Germany.
| | - Michael Sabel
- Department of Neurosurgery, University Hospital Düsseldorf, Düsseldorf, Germany.
| | - Marion Rapp
- Department of Neurosurgery, University Hospital Düsseldorf, Düsseldorf, Germany.
| | - Ann-Christin Nickel
- Department of Neurosurgery, University Hospital Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
15
|
Shabani L, Abbasi M, Amini M, Amani AM, Vaez A. The brilliance of nanoscience over cancer therapy: Novel promising nanotechnology-based methods for eradicating glioblastoma. J Neurol Sci 2022; 440:120316. [DOI: 10.1016/j.jns.2022.120316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 05/28/2022] [Accepted: 05/31/2022] [Indexed: 10/18/2022]
|
16
|
Huang Y, Ahmad US, Rehman A, Uttagomol J, Wan H. YAP Inhibition by Verteporfin Causes Downregulation of Desmosomal Genes and Proteins Leading to the Disintegration of Intercellular Junctions. Life (Basel) 2022; 12:life12060792. [PMID: 35743822 PMCID: PMC9225343 DOI: 10.3390/life12060792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/13/2022] [Accepted: 05/23/2022] [Indexed: 01/12/2023] Open
Abstract
The Hippo-YAP pathway serves as a central signalling hub in epithelial tissue generation and homeostasis. Yes-associated protein (YAP) is an essential downstream transcription cofactor of this pathway, with its activity being negatively regulated by Hippo kinase-mediated phosphorylation, leading to its cytoplasmic translocation or degradation. Our recent study showed phospho-YAP complexes with Desmoglein-3 (Dsg3), the desmosomal cadherin known to be required for junction assembly and cell–cell adhesion. In this study, we show that YAP inhibition by Verteporfin (VP) caused a significant downregulation of desmosomal genes and a remarkable reduction in desmosomal proteins, including the Dsg3/phospho-YAP complex, resulting in attenuation of cell cohesion. We also found the desmosomal genes, along with E-cadherin, were the YAP-TEAD transcriptional targets and Dsg3 regulated key Hippo components, including WWTR1/TAZ, LATS2 and the key desmosomal molecules. Furthermore, Dsg3 and phospho-YAP exhibited coordinated regulation in response to varied cell densities and culture durations. Overexpression of Dsg3 could compensate for VP mediated loss of adhesion components and proper architecture of cell junctions. Thus, our findings suggest that Dsg3 plays a crucial role in the Hippo network and regulates junction configuration via complexing with phospho-YAP.
Collapse
|
17
|
Su Y, Liu J, Tan S, Liu W, Wang R, Chen C. PLGA sustained-release microspheres loaded with an insoluble small-molecule drug: microfluidic-based preparation, optimization, characterization, and evaluation in vitro and in vivo. Drug Deliv 2022; 29:1437-1446. [PMID: 35532150 PMCID: PMC9090356 DOI: 10.1080/10717544.2022.2072413] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Microspheres play an important role in controlling drug delivery and release rate accurately. To realize the sustainable release of insoluble small-molecule drugs, a new three-phase flow-focusing microfluidic device was developed to produce the drug-loaded sustained-release microspheres which were prepared with bicalutamide (BCS class-II) as the model drug and poly(lactide-co-glycolide) (PLGA) as the carrier material. Under optimized prescription conditions, the microspheres showed a smooth surface and uniform size of 51.33 μm with a CV value of 4.43%. Sustained-release microspheres had a releasing duration of around 40 days in vitro without any initial burst release. The drug release mechanism of the microspheres was drug diffusion and polymer erosion. Meanwhile, the drug release of microspheres in vivo could be up to 30 days. Briefly, the microfluidic device in this study provides a new solution for the preparation of sustained-release microspheres for insoluble small-molecule drugs. PLGA sustained-release microspheres developed by the microfluidic device have good application prospects in precise delivery and sustainable release of insoluble small-molecule drugs.
Collapse
Affiliation(s)
- Yue Su
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Jia Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Songwen Tan
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Wenfang Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | | | - Chuanpin Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| |
Collapse
|
18
|
Gong L, Zhang Y, Zhao J, Zhang Y, Tu K, Jiao L, Xu Q, Zhang M, Han S. All-In-One Biomimetic Nanoplatform Based on Hollow Polydopamine Nanoparticles for Synergistically Enhanced Radiotherapy of Colon Cancer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107656. [PMID: 35150039 DOI: 10.1002/smll.202107656] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/04/2022] [Indexed: 06/14/2023]
Abstract
Even though radiotherapy is the most important therapeutic strategy for colon cancer treatment, there is an enormous demand to improve radiosensitivity in solid tumor destruction. For this purpose, a biomimetic nanoplatform based on hollow polydopamine nanoparticles (HP) with homologous targeting and pH-responsive drug release properties is designed. In this work, HP is constructed by using a chelation competition-induced polymerization strategy and then modified with the cancer cell membrane. Hollow polydopamine integrated with Pt nanoparticles (Pt@HP) has a catalase-like activity, which can be used to trigger endogenous H2 O2 into O2 , relieving hypoxia of the tumor microenvironment (TME). With mesoporous shells and large cavities, Pt@HP shows efficient apoptin100-109 (AP) and verteporfin (VP) loading to form AVPt@HP@M. Under X-ray irradiation, AVPt@HP@M exerts a radiosensitization effect via multiple strategies, including relieving hypoxia (Pt NPs), enhancing tumor apoptosis (AP), and X-ray-induced photodynamic therapy (X-PDT) (VP). Further metabonomics analysis shows that the specific mechanism of the AVPt@HP@M is through influencing purine metabolism. Without appreciable systemic toxicity, this nanoplatform highlights a new strategy for effective radiosensitization and provides a reference for treating malignant tumors.
Collapse
Affiliation(s)
- Liuyun Gong
- Department of Radiotherapy, the First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Yujie Zhang
- School of Basic Medical Sciences, Xi'an Key Laboratory of Immune Related Diseases, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, Shaanxi, 710061, China
| | - Jing Zhao
- Department of Radiotherapy, the First Affiliated Hospital, Soochow University, Suzhou, Jiangsu, 215000, China
| | - Yilei Zhang
- School of Basic Medical Sciences, Xi'an Key Laboratory of Immune Related Diseases, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, Shaanxi, 710061, China
| | - Kangsheng Tu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Lianying Jiao
- School of Basic Medical Sciences, Xi'an Key Laboratory of Immune Related Diseases, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, Shaanxi, 710061, China
| | - Qiuran Xu
- Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Mingzhen Zhang
- School of Basic Medical Sciences, Xi'an Key Laboratory of Immune Related Diseases, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, Shaanxi, 710061, China
| | - Suxia Han
- Department of Radiotherapy, the First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| |
Collapse
|
19
|
Ju Y, Dai X, Tang Z, Ming Z, Ni N, Zhu D, Zhang J, Ma B, Wang J, Huang R, Zhao S, Pang Y, Gu P. Verteporfin-mediated on/off photoswitching functions synergistically to treat choroidal vascular diseases. Bioact Mater 2022; 14:402-415. [PMID: 35386820 PMCID: PMC8964818 DOI: 10.1016/j.bioactmat.2022.01.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/30/2021] [Accepted: 01/18/2022] [Indexed: 12/18/2022] Open
Abstract
Choroidal vascular diseases, such as age-related macular degeneration, are the leading cause of vision impairment and are characterized by pathological angiogenesis. Verteporfin-mediated photodynamic therapy is a current strategy that selectively occludes choroidal neovasculature. However, the clinically used large-dose systemic administration increases the risk of systemic adverse events, such as phototoxicity to superficial tissues. In this study, we developed an in situ verteporfin delivery system with a photoswitching synergistic function that disassembles in response to intraocular inflammatory enzymes. Under light-on conditions, verteporfin-mediated photodynamic therapy effectively occurs and this leads to vascular occlusion. Under light-off conditions, non-photoactive verteporfin negatively regulates vascular endothelial growth factor-induced angiogenesis as a yes-associated protein inhibitor. Taken together, our system serves as an intraocular verteporfin reservoir to improve the bioavailability of verteporfin by innovatively exploiting its photochemical and biological functions. This work provides a promising strategy with synergistic antiangiogenic effects for the treatment of choroidal vascular diseases. For the first time, an intraocular verteporfin delivery system with on/off photoswitching synergistic functions is reported. VP-TGMS with light-on effectively leads to occlusion of choroidal pathological neovascularization via photodynamic mechanism. VP-TGMS with light-off significantly suppresses VEGF-induced angiogenesis via YAP signaling inhibition. This study provides a promising strategy for the treatment of choroidal vascular diseases.
Collapse
Affiliation(s)
- Yahan Ju
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, PR China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, PR China
| | - Xiaochan Dai
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, PR China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, PR China
| | - Zhimin Tang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, PR China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, PR China
| | - Zunzhen Ming
- Central Laboratory, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, PR China
| | - Ni Ni
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, PR China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, PR China
| | - Dongqing Zhu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, PR China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, PR China
| | - Jing Zhang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, PR China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, PR China
| | - Bo Ma
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, PR China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, PR China
| | - Jiajing Wang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, PR China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, PR China
| | - Rui Huang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, PR China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, PR China
| | - Siyu Zhao
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, PR China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, PR China
| | - Yan Pang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, PR China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, PR China
- Corresponding author. 639 Zhizaoju Rd, Shanghai, 200011, China.
| | - Ping Gu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, PR China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, PR China
- Corresponding author. 639 Zhizaoju Rd, Shanghai, 200011, China.
| |
Collapse
|
20
|
Barrette AM, Ronk H, Joshi T, Mussa Z, Mehrotra M, Bouras A, Nudelman G, Jesu Raj JG, Bozec D, Lam W, Houldsworth J, Yong R, Zaslavsky E, Hadjipanayis CG, Birtwistle MR, Tsankova NM. Anti-invasive efficacy and survival benefit of the YAP-TEAD inhibitor Verteporfin in preclinical glioblastoma models. Neuro Oncol 2021; 24:694-707. [PMID: 34657158 DOI: 10.1093/neuonc/noab244] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Glioblastoma (GBM) remains a largely incurable disease as current therapy fails to target the invasive nature of GBM growth in disease progression and recurrence. Here we use the FDA-approved drug and small molecule Hippo inhibitor Verteporfin to target YAP-TEAD activity, known to mediate convergent aspects of tumor invasion/metastasis, and assess the drug's efficacy and survival benefit in GBM models. METHODS Up to eight low-passage patient-derived GBM cell lines with distinct genomic drivers, including three primary/recurrent pairs, were treated with Verteporfin or vehicle to assess in-vitro effects on proliferation, migration, YAP-TEAD activity, and transcriptomics. Patient-derived orthotopic xenograft models (PDX) were used to assess Verteporfin's brain penetrance and effects on tumor burden and survival. RESULTS Verteporfin treatment disturbed YAP/TAZ-TEAD activity; disrupted transcriptome signatures related to invasion, epithelial-to-mesenchymal, and proneural-to-mesenchymal transition, phenocopying TEAD1-knockout effects; and impaired tumor migration/invasion dynamics across primary and recurrent GBM lines. In an aggressive orthotopic PDX GBM model, short-term Verteporfin treatment consistently diminished core and infiltrative tumor burden, which was associated with decreased tumor expression of Ki67, nuclear YAP, TEAD1, and TEAD-associated targets EGFR, CDH2 and ITGB1. Finally, long-term Verteporfin treatment appeared non-toxic and conferred survival benefit compared to vehicle in two PDX models: as monotherapy in primary (de-novo) GBM and in combination with Temozolomide chemoradiation in recurrent GBM, where VP treatment associated with increased MGMT methylation. CONCLUSIONS We demonstrate combined anti-invasive and anti-proliferative efficacy for Verteporfin with survival benefit in preclinical GBM models, indicating potential therapeutic value of this already FDA-approved drug if repurposed for glioblastoma patients.
Collapse
Affiliation(s)
- Anne Marie Barrette
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - Halle Ronk
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tanvi Joshi
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Zarmeen Mussa
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Meenakshi Mehrotra
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alexandros Bouras
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - German Nudelman
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joe G Jesu Raj
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dominique Bozec
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - William Lam
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jane Houldsworth
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Raymund Yong
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Elena Zaslavsky
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Marc R Birtwistle
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina, USA
| | - Nadejda M Tsankova
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
21
|
Kim J, Shi Y, Kwon CJ, Gao Y, Mitragotri S. A Deep Eutectic Solvent-Based Approach to Intravenous Formulation. Adv Healthc Mater 2021; 10:e2100585. [PMID: 34351085 DOI: 10.1002/adhm.202100585] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/25/2021] [Indexed: 12/18/2022]
Abstract
Clinically viable formulations of hydrophobic drugs, for example, chemotherapeutics, require strategies to promote sufficient drug solubilization. However, such strategies often involve the use of organic solvents that pose a significant risk in generating toxic, unstable products. Using verteporfin as a drug, a deep eutectic solvent (DES)-based approach to solvate drugs in a simple one-step process is reported. Lipoidal DES composed of choline and oleate is used to successfully solvate verteporfin, resulting in stable sub-100 nm nanocomplexes. The nanocomplexes successfully demonstrate efficient cellular uptake as well as retention, tumor spheroid penetration, and tumor accumulation in vivo. Systemic administration of the formulation significantly inhibits the primary tumor growth and its lung metastasis in the orthotopic 4T1 murine breast tumor model. Collectively, biocompatible DES shows great potential as a novel material for intravenous formulation of chemotherapeutics.
Collapse
Affiliation(s)
- Jayoung Kim
- John A. Paulson School of Engineering and Applied Sciences Harvard University Cambridge MA 02138 USA
- Wyss Institute of Biologically Inspired Engineering Harvard University Boston MA 02115 USA
| | - Yujie Shi
- John A. Paulson School of Engineering and Applied Sciences Harvard University Cambridge MA 02138 USA
- Wyss Institute of Biologically Inspired Engineering Harvard University Boston MA 02115 USA
- Present address: Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems School of Pharmaceutical Sciences Peking University Beijing 100191 P. R. China
| | - Christopher J. Kwon
- John A. Paulson School of Engineering and Applied Sciences Harvard University Cambridge MA 02138 USA
| | - Yongsheng Gao
- John A. Paulson School of Engineering and Applied Sciences Harvard University Cambridge MA 02138 USA
- Wyss Institute of Biologically Inspired Engineering Harvard University Boston MA 02115 USA
| | - Samir Mitragotri
- John A. Paulson School of Engineering and Applied Sciences Harvard University Cambridge MA 02138 USA
- Wyss Institute of Biologically Inspired Engineering Harvard University Boston MA 02115 USA
| |
Collapse
|
22
|
Su Y, Zhang B, Sun R, Liu W, Zhu Q, Zhang X, Wang R, Chen C. PLGA-based biodegradable microspheres in drug delivery: recent advances in research and application. Drug Deliv 2021; 28:1397-1418. [PMID: 34184949 PMCID: PMC8248937 DOI: 10.1080/10717544.2021.1938756] [Citation(s) in RCA: 264] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Biodegradable microspheres have been widely used in the field of medicine due to their ability to deliver drug molecules of various properties through multiple pathways and their advantages of low dose and low side effects. Poly (lactic-co-glycolic acid) copolymer (PLGA) is one of the most widely used biodegradable material currently and has good biocompatibility. In application, PLGA with a specific monomer ratio (lactic acid and glycolic acid) can be selected according to the properties of drug molecules and the requirements of the drug release rate. PLGA-based biodegradable microspheres have been studied in the field of drug delivery, including the delivery of various anticancer drugs, protein or peptide drugs, bacterial or viral DNA, etc. This review describes the basic knowledge and current situation of PLGA biodegradable microspheres and discusses the selection of PLGA polymer materials. Then, the preparation methods of PLGA microspheres are introduced, including emulsification, microfluidic technology, electrospray, and spray drying. Finally, this review summarizes the application of PLGA microspheres in drug delivery and the treatment of pulmonary and ocular-related diseases.
Collapse
Affiliation(s)
- Yue Su
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Bolun Zhang
- Hunan Zaochen Nanorobot Co., Ltd, Liuyang, China
| | - Ruowei Sun
- Hunan Zaochen Nanorobot Co., Ltd, Liuyang, China
| | - Wenfang Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Qubo Zhu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Xun Zhang
- Hunan Zaochen Nanorobot Co., Ltd, Liuyang, China
| | | | - Chuanpin Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| |
Collapse
|
23
|
Kirar S, Thakur NS, Reddy YN, Banerjee UC, Bhaumik J. Insights on the polypyrrole based nanoformulations for photodynamic therapy. J PORPHYR PHTHALOCYA 2021. [DOI: 10.1142/s1088424621300032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
This review is written to endow updated information on polypyrrole based photosensitizers for the treatment of deadly diseases such as cancer and microbial infection. Tetrapyrrolic macromolecules such as porphyrins and phthalocyanines hold unique photophysical properties which make them very useful compounds for various biomedical applications. Besides their properties, they also have some limitations such as low water solubility, bioavailability, biocompatibility and lack of specificity, etc. Researchers are trying to overcome these limitations by incorporating photosensitizers into the different types of nanoparticles and improve the quality of photodynamic therapy. We have contributed to this field by synthesizing and developing polypyrrolic photosensitizer based nanoparticles for potential applications in antimicrobial and anticancer photodynamic activity. Throughout this review, newly synthesized and existing PSs conjugated/encapsulated/doped/incorporated with nanoparticles are emphasized, which are essential for current and future research themes. Also in this review, we briefly summarized the research work carried over the past few years by considering the porphyrin based photosensitizers as alternative therapeutic entities for the treatment of microbial infections, cancers, and many other diseases.
Collapse
Affiliation(s)
- Seema Kirar
- Department of Nanomaterials and Application Technology, Center of Innovative and Applied Bioprocessing (CIAB), Sector-81 (Knowledge City), S.A.S. Nagar-140306, Mohali, Punjab, India
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector-67, S.A.S. Nagar-160062, Mohali, Punjab, India
| | - Neeraj Singh Thakur
- Department of Nanomaterials and Application Technology, Center of Innovative and Applied Bioprocessing (CIAB), Sector-81 (Knowledge City), S.A.S. Nagar-140306, Mohali, Punjab, India
- Department of Pharmaceutical Technology (Biotechnology), National Institute of Pharmaceutical Education and Research (NIPER), Sector-67, S.A.S. Nagar-160062, Mohali, Punjab, India
| | - Yeddula Nikhileshwar Reddy
- Department of Nanomaterials and Application Technology, Center of Innovative and Applied Bioprocessing (CIAB), Sector-81 (Knowledge City), S.A.S. Nagar-140306, Mohali, Punjab, India
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Sector-81, S.A.S. Nagar-140306, Mohali, Punjab, India
| | - Uttam Chand Banerjee
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector-67, S.A.S. Nagar-160062, Mohali, Punjab, India
- Department of Pharmaceutical Technology (Biotechnology), National Institute of Pharmaceutical Education and Research (NIPER), Sector-67, S.A.S. Nagar-160062, Mohali, Punjab, India
| | - Jayeeta Bhaumik
- Department of Nanomaterials and Application Technology, Center of Innovative and Applied Bioprocessing (CIAB), Sector-81 (Knowledge City), S.A.S. Nagar-140306, Mohali, Punjab, India
| |
Collapse
|
24
|
Koehler A, Karve A, Desai P, Arbiser J, Plas DR, Qi X, Read RD, Sasaki AT, Gawali VS, Toukam DK, Bhattacharya D, Kallay L, Pomeranz Krummel DA, Sengupta S. Reuse of Molecules for Glioblastoma Therapy. Pharmaceuticals (Basel) 2021; 14:99. [PMID: 33525329 PMCID: PMC7912673 DOI: 10.3390/ph14020099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 01/25/2021] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma multiforme (GBM) is a highly malignant primary brain tumor. The current standard of care for GBM is the Stupp protocol which includes surgical resection, followed by radiotherapy concomitant with the DNA alkylator temozolomide; however, survival under this treatment regimen is an abysmal 12-18 months. New and emerging treatments include the application of a physical device, non-invasive 'tumor treating fields' (TTFs), including its concomitant use with standard of care; and varied vaccines and immunotherapeutics being trialed. Some of these approaches have extended life by a few months over standard of care, but in some cases are only available for a minority of GBM patients. Extensive activity is also underway to repurpose and reposition therapeutics for GBM, either alone or in combination with the standard of care. In this review, we present select molecules that target different pathways and are at various stages of clinical translation as case studies to illustrate the rationale for their repurposing-repositioning and potential clinical use.
Collapse
Affiliation(s)
- Abigail Koehler
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (A.K.); (V.S.G.); (D.K.T.); (D.B.); (L.K.); (D.A.P.K.)
| | - Aniruddha Karve
- Division of Pharmaceutical Sciences, University of Cincinnati James L. Winkle College of Pharmacy, Cincinnati, OH 45229, USA; (A.K.); (P.D.)
| | - Pankaj Desai
- Division of Pharmaceutical Sciences, University of Cincinnati James L. Winkle College of Pharmacy, Cincinnati, OH 45229, USA; (A.K.); (P.D.)
| | - Jack Arbiser
- Department of Dermatology, Emory School of Medicine, Atlanta, GA 30322, USA;
- Atlanta Veterans Administration Medical Center, Decatur, GA 30033, USA
| | - David R. Plas
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA;
| | - Xiaoyang Qi
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (X.Q.); (A.T.S.)
| | - Renee D. Read
- Department of Pharmacology and Chemical Biology, Emory School of Medicine, Atlanta, GA 30322, USA;
| | - Atsuo T. Sasaki
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (X.Q.); (A.T.S.)
| | - Vaibhavkumar S. Gawali
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (A.K.); (V.S.G.); (D.K.T.); (D.B.); (L.K.); (D.A.P.K.)
| | - Donatien K. Toukam
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (A.K.); (V.S.G.); (D.K.T.); (D.B.); (L.K.); (D.A.P.K.)
| | - Debanjan Bhattacharya
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (A.K.); (V.S.G.); (D.K.T.); (D.B.); (L.K.); (D.A.P.K.)
| | - Laura Kallay
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (A.K.); (V.S.G.); (D.K.T.); (D.B.); (L.K.); (D.A.P.K.)
| | - Daniel A. Pomeranz Krummel
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (A.K.); (V.S.G.); (D.K.T.); (D.B.); (L.K.); (D.A.P.K.)
| | - Soma Sengupta
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (A.K.); (V.S.G.); (D.K.T.); (D.B.); (L.K.); (D.A.P.K.)
| |
Collapse
|
25
|
Vigneswaran K, Boyd NH, Oh SY, Lallani S, Boucher A, Neill SG, Olson JJ, Read RD. YAP/TAZ Transcriptional Coactivators Create Therapeutic Vulnerability to Verteporfin in EGFR-mutant Glioblastoma. Clin Cancer Res 2020; 27:1553-1569. [PMID: 33172899 DOI: 10.1158/1078-0432.ccr-20-0018] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 08/04/2020] [Accepted: 11/06/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE Glioblastomas (GBMs), neoplasms derived from glia and neuroglial progenitor cells, are the most common and lethal malignant primary brain tumors diagnosed in adults, with a median survival of 14 months. GBM tumorigenicity is often driven by genetic aberrations in receptor tyrosine kinases, such as amplification and mutation of EGFR. EXPERIMENTAL DESIGN Using a Drosophila glioma model and human patient-derived GBM stem cells and xenograft models, we genetically and pharmacologically tested whether the YAP and TAZ transcription coactivators, effectors of the Hippo pathway that promote gene expression via TEA domain (TEAD) cofactors, are key drivers of GBM tumorigenicity downstream of oncogenic EGFR signaling. RESULTS YAP and TAZ are highly expressed in EGFR-amplified/mutant human GBMs, and their knockdown in EGFR-amplified/mutant GBM cells inhibited proliferation and elicited apoptosis. Our results indicate that YAP/TAZ-TEAD directly regulates transcription of SOX2, C-MYC, and EGFR itself to create a feedforward loop to drive survival and proliferation of human GBM cells. Moreover, the benzoporphyrin derivative verteporfin, a disruptor of YAP/TAZ-TEAD-mediated transcription, preferentially induced apoptosis of cultured patient-derived EGFR-amplified/mutant GBM cells, suppressed expression of YAP/TAZ transcriptional targets, including EGFR, and conferred significant survival benefit in an orthotopic xenograft GBM model. Our efforts led us to design and initiate a phase 0 clinical trial of Visudyne, an FDA-approved liposomal formulation of verteporfin, where we used intraoperative fluorescence to observe verteporfin uptake into tumor cells in GBM tumors in human patients. CONCLUSIONS Together, our data suggest that verteporfin is a promising therapeutic agent for EGFR-amplified and -mutant GBM.
Collapse
Affiliation(s)
| | - Nathaniel H Boyd
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia
| | - Se-Yeong Oh
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia
| | - Shoeb Lallani
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia
| | - Andrew Boucher
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, Georgia
| | - Stewart G Neill
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Jeffrey J Olson
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, Georgia.,Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia.,Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia
| | - Renee D Read
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia. .,Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia.,Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
26
|
Theranostic verteporfin- loaded lipid-polymer liposome for photodynamic applications. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 212:112039. [PMID: 33002779 DOI: 10.1016/j.jphotobiol.2020.112039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/09/2020] [Accepted: 09/19/2020] [Indexed: 12/18/2022]
Abstract
In this study we report a novel theranostic lipid-polymer liposome, obtained from DPPC and the triblock copolymer F127 covalently modified with 5(6)-carboxyfluorescein (CF) for photodynamic applications. Due to the presence of F127, small unilamellar vesicle (SUV) liposomes were synthesized by a simple and fast thin-film hydration method without the need for an extrusion process. The vesicles have around 100 nm, low polydispersity and superb solution stability. The clinically used photosensitizer verteporfin (VP) was entrapped into the vesicles, mostly in monomeric form, with 90% loading efficiency. Stern-Volmer and fluorescence lifetime assays showed heterogeneous distribution of the VP and CF into the vesicles, ensuring the integrity of their individual photophysical properties. The theranostic properties were entirely photoactivatable and can be trigged by a unique wavelength (470 nm). The feasibility of the system was tested against the Glioblastoma multiforme cell line T98G. Cellular uptake by time-resolved fluorescence microscopy showed monomerized VP (monoexponential decay, 6.0 ns) at nucleus level, while CF was detected at the membrane by fluorescence microscopy. The strategy's success was supported by the reduction of 98% in the viability of T98G cells by the photoactivated lipid-polymer liposome with [VP] = 1.0 μmol L-1. Therefore, the novel theranostic liposome is a potential system for use in cancer and ocular disease therapies.
Collapse
|
27
|
Espinosa-Sánchez A, Suárez-Martínez E, Sánchez-Díaz L, Carnero A. Therapeutic Targeting of Signaling Pathways Related to Cancer Stemness. Front Oncol 2020; 10:1533. [PMID: 32984007 PMCID: PMC7479251 DOI: 10.3389/fonc.2020.01533] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 07/16/2020] [Indexed: 12/11/2022] Open
Abstract
The theory of cancer stem cells (CSCs) proposes that the different cells within a tumor, as well as metastasis deriving from it, are originated from a single subpopulation of cells with self-renewal and differentiation capacities. These cancer stem cells are supposed to be critical for tumor expansion and metastasis, tumor relapse and resistance to conventional therapies, such as chemo- and radiotherapy. The acquisition of these abilities has been attributed to the activation of alternative pathways, for instance, WNT, NOTCH, SHH, PI3K, Hippo, or NF-κB pathways, that regulate detoxification mechanisms; increase the metabolic rate; induce resistance to apoptotic, autophagic, and senescence pathways; promote the overexpression of drug transporter proteins; and activate specific stem cell transcription factors. The elimination of CSCs is an important goal in cancer therapeutic approaches because it could decrease relapses and metastatic dissemination, which are main causes of mortality in oncology patients. In this work, we discuss the role of these signaling pathways in CSCs along with their therapeutic potential.
Collapse
Affiliation(s)
- Asunción Espinosa-Sánchez
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Seville, Spain
- CIBER de Cancer, Madrid, Spain
| | - Elisa Suárez-Martínez
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Seville, Spain
- CIBER de Cancer, Madrid, Spain
| | - Laura Sánchez-Díaz
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Seville, Spain
- CIBER de Cancer, Madrid, Spain
| | - Amancio Carnero
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Seville, Spain
- CIBER de Cancer, Madrid, Spain
| |
Collapse
|
28
|
Bhargav AG, Mondal SK, Garcia CA, Green JJ, Quiñones‐Hinojosa A. Nanomedicine Revisited: Next Generation Therapies for Brain Cancer. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Adip G. Bhargav
- Mayo Clinic College of Medicine and Science Mayo Clinic 200 First Street SW Rochester MN 55905 USA
- Department of Neurologic Surgery Mayo Clinic 4500 San Pablo Rd. Jacksonville FL 32224 USA
| | - Sujan K. Mondal
- Department of Pathology University of Pittsburgh School of Medicine 200 Lothrop Street Pittsburgh PA 15213 USA
| | - Cesar A. Garcia
- Department of Neurologic Surgery Mayo Clinic 4500 San Pablo Rd. Jacksonville FL 32224 USA
| | - Jordan J. Green
- Departments of Biomedical Engineering, Neurosurgery, Oncology, Ophthalmology, Materials Science and Engineering, and Chemical and Biomolecular Engineering, Translational Tissue Engineering Center, Bloomberg‐Kimmel Institute for Cancer Immunotherapy, Institute for Nanobiotechnology Johns Hopkins University School of Medicine 400 N. Broadway, Smith 5017 Baltimore MD 21231 USA
| | - Alfredo Quiñones‐Hinojosa
- Department of Neurologic Surgery Mayo Clinic 4500 San Pablo Rd. Jacksonville FL 32224 USA
- Departments of Otolaryngology‐Head and Neck Surgery/Audiology Neuroscience, Cancer Biology, and Anatomy Mayo Clinic 4500 San Pablo Rd. Jacksonville FL 32224 USA
| |
Collapse
|
29
|
Taiarol L, Formicola B, Magro RD, Sesana S, Re F. An update of nanoparticle-based approaches for glioblastoma multiforme immunotherapy. Nanomedicine (Lond) 2020; 15:1861-1871. [PMID: 32731839 DOI: 10.2217/nnm-2020-0132] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma multiforme is a serious medical issue in the brain oncology field due to its aggressiveness and recurrence. Immunotherapy has emerged as a valid approach to counteract the growth and metastasization of glioblastoma multiforme. Among the different innovative approaches investigated, nanoparticles gain attention because of their versatility which is key in allowing precise targeting of brain tumors and increasing targeted drug delivery to the brain, thus minimizing adverse effects. This article reviews the progress made in this field over the past 2 years, focusing on nonspherical and biomimetic particles and on vectors for the delivery of nucleic acids. However, challenges still need to be addressed, considering the improvement of the particles passage across the blood-meningeal barrier and/or the blood-brain barrier, promoting the clinical translatability of these approaches.
Collapse
Affiliation(s)
- Lorenzo Taiarol
- School of Medicine & Surgery, Nanomedicine Center NANOMIB, University of Milano-Bicocca, Monza, 20900, Italy
| | - Beatrice Formicola
- School of Medicine & Surgery, Nanomedicine Center NANOMIB, University of Milano-Bicocca, Monza, 20900, Italy
| | - Roberta Dal Magro
- School of Medicine & Surgery, Nanomedicine Center NANOMIB, University of Milano-Bicocca, Monza, 20900, Italy
| | - Silvia Sesana
- School of Medicine & Surgery, Nanomedicine Center NANOMIB, University of Milano-Bicocca, Monza, 20900, Italy
| | - Francesca Re
- School of Medicine & Surgery, Nanomedicine Center NANOMIB, University of Milano-Bicocca, Monza, 20900, Italy
| |
Collapse
|
30
|
Overchuk M, Cheng MHY, Zheng G. X-ray-Activatable Photodynamic Nanoconstructs. ACS CENTRAL SCIENCE 2020; 6:613-615. [PMID: 32490178 PMCID: PMC7256960 DOI: 10.1021/acscentsci.0c00303] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Affiliation(s)
- Marta Overchuk
- Institute of Biomaterials
and Biomedical Engineering, University of
Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, PMCRT 5-354, Toronto, Ontario M5G 1L7, Canada
| | - Miffy H. Y. Cheng
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, PMCRT 5-354, Toronto, Ontario M5G 1L7, Canada
| | - Gang Zheng
- Institute of Biomaterials
and Biomedical Engineering, University of
Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, PMCRT 5-354, Toronto, Ontario M5G 1L7, Canada
- Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| |
Collapse
|
31
|
Kim J, Mondal SK, Tzeng SY, Rui Y, Al-kharboosh R, Kozielski KK, Bhargav AG, Garcia CA, Quiñones-Hinojosa A, Green JJ. Poly(ethylene glycol)-Poly(beta-amino ester)-Based Nanoparticles for Suicide Gene Therapy Enhance Brain Penetration and Extend Survival in a Preclinical Human Glioblastoma Orthotopic Xenograft Model. ACS Biomater Sci Eng 2020; 6:2943-2955. [PMID: 33463272 PMCID: PMC8035708 DOI: 10.1021/acsbiomaterials.0c00116] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Glioblastoma (GBM) is the most devastating brain cancer, and cures remain elusive with currently available neurosurgical, pharmacological, and radiation approaches. While retrovirus- and adenovirus-mediated suicide gene therapy using DNA encoding herpes simplex virus-thymidine kinase (HSV-tk) and prodrug ganciclovir has been suggested as a promising strategy, a nonviral approach for treatment in an orthotopic human primary brain tumor model has not previously been demonstrated. Delivery challenges include nanoparticle penetration through brain tumors, efficient cancer cell uptake, endosomal escape to the cytosol, and biodegradability. To meet these challenges, we synthesized poly(ethylene glycol)-modified poly(beta-amino ester) (PEG-PBAE) polymers to improve extracellular delivery and coencapsulated plasmid DNA with end-modified poly(beta-amino ester) (ePBAE) polymers to improve intracellular delivery as well. We created and evaluated a library of PEG-PBAE/ePBAE nanoparticles (NPs) for effective gene therapy against two independent primary human stem-like brain tumor initiating cells, a putative target to prevent GBM recurrence. The optimally engineered PEG-PBAE/ePBAE NP formulation demonstrated 54 and 82% transfection efficacies in GBM1A and BTIC375 cells respectively, in comparison to 37 and 66% for optimized PBAE NPs without PEG. The leading PEG-PBAE NP formulation also maintained sub-250 nm particle size up to 5 h, while PBAE NPs without PEG showed aggregation over time to micrometer-sized complexes. The comparative advantage demonstrated in vitro successfully translated into improved in vivo diffusion, with a higher amount of PEG-PBAE NPs penetrating to a distance of 2 mm from the injection site. A significant increase in median survival from 53.5 to 67 days by PEG-PBAE/pHSV-tk NP and systemic ganciclovir treatment compared to a control group in orthotopic murine model of human glioblastoma demonstrates the potential of PEG-PBAE-based NPs as an effective gene therapy platform for the treatment of human brain tumors.
Collapse
Affiliation(s)
- Jayoung Kim
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD 21231
- Translational Tissue Engineering Center and Institute for NanoBioTechnology, Johns Hopkins School of Medicine, Baltimore, MD 21231
| | - Sujan K. Mondal
- Department of Neurosurgery, Mayo Clinic, Jacksonville, FL 32224
| | - Stephany Y. Tzeng
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD 21231
- Translational Tissue Engineering Center and Institute for NanoBioTechnology, Johns Hopkins School of Medicine, Baltimore, MD 21231
| | - Yuan Rui
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD 21231
- Translational Tissue Engineering Center and Institute for NanoBioTechnology, Johns Hopkins School of Medicine, Baltimore, MD 21231
| | | | - Kristen K. Kozielski
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD 21231
- Translational Tissue Engineering Center and Institute for NanoBioTechnology, Johns Hopkins School of Medicine, Baltimore, MD 21231
- Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, Stuttgart, 70569, Germany
| | - Adip G. Bhargav
- Department of Neurosurgery, Mayo Clinic, Jacksonville, FL 32224
- Mayo Clinic College of Medicine and Science, Mayo Clinic, Rochester, Minnesota
| | - Cesar A. Garcia
- Department of Neurosurgery, Mayo Clinic, Jacksonville, FL 32224
| | | | - Jordan J. Green
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD 21231
- Translational Tissue Engineering Center and Institute for NanoBioTechnology, Johns Hopkins School of Medicine, Baltimore, MD 21231
- Department of Neurosurgery, Johns Hopkins Hospital, Baltimore, MD 21231
- Department of Oncology, the Sidney Kimmel Comprehensive Cancer, and the Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins School of Medicine, Baltimore, MD 21231
- Department of Ophthalmology, Department of Materials Science and Engineering, and Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21231
| |
Collapse
|
32
|
Shakeri S, Ashrafizadeh M, Zarrabi A, Roghanian R, Afshar EG, Pardakhty A, Mohammadinejad R, Kumar A, Thakur VK. Multifunctional Polymeric Nanoplatforms for Brain Diseases Diagnosis, Therapy and Theranostics. Biomedicines 2020; 8:E13. [PMID: 31941057 PMCID: PMC7168063 DOI: 10.3390/biomedicines8010013] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 12/19/2019] [Accepted: 01/06/2020] [Indexed: 12/25/2022] Open
Abstract
The blood-brain barrier (BBB) acts as a barrier to prevent the central nervous system (CNS) from damage by substances that originate from the blood circulation. The BBB limits drug penetration into the brain and is one of the major clinical obstacles to the treatment of CNS diseases. Nanotechnology-based delivery systems have been tested for overcoming this barrier and releasing related drugs into the brain matrix. In this review, nanoparticles (NPs) from simple to developed delivery systems are discussed for the delivery of a drug to the brain. This review particularly focuses on polymeric nanomaterials that have been used for CNS treatment. Polymeric NPs such as polylactide (PLA), poly (D, L-lactide-co-glycolide) (PLGA), poly (ε-caprolactone) (PCL), poly (alkyl cyanoacrylate) (PACA), human serum albumin (HSA), gelatin, and chitosan are discussed in detail.
Collapse
Affiliation(s)
- Shahryar Shakeri
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman 7631818356, Iran;
| | - Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz 5166616471, Iran;
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla 34956, Istanbul, Turkey;
| | - Rasoul Roghanian
- Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan 81746, Iran;
| | - Elham Ghasemipour Afshar
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman 7619813159, Iran;
| | - Abbas Pardakhty
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman 7616911319, Iran;
| | - Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman 7616911319, Iran;
| | - Anuj Kumar
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Korea
| | - Vijay Kumar Thakur
- Enhanced Composites and Structures Center, School of Aerospace, Transport and Manufacturing, Cranfield University, Bedfordshire MK43 0AL, UK
| |
Collapse
|
33
|
Shamul JG, Shah SR, Kim J, Schiapparelli P, Vazquez-Ramos CA, Lee BJ, Patel KK, Shin A, Quinones-Hinojosa A, Green JJ. Verteporfin-Loaded Anisotropic Poly(Beta-Amino Ester)-Based Micelles Demonstrate Brain Cancer-Selective Cytotoxicity and Enhanced Pharmacokinetics. Int J Nanomedicine 2019; 14:10047-10060. [PMID: 31920302 PMCID: PMC6935022 DOI: 10.2147/ijn.s231167] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 11/13/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Nanomedicine can improve traditional therapies by enhancing the controlled release of drugs at targeted tissues in the body. However, there still exists disease- and therapy-specific barriers that limit the efficacy of such treatments. A major challenge in developing effective therapies for one of the most aggressive brain tumors, glioblastoma (GBM), is affecting brain cancer cells while avoiding damage to the surrounding healthy brain parenchyma. Here, we developed poly(ethylene glycol) (PEG)-poly(beta-amino ester) (PBAE) (PEG-PBAE)-based micelles encapsulating verteporfin (VP) to increase tumor-specific targeting. METHODS Biodegradable, pH-sensitive micelles of different shapes were synthesized via nanoprecipitation using two different triblock PEG-PBAE-PEG copolymers varying in their relative hydrophobicity. The anti-tumor efficacy of verteporfin loaded in these anisotropic and spherical micelles was evaluated in vitro using patient-derived primary GBM cells. RESULTS For anisotropic micelles, uptake efficiency was ~100% in GBM cells (GBM1A and JHGBM612) while only 46% in normal human astrocytes (NHA) at 15.6 nM VP (p ≤ 0.0001). Cell killing of GBM1A and JHGBM612 vs NHA was 52% and 77% vs 29%, respectively, at 24 hrs post-treatment of 125 nM VP-encapsulated in anisotropic micelles (p ≤ 0.0001), demonstrating the tumor cell-specific selectivity of VP. Moreover, anisotropic micelles showed an approximately fivefold longer half-life in blood circulation than the analogous spherical micelles in a GBM xenograft model in mice. In this model, micelle accumulation to tumors was significantly greater for anisotropic micelle-treated mice compared to spherical micelle-treated mice at both 8 hrs (~1.8-fold greater, p ≤ 0.001) and 24 hrs (~2.1-fold greater, p ≤ 0.0001). CONCLUSION Overall, this work highlights the promise of a biodegradable anisotropic micelle system to overcome multiple drug delivery challenges and enhance efficacy and safety for the treatment of brain cancer.
Collapse
Affiliation(s)
- James G Shamul
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD21231, USA
- Translational Tissue Engineering Center and Institute for NanoBioTechnology, Johns Hopkins School of Medicine, Baltimore, MD21231, USA
| | - Sagar R Shah
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD21231, USA
- Translational Tissue Engineering Center and Institute for NanoBioTechnology, Johns Hopkins School of Medicine, Baltimore, MD21231, USA
- Department of Neurosurgery, Mayo Clinic, Jacksonville, FL32224, USA
| | - Jayoung Kim
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD21231, USA
- Translational Tissue Engineering Center and Institute for NanoBioTechnology, Johns Hopkins School of Medicine, Baltimore, MD21231, USA
| | | | | | - Ben J Lee
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD21231, USA
- Translational Tissue Engineering Center and Institute for NanoBioTechnology, Johns Hopkins School of Medicine, Baltimore, MD21231, USA
| | - Kisha K Patel
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD21231, USA
- Translational Tissue Engineering Center and Institute for NanoBioTechnology, Johns Hopkins School of Medicine, Baltimore, MD21231, USA
| | - Alyssa Shin
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD21231, USA
- Translational Tissue Engineering Center and Institute for NanoBioTechnology, Johns Hopkins School of Medicine, Baltimore, MD21231, USA
| | | | - Jordan J Green
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD21231, USA
- Translational Tissue Engineering Center and Institute for NanoBioTechnology, Johns Hopkins School of Medicine, Baltimore, MD21231, USA
- Department of Neurosurgery, Johns Hopkins Hospital, Baltimore, MD21231, USA
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer, and The Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins School of Medicine, Baltimore, MD21231, USA
- Department of Ophthalmology, Department of Materials Science and Engineering, and Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD21231, USA
| |
Collapse
|
34
|
Majerská M, Jakubec M, Klimša V, Rimpelová S, Král V, Štěpánek F. Microgel Bioreactors for Cancer Cell Targeting by pH-Dependent Generation of Radicals. Mol Pharm 2019; 16:3275-3283. [PMID: 31120760 DOI: 10.1021/acs.molpharmaceut.9b00531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The lack of specificity of traditional cytostatics and increasing resistance of cancer cells represent important challenges in cancer therapy. One of the characteristics of cancer cells is their intrinsic oxidative stress caused by higher metabolic activity, mitochondrial malfunction, and oncogene stimulation. This feature can be exploited in the pursuit of more selective cancer therapy, as there is increasing evidence that cancer cells are more sensitive to elevated concentrations of reactive oxygen species than normal cells. In this study, we demonstrate a new concept for cancer cell targeting by in situ production of radicals under physiological conditions. The biologically active radicals are produced in the milieu of cancer cells by enzymatic conversion from an inactive precursor, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)diammonium salt, by using miniature bioreactors represented by cell-sized microgels containing immobilized laccase. We utilize the pH-dependent activity of laccase to generate radicals only at a lower pH (5.7-6.1) that is characteristic of the tumor microenvironment. The composition of the microgels was optimized so as to allow sufficient substrate and radical diffusion, high enzyme activity, and stability under physiological conditions. The functionality of this system was evaluated on three cancer cell lines (HeLa, HT-29, and DLD1) and the cytotoxicity of in situ-produced radicals was successfully proven in all cases. These results demonstrate that cancer cell targeting by in situ-generated radicals using miniature enzymatic reactors may represent an alternative to traditional cytostatics. In particular, the pH-dependence of radical generation and their short-lived nature can ensure localized functionality in the tumor microenvironment and thereby reduce systemic side-effects.
Collapse
Affiliation(s)
| | | | | | | | - Vlastimil Král
- Institute of Molecular Genetics of the Czech Academy of Sciences, Prague , Vídeňská 1083 , 142 20 Prague 4 , Czech Republic
| | | |
Collapse
|