1
|
Safir W, Malik A, Saadia H, Zahid A, Li J. Extraction, GC-MS analysis, cytotoxic, anti-inflammatory and anticancer potential of Cannabis sativa female flower; in vitro, in vivo and in silico. Front Pharmacol 2025; 16:1546062. [PMID: 40008130 PMCID: PMC11850312 DOI: 10.3389/fphar.2025.1546062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 01/17/2025] [Indexed: 02/27/2025] Open
Abstract
This work examines the anticancer activity, the anti-inflammatory nature, and the cytotoxicity of the ethanol extract obtained from the female flowers of Cannabis sativa L using molecular methods in vitro, animal testing in vivo, as well as computational methods and simulations in silico. From the GC-MS analysis, the following bioactive compounds were found: cannabidiol (CBD), tetrahydrocannabinol (THC), and humulene. The antiproliferative activities of the extract were determined on HeLa cells by using MTT, Crystal Violet, and Trypan Blue assays with an IC50 value suggesting 51%-77.6% lethality. The bioinformatics analysis of molecular docking proved significant ligand-protein interactions of CBD, THC, and humulene with cancer-associated proteins such as PD-1/PD-L1, TNF-α, and MMP-9. In vivo, breast cancer was first established in female Sprague-Dawley rats with 7,12-dimethylbenz(a)anthracene (DMBA) then treated with cannabinoids either singularly or in combination. Detailed treatment demonstrated that the use of the three cannabinoids simultaneously yielded the best anticancer and anti-inflammatory outcomes together with the best tumor reduction. The concentration of serum biomarkers of inflammation and tumor progression was substantially reduced in treated groups compared to the control group, which proves the synergistic effects of these cannabinoids in breast cancer therapy. This study emphasizes the importance of medical Cannabis sativa derivatives in cancer treatment.
Collapse
Affiliation(s)
- Waqas Safir
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Sciences and Technology, Xinjiang University, Urumqi, Xinjiang, China
| | - Arif Malik
- School of Pain and Regenerative Medicine (SPRM), The University of Lahore, Lahore, Pakistan
- Faculty of Health Sciences, Equator University of Science and Technology, (EQUSaT), Masaka, Uganda
| | - Haleema Saadia
- Department of Biochemistry, Islam Medical College, Sialkot, Pakistan
| | - Ayesha Zahid
- School of Pain and Regenerative Medicine (SPRM), The University of Lahore, Lahore, Pakistan
| | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Sciences and Technology, Xinjiang University, Urumqi, Xinjiang, China
| |
Collapse
|
2
|
Liu B, Lv M, Duan Y, Lin J, Dai L, Yu J, Liao J, Li Y, Wu Z, Li J, Sun Y, Liao H, Zhang J, Duan Y. Genetically engineered CD276-anchoring biomimetic nanovesicles target senescent escaped tumor cells to overcome chemoresistant and immunosuppressive breast cancer. Biomaterials 2025; 313:122796. [PMID: 39226654 DOI: 10.1016/j.biomaterials.2024.122796] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/13/2024] [Accepted: 08/30/2024] [Indexed: 09/05/2024]
Abstract
Chemotherapy-induced cellular senescence leads to an increased proportion of cancer stem cells (CSCs) in breast cancer (BC), contributing to recurrence and metastasis, while effective means to clear them are currently lacking. Herein, we aim to develop new approaches for selectively killing senescent-escape CSCs. High CD276 (95.60%) expression in multidrug-resistant BC cells, facilitates immune evasion by low-immunogenic senescent escape CSCs. CALD1, upregulated in ADR-resistant BC, promoting senescent-escape of CSCs with an anti-apoptosis state and upregulating CD276, PD-L1 to promote chemoresistance and immune escape. We have developed a controlled-released thermosensitive hydrogel containing pH- responsive anti-CD276 scFV engineered biomimetic nanovesicles to overcome BC in primary, recurrent, metastatic and abscopal humanized mice models. Nanovesicles coated anti-CD276 scFV selectively fuses with cell membrane of senescent-escape CSCs, then sequentially delivers siCALD1 and ADR due to pH-responsive MnP shell. siCALD1 together with ADR effectively induce apoptosis of CSCs, decrease expression of CD276 and PD-L1, and upregulate MHC I combined with Mn2+ to overcome chemoresistance and promote CD8+T cells infiltration. This combined therapeutic approach reveals insights into immune surveillance evasion by senescent-escape CSCs, offering a promising strategy to immunotherapy effectiveness in cancer therapy.
Collapse
Affiliation(s)
- Bin Liu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China
| | - Minchao Lv
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China
| | - Yi Duan
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China
| | - Jiangtao Lin
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China
| | - Li Dai
- Department of Otolaryngology, Ren ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Jian Yu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China
| | - Jinghan Liao
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China
| | - Yuanyuan Li
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China
| | - Zhihua Wu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China
| | - Jiping Li
- Department of Otolaryngology, Ren ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Ying Sun
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China
| | - Hongze Liao
- Research Center for Marine Drugs, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Jiali Zhang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China.
| | - Yourong Duan
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China.
| |
Collapse
|
3
|
Du J, Han S, Zhou H, Wang J, Wang F, Zhao M, Song R, Li K, Zhu H, Zhang W, Yang Z, Liu Z. Targeted protein degradation combined with PET imaging reveals the role of host PD-L1 in determining anti-PD-1 therapy efficacy. Eur J Nucl Med Mol Imaging 2024; 51:3559-3571. [PMID: 38910165 DOI: 10.1007/s00259-024-06804-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/17/2024] [Indexed: 06/25/2024]
Abstract
PURPOSE Immunohistochemical staining of programmed death-ligand 1 (PD-L1) in tumor biopsies acquired through invasive procedures is routinely employed in clinical practice to identify patients who are most likely to benefit from anti-programmed cell death protein 1 (PD-1) therapy. Nevertheless, PD-L1 expression is observed in various cellular subsets within tumors and their microenvironments, including tumor cells, dendritic cells, and macrophages. The impact of PD-L1 expression across these different cell types on the responsiveness to anti-PD-1 treatment is yet to be fully understood. METHODS We synthesized polymer-based lysosome-targeting chimeras (LYTACs) that incorporate both PD-L1-targeting motifs and liver cell-specific asialoglycoprotein receptor (ASGPR) recognition elements. Small-animal positron emission tomography (PET) imaging of PD-L1 expression was also conducted using a PD-L1-specific radiotracer 89Zr-αPD-L1/Fab. RESULTS The PD-L1 LYTAC platform was capable of specifically degrading PD-L1 expressed on liver cancer cells through the lysosomal degradation pathway via ASGPR without impacting the PD-L1 expression on host cells. When coupled with whole-body PD-L1 PET imaging, our studies revealed that host cell PD-L1, rather than tumor cell PD-L1, is pivotal in the antitumor response to anti-PD-1 therapy in a mouse model of liver cancer. CONCLUSION The LYTAC strategy, enhanced by PET imaging, has the potential to surmount the limitations of knockout mouse models and to provide a versatile approach for the selective degradation of target proteins in vivo. This could significantly aid in the investigation of the roles and mechanisms of protein functions associated with specific cell subsets in living subjects.
Collapse
Affiliation(s)
- Jinhong Du
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Shu Han
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Haoyi Zhou
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Jianze Wang
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Feng Wang
- Department of Nuclear Medicine, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Meixin Zhao
- Department of Nuclear Medicine, Peking University Third Hospital, Beijing, 100191, China
| | - Rui Song
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Kui Li
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Hua Zhu
- Department of Nuclear Medicine, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Weifang Zhang
- Department of Nuclear Medicine, Peking University Third Hospital, Beijing, 100191, China.
| | - Zhi Yang
- Department of Nuclear Medicine, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Peking University Cancer Hospital and Institute, Beijing, 100142, China.
| | - Zhaofei Liu
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
- Department of Nuclear Medicine, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Peking University Cancer Hospital and Institute, Beijing, 100142, China.
- Department of Nuclear Medicine, Peking University Third Hospital, Beijing, 100191, China.
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China.
- Peking University-Yunnan Baiyao International Medical Research Center, Beijing, 100191, China.
| |
Collapse
|
4
|
Zhu H, Zhao W, Chen H, Zhu X, You J, Jin C. Evaluation of the effectiveness and safety of combining PD-1/PD-L1 inhibitors with anti-angiogenic agents in unresectable hepatocellular carcinoma: a systematic review and meta-analysis. Front Immunol 2024; 15:1468440. [PMID: 39355241 PMCID: PMC11442381 DOI: 10.3389/fimmu.2024.1468440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 08/29/2024] [Indexed: 10/03/2024] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a leading cause of cancer-related mortality globally, particularly when diagnosed at an unresectable stage. Traditional treatments for advanced HCC have limited efficacy, prompting the exploration of combination therapies. This systematic review and meta-analysis evaluate the effectiveness and safety of combining PD-1/PD-L1 inhibitors with anti-angiogenic agents in patients with unresectable HCC. METHODS A comprehensive literature search was conducted in PubMed, Embase, Cochrane Central Register of Controlled Trials (CENTRAL), and Web of Science, including studies up to June 2024. Randomized controlled trials (RCTs) comparing combination therapy (PD-1/PD-L1 inhibitors with anti-angiogenic agents) to monotherapy or standard treatments in unresectable HCC patients were included. Data were synthesized using random-effects models, with pooled hazard ratios (HRs) for overall survival (OS) and progression-free survival (PFS), and risk ratios (RRs) for objective response rate (ORR) and adverse events (AEs). RESULTS Five Phase III RCTs involving 1515 patients were included. Combination therapy significantly improved OS (HR: 0.71, 95% CI: 0.60-0.85) and PFS (HR: 0.64, 95% CI: 0.53-0.77) compared to monotherapy or standard treatments. The pooled OR for ORR was 1.27 (95% CI: 1.57-2.11), indicating a higher response rate with combination therapy. However, the risk of AEs was also higher in the combination therapy group (RR: 1.04, 95% CI: 1.02-1.06). Subgroup analyses revealed consistent benefits across different types of PD-1/PD-L1 inhibitors and anti-angiogenic agents, with no significant publication bias detected. CONCLUSIONS The combination of PD-1/PD-L1 inhibitors with anti-angiogenic agents offers significant benefits in improving OS and PFS in patients with unresectable HCC, although it is associated with an increased risk of adverse events.
Collapse
Affiliation(s)
- Hengzhou Zhu
- Department of Oncology, Wuxi Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, China
| | - Wenyue Zhao
- Department of Oncology, Wuxi Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, China
| | - Haoyan Chen
- Department of Respiratory, Wuxi Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, China
| | - Xiaodan Zhu
- Department of Oncology, Wuxi Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, China
| | - Jianliang You
- Department of Oncology, Wuxi Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, China
| | - Chunhui Jin
- Department of Oncology, Wuxi Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, China
| |
Collapse
|
5
|
Yu BX, Liu YB, Chen XY, Zhang W, Cen Y, Yan MY, Liu QQ, Li SY. Self-Assembled PD-L1 Downregulator to Boost Photodynamic Activated Tumor Immunotherapy Through CDK5 Inhibition. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311507. [PMID: 38856024 DOI: 10.1002/smll.202311507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/17/2024] [Indexed: 06/11/2024]
Abstract
The immunosuppressive characteristics and acquired immune resistance can restrain the therapy-initiated anti-tumor immunity. In this work, an antibody free programmed death receptor ligand 1 (PD-L1) downregulator (designated as CeSe) is fabricated to boost photodynamic activated immunotherapy through cyclin-dependent kinase 5 (CDK5) inhibition. Among which, FDA approved photosensitizer of chlorin e6 (Ce6) and preclinical available CDK5 inhibitor of seliciclib (Se) are utilized to prepare the nanomedicine of CeSe through self-assembly technique without drug excipient. Nanoscale CeSe exhibits an increased stability and drug delivery efficiency, contributing to intracellular production of reactive oxygen species (ROS) for robust photodynamic therapy (PDT). The PDT of CeSe can not only suppress the primary tumor growth, but also induce the immunogenic cell death (ICD) to release tumor associated antigens. More importantly, the CDK5 inhibition by CeSe can downregulate PD-L1 to re-activate the systemic anti-tumor immunity by decreasing the tumor immune escape and therapy-induced acquired immune resistance. This work provides an antibody free strategy to activate systemic immune response for metastatic tumor treatment, which may accelerate the development of translational nanomedicine with sophisticated mechanism.
Collapse
Affiliation(s)
- Bai-Xue Yu
- The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology the NMPA and State Key Laboratory of Respiratory Disease, the School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Yi-Bin Liu
- The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology the NMPA and State Key Laboratory of Respiratory Disease, the School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Xia-Yun Chen
- The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology the NMPA and State Key Laboratory of Respiratory Disease, the School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Wei Zhang
- The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology the NMPA and State Key Laboratory of Respiratory Disease, the School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Yi Cen
- The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology the NMPA and State Key Laboratory of Respiratory Disease, the School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Meng-Yi Yan
- The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology the NMPA and State Key Laboratory of Respiratory Disease, the School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Qian-Qian Liu
- The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology the NMPA and State Key Laboratory of Respiratory Disease, the School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Shi-Ying Li
- The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology the NMPA and State Key Laboratory of Respiratory Disease, the School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| |
Collapse
|
6
|
Wu S, Hu C, Hui K, Jiang X. Non-immune functions of B7-H3: bridging tumor cells and the tumor vasculature. Front Oncol 2024; 14:1408051. [PMID: 38952550 PMCID: PMC11215132 DOI: 10.3389/fonc.2024.1408051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/04/2024] [Indexed: 07/03/2024] Open
Abstract
B7-H3 (CD276), an immune checkpoint molecule, is overexpressed in various types of cancer and their tumor vasculature, demonstrating significant associations with adverse clinical outcomes. In addition to its well-known immune functions, B7-H3 exhibits dual co-stimulatory/co-inhibitory roles in normal physiology and the tumor microenvironment. The non-immune functions of B7-H3 in tumor cells and the tumor vasculature, including promoting tumor cell anti-apoptosis, proliferation, invasion, migration, drug resistance, radioresistance, as well as affecting cellular metabolism and angiogenesis, have increasingly gained attention from researchers. Particularly, the co-expression of B7-H3 in both tumor cells and tumor endothelial cells highlights the higher potential and clinical utility of therapeutic strategies targeting B7-H3. This review aims to summarize the recent advances in understanding the non-immune functions of B7-H3 in tumors and provide insights into therapeutic approaches targeting B7-H3, focusing on its co-expression in tumor cells and endothelial cells. The aim is to establish a theoretical foundation and practical reference for the development and optimization of B7-H3-targeted therapies.
Collapse
Affiliation(s)
- Shuo Wu
- Department of Oncology, Lianyungang Clinical College of Nanjing Medical University, Lianyungang, China
| | - Chenxi Hu
- Department of Oncology, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, China
| | - Kaiyuan Hui
- Department of Oncology, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, China
| | - Xiaodong Jiang
- Department of Oncology, Lianyungang Clinical College of Nanjing Medical University, Lianyungang, China
- Department of Oncology, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, China
| |
Collapse
|
7
|
Wang B, Lu Z, Song M, He X, Hu Z, Liang H, Lu H, Chen Q, Liang B, Yi T, Wei P, Jiang L, Dong J. Single-Component Dual-Functional Autoboost Strategy by Dual Photodynamic and Cyclooxygenase-2 Inhibition for Lung Cancer and Spinal Metastasis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2303981. [PMID: 38224203 PMCID: PMC10966547 DOI: 10.1002/advs.202303981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 12/24/2023] [Indexed: 01/16/2024]
Abstract
Coloading adjuvant drugs or biomacromolecules with photosensitizers into nanoparticles to enhance the efficiency of photodynamic therapy (PDT) is a common strategy. However, it is difficult to load positively charged photosensitizers and negatively charged adjuvants into the same nanomaterial and further regulate drug release simultaneously. Herein, a single-component dual-functional prodrug strategy is reported for tumor treatment specifically activated by tumor microenvironment (TME)-generated HOCl. A representative prodrug (DHU-CBA2) is constructed using indomethacin grafted with methylene blue (MB). DHU-CBA2 exhibited high sensitivity toward HOCl and achieved simultaneous release of dual drugs in vitro and in vivo. DHU-CBA2 shows effective antitumor activity against lung cancer and spinal metastases via PDT and cyclooxygenase-2 (COX-2) inhibition. Mechanistically, PDT induces immunogenic cell death but stimulates the gene encoding COX-2. Downstream prostaglandins E2 and Indoleamine 2,3 dioxygenase 1 (IDO1) mediate immune escape in the TME, which is rescued by the simultaneous release of indomethacin. DHU-CBA2 promotes infiltration and function of CD8+ T cells, thus inducing a robust antitumor immune response. This work provides an autoboost strategy for a single-component dual-functional prodrug activated by TME-specific HOCl, thereby achieving favorable tumor treatment via the synergistic therapy of PDT and a COX-2 inhibitor.
Collapse
Affiliation(s)
- Ben Wang
- Department of Orthopaedic SurgeryZhongshan HospitalFudan UniversityShanghai200032China
| | - Zhen‐Ni Lu
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Chemistry and Chemical EngineeringDonghua UniversityShanghai201620China
| | - Meng‐Xiong Song
- Department of Orthopedics SurgeryMinhang HospitalFudan UniversityShanghai201100China
| | - Xiao‐Wen He
- Department of Orthopaedic SurgeryShanghai Baoshan District Wusong Center HospitalFudan UniversityShanghai200940China
| | - Zhi‐Chao Hu
- Department of Orthopaedic SurgeryZhongshan HospitalFudan UniversityShanghai200032China
| | - Hai‐Feng Liang
- Department of Orthopaedic SurgeryZhongshan HospitalFudan UniversityShanghai200032China
| | - Hong‐Wei Lu
- Department of Orthopaedic SurgeryZhongshan HospitalFudan UniversityShanghai200032China
| | - Qing Chen
- Department of Orthopaedic SurgeryZhongshan HospitalFudan UniversityShanghai200032China
| | - Bing Liang
- Department of Orthopaedic SurgeryZhongshan HospitalFudan UniversityShanghai200032China
| | - Tao Yi
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Chemistry and Chemical EngineeringDonghua UniversityShanghai201620China
| | - Peng Wei
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Chemistry and Chemical EngineeringDonghua UniversityShanghai201620China
| | - Li‐Bo Jiang
- Department of Orthopaedic SurgeryZhongshan HospitalFudan UniversityShanghai200032China
| | - Jian Dong
- Department of Orthopaedic SurgeryZhongshan HospitalFudan UniversityShanghai200032China
- Department of Orthopaedic SurgeryShanghai Baoshan District Wusong Center HospitalFudan UniversityShanghai200940China
| |
Collapse
|
8
|
Li Y, Li Y, Song Y, Liu S. Advances in research and application of photodynamic therapy in cholangiocarcinoma (Review). Oncol Rep 2024; 51:53. [PMID: 38334150 DOI: 10.3892/or.2024.8712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/18/2024] [Indexed: 02/10/2024] Open
Abstract
Cholangiocarcinoma (CCA) is a disease characterized by insidious clinical manifestations and challenging to diagnose. Patients are usually diagnosed at an advanced stage and miss the opportunity for radical surgery. Therefore, effective palliative therapy is the main treatment approach for unresectable CCA. Current common palliative treatments include biliary drainage, chemotherapy, radiotherapy, targeted therapy and immunotherapy. However, these treatments only offer limited improvement in quality of life and survival. Photodynamic therapy (PDT) is a novel local treatment method that is considered a safe tumor ablation method for numerous cancers. It has shown good efficacy in various studies of CCA and is expected to become an important treatment for CCA. In the present study, the mechanisms of PDT in the treatment of CCA were systematically explored and the progress in the research of photosensitizers was discussed. The current study focused on the various PDT protocols and their therapeutic effects in CCA, with the objective of providing a new horizon for future research and clinical applications of PDT in the treatment of CCA.
Collapse
Affiliation(s)
- Yufeng Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, P.R. China
| | - Yuhang Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, P.R. China
| | - Yinghui Song
- Central Laboratory of Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan 410005, P.R. China
| | - Sulai Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, P.R. China
| |
Collapse
|
9
|
Dudzik T, Domański I, Makuch S. The impact of photodynamic therapy on immune system in cancer - an update. Front Immunol 2024; 15:1335920. [PMID: 38481994 PMCID: PMC10933008 DOI: 10.3389/fimmu.2024.1335920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/12/2024] [Indexed: 04/10/2024] Open
Abstract
Photodynamic therapy (PDT) is a therapeutic approach that has gained significant attention in recent years with its promising impact on the immune system. Recent studies have shown that PDT can modulate both the innate and adaptive arms of the immune system. Currently, numerous clinical trials are underway to investigate the effectiveness of this method in treating various types of cancer, as well as to evaluate the impact of PDT on immune system in cancer treatment. Notably, clinical studies have demonstrated the recruitment and activation of immune cells, including neutrophils, macrophages, and dendritic cells, at the treatment site following PDT. Moreover, combination approaches involving PDT and immunotherapy have also been explored in clinical trials. Despite significant advancements in its technological and clinical development, further studies are needed to fully uncover the mechanisms underlying immune activation by PDT. The main objective of this review is to comprehensively summarize and discuss both ongoing and completed studies that evaluate the impact of PDT of cancer on immune response.
Collapse
Affiliation(s)
- Tomasz Dudzik
- Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Igor Domański
- Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Sebastian Makuch
- Department of Clinical and Experimental Pathology, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
10
|
Zhou Z, Wang H, Li J, Jiang X, Li Z, Shen J. Recent progress, perspectives, and issues of engineered PD-L1 regulation nano-system to better cure tumor: A review. Int J Biol Macromol 2024; 254:127911. [PMID: 37939766 DOI: 10.1016/j.ijbiomac.2023.127911] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 10/29/2023] [Accepted: 11/03/2023] [Indexed: 11/10/2023]
Abstract
Currently, immune checkpoint blockade (ICB) therapies that target the programmed cell death ligand-1 (PD-L1) have been used as revolutionary cancer treatments in the clinic. Apart from restoring the antitumor response of cytotoxic T cells by blocking the interaction between PD-L1 on tumor cells and programmed cell death-1 (PD-1) on T cells, PD-L1 proteins were also newly revealed to possess the capacity to accelerate DNA damage repair (DDR) and enhance tumor growth through multiple mechanisms, leading to the impaired efficacy of tumor therapies. Nevertheless, current free anti-PD-1/PD-L1 therapy still suffered from poor therapeutic outcomes in most solid tumors due to the non-selective tumor accumulation, ineludible severe cytotoxic effects, as well as the common occurrence of immune resistance. Recently, nanoparticles with efficient tumor-targeting capacity, tumor-responsive prosperity, and versatility for combination therapy were identified as new avenues for PD-L1 targeting cancer immunotherapies. In this review, we first summarized the multiple functions of PD-L1 protein in promoting tumor growth, accelerating DDR, as well as depressing immunotherapy efficacy. Following this, the effects and mechanisms of current clinically widespread tumor therapies on tumor PD-L1 expression were discussed. Then, we reviewed the recent advances in nanoparticles for anti-PD-L1 therapy via using PD-L1 antibodies, small interfering RNA (siRNA), microRNA (miRNA), clustered, regularly interspaced, short palindromic repeats (CRISPR), peptide, and small molecular drugs. At last, we discussed the challenges and perspectives to promote the clinical application of nanoparticles-based PD-L1-targeting therapy.
Collapse
Affiliation(s)
- Zaigang Zhou
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Haoxiang Wang
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Jie Li
- College of Pharmacy, Wenzhou Medical University, Wenzhou 325000, China
| | - Xin Jiang
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Zhangping Li
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang 324000, China.
| | - Jianliang Shen
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China.
| |
Collapse
|
11
|
Xu Q, Zheng J, Su Z, Chen B, Gu S. COL10A1 promotes tumorigenesis by modulating CD276 in pancreatic adenocarcinoma. BMC Gastroenterol 2023; 23:397. [PMID: 37974070 PMCID: PMC10652574 DOI: 10.1186/s12876-023-03045-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Pancreatic adenocarcinoma (PAAD) is a lethal malignant tumour. Further study is needed to determine the molecular mechanism and identify novel biomarkers of PAAD. METHODS Gene expression data from the GSE62165 microarray were analysed with the online software Morpheus to identify differentially expressed genes (DEGs). The STRING database was used to generate a protein‒protein interaction (PPI) network for these DEGs. Hub genes were identified with Cytoscape. COL10A1 expression in PAAD was analysed via the GEPIA database. COL10A1 expression in pancreatic cancer cell lines was measured by using qRT‒PCR. The LinkedOmics database was utilized to perform survival analysis of pancreatic adenocarcinoma patients grouped based on COL10A1 expression level. CCK-8, wound healing, and Transwell assays were used to study the role of COL10A1 in pancreatic cancer cell viability, migration, and invasion. Differentially expressed genes that were related to COL10A1 in PAAD were analysed via the LinkedOmics portal. After COL10A1 was knocked down, CD276 expression was assessed by western blotting. RESULTS COL10A1 was identified as one of the hub genes in PAAD by bioinformatics analysis of the GSE62165 microarray with Morpheus, the STRING database and Cytoscape. GEPIA revealed elevated expression of COL10A1 in PAAD samples vs. normal samples. COL10A1 expression was also increased in pancreatic cancer cells vs. control cells. Survival analysis of PAAD patients via LinkedOmics revealed that high expression of COL10A1 was associated with a poorer prognosis. Knockdown of COL10A1 inhibited the proliferation, migration, and invasion of cells in functional assays. Furthermore, mechanistic studies indicated that CD276 was a target of COL10A1 and that knockdown of COL10A1 decreased CD276 expression. Overexpression of CD276 in cells reversed COL10A1 knockdown-induced repression of proliferation and migration. CONCLUSIONS Our research suggests that COL10A1 promotes pancreatic adenocarcinoma tumorigenesis by regulating CD276. This study provides new insight into biomarkers and possible targets for pancreatic cancer treatment.
Collapse
Affiliation(s)
- Qiaodong Xu
- Department of Hepatobiliary surgery, Cancer Hospital of Shantou University Medical College, No. 7 Raoping Road, Shantou, 515041, China
| | - Jieting Zheng
- Department of pharmacy, Cancer Hospital of Shantou University Medical College, No. 7 Raoping Road, Shantou, 515041, China
| | - Zegeng Su
- Department of anesthesiology, Cancer Hospital of Shantou University Medical College, No. 7 Raoping Road, Shantou, 515041, China
| | - Binlie Chen
- Department of Hepatobiliary surgery, Cancer Hospital of Shantou University Medical College, No. 7 Raoping Road, Shantou, 515041, China
| | - Songgang Gu
- Department of Hepatobiliary surgery, Cancer Hospital of Shantou University Medical College, No. 7 Raoping Road, Shantou, 515041, China.
| |
Collapse
|
12
|
Jia J, Wu X, Long G, Yu J, He W, Zhang H, Wang D, Ye Z, Tian J. Revolutionizing cancer treatment: nanotechnology-enabled photodynamic therapy and immunotherapy with advanced photosensitizers. Front Immunol 2023; 14:1219785. [PMID: 37860012 PMCID: PMC10582717 DOI: 10.3389/fimmu.2023.1219785] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 09/20/2023] [Indexed: 10/21/2023] Open
Abstract
Nanotechnology-enhanced photodynamic therapy (PDT) and immunotherapy are emerging as exciting cancer therapeutic methods with significant potential for improving patient outcomes. By combining these approaches, synergistic effects have been observed in preclinical studies, resulting in enhanced immune responses to cancer and the capacity to conquer the immunosuppressive tumor microenvironment (TME). Despite challenges such as addressing treatment limitations and developing personalized cancer treatment strategies, the integration of nanotechnology-enabled PDT and immunotherapy, along with advanced photosensitizers (PSs), represents an exciting new avenue in cancer treatment. Continued research, development, and collaboration among researchers, clinicians, and regulatory agencies are crucial for further advancements and the successful implementation of these promising therapies, ultimately benefiting cancer patients worldwide.
Collapse
Affiliation(s)
- Jiedong Jia
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Xue Wu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Gongwei Long
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Jie Yu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Wei He
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huiping Zhang
- Institute of Reproduction Health Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dongwen Wang
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Zhangqun Ye
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Tian
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
- Department of Urology, National Cancer Center, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical, Beijing, China
| |
Collapse
|
13
|
Zhang J, Zhou Z(Z, Chen K, Kim S, Cho IS, Varadkar T, Baker H, Cho JH, Zhou L, Liu X(M. A CD276-Targeted Antibody-Drug Conjugate to Treat Non-Small Lung Cancer (NSCLC). Cells 2023; 12:2393. [PMID: 37830607 PMCID: PMC10572050 DOI: 10.3390/cells12192393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/17/2023] [Accepted: 09/25/2023] [Indexed: 10/14/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) patients, accounting for approximately 85% of lung cancer cases, are usually diagnosed in advanced stages. Traditional surgical resection and radiotherapy have very limited clinical benefits. The objective of this study was to develop and evaluate a targeted therapy, antibody-drug conjugate (ADC), for NSCLC treatment. Specifically, the CD276 receptor was evaluated and confirmed as an ideal surface target of NSCLC in the immunohistochemistry (IHC) staining of seventy-three patient tumor microarrays and western blotting analysis of eight cell lines. Our anti-CD276 monoclonal antibody (mAb) with cross-activity to both human and mouse receptors showed high surface binding, effective drug delivery and tumor-specific targeting in flow cytometry, confocal microscopy, and in vivo imaging system analysis. The ADC constructed with our CD276 mAb and payload monomethyl auristatin F (MMAF) showed high anti-NSCLC cytotoxicity to multiple lines and effective anti-tumor efficacy in both immunocompromised and immunocompetent NSCLC xenograft mouse models. The brief mechanism study revealed the integration of cell proliferation inhibition and immune cell reactivation in tumor microenvironments. The toxicity study did not detect off-target immune toxicity or peripheral toxicity. Altogether, this study suggested that anti-CD276 ADC could be a promising candidate for NSCLC treatment.
Collapse
Affiliation(s)
- Jiashuai Zhang
- Department of Biomedical Engineering, The Ohio State University (OSU), 151 West Woodruff Ave, Columbus, OH 43210, USA; (J.Z.); (S.K.); (H.B.); (L.Z.)
| | - Zhuoxin (Zora) Zhou
- Department of Chemical and Biomolecular Engineering, The Ohio State University (OSU), 151 W Woodruff Ave, Columbus, OH 43210, USA; (Z.Z.); (K.C.); (I.S.C.); (T.V.)
| | - Kai Chen
- Department of Chemical and Biomolecular Engineering, The Ohio State University (OSU), 151 W Woodruff Ave, Columbus, OH 43210, USA; (Z.Z.); (K.C.); (I.S.C.); (T.V.)
| | - Seulhee Kim
- Department of Biomedical Engineering, The Ohio State University (OSU), 151 West Woodruff Ave, Columbus, OH 43210, USA; (J.Z.); (S.K.); (H.B.); (L.Z.)
| | - Irene Soohyun Cho
- Department of Chemical and Biomolecular Engineering, The Ohio State University (OSU), 151 W Woodruff Ave, Columbus, OH 43210, USA; (Z.Z.); (K.C.); (I.S.C.); (T.V.)
| | - Tanvi Varadkar
- Department of Chemical and Biomolecular Engineering, The Ohio State University (OSU), 151 W Woodruff Ave, Columbus, OH 43210, USA; (Z.Z.); (K.C.); (I.S.C.); (T.V.)
| | - Hailey Baker
- Department of Biomedical Engineering, The Ohio State University (OSU), 151 West Woodruff Ave, Columbus, OH 43210, USA; (J.Z.); (S.K.); (H.B.); (L.Z.)
| | - Ju Hwan Cho
- Comprehensive Cancer Center, The Ohio State University (OSU), 460 West 10th Avenue, Columbus, OH 43210, USA;
| | - Lufang Zhou
- Department of Biomedical Engineering, The Ohio State University (OSU), 151 West Woodruff Ave, Columbus, OH 43210, USA; (J.Z.); (S.K.); (H.B.); (L.Z.)
- Comprehensive Cancer Center, The Ohio State University (OSU), 460 West 10th Avenue, Columbus, OH 43210, USA;
| | - Xiaoguang (Margaret) Liu
- Department of Chemical and Biomolecular Engineering, The Ohio State University (OSU), 151 W Woodruff Ave, Columbus, OH 43210, USA; (Z.Z.); (K.C.); (I.S.C.); (T.V.)
- Comprehensive Cancer Center, The Ohio State University (OSU), 460 West 10th Avenue, Columbus, OH 43210, USA;
| |
Collapse
|
14
|
Lin X, Hessenow R, Yang S, Ma D, Yang S. A seven-immune-genes risk model predicts the survival and suitable treatments for patients with skin cutaneous melanoma. Heliyon 2023; 9:e20234. [PMID: 37809963 PMCID: PMC10560028 DOI: 10.1016/j.heliyon.2023.e20234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 08/04/2023] [Accepted: 09/14/2023] [Indexed: 10/10/2023] Open
Abstract
Background Skin cutaneous melanoma is characterized by high malignancy and prognostic heterogeneity. Immune cell networks are critical to the biological progression of melanoma through the tumor microenvironment. Thus, identifying effective biomarkers for skin cutaneous melanoma from the perspective of the tumor microenvironment may offer strategies for precise prognosis prediction and treatment selection. Methods A total of 470 cases from The Cancer Genome Atlas and 214 from the Gene Expression Omnibus were systematically evaluated to construct an optimal independent immune cell risk model with predictive value using weighted gene co-expression network analysis, Cox regression, and least absolute shrinkage and selection operator assay. The predictive power of the developed model was estimated through receiver operating characteristic curves and Kaplan-Meier analysis. The association of the model with tumor microenvironment status, immune checkpoints, and mutation burden was assessed using multiple algorithms. Additionally, the sensitivity of immune and chemotherapeutics was evaluated using the ImmunophenScore and pRRophetic algorithm. Furthermore, the expression profiles of risk genes were validated using gene expression profiling interactive analysis and Human Protein Atlas resources. Results The risk model integrated seven immune-related genes: ARNTL, N4BP2L1, PARP11, NUB1, GSDMD, HAPLN3, and IRX3. The model demonstrated considerable predictive ability and was positively associated with clinical and molecular characteristics. It can be utilized as a prognostic factor for skin cutaneous melanoma, where a high-risk score was linked to a poor prognosis and indicated an immunosuppressive microenvironment. Furthermore, the model revealed several potential target checkpoints and predicted the therapeutic benefits of multiple clinically used drugs. Conclusion Our findings provide a comprehensive landscape of the tumor immune microenvironment in skin cutaneous melanoma and identify prognostic markers that may serve as efficient clinical diagnosis and treatment selection tools.
Collapse
Affiliation(s)
- Xixi Lin
- Division of Experimental Radiation Biology, Department of Radiation Therapy, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany
| | - Razan Hessenow
- West German Proton Therapy Center Essen (WPE), University of Duisburg-Essen, 45147 Essen, Germany
| | - Siling Yang
- Division of Plastic Surgery, University Hospital Muenster, 48149 Muenster, Germany
| | - Dongjie Ma
- Department of Nephrology, 923 Hospital of the PLA Joint Service Support Force, 530219 Nanning, China
| | - Sijie Yang
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, 530021 Nanning, China
| |
Collapse
|
15
|
Xu Y, Liu R, Li R, Zhi X, Yang P, Qian L, Sun D, Liu L, Dai Z. Manipulating Neovasculature-Targeting Capability of Biomimetic Nanodiscs for Synergistic Photoactivatable Tumor Infarction and Chemotherapy. ACS NANO 2023; 17:16192-16203. [PMID: 37555449 DOI: 10.1021/acsnano.3c05463] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Tumor infarction therapy is a promising antitumor strategy with the advantages of taking a short therapy duration, less risk of resistance, and effectiveness against a wide range of tumor types. However, its clinical application is largely hindered by tumor recurrence in the surviving rim and the potential risk of thromboembolic events due to nonspecific vasculature targeting. Herein, a neovasculature-targeting synthetic high-density lipoprotein (sHDL) nanodisc loaded with pyropheophorbide-a and camptothecin (CPN) was fabricated for photoactivatable tumor infarction and synergistic chemotherapy. By manipulating the anisotropy in ligand modification of sHDL nanodiscs, CPN modified with neovaculature-targeting peptide on the planes (PCPN) shows up to 7-fold higher cellular uptake compared with that around the edge (ECPN). PCPN can efficiently bind to endothelial cells of tumor vessels, and upon laser irradiation, massive local thrombus can be induced by the photodynamic reaction to deprive nutrition supply. Meanwhile, CPT could be released in response to the tumor reductive environment, thus killing residual tumor cells in the surviving rim to inhibit recurrence. These findings not only offer a powerful approach of synergistic cancer therapy but also suggest the potential of plane-modified sHDL nanodiscs as a versatile drug delivery nanocarrier.
Collapse
Affiliation(s)
- Yunxue Xu
- Department of Biomedical Engineering, College of Future Technology, National Biomedical Imaging Center, Peking University, Beijing 100871, China
| | - Renfa Liu
- Department of Biomedical Engineering, College of Future Technology, National Biomedical Imaging Center, Peking University, Beijing 100871, China
| | - Rui Li
- Department of Biomedical Engineering, College of Future Technology, National Biomedical Imaging Center, Peking University, Beijing 100871, China
| | - Xin Zhi
- Department of Ultrasound, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Peipei Yang
- Department of Ultrasound, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Linxue Qian
- Department of Ultrasound, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Desheng Sun
- Department of Ultrasound, Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong 518036, China
| | - Li Liu
- Department of Ultrasound, Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong 518036, China
| | - Zhifei Dai
- Department of Biomedical Engineering, College of Future Technology, National Biomedical Imaging Center, Peking University, Beijing 100871, China
| |
Collapse
|
16
|
Penetra M, Arnaut LG, Gomes-da-Silva LC. Trial watch: an update of clinical advances in photodynamic therapy and its immunoadjuvant properties for cancer treatment. Oncoimmunology 2023; 12:2226535. [PMID: 37346450 PMCID: PMC10281486 DOI: 10.1080/2162402x.2023.2226535] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/23/2023] Open
Abstract
Photodynamic therapy (PDT) is a medical treatment used to target solid tumors, where the administration of a photosensitizing agent and light generate reactive oxygen species (ROS), thus resulting in strong oxidative stress that selectively damages the illuminated tissues. Several preclinical studies have demonstrated that PDT can prime the immune system to recognize and attack cancer cells throughout the body. However, there is still limited evidence of PDT-mediated anti-tumor immunity in clinical settings. In the last decade, several clinical trials on PDT for cancer treatment have been initiated, indicating that significant efforts are being made to improve current PDT protocols. However, most of these studies disregarded the immunological dimension of PDT. The immunomodulatory properties of PDT can be combined with standard therapy and/or emerging immunotherapies, such as immune checkpoint blockers (ICBs), to achieve better disease control. Combining PDT with immunotherapy has shown synergistic effects in some preclinical models. However, the value of this combination in patients is still unknown, as the first clinical trials evaluating the combination of PDT with ICBs are just being initiated. Overall, this Trial Watch provides a summary of recent clinical information on the immunomodulatory properties of PDT and ongoing clinical trials using PDT to treat cancer patients. It also discusses the future perspectives of PDT for oncological indications.
Collapse
Affiliation(s)
- Mafalda Penetra
- CQC - Coimbra Chemistry Center, Universidade de Coimbra, Coimbra, Portugal
| | - Luís G. Arnaut
- CQC - Coimbra Chemistry Center, Universidade de Coimbra, Coimbra, Portugal
| | | |
Collapse
|
17
|
Watanabe T, Mizuno HL, Norimatsu J, Obara T, Cabral H, Tsumoto K, Nakakido M, Kawauchi D, Anraku Y. Ligand Installation to Polymeric Micelles for Pediatric Brain Tumor Targeting. Polymers (Basel) 2023; 15:polym15071808. [PMID: 37050422 PMCID: PMC10097392 DOI: 10.3390/polym15071808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/14/2023] Open
Abstract
Medulloblastoma is a life-threatening disease with poor therapeutic outcomes. In chemotherapy, low drug accumulation has been a cause of these outcomes. Such inadequate response to treatments has been associated with low drug accumulation, particularly with a limited cellular uptake of drugs. Recently, the conjugation of drugs to ligand molecules with high affinity to tumor cells has attracted much attention for enhancing drug internalization into target cells. Moreover, combining tumor-targeting ligands with nano-scaled drug carriers can potentially improve drug loading capacity and the versatility of the delivery. Herein, we focused on the possibility of targeting CD276/B7-H3, which is highly expressed on the medulloblastoma cell membrane, as a strategy for enhancing the cellular uptake of ligand-installed nanocarriers. Thus, anti-CD276 antibodies were conjugated on the surface of model nanocarriers based on polyion complex micelles (PIC/m) via click chemistry. The results showed that the anti-CD276 antibody-installed PIC/m improved intracellular delivery into CD276-expressing medulloblastoma cells in a CD276-dependent manner. Moreover, increasing the number of antibodies on the surface of micelles improved the cellular uptake efficiency. These observations indicate the potential of anti-CD276 antibody-installed nanocarriers for promoting drug delivery in medulloblastoma.
Collapse
Affiliation(s)
- Takayoshi Watanabe
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hayato Laurence Mizuno
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Department of Biochemistry and Cellular Biology, National Center of Neurology and Psychiatry (NCNP), Tokyo 187-8551, Japan
| | - Jumpei Norimatsu
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takumi Obara
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Horacio Cabral
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kouhei Tsumoto
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo 113-8654, Japan
- Medical Proteomics Laboratory, The Institute of Medical Science, The University of Tokyo, Tokyo 113-8654, Japan
| | - Makoto Nakakido
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo 113-8654, Japan
| | - Daisuke Kawauchi
- Department of Biochemistry and Cellular Biology, National Center of Neurology and Psychiatry (NCNP), Tokyo 187-8551, Japan
| | - Yasutaka Anraku
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| |
Collapse
|
18
|
Ochman B, Mielcarska S, Kula A, Dawidowicz M, Robotycka J, Piecuch J, Szrot M, Dzięgielewska-Gęsiak S, Muc-Wierzgoń M, Waniczek D, Świętochowska E. Do Elevated YKL-40 Levels Drive the Immunosuppressive Tumor Microenvironment in Colorectal Cancer? Assessment of the Association of the Expression of YKL-40, MMP-8, IL17A, and PD-L1 with Coexisting Type 2 Diabetes, Obesity, and Active Smoking. Curr Issues Mol Biol 2023; 45:2781-2797. [PMID: 37185706 PMCID: PMC10136442 DOI: 10.3390/cimb45040182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
The influence of chitinase-3-like protein 1 (YKL-40 or CHI3L1) expression on the immunological properties of the tumor microenvironment, which may affect the effectiveness of immunotherapy, is currently not sufficiently understood in colorectal cancer (CRC). The aim of this study was to investigate the relationship between YKL-40 expression and the immunological properties of the tumor microenvironment in CRC. We performed in silico analysis, including analysis of immune cell infiltration scores and the immune landscape depending on YKL-40 expression, gene set enrichment analysis (GSEA), and analysis of three Gene Expression Omnibus (GEO) datasets. In 48 CRC tissue homogenates and the surgical margin, we analyzed the expression of YKL-40, MMP8, IL17A, and PD-L1. Moreover, we analyzed the expression of YKL-40 in tissue homogenates retrieved from patients with coexisting diabetes, obesity, and smoking. The expression of YKL-40 was significantly higher in CRC tumor tissue compared to healthy tissue and correlated with MMP-8, IL17A, and PD-L1 expression. In silico analysis revealed an association of YKL-40 with disease recurrence, and GSEA revealed a potential link between elevated YKL-40 expression and immunosuppressive properties of the tumor microenvironment in CRC.
Collapse
|
19
|
Mohiuddin TM, Zhang C, Sheng W, Al-Rawe M, Zeppernick F, Meinhold-Heerlein I, Hussain AF. Near Infrared Photoimmunotherapy: A Review of Recent Progress and Their Target Molecules for Cancer Therapy. Int J Mol Sci 2023; 24:2655. [PMID: 36768976 PMCID: PMC9916513 DOI: 10.3390/ijms24032655] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 02/01/2023] Open
Abstract
Near infrared photoimmunotherapy (NIR-PIT) is a newly developed molecular targeted cancer treatment, which selectively kills cancer cells or immune-regulatory cells and induces therapeutic host immune responses by administrating a cancer targeting moiety conjugated with IRdye700. The local exposure to near-infrared (NIR) light causes a photo-induced ligand release reaction, which causes damage to the target cell, resulting in immunogenic cell death (ICD) with little or no side effect to the surrounding normal cells. Moreover, NIR-PIT can generate an immune response in distant metastases and inhibit further cancer attack by combing cancer cells targeting NIR-PIT and immune regulatory cells targeting NIR-PIT or other cancer treatment modalities. Several recent improvements in NIR-PIT have been explored such as catheter-driven NIR light delivery, real-time monitoring of cancer, and the development of new target molecule, leading to NIR-PIT being considered as a promising cancer therapy. In this review, we discuss the progress of NIR-PIT, their mechanism and design strategies for cancer treatment. Furthermore, the overall possible targeting molecules for NIR-PIT with their application for cancer treatment are briefly summarised.
Collapse
|
20
|
Zhou Z, Liu Y, Song W, Jiang X, Deng Z, Xiong W, Shen J. Metabolic reprogramming mediated PD-L1 depression and hypoxia reversion to reactivate tumor therapy. J Control Release 2022; 352:793-812. [PMID: 36343761 DOI: 10.1016/j.jconrel.2022.11.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 11/13/2022]
Abstract
As a promising cancer treatment, photodynamic therapy (PDT) still achieved limited clinical success due to the severe hypoxia and programmed death ligand-1 (PD-L1) over-expressed immunosuppression tumor microenvironment. At present, few methods have been proven to solve these two defects simply and effectively by a single drug or nano-system simultaneously. To ameliorate this situation, we designed and constructed MB@Bu@MnO2 nanoparticles with two-step oxygen regulation ability and PD-1/PD-L1 axis cascade-disruption capacity via a biomineralization method. In such a nanosystem, manganese dioxide albumin (MnO2@Alb) was used as the drug carrier, Butformin (Bu) as mitochondria-associated oxidative phosphorylation (OXPHOS) disruption agent with PD-L1 depression and oxygen reversion ability, and methylene blue (MB) as PDT drug with programmed cell death protein 1 (PD-1) inhibition capacity. Owing to the tumor-responsive capacity of MB@Bu@MnO2 nanoparticles, Bu and MB were selectively delivered and released in tumors. Then, the tumor hypoxia was dramatically reversed by Bu inhibited oxygen consumption, and MnO2 improved oxygen generation. Following this, the reactive oxygen species (ROS) generation was enhanced by MB@Bu@MnO2 nanoparticles mediated PDT owing to the reversed tumor hypoxia. Furthermore, the immunosuppression microenvironment was also obviously reversed by MB@Bu@MnO2 nanoparticles enhanced immunogenic cell death (ICD) and PD-1/PD-L1 axis cascade-disruption, which then enhanced T cell infiltration and improved its tumor cell killing ability. Finally, the growth of solid tumors was significantly depressed by MB@Bu@MnO2 nanoparticles mediated PDT. All in all, this well-designed nanosystem could solve the defects of traditional PDT via PD-1/PD-L1 axis dual disruption and reversing tumor hypoxia by two-step oxygen regulation.
Collapse
Affiliation(s)
- Zaigang Zhou
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Yu Liu
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, China
| | - Wei Song
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, China; Department of Urology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410005, China
| | - Xin Jiang
- Department of Urology, The Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Zaian Deng
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, Guangdong 518118, China.
| | - Wei Xiong
- Department of Urology, The Third Xiangya Hospital of Central South University, Changsha 410013, China.
| | - Jianliang Shen
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325001, China.
| |
Collapse
|
21
|
Zhou Z, Chen J, Liu Y, Zheng C, Luo W, Chen L, Zhou S, Li Z, Shen J. Cascade two-stage tumor re-oxygenation and immune re-sensitization mediated by self-assembled albumin-sorafenib nanoparticles for enhanced photodynamic immunotherapy. Acta Pharm Sin B 2022; 12:4204-4223. [PMID: 36386474 PMCID: PMC9643273 DOI: 10.1016/j.apsb.2022.07.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/02/2022] [Accepted: 07/11/2022] [Indexed: 11/01/2022] Open
Abstract
As a promising modality for cancer therapy, photodynamic therapy (PDT) still acquired limited success in clinical nowadays due to the extremely serious hypoxia and immunosuppression tumor microenvironment. To ameliorate such a situation, we rationally designed and prepared cascade two-stage re-oxygenation and immune re-sensitization BSA-MHI148@SRF nanoparticles via hydrophilic and hydrophobic self-assembly strategy by using near-infrared photodynamic dye MHI148 chemically modified bovine serum albumin (BSA-MHI148) and multi-kinase inhibitor Sorafenib (SRF) as a novel tumor oxygen and immune microenvironment regulation drug. Benefiting from the accumulation of SRF in tumors, BSA-MHI148@SRF nanoparticles dramatically enhanced the PDT efficacy by promoting cascade two-stage tumor re-oxygenation mechanisms: (i) SRF decreased tumor oxygen consumption via inhibiting mitochondria respiratory. (ii) SRF increased the oxygen supply via inducing tumor vessel normalization. Meanwhile, the immunosuppression micro-environment was also obviously reversed by two-stage immune re-sensitization as follows: (i) Enhanced immunogenic cell death (ICD) production amplified by BSA-MHI148@SRF induced reactive oxygen species (ROS) generation enhanced T cell infiltration and improve its tumor cell killing ability. (ii) BSA-MHI148@SRF amplified tumor vessel normalization by VEGF inhibition also obviously reversed the tumor immune-suppression microenvironment. Finally, the growth of solid tumors was significantly depressed by such well-designed BSA-MHI148@SRF nanoparticles, which could be potential for clinical cancer therapy.
Collapse
Affiliation(s)
- Zaigang Zhou
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Jiashe Chen
- Department of the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Yu Liu
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, China
| | - Chunjuan Zheng
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China
| | - Wenjuan Luo
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China
| | - Lele Chen
- Department of the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Shen Zhou
- Department of the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Zhiming Li
- Department of the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Jianliang Shen
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou 325000, China
| |
Collapse
|
22
|
Zhu J, Pan F, Cai H, Pan L, Li Y, Li L, Li Y, Wu X, Fan H. Positron emission tomography imaging of lung cancer: An overview of alternative positron emission tomography tracers beyond F18 fluorodeoxyglucose. Front Med (Lausanne) 2022; 9:945602. [PMID: 36275809 PMCID: PMC9581209 DOI: 10.3389/fmed.2022.945602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
Lung cancer has been the leading cause of cancer-related mortality in China in recent decades. Positron emission tomography-computer tomography (PET/CT) has been established in the diagnosis of lung cancer. 18F-FDG is the most widely used PET tracer in foci diagnosis, tumor staging, treatment planning, and prognosis assessment by monitoring abnormally exuberant glucose metabolism in tumors. However, with the increasing knowledge on tumor heterogeneity and biological characteristics in lung cancer, a variety of novel radiotracers beyond 18F-FDG for PET imaging have been developed. For example, PET tracers that target cellular proliferation, amino acid metabolism and transportation, tumor hypoxia, angiogenesis, pulmonary NETs and other targets, such as tyrosine kinases and cancer-associated fibroblasts, have been reported, evaluated in animal models or under clinical investigations in recent years and play increasing roles in lung cancer diagnosis. Thus, we perform a comprehensive literature review of the radiopharmaceuticals and recent progress in PET tracers for the study of lung cancer biological characteristics beyond glucose metabolism.
Collapse
Affiliation(s)
- Jing Zhu
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China,Respiratory and Critical Care Medicine, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China,NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Fei Pan
- Department of Nuclear Medicine, Laboratory of Clinical Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Huawei Cai
- Department of Nuclear Medicine, Laboratory of Clinical Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Lili Pan
- Department of Nuclear Medicine, Laboratory of Clinical Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yalun Li
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Lin Li
- Department of Nuclear Medicine, Laboratory of Clinical Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - YunChun Li
- Department of Nuclear Medicine, Laboratory of Clinical Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, China,Department of Nuclear Medicine, The Second People’s Hospital of Yibin, Yibin, China
| | - Xiaoai Wu
- Department of Nuclear Medicine, Laboratory of Clinical Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, China,Xiaoai Wu,
| | - Hong Fan
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China,*Correspondence: Hong Fan,
| |
Collapse
|
23
|
Li F, Mao C, Yeh S, Xin J, Wang P, Shi Q, Ming X. Combinatory therapy of MRP1-targeted photoimmunotherapy and liposomal doxorubicin promotes the antitumor effect for chemoresistant small cell lung cancer. Int J Pharm 2022; 625:122076. [PMID: 35931394 DOI: 10.1016/j.ijpharm.2022.122076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/24/2022] [Accepted: 07/31/2022] [Indexed: 11/20/2022]
Abstract
Small cell lung cancer (SCLC), considered a mortal recalcitrant cancer, is a severe healthcare issue because of its poor prognosis, early metastasis, drug resistance and limited clinical treatment options. In our previous study, we established a MRP1-targeted antibody-IR700 system (Mab-IR700) for near infrared photoimmunotherapy (NIR-PIT) which exhibited a promising therapeutic effect on drug resistant H69AR cells both in vitro and in vivo, though the tumor growth suppression effect did not last long with a single round of PIT treatment. To achieve a better anticancer effect, we have combined Mab-IR700-mediated NIR-PIT with liposomal doxorubicin (Doxil®) and investigated the in vitro and in vivo cytotoxicity by using a H69AR/3T3 cell co-culture model in which 3T3 cells were used to mimic stromal cells. Cytotoxicity experiments demonstrated the specificity of Mab-IR700 to H69AR cells, while cytotoxicity and flow cytometry experiments confirmed that H69AR cells were doxorubicin-resistant. Compared with Mab-IR700-mediated PIT or Doxil-mediated chemotherapy, the combination therapy exhibited the best cell killing effect in vitro and superior tumor growth inhibition and survival prolongation effect in vivo. Super enhanced permeability and retention (SUPR) effect was observed in both co-culture spheroids and tumor-bearing mice. Owing to an approximately 9-fold greater accumulation of Doxil within the tumors, NIR-PIT combined with Doxil resulted in enhanced antitumor effects compared to NIR-PIT alone. This photoimmunochemotherapy is a practical strategy for the treatment of chemoresistant SCLC and should be further investigated for clinical translation.
Collapse
Affiliation(s)
- Fang Li
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng 224005, China; Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem 27157, USA.
| | - Chengqiong Mao
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem 27157, USA
| | - Stacy Yeh
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem 27157, USA
| | - Junbo Xin
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng 224005, China
| | - Peng Wang
- School of Pharmaceutical Engineering, Yancheng Teachers University, Yancheng 224007, China
| | - Qin Shi
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng 224005, China
| | - Xin Ming
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem 27157, USA.
| |
Collapse
|
24
|
Li J, Luo Y, Zeng Z, Cui D, Huang J, Xu C, Li L, Pu K, Zhang R. Precision cancer sono-immunotherapy using deep-tissue activatable semiconducting polymer immunomodulatory nanoparticles. Nat Commun 2022; 13:4032. [PMID: 35821238 PMCID: PMC9276830 DOI: 10.1038/s41467-022-31551-6] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 06/22/2022] [Indexed: 12/24/2022] Open
Abstract
Nanomedicine holds promise to enhance cancer immunotherapy; however, its potential to elicit highly specific anti-tumor immunity without compromising immune tolerance has yet to be fully unlocked. This study develops deep-tissue activatable cancer sono-immunotherapy based on the discovery of a semiconducting polymer that generates sonodynamic singlet oxygen (1O2) substantially higher than other sonosensitizers. Conjugation of two immunomodulators via 1O2-cleavable linkers onto this polymer affords semiconducting polymer immunomodulatory nanoparticles (SPINs) whose immunotherapeutic actions are largely inhibited. Under ultrasound irradiation, SPINs generate 1O2 not only to directly debulk tumors and reprogram tumor microenvironment to enhance tumor immunogenicity, but also to remotely release the immunomodulators specifically at tumor site. Such a precision sono-immunotherapy eliminates tumors and prevents relapse in pancreatic mouse tumor model. SPINs show effective antitumor efficacy even in a rabbit tumor model. Moreover, the sonodynamic activation of SPINs confines immunotherapeutic action primarily to tumors, reducing the sign of immune-related adverse events. To improve the specificity of immunotherapy, here the authors report the design of a semiconducting polymer immunomodulatory nanoparticle with sonodynamic process to remotely release immune-modulators for deep-tissue precision cancer sono-immunotherapy.
Collapse
Affiliation(s)
- Jingchao Li
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Yu Luo
- School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, 200092, Shanghai, China
| | - Ziling Zeng
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Dong Cui
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Jiaguo Huang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Chenjie Xu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Liping Li
- The Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, 030032, Taiyuan, China
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore.
| | - Ruiping Zhang
- The Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, 030032, Taiyuan, China.
| |
Collapse
|
25
|
Guo Y, Zhang Q, Zhu Q, Gao J, Zhu X, Yu H, Li Y, Zhang C. Copackaging photosensitizer and PD-L1 siRNA in a nucleic acid nanogel for synergistic cancer photoimmunotherapy. SCIENCE ADVANCES 2022; 8:eabn2941. [PMID: 35442728 PMCID: PMC9020667 DOI: 10.1126/sciadv.abn2941] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/03/2022] [Indexed: 05/27/2023]
Abstract
Packaging multiple drugs into a nanocarrier with rational design to achieve synergistic cancer therapy remains a challenge due to the intrinsically varied pharmacodynamics of therapeutic agents. Especially difficult is combining small-molecule drugs and macromolecular biologics. Here, we successfully graft pheophorbide A (PPA) photosensitizers on DNA backbone at predesigned phosphorothioate modification sites. The synthesized four PPA-grafted DNAs are assembled into a tetrahedron framework, which further associates with a programmed death ligand-1 (PD-L1) small interfering RNA (siRNA) linker through supramolecular self-assembly to form an siRNA and PPA copackaged nanogel. With dual therapeutic agents inside, the nanogel can photodynamically kill tumor cells and induce remarkable immunogenic cell death. Also, it simultaneously silences the PD-L1 expression of the tumor cells, which substantially promotes the antitumor immune response and leads to an enhanced antitumor efficacy in a synergistic fashion.
Collapse
Affiliation(s)
- Yuanyuan Guo
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai Jiao Tong University School of Medicine, 600 Yi Shan Road, Shanghai 200233, China
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Qiushuang Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Qiwen Zhu
- State Key Laboratory of Drug Research and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jing Gao
- State Key Laboratory of Drug Research and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Haijun Yu
- State Key Laboratory of Drug Research and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yuehua Li
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai Jiao Tong University School of Medicine, 600 Yi Shan Road, Shanghai 200233, China
| | - Chuan Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
26
|
Furusawa A, Okada R, Inagaki F, Wakiyama H, Kato T, Furumoto H, Fukushima H, Okuyama S, Choyke PL, Kobayashi H. CD29 targeted near-infrared photoimmunotherapy (NIR-PIT) in the treatment of a pigmented melanoma model. Oncoimmunology 2022; 11:2019922. [PMID: 35003897 PMCID: PMC8741294 DOI: 10.1080/2162402x.2021.2019922] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 12/14/2021] [Accepted: 12/14/2021] [Indexed: 10/25/2022] Open
Abstract
Near-infrared photoimmunotherapy (NIR-PIT) is a newly developed cancer treatment that utilizes an antibody-photoabsorber-conjugate (AbPC) combined with NIR light. The AbPC is injected and binds to the tumor whereupon NIR light irradiation causes a photochemical reaction that selectively kills cancer cells. NIR-PIT is ideal for surface-located skin cancers such as melanoma. However, there is concern that the pigment in melanoma lesions could interfere with light delivery, rendering treatment ineffective. We investigated the efficacy of CD29- and CD44-targeted NIR-PIT (CD29-PIT and CD44-PIT, respectively) in the B16 melanoma model, which is highly pigmented. While CD29-PIT and CD44-PIT killed B16 cells invitro and invivo, CD29-PIT suppressed tumor growth more efficiently. Ki67 expression showed that cells surviving CD29-PIT were less proliferative, suggesting that CD29-PIT was selective for more proliferative cancer cells. CD29-PIT did not kill immune cells, whereas CD44-PIT killed both T and NK cells and most myeloid cells, including DCs, which could interfere with the immune response to NIR-PIT. The addition of anti-CTLA4 antibody immune checkpoint inhibitor (ICI) to CD29-PIT increased the infiltration of CD8 T cells and enhanced tumor suppression with prolonged survival. Such effects were less prominent when the anti-CTLA4 ICI was combined with CD44-PIT. The preservation of immune cells in the tumor microenvironment (TME) after CD29-PIT likely led to a better response when combined with anti-CTLA4 treatment. We conclude that NIR-PIT can be performed in pigmented melanomas and that CD29 is a promising target for NIR-PIT, which is amenable to combination therapy with other immunotherapies.
Collapse
Affiliation(s)
- Aki Furusawa
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Ryuhei Okada
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Fuyuki Inagaki
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Hiroaki Wakiyama
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Takuya Kato
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Hideyuki Furumoto
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Hiroshi Fukushima
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Shuhei Okuyama
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Peter L. Choyke
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Hisataka Kobayashi
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| |
Collapse
|
27
|
Zhao Y, Liu X, Liu X, Yu J, Bai X, Wu X, Guo X, Liu Z, Liu X. Combination of phototherapy with immune checkpoint blockade: Theory and practice in cancer. Front Immunol 2022; 13:955920. [PMID: 36119019 PMCID: PMC9478587 DOI: 10.3389/fimmu.2022.955920] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 08/19/2022] [Indexed: 12/21/2022] Open
Abstract
Immune checkpoint blockade (ICB) therapy has evolved as a revolutionized therapeutic modality to eradicate tumor cells by releasing the brake of the antitumor immune response. However, only a subset of patients could benefit from ICB treatment currently. Phototherapy usually includes photothermal therapy (PTT) and photodynamic therapy (PDT). PTT exerts a local therapeutic effect by using photothermal agents to generate heat upon laser irradiation. PDT utilizes irradiated photosensitizers with a laser to produce reactive oxygen species to kill the target cells. Both PTT and PDT can induce immunogenic cell death in tumors to activate antigen-presenting cells and promote T cell infiltration. Therefore, combining ICB treatment with PTT/PDT can enhance the antitumor immune response and prevent tumor metastases and recurrence. In this review, we summarized the mechanism of phototherapy in cancer immunotherapy and discussed the recent advances in the development of phototherapy combined with ICB therapy to treat malignant tumors. Moreover, we also outlined the significant progress of phototherapy combined with targeted therapy or chemotherapy to improve ICB in preclinical and clinical studies. Finally, we analyzed the current challenges of this novel combination treatment regimen. We believe that the next-generation technology breakthrough in cancer treatment may come from this combinational win-win strategy of photoimmunotherapy.
Collapse
Affiliation(s)
- Yujie Zhao
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xu Liu
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Department of Head, Neck and Mammary Gland Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xinyu Liu
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Jing Yu
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xin Bai
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xi Wu
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xinyu Guo
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Zhihui Liu
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaowei Liu
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
28
|
Kong C, Xu B, Qiu G, Wei M, Zhang M, Bao S, Tang J, Li L, Liu J. Multifunctional Nanoparticles-Mediated PTT/PDT Synergistic Immune Activation and Antitumor Activity Combined with Anti-PD-L1 Immunotherapy for Breast Cancer Treatment. Int J Nanomedicine 2022; 17:5391-5411. [PMID: 36419717 PMCID: PMC9677922 DOI: 10.2147/ijn.s373282] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 11/08/2022] [Indexed: 11/18/2022] Open
Abstract
Introduction Photoimmunotherapy is a breakthrough treatment for malignant tumors. Its uniqueness is that it uses antibody mediated targeted delivery to achieve high tumor specificity and uses laser-activated biophysical mechanism to accurately induce the rapid death of cancer cells and avoid damaging the surrounding normal tissues. Methods In this paper, an iron-based micelle was designed to encapsulate the photothermal agent indocyanine green (ICG) and a cyclic tripeptide of arginine-glycine-aspartic acid (cRGD) as targeted multifunctional ICG@SANPs-cRGD nanoparticles for combined photothermal/photodynamic/immune therapy of breast cancer. Results The experimental results show that ICG@SANPs-cRGD nanoparticles have good biocompatibility and photothermal conversion ability. Photothermal therapy (PTT) and photodynamic therapy (PDT) based on ICG@SANPs-cRGD can not only inhibit the proliferation, invasion and migration of tumor cells, but also directly kill tumor cells by inducing apoptosis or necrosis. Dual-mode fluorescence light (FL) and magnetic resonance imaging (MRI) imaging in mice confirmed the selective accumulation at tumor sites and imaging ability of ICG@SANPs-cRGD. PTT/PDT combined with Anti-PD-L1 immunotherapy based on ICG@SANPs-cRGD mediated the immunogenic cell death (ICD) of tumor cells by regulating the expression of immune-related indicators and activated the body's immune response mechanism, which enhanced the immunotherapy effect of immune checkpoint block (ICB). PTT/PDT combined with Anti-PD-L1 therapy not only prevented the progression of the primary tumor but also inhibited the distant metastasis of the tumor. Discussion This study explores the biomedical application of PTT/PDT combined with Anti-PD-L1 based on ICG@SANPs-cRGD nanomaterials for breast cancer treatment and demonstrates the potential of ICG@SANPs-cRGD as a multifunctional therapeutic platform for future cancer therapy.
Collapse
Affiliation(s)
- Cunqing Kong
- Department of Ultrasound, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, 530021, People's Republic of China
| | - Banghao Xu
- Department of Hepatobiliary Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, 530021, People's Republic of China
| | - Guanhua Qiu
- Department of Ultrasound, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, 530021, People's Republic of China
| | - Meng Wei
- Department of Hepatobiliary Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, 530021, People's Republic of China
| | - Mengqi Zhang
- Department of Interventional Therapy Affiliated Tumor Hospital of Guangxi Medical University, Nanning, 530021, People's Republic of China
| | - Shengxian Bao
- Department of Ultrasound, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, 530021, People's Republic of China
| | - Jiali Tang
- Department of Ultrasound, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, 530021, People's Republic of China
| | - Lequn Li
- Department of Hepatobiliary Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, 530021, People's Republic of China
| | - JunJie Liu
- Department of Ultrasound, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, 530021, People's Republic of China
| |
Collapse
|
29
|
Papayan G, Akopov A. Photodynamic Theranostics of Central Lung Cancer: Capabilities of Early Diagnosis and Minimally Invasive Therapy (Review). Sovrem Tekhnologii Med 2021; 13:78-86. [PMID: 35265362 PMCID: PMC8858399 DOI: 10.17691/stm2021.13.6.09] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Indexed: 11/14/2022] Open
Abstract
The aim of the study was to assess the prospects for central lung cancer (CLC) screening using fluorescent diagnostics and its treatment by endobronchial photodynamic therapy (PDT). Bronchoscopic fluorescent diagnostics using chlorin e6 photosensitizers and a developed instrumental system enable to reveal tumor changes in large bronchi mucosa at early stages, and a developed PDT technique performed under fluorescent control helps achieve personalized treatment. Such an approach is considered as a theranostic technique - photodynamic theranostics. central lung cancer screening requires a fluorescent dye characterized by availability and can be used directly within the examination. Indocyanine green can be used as a dye, its peculiarity is the necessity to excite and record fluorescence in the near-infrared (NIR) wavelength band. First experiments using NIR bands to diagnose a bronchoscopic system showed the detectability of tumor areas using on-site bronchoscopic photodynamic theranostics, which consists in NIR imaging of tumor foci when a standard dose of indocyanine green is administered during the examination. Conclusion Further progress of early diagnostics and minimally invasive CLC therapy will be determined by the development of new photosensitizers, which should be characterized by a high absorption band in NIR area, quick accumulation in a tumor, high yield of single oxygen in NIR illumination, bright fluorescence, high potential in terms of the induction of an anti-tumor immune response.
Collapse
Affiliation(s)
- G.V. Papayan
- Senior Researcher, Laser Medicine Center; Pavlov First Saint Petersburg State Medical University, 6-8 L’va Tolstogo St., Saint Petersburg, 197022, Russia; Senior Researcher, Research Department of Myocardial Microcirculation and Metabolism; Almazov National Medical Research Centre, 2 Akkuratova St., Saint Petersburg, 197341, Russia
| | - A.L. Akopov
- Professor, Head of Thoracic Surgery Department, Research Institute for Surgery and Emergency Medicine; Pavlov First Saint Petersburg State Medical University, 6-8 L’va Tolstogo St., Saint Petersburg, 197022, Russia
| |
Collapse
|
30
|
Wang XY, Maswikiti EP, Zhu JY, Ma YL, Zheng P, Yu Y, Wang BF, Gao L, Chen H. Photodynamic therapy combined with immunotherapy for an advanced esophageal cancer with an obstruction post metal stent implantation: A case report and literature review. Photodiagnosis Photodyn Ther 2021; 37:102671. [PMID: 34864195 DOI: 10.1016/j.pdpdt.2021.102671] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/11/2021] [Accepted: 11/30/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Surgery is the main treatment for resectable esophageal cancer but not for advanced esophageal cancer with distant metastasis. PDT is a therapeutic strategy for dysphagia and select unresectable esophageal cancer, with tremendous advantages of minimal invasiveness and organ-preserving treatment modality. PDT prevents tumor progression and growth by inducing vascular injury and local acute inflammatory responses. Immunotherapy, combined with PDT, may contribute to the efficacy of PDT in the treatment of esophageal cancer and reduce the probability of tumor recurrence. CASE REPORT A 54-year-old male patient with advanced esophageal cancer was hospitalized in the author's hospital on 20th April 2020, who had been treated with two cycles of chemotherapy at the local hospital but failed. In this case, after metal stent implantation, the patient underwent a remarkable and successful treatment of PDT combined with sintilimab, a PD-1 inhibitor. An additional immune checkpoint inhibitor and chemotherapy offer the opportunity to eliminate residual and invisible tumors. The patient had an excellent prognosis that not only the primary lesion was cured, but also the metastatic lymph nodes were significantly reduced, with no tumor recurrence in the last endoscopic review. CONCLUSION PDT in combination with immunotherapy is a promising strategy to eliminate primary and metastatic esophageal cancer by generating local and systemic antitumor responses, especially after interventional esophageal stent implantation for relief of obstruction.
Collapse
Affiliation(s)
- Xue-Yan Wang
- Lanzhou University, No. 222, Tianshui Rd (south), Chengguan District, Lanzhou, Gansu 730000, China
| | - Ewetse Paul Maswikiti
- Lanzhou University, No. 222, Tianshui Rd (south), Chengguan District, Lanzhou, Gansu 730000, China.
| | - Jing-Yu Zhu
- Lanzhou University, No. 222, Tianshui Rd (south), Chengguan District, Lanzhou, Gansu 730000, China.
| | - Yan-Ling Ma
- Lanzhou University, No. 222, Tianshui Rd (south), Chengguan District, Lanzhou, Gansu 730000, China.
| | - Peng Zheng
- Lanzhou University, No. 222, Tianshui Rd (south), Chengguan District, Lanzhou, Gansu 730000, China.
| | - Yang Yu
- Lanzhou University, No. 222, Tianshui Rd (south), Chengguan District, Lanzhou, Gansu 730000, China.
| | - Bo-Fang Wang
- Lanzhou University, No. 222, Tianshui Rd (south), Chengguan District, Lanzhou, Gansu 730000, China
| | - Lei Gao
- Lanzhou University, No. 222, Tianshui Rd (south), Chengguan District, Lanzhou, Gansu 730000, China
| | - Hao Chen
- Lanzhou University Second Hospital, No. 80 cuiying gate, Linxia Rd, Chengguan Qu, Lanzhou, Gansu 730030, China.
| |
Collapse
|
31
|
Feng R, Chen Y, Liu Y, Zhou Q, Zhang W. The role of B7-H3 in tumors and its potential in clinical application. Int Immunopharmacol 2021; 101:108153. [PMID: 34678689 DOI: 10.1016/j.intimp.2021.108153] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/08/2021] [Accepted: 09/08/2021] [Indexed: 02/07/2023]
Abstract
B7-H3 (CD276 molecule) is an immune checkpoint from the B7 family of molecules that acts more as a co-inhibitory molecule to promote tumor progression. It is abnormally expressed on tumor cells and can be induced to express on antigen-presenting cells (APCs) including dendritic cells (DCs) and macrophages. In the tumor microenvironment (TME), B7-H3 promotes tumor progression by impairing T cell response, promoting the polarization of tumor-associated macrophages (TAMs) to M2, inhibiting the function of DCs, and promoting the migration and invasion of cancer-associated fibroblasts (CAFs). In addition, through non-immunological functions, B7-H3 promotes tumor cell proliferation, invasion, metastasis, resistance, angiogenesis, and metabolism, or in the form of exosomes to promote tumor progression. In this process, microRNAs can regulate the expression of B7-H3. B7-H3 may serve as a potential biomarker for tumor diagnosis and a marker of poor prognosis. Immunotherapy targeting B7-H3 and the combination of B7-H3 and other immune checkpoints have shown certain efficacy. In this review, we summarized the basic characteristics of B7-H3 and its mechanism to promote tumor progression by inducing immunosuppression and non-immunological functions, as well as the potential clinical applications of B7-H3 and immunotherapy based on B7-H3.
Collapse
Affiliation(s)
- Ranran Feng
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan, China; Department of Andrology, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Yong Chen
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Ying Liu
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Qing Zhou
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Wenling Zhang
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan, China.
| |
Collapse
|
32
|
Nkune NW, Simelane NWN, Montaseri H, Abrahamse H. Photodynamic Therapy-Mediated Immune Responses in Three-Dimensional Tumor Models. Int J Mol Sci 2021; 22:12618. [PMID: 34884424 PMCID: PMC8657498 DOI: 10.3390/ijms222312618] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/16/2021] [Accepted: 11/16/2021] [Indexed: 12/12/2022] Open
Abstract
Photodynamic therapy (PDT) is a promising non-invasive phototherapeutic approach for cancer therapy that can eliminate local tumor cells and produce systemic antitumor immune responses. In recent years, significant efforts have been made in developing strategies to further investigate the immune mechanisms triggered by PDT. The majority of in vitro experimental models still rely on the two-dimensional (2D) cell cultures that do not mimic a three-dimensional (3D) cellular environment in the human body, such as cellular heterogeneity, nutrient gradient, growth mechanisms, and the interaction between cells as well as the extracellular matrix (ECM) and therapeutic resistance to anticancer treatments. In addition, in vivo animal studies are highly expensive and time consuming, which may also show physiological discrepancies between animals and humans. In this sense, there is growing interest in the utilization of 3D tumor models, since they precisely mimic different features of solid tumors. This review summarizes the characteristics and techniques for 3D tumor model generation. Furthermore, we provide an overview of innate and adaptive immune responses induced by PDT in several in vitro and in vivo tumor models. Future perspectives are highlighted for further enhancing PDT immune responses as well as ideal experimental models for antitumor immune response studies.
Collapse
Affiliation(s)
| | | | | | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Johannesburg 2028, South Africa; (N.W.N.); (N.W.N.S.); (H.M.)
| |
Collapse
|
33
|
Hua J, Wu P, Gan L, Zhang Z, He J, Zhong L, Zhao Y, Huang Y. Current Strategies for Tumor Photodynamic Therapy Combined With Immunotherapy. Front Oncol 2021; 11:738323. [PMID: 34868932 PMCID: PMC8635494 DOI: 10.3389/fonc.2021.738323] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 10/27/2021] [Indexed: 12/30/2022] Open
Abstract
Photodynamic therapy (PDT) is a low invasive antitumor therapy with fewer side effects. On the other hand, immunotherapy also has significant clinical applications in the treatment of cancer. Both therapies, on their own, have some limitations and are incapable of meeting the demands of the current cancer treatment. The efficacy of PDT and immunotherapy against tumor metastasis and tumor recurrence may be improved by combination strategies. In this review, we discussed the possibility that PDT could be used to activate immune responses by inducing immunogenic cell death or generating cancer vaccines. Furthermore, we explored the latest advances in PDT antitumor therapy in combination with some immunotherapy such as immune adjuvants, inhibitors of immune suppression, and immune checkpoint blockade.
Collapse
Affiliation(s)
- Jianfeng Hua
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China
| | - Pan Wu
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China
| | - Lu Gan
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China
| | - Zhikun Zhang
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China
| | - Jian He
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China
| | - Liping Zhong
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China
| | - Yongxiang Zhao
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China
| | - Yong Huang
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China
- The First People’s Hospital of Changde City, Changde, China
| |
Collapse
|
34
|
Sun X, Yang Z, Tang Y, Mao S, Xiong P, Wang J, Chen J, Zhang Y, Chen M, Xu L. Optimal subsequent treatments for patients with hepatocellular carcinoma resistant to anti-PD-1 treatment. Immunotherapy 2021; 14:195-203. [PMID: 34758630 DOI: 10.2217/imt-2021-0057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Aim: The subsequent treatments for patients with hepatocellular carcinoma (HCC) resistant to immunotherapy remain unclear. This study aimed to identify optimal treatments for HCC patients with progression after anti-PD-1 therapy. Methods: The authors retrospectively analyzed 197 HCC patients with progressive disease after anti-PD-1 treatment. These patients were classified into initial resistant and secondary resistant groups. Results: In the initial resistant group, subsequent treatment with PD-1 antibody plus locoregional therapy prolonged post-progression survival and overall survival (p = 0.025 and 0.029, respectively). In the secondary resistant group, subsequent treatment did not improve the prognosis of patients. Conclusion: Subsequent PD-1 antibody plus locoregional therapy could achieve survival benefits in HCC patients initially resistant to anti-PD-1 immunotherapy.
Collapse
Affiliation(s)
- Xuqi Sun
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Ziliang Yang
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Yuhao Tang
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Sihan Mao
- School of Data Science, Fudan University, Shanghai, 200433, China
| | - Peiyao Xiong
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510060, China
- School of Data Science, Fudan University, Shanghai, 200433, China
| | - Juncheng Wang
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Jinbin Chen
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Yaojun Zhang
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Minshan Chen
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Li Xu
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| |
Collapse
|
35
|
Yuan Z, Fan G, Wu H, Liu C, Zhan Y, Qiu Y, Shou C, Gao F, Zhang J, Yin P, Xu K. Photodynamic therapy synergizes with PD-L1 checkpoint blockade for immunotherapy of CRC by multifunctional nanoparticles. Mol Ther 2021; 29:2931-2948. [PMID: 34023507 PMCID: PMC8530932 DOI: 10.1016/j.ymthe.2021.05.017] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 02/14/2021] [Accepted: 05/18/2021] [Indexed: 12/30/2022] Open
Abstract
Checkpoint inhibitors, such as anti-PD-1/PD-L1 antibodies, have been shown to be extraordinarily effective, but their durable response rate remains low, especially in colorectal cancer (CRC). Recent studies have shown that photodynamic therapy (PDT) could effectively enhance PD-L1 blockade therapeutic effects, although the reason is still unclear. Here, we report the use of multifunctional nanoparticles (NPs) loaded with photosensitized mTHPC (mTHPC@VeC/T-RGD NPs)-mediated PDT treatment to potentiate the anti-tumor efficacy of PD-L1 blockade for CRC treatment and investigate the underlying mechanisms of PDT enhancing PD-L1 blockade therapeutic effect in this combination therapy. In this study, the mTHPC@VeC/T-RGD NPs under the 660-nm near infrared (NIR) laser could kill tumor cells by inducing apoptosis and/or necrosis and stimulating systemic immune response, which could be further promoted by the PD-L1 blockade to inhibit primary and distant tumor growth, as well as building long-term host immunological memory to prevent tumor recurrence. Furthermore, we detected that mTHPC@VeC/T-RGD NP-mediated PDT sensitizes tumors to PD-L1 blockade therapy mainly because PDT-mediated hypoxia could induce the hypoxia-inducible factor 1α (HIF-1α) signaling pathway that upregulates PD-L1 expression in CRC. Taken together, our work demonstrates that mTHPC@VeC/T-RGD NP-mediated PDT is a promising strategy that may potentiate the response rate of anti-PD-L1 checkpoint blockade immunotherapies in CRC.
Collapse
Affiliation(s)
- Zeting Yuan
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China; Interventional Cancer Institute of Chinese Integrative Medicinel, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China; Department of Pharmaceutics, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China; Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, Hefei 230032, China
| | - Guohua Fan
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China; Interventional Cancer Institute of Chinese Integrative Medicinel, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Honglei Wu
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China; Interventional Cancer Institute of Chinese Integrative Medicinel, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China; Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Chaolian Liu
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China; Interventional Cancer Institute of Chinese Integrative Medicinel, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China; Department of Pharmaceutics, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yueping Zhan
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China; Interventional Cancer Institute of Chinese Integrative Medicinel, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Yanyan Qiu
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China; Interventional Cancer Institute of Chinese Integrative Medicinel, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Chenting Shou
- Department of Pharmaceutics, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Feng Gao
- Department of Pharmaceutics, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jun Zhang
- Division of Medical Oncology, Department of Internal Medicine, Department of Cancer Biology, University of Kansas Cancer Center, University of Kansas Medical Center, 3005 Wahl Hall East, 3901 Rainbow Blvd, Kansas City, KS 66160, USA
| | - Peihao Yin
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China; Interventional Cancer Institute of Chinese Integrative Medicinel, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China; Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, Hefei 230032, China; Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China.
| | - Ke Xu
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; Interventional Cancer Institute of Chinese Integrative Medicinel, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China; Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, Hefei 230032, China; Wenzhou Institute of Shanghai University, Wenzhou 325000, China.
| |
Collapse
|
36
|
Li H, Liu L, Huang T, Jin M, Zheng Z, Zhang H, Ye M, Liu K. Establishment of a novel ferroptosis-related lncRNA pair prognostic model in colon adenocarcinoma. Aging (Albany NY) 2021; 13:23072-23095. [PMID: 34610581 PMCID: PMC8544324 DOI: 10.18632/aging.203599] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022]
Abstract
Long non-coding RNAs (lncRNAs) have been reported to be prognostic factors for cancer. Ferroptosis is an iron-dependent process of programmed cell death. Here, we established a ferroptosis-related lncRNA (frlncRNA) pair signature and revealed its prognostic value in colon adenocarcinoma (COAD) by analyzing the data from The Cancer Genome Atlas (TCGA). FrlncRNAs were identified based on co-expression analysis using the Pearson correlation. Differentially expressed frlncRNAs (DEfrlncRNAs) were recognized and paired, followed by prognostic assessment using univariate Cox regression analysis. The least absolute shrinkage and selection operator (LASSO) penalized Cox analysis was used to determine and construct a risk score prognostic model, by which the receiver operating characteristic (ROC) curves for predicting the overall survival (OS) were conducted. Following the evaluation of whether it was an independent prognostic factor, correlations between the risk score model and clinicopathological characteristics, hypoxia- and immune-related factors, and somatic variants were investigated. In total, 148 DEfrlncRNA pairs were identified, 25 of which were involved in a risk score prognostic signature. The area under ROC curves (AUCs) representing the predictive effect for 1-, 3-, and 5-year survival rates were 0.860, 0.885, and 0.934, respectively. The risk score model was confirmed as an independent prognostic factor and was significantly superior to the clinicopathological characteristics. Correlation analyses showed disparities in clinicopathological characteristics, hypoxia- and immune-related factors, and somatic variants, as well as specific signaling pathways between high- and low-risk groups. The novel risk score prognostic model constructed by pairing DEfrlncRNAs showed promising clinical prediction value in COAD.
Collapse
Affiliation(s)
- Hong Li
- Department of General Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| | - Lili Liu
- Department of Medical Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Tianyi Huang
- Department of Radiation Oncology, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| | - Ming Jin
- Department of Radiation Oncology, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| | - Zhen Zheng
- Department of Radiation Oncology, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| | - Hui Zhang
- Department of Radiation Oncology, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| | - Meng Ye
- Department of Oncology and Hematology, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, China
| | - Kaitai Liu
- Department of Radiation Oncology, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| |
Collapse
|
37
|
Zhang D, Xie Q, Liu Y, Li Z, Li H, Li S, Li Z, Cui J, Su M, Jiang X, Xue P, Bai M. Photosensitizer IR700DX-6T- and IR700DX-mbc94-mediated photodynamic therapy markedly elicits anticancer immune responses during treatment of pancreatic cancer. Pharmacol Res 2021; 172:105811. [PMID: 34390852 DOI: 10.1016/j.phrs.2021.105811] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/26/2021] [Accepted: 08/10/2021] [Indexed: 01/10/2023]
Abstract
BACKGROUND/AIMS IR700DX-6T and IR700DX-mbc94 are two chemically synthesized photosensitizers (PSs) that target the translocator protein (TSPO) and type 2 cannabinoid receptor (CB2R), respectively, for photodynamic therapy (PDT) of cancer. Recently, we found that IR700DX-6T and IR700DX-mbc94 exhibited high selectivity and efficiency in PDT for breast cancer and malignant astrocytoma. Yet, the phototherapeutic effects of the PSs on pancreatic cancer and underlying mechanisms remain unknown. This study investigated the effect of IR700DX-6T- or IR700DX-mbc94-PDT on pancreatic cancer and whether the treatment involves eliciting anticancer immune responses in support of superior therapeutic efficacy. METHODS Four pancreatic cancer cell lines were used for in vitro studies. C57BL/6 mice bearing pancreatic cancer cell-derived xenografts were generated for in vivo studies regarding the therapeutic effects of IR700DX-6T-PDT and IR700DX-mbc94-PDT on pancreatic cancer. The immunostimulatory or immunosuppressive effects of IR700DX-6T-PDT and IR700DX-mbc94-PDT were examined by detecting CD8+ T cells, regulatory T cells (Tregs), and dendritic cells (DCs) using flow cytometry and immunohistochemistry (IHC). RESULTS TSPO and CB2R were markedly upregulated in pancreatic cancer cells and tissues. Both IR700DX-6T-PDT and IR700DX-mbc94-PDT significantly inhibited pancreatic cancer cell growth in a dose- and time-dependent manner. Notably, assessment of anticancer immune responses revealed that both IR700DX-6T-PDT and IR700DX-mbc94-PDT significantly induced CD8+ T cells, promoted maturation of DCs, and suppressed Tregs, with stronger effects exerted by IR700DX-6T-PDT compared to IR700DX-mbc94-PDT. CONCLUSIONS IR700DX-6T-PDT and IR700DX-mbc94-PDT involves eliciting anticancer immune responses. Our study has also implicated that PDT in combination with immunotherapy holds promise to improve therapeutic efficacy for patients with pancreatic cancer.
Collapse
Affiliation(s)
- Dawei Zhang
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510260, China; Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Qing Xie
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Yang Liu
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Zongyan Li
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510260, China
| | - Haiyan Li
- Department of Breast Surgery, the Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510650, China
| | - Shiying Li
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Zhen Li
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Fourth General Surgery Department, the Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110000, China
| | - Jing Cui
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Nuclear Medicine, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, China
| | - Meng Su
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Xiaofeng Jiang
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510260, China
| | - Ping Xue
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510260, China.
| | - Mingfeng Bai
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
38
|
Huis In 't Veld RV, Da Silva CG, Jager MJ, Cruz LJ, Ossendorp F. Combining Photodynamic Therapy with Immunostimulatory Nanoparticles Elicits Effective Anti-Tumor Immune Responses in Preclinical Murine Models. Pharmaceutics 2021. [PMID: 34575546 DOI: 10.3390/pharmaceutics1309147010.3390/pharmaceutics13091470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023] Open
Abstract
Photodynamic therapy (PDT) has shown encouraging but limited clinical efficacy when used as a standalone treatment against solid tumors. Conversely, a limitation for immunotherapeutic efficacy is related to the immunosuppressive state observed in large, advanced tumors. In the present study, we employ a strategy, in which we use a combination of PDT and immunostimulatory nanoparticles (NPs), consisting of poly(lactic-co-glycolic) acid (PLGA)-polyethylene glycol (PEG) particles, loaded with the Toll-like receptor 3 (TLR3) agonist poly(I:C), the TLR7/8 agonist R848, the lymphocyte-attracting chemokine, and macrophage inflammatory protein 3α (MIP3α). The combination provoked strong anti-tumor responses, including an abscopal effects, in three clinically relevant murine models of cancer: MC38 (colorectal), CT26 (colorectal), and TC-1 (human papillomavirus 16-induced). We show that the local and distal anti-tumor effects depended on the presence of CD8+ T cells. The combination elicited tumor-specific oncoviral- or neoepitope-directed CD8+ T cells immune responses against the respective tumors, providing evidence that PDT can be used as an in situ vaccination strategy against cancer (neo)epitopes. Finally, we show that the treatment alters the tumor microenvironment in tumor-bearing mice, from cold (immunosuppressed) to hot (pro-inflammatory), based on greater neutrophil infiltration and higher levels of inflammatory myeloid and CD8+ T cells, compared to untreated mice. Together, our results provide a rationale for combining PDT with immunostimulatory NPs for the treatment of solid tumors.
Collapse
Affiliation(s)
- Ruben Victor Huis In 't Veld
- Department of Radiology, Leiden University Medical Centre (LUMC), Room C2-187h, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Candido G Da Silva
- Department of Radiology, Leiden University Medical Centre (LUMC), Room C2-187h, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Martine J Jager
- Department of Ophthalmology, Leiden University Medical Centre (LUMC), Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Luis J Cruz
- Department of Radiology, Leiden University Medical Centre (LUMC), Room C2-187h, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Ferry Ossendorp
- Department of Immunology, Leiden University Medical Centre (LUMC), Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
39
|
Combining Photodynamic Therapy with Immunostimulatory Nanoparticles Elicits Effective Anti-Tumor Immune Responses in Preclinical Murine Models. Pharmaceutics 2021; 13:pharmaceutics13091470. [PMID: 34575546 PMCID: PMC8465537 DOI: 10.3390/pharmaceutics13091470] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/03/2021] [Accepted: 09/10/2021] [Indexed: 12/12/2022] Open
Abstract
Photodynamic therapy (PDT) has shown encouraging but limited clinical efficacy when used as a standalone treatment against solid tumors. Conversely, a limitation for immunotherapeutic efficacy is related to the immunosuppressive state observed in large, advanced tumors. In the present study, we employ a strategy, in which we use a combination of PDT and immunostimulatory nanoparticles (NPs), consisting of poly(lactic-co-glycolic) acid (PLGA)-polyethylene glycol (PEG) particles, loaded with the Toll-like receptor 3 (TLR3) agonist poly(I:C), the TLR7/8 agonist R848, the lymphocyte-attracting chemokine, and macrophage inflammatory protein 3α (MIP3α). The combination provoked strong anti-tumor responses, including an abscopal effects, in three clinically relevant murine models of cancer: MC38 (colorectal), CT26 (colorectal), and TC-1 (human papillomavirus 16-induced). We show that the local and distal anti-tumor effects depended on the presence of CD8+ T cells. The combination elicited tumor-specific oncoviral- or neoepitope-directed CD8+ T cells immune responses against the respective tumors, providing evidence that PDT can be used as an in situ vaccination strategy against cancer (neo)epitopes. Finally, we show that the treatment alters the tumor microenvironment in tumor-bearing mice, from cold (immunosuppressed) to hot (pro-inflammatory), based on greater neutrophil infiltration and higher levels of inflammatory myeloid and CD8+ T cells, compared to untreated mice. Together, our results provide a rationale for combining PDT with immunostimulatory NPs for the treatment of solid tumors.
Collapse
|
40
|
Li K, Zhang Y, Hussain A, Weng Y, Huang Y. Progress of Photodynamic and RNAi Combination Therapy in Cancer Treatment. ACS Biomater Sci Eng 2021; 7:4420-4429. [PMID: 34427082 DOI: 10.1021/acsbiomaterials.1c00765] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Photodynamic therapy (PDT) is a noninvasive and effective local treatment for cancers that produces selective damage to target tissues and cells. However, PDT alone is unlikely to completely inhibit tumor metastasis and/or local tumor recurrence. RNA interference (RNAi) is a phenomenon of gene silencing mediated by exogenous or endogenous double-stranded RNA (dsRNA). RNAi has entered a golden period of development, with the approval of four treatments employing RNAi. PDT in combination with RNAi therapy to inhibit related targets has been a research hotspot, with better clinical outcomes than monotherapy. In this review, the progress of PDT and small interfering RNA (siRNA) targeting different genes is discussed, while the achievements of the combined immunotherapy are reviewed.
Collapse
Affiliation(s)
- Kun Li
- School of Life Science; Advanced Research Institute of Multidisciplinary Science; Institute of Engineering Medicine; Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing 100081, China
| | - Yuquan Zhang
- School of Life Science; Advanced Research Institute of Multidisciplinary Science; Institute of Engineering Medicine; Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing 100081, China
| | - Abid Hussain
- School of Life Science; Advanced Research Institute of Multidisciplinary Science; Institute of Engineering Medicine; Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing 100081, China
| | - Yuhua Weng
- School of Life Science; Advanced Research Institute of Multidisciplinary Science; Institute of Engineering Medicine; Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing 100081, China
| | - Yuanyu Huang
- School of Life Science; Advanced Research Institute of Multidisciplinary Science; Institute of Engineering Medicine; Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
41
|
Hamblin MR, Abrahamse H. Factors Affecting Photodynamic Therapy and Anti-Tumor Immune Response. Anticancer Agents Med Chem 2021; 21:123-136. [PMID: 32188394 DOI: 10.2174/1871520620666200318101037] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/15/2020] [Accepted: 01/29/2020] [Indexed: 11/22/2022]
Abstract
Photodynamic Therapy (PDT) is a cancer therapy involving the systemic injection of a Photosensitizer (PS) that localizes to some extent in a tumor. After an appropriate time (ranging from minutes to days), the tumor is irradiated with red or near-infrared light either as a surface spot or by interstitial optical fibers. The PS is excited by the light to form a long-lived triplet state that can react with ambient oxygen to produce Reactive Oxygen Species (ROS) such as singlet oxygen and/or hydroxyl radicals, that kill tumor cells, destroy tumor blood vessels, and lead to tumor regression and necrosis. It has long been realized that in some cases, PDT can also stimulate the host immune system, leading to a systemic anti-tumor immune response that can also destroy distant metastases and guard against tumor recurrence. The present paper aims to cover some of the factors that can affect the likelihood and efficiency of this immune response. The structure of the PS, drug-light interval, rate of light delivery, mode of cancer cell death, expression of tumor-associated antigens, and combinations of PDT with various adjuvants all can play a role in stimulating the host immune system. Considering the recent revolution in tumor immunotherapy triggered by the success of checkpoint inhibitors, it appears that the time is ripe for PDT to be investigated in combination with other approaches in clinical scenarios.
Collapse
Affiliation(s)
- Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| |
Collapse
|
42
|
Abstract
Immunotherapy has become the mainstay for lung cancer treatment, providing sustained therapeutic responses and improved prognosis compared with those obtained with surgery, chemotherapy, radiotherapy, and targeted therapy. It has the potential for anti-tumor treatment and killing tumor cells by activating human immunity and has moved the targets of anti-cancer therapy from malignant tumor cells to immune cell subsets. Two kinds of immune checkpoints, cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) and programmed death-1 (PD-1)/programmed death ligand 1 (PD-L1), are the main targets of current immunotherapy in lung cancer. Despite the successful outcomes achieved by immune checkpoint inhibitors, a small portion of lung cancer patients remain unresponsive to checkpoint immunotherapy or may ultimately become resistant to these agents as a result of the complex immune modulatory network in the tumor microenvironment. Therefore, it is imperative to exploit novel immunotherapy targets to further expand the proportion of patients benefiting from immunotherapy. This review summarizes the molecular features, biological function, and clinical significance of several novel checkpoints that have important roles in lung cancer immune responses beyond the CTLA-4 and PD-1/PD-L1 axes, including the markers of co-inhibitory and co-stimulatory T lymphocyte pathways and inhibitory markers of macrophages and natural killer cells.
Collapse
|
43
|
Current Prospects for Treatment of Solid Tumors via Photodynamic, Photothermal, or Ionizing Radiation Therapies Combined with Immune Checkpoint Inhibition (A Review). Pharmaceuticals (Basel) 2021; 14:ph14050447. [PMID: 34068491 PMCID: PMC8151935 DOI: 10.3390/ph14050447] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 04/29/2021] [Accepted: 05/03/2021] [Indexed: 12/21/2022] Open
Abstract
Photodynamic therapy (PDT) causes selective damage to tumor cells and vasculature and also triggers an anti-tumor immune response. The latter fact has prompted the exploration of PDT as an immune-stimulatory adjuvant. PDT is not the only cancer treatment that relies on electromagnetic energy to destroy cancer tissue. Ionizing radiation therapy (RT) and photothermal therapy (PTT) are two other treatment modalities that employ photons (with wavelengths either shorter or longer than PDT, respectively) and also cause tissue damage and immunomodulation. Research on the three modalities has occurred in different “silos”, with minimal interaction between the three topics. This is happening at a time when immune checkpoint inhibition (ICI), another focus of intense research and clinical development, has opened exciting possibilities for combining PDT, PTT, or RT with ICI to achieve improved therapeutic benefits. In this review, we surveyed the literature for studies that describe changes in anti-tumor immunity following the administration of PDT, PTT, and RT, including efforts to combine each modality with ICI. This information, collected all in one place, may make it easier to recognize similarities and differences and help to identify new mechanistic hypotheses toward the goal of achieving optimized combinations and tumor cures.
Collapse
|
44
|
The complexity of tumour angiogenesis based on recently described molecules. Contemp Oncol (Pozn) 2021; 25:33-44. [PMID: 33911980 PMCID: PMC8063899 DOI: 10.5114/wo.2021.105075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 11/23/2020] [Indexed: 12/13/2022] Open
Abstract
Tumour angiogenesis is a crucial factor associated with tumour growth, progression, and metastasis. The whole process is the result of an interaction between a wide range of different molecules, influencing each other. Herein we summarize novel discoveries related to the less known angiogenic molecules such as galectins, pentraxin-3, Ral-interacting protein of 76 kDa (RLIP76), long non-coding RNAs (lncRNAs), B7-H3, and delta-like ligand-4 (DLL-4) and their role in the process of tumour angiogenesis. These molecules influence the most important molecular pathways involved in the formation of blood vessels in cancer, including the vascular endothelial growth factor (VEGF)-vascular endothelial growth factor receptor interaction (VEGFR), HIF1-a activation, or PI3K/Akt/mTOR and JAK-STAT signalling pathways. Increased expression of galectins, RLIP76, and B7H3 has been proven in several malignancies. Pentraxin-3, which appears to inhibit tumour angiogenesis, shows reduced expression in tumour tissues. Anti-angiogenic treatment based mainly on VEGF inhibition has proved to be of limited effectiveness, leading to the development of drug resistance. The newly discovered molecules are of great interest as a potential source of new anti-cancer therapies. Their role as targets for new drugs and as prognostic markers in neoplasms is discussed in this review.
Collapse
|
45
|
Liberini V, Laudicella R, Capozza M, Huellner MW, Burger IA, Baldari S, Terreno E, Deandreis D. The Future of Cancer Diagnosis, Treatment and Surveillance: A Systemic Review on Immunotherapy and Immuno-PET Radiotracers. Molecules 2021; 26:2201. [PMID: 33920423 PMCID: PMC8069316 DOI: 10.3390/molecules26082201] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/07/2021] [Accepted: 04/09/2021] [Indexed: 12/12/2022] Open
Abstract
Immunotherapy is an effective therapeutic option for several cancers. In the last years, the introduction of checkpoint inhibitors (ICIs) has shifted the therapeutic landscape in oncology and improved patient prognosis in a variety of neoplastic diseases. However, to date, the selection of the best patients eligible for these therapies, as well as the response assessment is still challenging. Patients are mainly stratified using an immunohistochemical analysis of the expression of antigens on biopsy specimens, such as PD-L1 and PD-1, on tumor cells, on peritumoral immune cells and/or in the tumor microenvironment (TME). Recently, the use and development of imaging biomarkers able to assess in-vivo cancer-related processes are becoming more important. Today, positron emission tomography (PET) with 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) is used routinely to evaluate tumor metabolism, and also to predict and monitor response to immunotherapy. Although highly sensitive, FDG-PET in general is rather unspecific. Novel radiopharmaceuticals (immuno-PET radiotracers), able to identify specific immune system targets, are under investigation in pre-clinical and clinical settings to better highlight all the mechanisms involved in immunotherapy. In this review, we will provide an overview of the main new immuno-PET radiotracers in development. We will also review the main players (immune cells, tumor cells and molecular targets) involved in immunotherapy. Furthermore, we report current applications and the evidence of using [18F]FDG PET in immunotherapy, including the use of artificial intelligence (AI).
Collapse
MESH Headings
- Antineoplastic Agents, Immunological/therapeutic use
- Artificial Intelligence
- B7-H1 Antigen/genetics
- B7-H1 Antigen/immunology
- Fluorodeoxyglucose F18/administration & dosage
- Fluorodeoxyglucose F18/chemistry
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Immune Checkpoint Inhibitors/chemistry
- Immune Checkpoint Inhibitors/metabolism
- Immunotherapy, Adoptive/methods
- Killer Cells, Natural/drug effects
- Killer Cells, Natural/immunology
- Killer Cells, Natural/pathology
- Neoplasms/diagnostic imaging
- Neoplasms/genetics
- Neoplasms/immunology
- Neoplasms/therapy
- Positron-Emission Tomography/methods
- Programmed Cell Death 1 Receptor/genetics
- Programmed Cell Death 1 Receptor/immunology
- Radiopharmaceuticals/administration & dosage
- Radiopharmaceuticals/chemical synthesis
- Signal Transduction
- T-Lymphocytes, Cytotoxic/drug effects
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/pathology
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/pathology
- Tumor Microenvironment/drug effects
- Tumor Microenvironment/genetics
- Tumor Microenvironment/immunology
Collapse
Affiliation(s)
- Virginia Liberini
- Department of Medical Science, Division of Nuclear Medicine, University of Torino, 10126 Torino, Italy;
| | - Riccardo Laudicella
- Department of Biomedical and Dental Sciences and of Morpho-Functional Imaging, Nuclear Medicine Unit, University of Messina, 98125 Messina, Italy; (R.L.); (S.B.)
- Department of Nuclear Medicine, University Hospital Zurich, University of Zurich, 8006 Zurich, Switzerland; (M.W.H.); (I.A.B.)
| | - Martina Capozza
- Molecular & Preclinical Imaging Centers, Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy; (M.C.); (E.T.)
| | - Martin W. Huellner
- Department of Nuclear Medicine, University Hospital Zurich, University of Zurich, 8006 Zurich, Switzerland; (M.W.H.); (I.A.B.)
| | - Irene A. Burger
- Department of Nuclear Medicine, University Hospital Zurich, University of Zurich, 8006 Zurich, Switzerland; (M.W.H.); (I.A.B.)
- Department of Nuclear Medicine, Kantonsspital Baden, 5004 Baden, Switzerland
| | - Sergio Baldari
- Department of Biomedical and Dental Sciences and of Morpho-Functional Imaging, Nuclear Medicine Unit, University of Messina, 98125 Messina, Italy; (R.L.); (S.B.)
| | - Enzo Terreno
- Molecular & Preclinical Imaging Centers, Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy; (M.C.); (E.T.)
| | - Désirée Deandreis
- Department of Medical Science, Division of Nuclear Medicine, University of Torino, 10126 Torino, Italy;
| |
Collapse
|
46
|
Liu S, Liang J, Liu Z, Zhang C, Wang Y, Watson AH, Zhou C, Zhang F, Wu K, Zhang F, Lu Y, Wang X. The Role of CD276 in Cancers. Front Oncol 2021; 11:654684. [PMID: 33842369 PMCID: PMC8032984 DOI: 10.3389/fonc.2021.654684] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 03/02/2021] [Indexed: 02/05/2023] Open
Abstract
Objective Aberrant expression of the immune checkpoint molecule, CD276, also known as B7-H3, is associated with tumorigenesis. In this review, we aim to comprehensively describe the role of CD276 in malignancies and its potential therapeutic effect. Data Sources Database including PubMed, EMbase, Cochrane Library, CNKI, and Clinical Trails.gov were searched for eligible studies and reviews. Study selection: Original studies and review articles on the topic of CD276 in tumors were retrieved. Results CD276 is an immune checkpoint molecule in the epithelial mesenchymal transition (EMT) pathway. In this review, we evaluated the available evidence on the expression and regulation of CD276. We also assessed the role of CD276 within the immune micro-environment, effect on tumor progression, and the potential therapeutic effect of CD276 targeted therapy for malignancies. Conclusion CD276 plays an essential role in cell proliferation, invasion, and migration in malignancies. Results from most recent studies indicate CD276 could be a promising therapeutic target for malignant tumors.
Collapse
Affiliation(s)
- Shengzhuo Liu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China.,William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Jiayu Liang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Zhihong Liu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Chi Zhang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Yang Wang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Alice Helen Watson
- Clinical Science and Services, Royal Veterinary College, University of London, London, United Kingdom
| | - Chuan Zhou
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Fan Zhang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Kan Wu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Fuxun Zhang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Yiping Lu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Xianding Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
47
|
Xiong W, Qi L, Jiang N, Zhao Q, Chen L, Jiang X, Li Y, Zhou Z, Shen J. Metformin Liposome-Mediated PD-L1 Downregulation for Amplifying the Photodynamic Immunotherapy Efficacy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:8026-8041. [PMID: 33577301 DOI: 10.1021/acsami.0c21743] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Photodynamic therapy (PDT) is a promising strategy for cancer treatment. It can not only generate reactive oxygen species (ROS) to cause the chemical damage of tumor cells in the presence of enough oxygen but also promote the antitumor immunity of T cells through enhancing the production of interferon γ (IFN-γ). However, one phenomenon is ignored so far that the enhanced production of IFN-γ caused by PDT may significantly increase the expression of programmed death-ligand 1 (PD-L1) on the tumor cell membrane and thus could inhibit the immune killing effects of T cells. Herein, we report the construction of a composite by loading metformin (Met) and IR775 into a clinically usable liposome as a two-in-one nanoplatform (IR775@Met@Lip) to solve this problem. The IR775@Met@Lip could reverse tumor hypoxia to enhance ROS production to elicit more chemical damage. Besides, the overexpression of PD-L1 by PDT was also effectively down-regulated. These therapeutic benefits including decreased PD-L1 expression, alleviated T cell exhaustion, and reversed tumor hypoxia successfully suppressed both the primary and abscopal tumor growth in bladder and colon cancers, respectively. Combining with its excellent biocompatibility, our results indicate that this IR775@Met@Lip system has great potential to become a highly effective cancer therapy modality.
Collapse
Affiliation(s)
- Wei Xiong
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Lin Qi
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Ning Jiang
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Qi Zhao
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Lingxiao Chen
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xin Jiang
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yuan Li
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Zaigang Zhou
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Jianliang Shen
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| |
Collapse
|
48
|
Kataoka H, Nishie H, Tanaka M, Sasaki M, Nomoto A, Osaki T, Okamoto Y, Yano S. Potential of Photodynamic Therapy Based on Sugar-Conjugated Photosensitizers. J Clin Med 2021; 10:jcm10040841. [PMID: 33670714 PMCID: PMC7922816 DOI: 10.3390/jcm10040841] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/08/2021] [Accepted: 02/12/2021] [Indexed: 02/06/2023] Open
Abstract
In 2015, the Japanese health insurance approved the use of a second-generation photodynamic therapy (PDT) using talaporfin sodium (TS); however, its cancer cell selectivity and antitumor effects of TS PDT are not comprehensive. The Warburg effect describes the elevated rate of glycolysis in cancer cells, despite the presence of sufficient oxygen. Because cancer cells absorb considerable amounts of glucose, they are visible using positron emission tomography (PET). We developed a third-generation PDT based on the Warburg effect by synthesizing novel photosensitizers (PSs) in the form of sugar-conjugated chlorins. Glucose-conjugated (tetrafluorophenyl) chlorin (G-chlorin) PDT revealed significantly stronger antitumor effects than TS PDT and induced immunogenic cell death (ICD). ICD induced by PDT enhances cancer immunity, and a combination therapy of PDT and immune checkpoint blockers is expected to synergize antitumor effects. Mannose-conjugated (tetrafluorophenyl) chlorin (M-chlorin) PDT, which targets cancer cells and tumor-associated macrophages (TAMs), also shows strong antitumor effects. Finally, we synthesized a glucose-conjugated chlorin e6 (SC-N003HP) that showed 10,000-50,000 times stronger antitumor effects than TS (IC50) in vitro, and it was rapidly metabolized and excreted. In this review, we discuss the potential and the future of next-generation cancer cell-selective PDT and describe three types of sugar-conjugated PSs expected to be clinically developed in the future.
Collapse
Affiliation(s)
- Hiromi Kataoka
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan; (H.N.); (M.T.); (M.S.)
- Correspondence:
| | - Hirotada Nishie
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan; (H.N.); (M.T.); (M.S.)
| | - Mamoru Tanaka
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan; (H.N.); (M.T.); (M.S.)
| | - Makiko Sasaki
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan; (H.N.); (M.T.); (M.S.)
| | - Akihiro Nomoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, Osaka 599-8531, Japan;
| | - Tomohiro Osaki
- Joint Department of Veterinary Clinical Medicine, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan; (T.O.); (Y.O.)
| | - Yoshiharu Okamoto
- Joint Department of Veterinary Clinical Medicine, Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan; (T.O.); (Y.O.)
| | - Shigenobu Yano
- KYOUSEI Science Center for Life and Nature, Nara Women’s University, Kitauoyahigashi-machi, Nara 630-8506, Japan;
| |
Collapse
|
49
|
Molecular and Functional Imaging and Theranostics of the Tumor Microenvironment. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00069-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
50
|
Yuan G, Yao M, Lv H, Jia X, Chen J, Xue J. Novel Targeted Photosensitizer as an Immunomodulator for Highly Efficient Therapy of T-Cell Acute Lymphoblastic Leukemia. J Med Chem 2020; 63:15655-15667. [PMID: 33300796 DOI: 10.1021/acs.jmedchem.0c01072] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Dasatinib is a kinase-targeted drug used in the treatment of leukemia. Regrettably, it remains far from optimal medicine due to insurmountable drug resistance and side effects. Photodynamic therapy (PDT) has proven that it can induce systemic immune responses. However, conventional photosensitizers as immunomodulators produce anticancer immunities, which are inadequate to eliminate residual cancer cells. Herein, a novel compound 4 was synthesized and investigated, which introduces dasatinib and zinc(II) phthalocyanine as the targeting and photodynamic moiety, respectively. Compound 4 exhibits a high affinity to CCRF-CEM cells/tumor tissues, which overexpress lymphocyte-specific protein tyrosine kinase (LCK), and preferential elimination from the body. Meanwhile, compound 4 shows excellent photocytotoxicity and tumor regression. Significantly, compound 4-induced PDT can obviously enhance immune responses, resulting in the production of more immune cells. We believe that the proposed manner is a potential strategy for the treatment of T-cell acute lymphoblastic leukemia.
Collapse
Affiliation(s)
- Gankun Yuan
- National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, 2 Xueyuan Road, University Town, Fuzhou 350116, Fujian, P. R. China
| | - Mengyu Yao
- National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, 2 Xueyuan Road, University Town, Fuzhou 350116, Fujian, P. R. China
| | - Huihui Lv
- National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, 2 Xueyuan Road, University Town, Fuzhou 350116, Fujian, P. R. China
| | - Xiao Jia
- National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, 2 Xueyuan Road, University Town, Fuzhou 350116, Fujian, P. R. China
| | - Juanjuan Chen
- National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, 2 Xueyuan Road, University Town, Fuzhou 350116, Fujian, P. R. China
| | - Jinping Xue
- National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, 2 Xueyuan Road, University Town, Fuzhou 350116, Fujian, P. R. China
| |
Collapse
|