1
|
Jansen TJP, Tokgöz S, Buitinga M, van Lith SAM, Joosten L, Frielink C, Smeets EMM, Stommel MWJ, van der Kolk MB, de Galan BE, Brom M, Boss M, Gotthardt M. Validation of radiolabelled exendin for beta cell imaging by ex vivo autoradiography and immunohistochemistry of human pancreas. EJNMMI Res 2024; 14:96. [PMID: 39405026 PMCID: PMC11480297 DOI: 10.1186/s13550-024-01159-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 10/03/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Estimation of beta cell mass is currently restricted to evaluating pancreatic tissue samples, which provides limited information. A non-invasive imaging technique that reliably quantifies beta cell mass enables monitoring of changes of beta cell mass during the progression of diabetes mellitus and may contribute to monitoring of therapy effectiveness. We assessed the specificity of radiolabelled exendin for beta cell mass quantification in humans. Fourteen adults with pancreas tumours were injected with 111In-labeled exendin-4 prior to pancreatic resection. In resected pancreas tissue, endocrine-exocrine ratios of tracer uptake were determined by digital autoradiography and accumulation of 111In-labeled exendin-4 was compared to insulin and GLP-1 receptor staining. Of four participants, abdominal single photon emission computed tomography/computed tomography (SPECT/CT) images were acquired to quantify pancreatic uptake in vivo RESULTS: Tracer uptake was predominantly present in the endocrine pancreas (endocrine-exocrine ratio: 3.6 [2.8-10.8]. Tracer accumulation showed overlap with insulin-positive regions, which overlapped with GLP-1 receptor positive areas. SPECT imaging showed pancreatic uptake of radiolabelled exendin in three participants. CONCLUSION Radiolabelled exendin specifically accumulates in the islets of Langerhans in human pancreas tissue. The clear overlap between regions positive for insulin and the GLP-1 receptor substantiate the beta cell specificity of the tracer. Radiolabelled exendin is therefore a valuable imaging agent for human beta cell mass quantification and has the potential to be used for a range of applications, including improvement of diabetes treatment by assessment of the effects of current and novel diabetes therapies on the beta cell mass. TRIAL REGISTRATION ClinicalTrials.gov NCT03889496, registered 26,032,019, URL https://clinicaltrials.gov/study/NCT03889496?term=NCT03889496 . CLINICALTRIALS gov NCT04733508, registered 02022021, URL https://clinicaltrials.gov/study/NCT04733508 .
Collapse
Affiliation(s)
- Theodorus J P Jansen
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Sevilay Tokgöz
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mijke Buitinga
- Nutrition and Movement Sciences, Maastricht University, Maastricht, The Netherlands
- Radiology and Nuclear Medicine, Maastricht UMC+, Maastricht, The Netherlands
| | - Sanne A M van Lith
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Lieke Joosten
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Cathelijne Frielink
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Esther M M Smeets
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Martijn W J Stommel
- Department of Surgery, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Bastiaan E de Galan
- Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Internal Medicine, Maastricht UMC+, Maastricht, The Netherlands
- CARIM School for Cardiovascular Disease, Maastricht University, Maastricht, The Netherlands
| | - Maarten Brom
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marti Boss
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Martin Gotthardt
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
2
|
Jansen TJP, Brom M, Boss M, Buitinga M, Tack CJ, van Meijel LA, de Galan BE, Gotthardt M. Importance of beta cell mass for glycaemic control in people with type 1 diabetes. Diabetologia 2023; 66:367-375. [PMID: 36394644 PMCID: PMC9669532 DOI: 10.1007/s00125-022-05830-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/10/2022] [Indexed: 11/18/2022]
Abstract
AIMS/HYPOTHESIS The role of beta cell mass in the balance of glucose control and hypoglycaemic burden in people with type 1 diabetes is unclear. We applied positron emission tomography (PET) imaging with radiolabelled exendin to compare beta cell mass among people with type 1 diabetes and either low glucose variability (LGV) or high glucose variability (HGV). METHODS All participants with either LGV (n=9) or HGV (n=7) underwent a mixed-meal tolerance test to determine beta cell function and wore a blinded continuous glucose monitor for a week. After an i.v. injection with [68Ga]Ga-NODAGA-exendin-4, PET images were acquired for the quantification of pancreatic uptake of radiolabelled exendin. The mean standardised uptake value (SUVmean) of the pancreas was used to determine the amount of beta cell mass. RESULTS Participants with LGV had lower HbA1c (46.0 mmol/mol [44.5-52.5] [6.4% (6.3-7)] vs 80 mmol/mol [69.0-110] [9.5% (8.5-12.2)], p=0.001) and higher time in range (TIR) (75.6% [73.5-90.3] vs 38.7% [25.1-48.5], p=0.002) than those with HGV. The SUVmean of the pancreas was higher for the LGV than for the HGV group (5.1 [3.6-5.6] vs 2.9 [2.1-3.4], p=0.008). The AUCC-peptide:AUCglucose ratio was numerically, but not statistically, higher in the LGV compared with the HGV group (2.7×10-2 [6.2×10-4-5.3×10-2] vs 9.3×10-4 [4.7×10-4-5.2×10-3], p=0.21). SUVmean correlated with the AUCC-peptide:AUCglucose ratio (Pearson r=0.64, p=0.01), as well as with the TIR (r=0.64, p=0.01) and the SD of interstitial glucose levels (r=-0.66, p=0.007). CONCLUSION/INTERPRETATION Our data show higher beta cell mass in people with type 1 diabetes and LGV than in those with HGV, independent of beta cell function.
Collapse
Affiliation(s)
- Theodorus J P Jansen
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Maarten Brom
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Marti Boss
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, the Netherlands.
| | - Mijke Buitinga
- Nutrition and Movement Sciences, Maastricht University, Maastricht, the Netherlands
- Radiology and Nuclear Medicine, Maastricht UMC+, Maastricht, the Netherlands
| | - Cees J Tack
- Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Lian A van Meijel
- Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
- Internal Medicine, Maxima Medical Center, Veldhoven, the Netherlands
| | - Bastiaan E de Galan
- Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
- Internal Medicine, Maastricht UMC+, Maastricht, the Netherlands
- CARIM School for Cardiovascular Disease, Maastricht University, Maastricht, the Netherlands
| | - Martin Gotthardt
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
3
|
Collado Camps E, van Lith SAM, Kip A, Frielink C, Joosten L, Brock R, Gotthardt M. Conjugation to a cell-penetrating peptide drives the tumour accumulation of the GLP1R antagonist exendin(9-39). Eur J Nucl Med Mol Imaging 2023; 50:996-1004. [PMID: 36446951 PMCID: PMC9931918 DOI: 10.1007/s00259-022-06041-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 11/13/2022] [Indexed: 12/05/2022]
Abstract
PURPOSE Exendin, an analogue of the glucagon-like peptide 1 (GLP1), is an excellent tracer for molecular imaging of pancreatic beta cells and beta cell-derived tumours. The commonly used form, exendin-4, activates the GLP1 receptor and causes internalisation of the peptide-receptor complex. As a consequence, injection of exendin-4 can lead to adverse effects such as nausea, vomiting and hypoglycaemia and thus requires close monitoring during application. By comparison, the antagonist exendin(9-39) does not activate the receptor, but its lack of internalisation has precluded its use as a tracer. Improving the cellular uptake of exendin(9-39) could turn it into a useful alternative tracer with less side-effects than exendin-4. METHODS We conjugated exendin-4 and exendin(9-39) to the well-known cell-penetrating peptide (CPP) penetratin. We evaluated cell binding and internalisation of the radiolabelled peptides in vitro and their biodistribution in vivo. RESULTS Exendin-4 showed internalisation irrespective of the presence of the CPP, whereas for exendin(9-39) only the penetratin conjugate internalised. Conjugation to the CPP also enhanced the in vivo tumour uptake and retention of exendin(9-39). CONCLUSION We demonstrate that penetratin robustly improves internalisation and tumour retention of exendin(9-39), opening new avenues for antagonist-based in vivo imaging of GLP1R.
Collapse
Affiliation(s)
- Estel Collado Camps
- Department of Medical Imaging, Radboudumc, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands ,Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands ,Present Address: Department of Tumour Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, 278 Tumor Immunology, Radboudumc, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Sanne A. M. van Lith
- Department of Medical Imaging, Radboudumc, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Annemarie Kip
- Department of Medical Imaging, Radboudumc, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Cathelijne Frielink
- Department of Medical Imaging, Radboudumc, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Lieke Joosten
- Department of Medical Imaging, Radboudumc, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Roland Brock
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, The Netherlands ,Department of Medical Biochemistry, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Kingdom of Bahrain
| | - Martin Gotthardt
- Department of Medical Imaging, Radboudumc, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.
| |
Collapse
|
4
|
GLP-1 peptide analogs for targeting pancreatic beta cells. Drug Discov Today 2021; 26:1936-1943. [PMID: 33839290 DOI: 10.1016/j.drudis.2021.03.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/01/2021] [Accepted: 03/30/2021] [Indexed: 02/06/2023]
Abstract
Loss or dysfunction of the pancreatic beta cells or insulin receptors leads to diabetes mellitus (DM). This usually occurs over many years; therefore, the development of methods for the timely detection and clinical intervention are vital to prevent the development of this disease. Glucagon-like peptide-1 receptor (GLP-1R) is the receptor of GLP-1, an incretin hormone that causes insulin secretion in a glucose-dependent manner. GLP-1R is highly expressed on the surface of pancreatic beta cells, providing a potential target for bioimaging. In this review, we provide an overview of various strategies, such as the development of GLP-1R agonists (e.g., exendin-4), and GLP-1 sequence modifications for GLP-1R targeting for the diagnosis and treatment of pancreatic beta cell disorders. We also discuss the challenges of targeting pancreatic beta cells and strategies to address such challenges.
Collapse
|
5
|
Joosten L, Boss M, Jansen T, Brom M, Buitinga M, Aarntzen E, Eriksson O, Johansson L, de Galan B, Gotthardt M. Molecular Imaging of Diabetes. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00041-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
6
|
Murakami T, Fujimoto H, Inagaki N. Non-invasive Beta-cell Imaging: Visualization, Quantification, and Beyond. Front Endocrinol (Lausanne) 2021; 12:714348. [PMID: 34248856 PMCID: PMC8270651 DOI: 10.3389/fendo.2021.714348] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 06/14/2021] [Indexed: 01/07/2023] Open
Abstract
Pancreatic beta (β)-cell dysfunction and reduced mass play a central role in the development and progression of diabetes mellitus. Conventional histological β-cell mass (BCM) analysis is invasive and limited to cross-sectional observations in a restricted sampling area. However, the non-invasive evaluation of BCM remains elusive, and practical in vivo and clinical techniques for β-cell-specific imaging are yet to be established. The lack of such techniques hampers a deeper understanding of the pathophysiological role of BCM in diabetes, the implementation of personalized BCM-based diabetes management, and the development of antidiabetic therapies targeting BCM preservation and restoration. Nuclear medical techniques have recently triggered a major leap in this field. In particular, radioisotope-labeled probes using exendin peptides that include glucagon-like peptide-1 receptor (GLP-1R) agonist and antagonist have been employed in positron emission tomography and single-photon emission computed tomography. These probes have demonstrated high specificity to β cells and provide clear images accurately showing uptake in the pancreas and transplanted islets in preclinical in vivo and clinical studies. One of these probes, 111indium-labeled exendin-4 derivative ([Lys12(111In-BnDTPA-Ahx)]exendin-4), has captured the longitudinal changes in BCM during the development and progression of diabetes and under antidiabetic therapies in various mouse models of type 1 and type 2 diabetes mellitus. GLP-1R-targeted imaging is therefore a promising tool for non-invasive BCM evaluation. This review focuses on recent advances in non-invasive in vivo β-cell imaging for BCM evaluation in the field of diabetes; in particular, the exendin-based GLP-1R-targeted nuclear medicine techniques.
Collapse
Affiliation(s)
- Takaaki Murakami
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hiroyuki Fujimoto
- Radioisotope Research Center, Agency of Health, Safety and Environment, Kyoto University, Kyoto, Japan
| | - Nobuya Inagaki
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Kyoto, Japan
- *Correspondence: Nobuya Inagaki,
| |
Collapse
|
7
|
Gurzov EN, Ke PC, Ahlgren U, Garcia Ribeiro RS, Gotthardt M. Novel Strategies to Protect and Visualize Pancreatic β Cells in Diabetes. Trends Endocrinol Metab 2020; 31:905-917. [PMID: 33160815 DOI: 10.1016/j.tem.2020.10.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/23/2020] [Accepted: 10/12/2020] [Indexed: 12/20/2022]
Abstract
A common feature in the pathophysiology of different types of diabetes is the reduction of β cell mass and/or impairment of β cell function. Diagnosis and treatment of type 1 and type 2 diabetes is currently hampered by a lack of reliable techniques to restore β cell survival, to improve insulin secretion, and to quantify β cell mass in patients. Current new approaches may allow us to precisely and specifically visualize β cells in vivo and provide viable therapeutic strategies to preserve, recover, and regenerate β cells. In this review, we discuss recent protective approaches for β cells and the advantages and limitations of current imaging probes in the field.
Collapse
Affiliation(s)
- Esteban N Gurzov
- Signal Transduction and Metabolism Laboratory, Université libre de Bruxelles, Brussels 1070, Belgium.
| | - Pu Chun Ke
- Zhongshan Hospital, Fudan University, Xuhui District, Shanghai 200032, China; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Ulf Ahlgren
- Umeå Centre for Molecular Medicine, Umeå University, Umeå S-90187, Sweden
| | - Rita S Garcia Ribeiro
- Signal Transduction and Metabolism Laboratory, Université libre de Bruxelles, Brussels 1070, Belgium
| | - Martin Gotthardt
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen 6525 GA, The Netherlands
| |
Collapse
|
8
|
Demine S, Schulte ML, Territo PR, Eizirik DL. Beta Cell Imaging-From Pre-Clinical Validation to First in Man Testing. Int J Mol Sci 2020; 21:E7274. [PMID: 33019671 PMCID: PMC7582644 DOI: 10.3390/ijms21197274] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/21/2020] [Accepted: 09/28/2020] [Indexed: 12/14/2022] Open
Abstract
There are presently no reliable ways to quantify human pancreatic beta cell mass (BCM) in vivo, which prevents an accurate understanding of the progressive beta cell loss in diabetes or following islet transplantation. Furthermore, the lack of beta cell imaging hampers the evaluation of the impact of new drugs aiming to prevent beta cell loss or to restore BCM in diabetes. We presently discuss the potential value of BCM determination as a cornerstone for individualized therapies in diabetes, describe the presently available probes for human BCM evaluation, and discuss our approach for the discovery of novel beta cell biomarkers, based on the determination of specific splice variants present in human beta cells. This has already led to the identification of DPP6 and FXYD2ga as two promising targets for human BCM imaging, and is followed by a discussion of potential safety issues, the role for radiochemistry in the improvement of BCM imaging, and concludes with an overview of the different steps from pre-clinical validation to a first-in-man trial for novel tracers.
Collapse
Affiliation(s)
- Stephane Demine
- Indiana Biosciences Research Institute, Indianapolis, IN 46202, USA;
| | - Michael L. Schulte
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (M.L.S.); (P.R.T.)
| | - Paul R. Territo
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (M.L.S.); (P.R.T.)
- Division of Clinical Pharmacology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Decio L. Eizirik
- Indiana Biosciences Research Institute, Indianapolis, IN 46202, USA;
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| |
Collapse
|
9
|
Clough TJ, Baxan N, Coakley EJ, Rivas C, Zhao L, Leclerc I, Martinez-Sanchez A, Rutter GA, Long NJ. Synthesis and in vivo behaviour of an exendin-4-based MRI probe capable of β-cell-dependent contrast enhancement in the pancreas. Dalton Trans 2020; 49:4732-4740. [PMID: 32207493 PMCID: PMC7116436 DOI: 10.1039/d0dt00332h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Global rates of diabetes mellitus are increasing, and treatment of the disease consumes a growing proportion of healthcare spending across the world. Pancreatic β-cells, responsible for insulin production, decline in mass in type 1 and, to a more limited degree, in type 2 diabetes. However, the extent and rate of loss in both diseases differs between patients resulting in the need for the development of novel diagnostic tools, which could quantitatively assess changes in mass of β-cells over time and potentially lead to earlier diagnosis and improved treatments. Exendin-4, a potent analogue of glucagon-like-peptide 1 (GLP-1), binds to the receptor GLP-1R, whose expression is enriched in β-cells. GLP-1R has thus been used in the past as a means of targeting probes for a wide variety of imaging modalities to the endocrine pancreas. However, exendin-4 conjugates designed specifically for MRI contrast agents are an under-explored area. In the present work, the synthesis and characterization of an exendin-4-dota(ga)-Gd(iii) complex, GdEx, is reported, along with its in vivo behaviour in healthy and in β-cell-depleted C57BL/6J mice. Compared to the ubiquitous probe, [Gd(dota)]-, GdEx shows selective uptake by the pancreas with a marked decrease in accumulation observed after the loss of β-cells elicited by deleting the microRNA processing enzyme, DICER. These results open up pathways towards the development of other targeted MRI contrast agents based on similar chemistry methodology.
Collapse
Affiliation(s)
- Thomas J Clough
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, Wood Lane, London, W12 0BZ, UK.
| | - Nicoleta Baxan
- Biological Imaging Centre, Faculty of Medicine, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | - Emma J Coakley
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, Wood Lane, London, W12 0BZ, UK.
| | - Charlotte Rivas
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, Wood Lane, London, W12 0BZ, UK.
| | - Lan Zhao
- Biological Imaging Centre, Faculty of Medicine, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK and National Heart and Lung Institute, Faculty of Medicine, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | - Isabelle Leclerc
- Section of Cell Biology and Functional Genomics, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK.
| | - Aida Martinez-Sanchez
- Section of Cell Biology and Functional Genomics, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK.
| | - Guy A Rutter
- Section of Cell Biology and Functional Genomics, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK. and Lee Kong Chain School of Medicine, Nan Yang Technological University, 11 Mandalay Road, 308232 Singapore
| | - Nicholas J Long
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, Wood Lane, London, W12 0BZ, UK.
| |
Collapse
|
10
|
Watanabe H, Kawano K, Shimizu Y, Iikuni S, Nakamoto Y, Togashi K, Ono M. Development of Novel PET Imaging Probes for Detection of Amylin Aggregates in the Pancreas. Mol Pharm 2020; 17:1293-1299. [PMID: 32202808 DOI: 10.1021/acs.molpharmaceut.9b01309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The deposition of islet amyloid is associated with β-cell mass dysfunction in type 2 diabetes mellitus (T2DM). Since the amylin aggregate is the main component of islet amyloid, in vivo imaging of amylin may be useful for diagnosis and elucidation of the pathogenic mechanism of T2DM. In the present study, we newly designed, synthesized, and evaluated two 18F labeled compounds ([18F]DANIR-F 2b and [18F]DANIR-F 2c) as positron emission tomography (PET) probes targeting amylin aggregates. In an in vitro binding study, DANIR-F 2b and DANIR-F 2c showed binding affinity for amylin aggregates (Ki = 160 and 29 nM, respectively). In addition, [18F]DANIR-F 2b and [18F]DANIR-F 2c clearly labeled islet amyloids in in vitro autoradiography of T2DM pancreatic sections. In the biodistribution study using normal mice, [18F]DANIR-F 2b and [18F]DANIR-F 2c displayed favorable pharamacokinetics in the pancreas and some organs located near the pancreas. Furthermore, in an ex vivo autoradiographic study, [18F]DANIR-F 2c also bound to amylin aggregates in the pancreas of the amylin transplanted mice. The results of this study suggest that [18F]DANIR-F 2c shows fundamental properties as a PET imaging probe targeting amylin aggregates in the T2DM pancreas.
Collapse
Affiliation(s)
- Hiroyuki Watanabe
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kiyoshiro Kawano
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yoichi Shimizu
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Shimpei Iikuni
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yuji Nakamoto
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Kaori Togashi
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Masahiro Ono
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
11
|
Neo CWY, Ciaramicoli LM, Soetedjo AAP, Teo AKK, Kang NY. A new perspective of probe development for imaging pancreatic beta cell in vivo. Semin Cell Dev Biol 2020; 103:3-13. [PMID: 32057664 DOI: 10.1016/j.semcdb.2020.01.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 01/20/2020] [Accepted: 01/28/2020] [Indexed: 12/23/2022]
Abstract
Beta cells assume a fundamental role in maintaining blood glucose homeostasis through the secretion of insulin, which is contingent on both beta cell mass and function, in response to elevated blood glucose levels or secretagogues. For this reason, evaluating beta cell mass and function, as well as scrutinizing how they change over time in a diabetic state, are essential prerequisites in elucidating diabetes pathophysiology. Current clinical methods to measure human beta cell mass and/or function are largely lacking, indirect and sub-optimal, highlighting the continued need for noninvasive in vivo beta cell imaging technologies such as optical imaging techniques. While numerous probes have been developed and evaluated for their specificity to beta cells, most of them are more suited to visualize beta cell mass rather than function. In this review, we highlight the distinction between beta cell mass and function, and the importance of developing more probes to measure beta cell function. Additionally, we also explore various existing probes that can be employed to measure beta cell mass and function in vivo, as well as the caveats in probe development for in vivo beta cell imaging.
Collapse
Affiliation(s)
- Claire Wen Ying Neo
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology (IMCB), A*STAR, Singapore, 138673, Singapore; Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117596, Singapore
| | - Larissa Miasiro Ciaramicoli
- Department of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Andreas Alvin Purnomo Soetedjo
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology (IMCB), A*STAR, Singapore, 138673, Singapore
| | - Adrian Kee Keong Teo
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology (IMCB), A*STAR, Singapore, 138673, Singapore; Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117596, Singapore.
| | - Nam-Young Kang
- Department of Creative IT Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Namgu, C5 Building, Room 203, Pohang, Kyungbuk, 37673, Republic of Korea.
| |
Collapse
|