1
|
Senniksen MB, Wyttenbach N, Page S, Dressman J. Combining high throughput ASD screening with the rDCS to streamline development of poorly soluble drugs. Eur J Pharm Sci 2025:107130. [PMID: 40383401 DOI: 10.1016/j.ejps.2025.107130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 05/12/2025] [Accepted: 05/15/2025] [Indexed: 05/20/2025]
Abstract
Poor aqueous solubility and slow dissolution rate of active pharmaceutical ingredients (APIs) are often encountered challenges during oral drug development, leading to variable and insufficient bioavailability. To overcome these challenges, a so-called "enabling" formulation strategy is often pursued. Among these, amorphous solid dispersions (ASDs) are established as an effective means of improving drug absorption. However, evaluating the outcome of in vitro ASD screening approaches and relating this to the expected bioavailability increase can be difficult if not done systematically. Here we show, for the first time, how the combination of a high throughput ASD screening method with the refined Developability Classification System (rDCS) can streamline the formulation of poorly soluble APIs as ASDs. Using the Screening of Polymers for Amorphous Drug Stabilization (SPADS) approach to rapidly prepare ASD films, the improvement in dissolution performance of three APIs (befetupitant, celecoxib and itraconazole) was investigated with eight polymeric carriers. The results showed that the concentration of dissolved API was highly dependent on both the carrier and the drug load. For the APIs studied, Eudragit E, HPMC 100LV and Soluplus showed especially advantageous effects as carriers. Translating these results into the rDCS framework allowed for the visualization of the left-shift (more favorable for absorption) in classification. Several ASD films were classified as rDCS class I, showing a major improvement from the initial IIb classification of the pure API. This novel approach could be expanded to include a diverse set of screening methods for enabling formulation strategies, where the rDCS can allow for a direct comparison and support formulation selection.
Collapse
Affiliation(s)
- Malte Bøgh Senniksen
- Fraunhofer Institute for Translational Medicine and Pharmacology, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany; Pharmaceutical R&D, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Nicole Wyttenbach
- Pharmaceutical Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Susanne Page
- Pharmaceutical R&D, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Jennifer Dressman
- Fraunhofer Institute for Translational Medicine and Pharmacology, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany.
| |
Collapse
|
2
|
Ramachandran G, Chacko IA, Mishara MG, Khopade AJ, Sabitha M, Sudheesh MS. A review on design rules for formulating amorphous solid dispersions based on drug-polymer interactions in aqueous environment. Int J Pharm 2025; 675:125541. [PMID: 40164414 DOI: 10.1016/j.ijpharm.2025.125541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/09/2025] [Accepted: 03/27/2025] [Indexed: 04/02/2025]
Abstract
Amorphous solid dispersions (ASDs) are multi-component formulations in which a drug is molecularly dispersed in a carrier. ASDs undergo complex dissolution mechanisms to generate and sustain a supersaturated state of poorly soluble drugs. The link between enhanced solubility, supersaturation stability and drug-polymer interaction (DPI) is critical for the rational design of ASDs. The key mechanism responsible for a high bioavailability is the evolution of supersaturation during the dissolution of ASDs which is also the driving force for drug precipitation. A critical determinant of robust supersaturation generation and stability during dissolution is the molecular interaction between the drug and polymer. Characterization of DPI in a solution state is, however, challenging because of the poor hydrodynamic resolution of the techniques, traditionally used in solid-state analysis. Further, the dissolution conditions, such as the choice of buffer, pH and ionic strength may complicate the analyses and predictions. The role of DPI is a poorly understood aspect of ASD dissolution and therefore is an active area of research. DPI is critical for understanding the design rules for formulating an optimal ASD formulation. The review focuses on different aspects of DPI to stabilize the supersaturated state of a drug during the dissolution of ASDs.
Collapse
Affiliation(s)
- Gayathri Ramachandran
- Molecular Pharmaceutics and Biopharmaceutics Research Lab (MPBRL), Dept. of Pharmaceutics, Amrita School of Pharmacy, AIMS Health Science Campus, Amrita Vishwa Vidyapeetham, Ponekkara, Kochi 682041, India
| | - Indhu Annie Chacko
- Molecular Pharmaceutics and Biopharmaceutics Research Lab (MPBRL), Dept. of Pharmaceutics, Amrita School of Pharmacy, AIMS Health Science Campus, Amrita Vishwa Vidyapeetham, Ponekkara, Kochi 682041, India
| | - M G Mishara
- Molecular Pharmaceutics and Biopharmaceutics Research Lab (MPBRL), Dept. of Pharmaceutics, Amrita School of Pharmacy, AIMS Health Science Campus, Amrita Vishwa Vidyapeetham, Ponekkara, Kochi 682041, India
| | - Ajay Jaysingh Khopade
- Department of Formulation R&D Non-Orals, Sun Pharmaceutical Industries Ltd., Vadodara, India
| | - M Sabitha
- Molecular Pharmaceutics and Biopharmaceutics Research Lab (MPBRL), Dept. of Pharmaceutics, Amrita School of Pharmacy, AIMS Health Science Campus, Amrita Vishwa Vidyapeetham, Ponekkara, Kochi 682041, India
| | - M S Sudheesh
- Molecular Pharmaceutics and Biopharmaceutics Research Lab (MPBRL), Dept. of Pharmaceutics, Amrita School of Pharmacy, AIMS Health Science Campus, Amrita Vishwa Vidyapeetham, Ponekkara, Kochi 682041, India.
| |
Collapse
|
3
|
Shetty N, Hau J, Tang S, Chiang PC, Liu J, Jia W, Lubach JW, Nagapudi K, Hou HH. Assessing the impacts of drug loading and polymer type on dissolution behavior and diffusive flux of GDC-6893 amorphous solid dispersions. J Pharm Sci 2025; 114:103686. [PMID: 39880163 DOI: 10.1016/j.xphs.2025.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/12/2025] [Accepted: 01/22/2025] [Indexed: 01/31/2025]
Abstract
It is desirable but remains challenging to develop high drug load amorphous solid dispersions (ASDs) without compromising their quality attributes and bio-performance. In this work, we investigated the impacts of formulation variables, such as drug loading (DL) and polymer type, on dissolution behavior, diffusive flux, and in vitro drug absorption of ASDs of a high Tg compound, GDC-6893. ASDs with two polymers (HPMCAS and PVPVA) and various DLs (20 - 80%) were produced by spray drying and their drug-polymer miscibility was evaluated using solid-state nuclear magnetic resonance (ssNMR). μFLUX™ apparatus was used to evaluate the dissolution and drug membrane transport of ASDs at target solution concentrations above the amorphous solubility. Polymer release was monitored using a high-performance liquid chromatography (HPLC) equipped with a charged aerosol detector (CAD). Subsequently, bio-accessibility (%BioA) profiles of the ASDs were evaluated using a benchtop Gastro-Intestinal Model with an advanced gastric compartment (Tiny-TIM), capable of simulating the GI transit as well as in vitro drug dissolution and absorption. Good miscibility and physical stability were observed in ASDs with both HPMCAS and PVPVA even at a high DL of 80%. All GDC-6893 ASDs exhibited dissolution profiles surpassing the amorphous solubility of 20 µg/mL, regardless of the DL and the type of polymer used. Glass-liquid phase separation (GLPS) was observed for ASDs, even at the DL of 80%, and all of these systems reached the maximum achievable diffusive flux. Tiny-TIM results showed an improvement in the %BioA of GDC-6893 ASD compared to its crystalline counterpart however the drug loading and polymer type had no significant impacts on %BioA profiles. Insights from this study suggest that although congruent drug and polymer release was not observed for both HMPCAS- and PVPVA-based ASDs at both 20% and 80% DLs, GDC-6893 and the polymer (HPMCAS or PVPVA) dissolved rapidly from high DL ASDs, followed by the occurrence of GLPS, resulting in the formation of nanosized colloidal species. The findings described herein highlight the importance of understanding both drug and polymer dissolution behavior, as well as in vitro drug absorption, which are essential for the rational design of optimal formulations with desired quality and bio-performance.
Collapse
Affiliation(s)
- Nivedita Shetty
- Department of Synthetic Molecule Pharmaceutical Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Jonathan Hau
- Department of Synthetic Molecule Pharmaceutical Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Shijia Tang
- Department of Synthetic Molecule Pharmaceutical Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Po-Chang Chiang
- Department of Synthetic Molecule Pharmaceutical Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Jia Liu
- Department of Synthetic Molecule Pharmaceutical Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Wei Jia
- Department of Synthetic Molecule Pharmaceutical Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Joseph W Lubach
- Department of Synthetic Molecule Pharmaceutical Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Karthik Nagapudi
- Department of Synthetic Molecule Pharmaceutical Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Hao Helen Hou
- Department of Synthetic Molecule Pharmaceutical Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA.
| |
Collapse
|
4
|
Cools L, Derveaux E, Adriaensens P, Van den Mooter G. Molecular miscibility of ASD blend components: an evaluation of (the added value of) solid state NMR spectroscopy and relaxometry. J Pharm Sci 2025; 114:103683. [PMID: 39870179 DOI: 10.1016/j.xphs.2025.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/20/2025] [Accepted: 01/20/2025] [Indexed: 01/29/2025]
Abstract
In order to evaluate the stability of an amorphous solid dispersion (ASD) it is crucial to be able to accurately determine whether the ASD components are homogeneously mixed or not. Several solid-state analysis techniques are at the disposal of the formulation scientist, such as for example modulated differential scanning calorimetry (mDSC) and solid-state nuclear magnetic resonance spectroscopy (ssNMR). ssNMR is a robust, versatile, and accurate analysis technique with a large number of application possibilities. Especially ssNMR relaxometry, which allows the measurement of the proton relaxation times T1H and T1ρH, is very useful for evaluating the miscibility of ASDs. In this paper, the miscibility of a model ASD, composed of indomethacin (IND) and poly(vinylpyrrolidone-co-vinyl acetate) (PVPVA), was assessed using mDSC and various ssNMR techniques, in order to compare the different techniques and to evaluate the advantages and disadvantages of each. It was found that measuring the relaxation times via the chemical shift selective carbon signals using 13C-cross-polarization magic angle spinning (13C-CPMAS) is still the golden standard to evaluate miscibility, even giving information about the miscibility at the nm scale. Although non-chemical shift selective 1H-wideline measurements are significantly faster than 13C-CPMAS measurements to determine the relaxation times, the results are often hard to interpret, especially with regard to the T1ρH relaxation times. 2D 1H-13C dipolar heteronuclear correlation (dipolar HETCOR) NMR is an additional technique that can be used, and which provides information about the special proximity of 1H and 13C nuclei with respect to each other and therefore about the miscibility of the components at the nm scale. Additionally, it often allows to acquire information regarding the intermolecular interactions and the functional groups involved. Nevertheless, optimalization of the experiments, data processing and interpretation of the results require some expertise. Compared to mDSC, the ssNMR techniques are more sensitive and robust and can often provide information about the miscibility at nm scale. However, mDSC is a very fast analysis technique that requires less optimalization. Therefore, it remains recommended to use mDSC always for a first screening and as a complementary analysis technique.
Collapse
Affiliation(s)
- Lennert Cools
- Drug Delivery and Disposition, KU Leuven, Department of Pharmaceutical and Pharmacological Sciences, Campus Gasthuisberg ON2, Herestraat 49 b921, 3000 Leuven, Belgium; Hasselt University, Institute for Materials Research (imo-imomec), Applied and Analytical Chemistry, NMR group, Martelarenlaan 42, 3500 Hasselt, Belgium
| | - Elien Derveaux
- Hasselt University, Institute for Materials Research (imo-imomec), Applied and Analytical Chemistry, NMR group, Martelarenlaan 42, 3500 Hasselt, Belgium
| | - Peter Adriaensens
- Hasselt University, Institute for Materials Research (imo-imomec), Applied and Analytical Chemistry, NMR group, Martelarenlaan 42, 3500 Hasselt, Belgium
| | - Guy Van den Mooter
- Drug Delivery and Disposition, KU Leuven, Department of Pharmaceutical and Pharmacological Sciences, Campus Gasthuisberg ON2, Herestraat 49 b921, 3000 Leuven, Belgium.
| |
Collapse
|
5
|
Kapourani A, Pantazos I, Valkanioti V, Chatzitheodoridou M, Kalogeri C, Barmpalexis P. Unveiling the impact of preparation methods, matrix/carrier type selection and drug loading on the supersaturation performance of amorphous solid dispersions. Int J Pharm 2025; 671:125242. [PMID: 39842744 DOI: 10.1016/j.ijpharm.2025.125242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/15/2025] [Accepted: 01/16/2025] [Indexed: 01/24/2025]
Abstract
Amorphous solid dispersions (ASDs) are widely recognized for their potential to enhance the solubility of poorly water-soluble drugs, with factors such as molecular mobility, intermolecular interactions, and storage conditions playing critical roles in their performance. However, the influence of preparation methods on their performance remains underexplored, especially regarding their supersaturation . To address this gap, the present study systematically investigates ASDs of ibuprofen (IBU, used as a model drug) prepared using two widely utilized techniques (solvent evaporation, SE, and melt-quench cooling, M-QC). Three different matrices/carriers (Soluplus®, SOL, povidone, PVP, and copovidone, PVPVA) were employed to evaluate the combined influence of preparation method, matrix/carrier type, and drug loading on ASD performance. Supersaturation behavior during dissolution, particularly its dependence on the Sink Index (SI), was a key focus. All ASDs showed successful amorphization, but molecular near-order structures differed based on the preparation method. ATR-FTIR spectroscopy revealed stronger molecular interactions in M-QC ASDs (compared to SE). Dissolution studies under supersaturation conditions (SI = 0.1 and SI = 0.2) highlighted significant performance differences. M-QC ASDs consistently exhibited higher in vitro AUC(0→t) values under non-sink conditions compared to crystalline IBU. Conversely, SE ASDs showed improved supersaturation primarily under low SI conditions, especially with SOL at low drug loadings. The findings underscore the need for a systematic approach in developing ASDs, considering preparation method, matrix/carrier type, drug loading and dissolution study conditions collectively. These factors significantly influence dissolution behavior and supersaturation, emphasizing that they should not be independently studied but evaluated comprehensively to optimize ASD performance.
Collapse
Affiliation(s)
- Afroditi Kapourani
- Laboratory of Pharmaceutical Technology, Division of Pharmaceutical Technology, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | - Ioannis Pantazos
- Laboratory of Pharmaceutical Technology, Division of Pharmaceutical Technology, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | - Vasiliki Valkanioti
- Laboratory of Pharmaceutical Technology, Division of Pharmaceutical Technology, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | - Melina Chatzitheodoridou
- Laboratory of Pharmaceutical Technology, Division of Pharmaceutical Technology, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | - Christina Kalogeri
- Laboratory of Pharmaceutical Technology, Division of Pharmaceutical Technology, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | - Panagiotis Barmpalexis
- Laboratory of Pharmaceutical Technology, Division of Pharmaceutical Technology, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; Natural Products Research Centre of Excellence-AUTH (NatPro-AUTH), Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Thessaloniki 57001, Greece.
| |
Collapse
|
6
|
Kawakami K. Roles of Supersaturation and Liquid-Liquid Phase Separation for Enhanced Oral Absorption of Poorly Soluble Drugs from Amorphous Solid Dispersions. Pharmaceutics 2025; 17:262. [PMID: 40006629 PMCID: PMC11859337 DOI: 10.3390/pharmaceutics17020262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/09/2025] [Accepted: 02/14/2025] [Indexed: 02/27/2025] Open
Abstract
Amorphous solid dispersion (ASD) is one of the most important enabling formulation technologies for the development of poorly soluble drugs. Because of its thermodynamically unstable nature in both solid and wet states, the evaluation and optimization of the formulation performance involves some difficulties. The dissolution process is sensitively influenced by various factors, including the applied dose, medium composition, and pH. Supersaturated solutions can cause liquid-liquid phase separation (LLPS) and/or crystallization, which complicates the comprehension of the dissolution process. However, LLPS should be evaluated carefully because it is closely related to oral absorption. As LLPS concentration is analogous to amorphous solubility, it can be a key factor in predicting oral absorption from ASDs, if absorption is limited by solubility. Moreover, LLPS droplets are expected to increase transmembrane flux by increasing the drug concentration near the epithelial cell membrane. In this review, recently updated knowledge on the dissolution, membrane permeation, and oral absorption behaviors of ASDs is discussed with an emphasis on LLPS behavior.
Collapse
Affiliation(s)
- Kohsaku Kawakami
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan;
- Graduate School of Science and Technology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Ibaraki, Japan
| |
Collapse
|
7
|
Fan F, Zhou F, Zhang J, Yang J, Zhuang K, Shan Y, Jiang L, Zhang J. Developing Soluplus®-Based Microparticle Amorphous Solid Dispersions with High Drug Loading for Enhanced Celecoxib Dissolution via Electrospraying. AAPS PharmSciTech 2025; 26:47. [PMID: 39881034 DOI: 10.1208/s12249-025-03041-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 01/08/2025] [Indexed: 01/31/2025] Open
Abstract
Amorphous solid dispersion (ASD) is one of the most studied strategies for improving the dissolution performance of poorly water-soluble drugs, but ASDs often have low drug loadings, thereby necessitating larger dosage sizes. This study intended to create Soluplus® (SOL)-based microparticle ASDs with high drug loading (up to 60 w/w%) and long-term stability (at least 16 months) using electrospraying to enhance the dissolution of poorly water-soluble celecoxib (CEL). X-ray diffraction (XRD) and differential scanning calorimetry (DSC) analyses showed that the electrosprayed SOL-CEL microparticles were amorphous, and Fourier transform infrared spectroscopy (FTIR) data indicated the presence of hydrogen bonding between SOL and CEL in the microparticles, which helped stabilize the ASDs. In vitro dissolution studies demonstrated that these ASDs improved the CEL dissolution rate by up to 8.2-fold compared to the crystalline form. Electrospraying presents a promising alternative to conventional methods like hot-melt extrusion (HME) and spraying drying (SD) for the production of ASDs, providing simplicity, high drug loading capability and long-term stability, thus catering to a variety of poorly water-soluble drugs.
Collapse
Affiliation(s)
- Fan Fan
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
| | - Feng Zhou
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
| | - Jiayu Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Junhui Yang
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, 315300, China
| | - Kai Zhuang
- Pharma Solutions, Nutrition and Health, BASF (China) Company, Ltd., 333 Jiang Xin Sha Road, Shanghai, 200137, China
| | - Yudong Shan
- Hangzhou Zhongmeihuadong Pharmaceutical Co., Ltd., 866 Moganshan Road, Hangzhou, 310011, China
| | - Lei Jiang
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China.
- Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China.
| | - Jiantao Zhang
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China.
- Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China.
| |
Collapse
|
8
|
Bapat P, Taylor LS. Impact of HPMCAS Grade on the Release of Weakly Basic Drugs from Amorphous Solid Dispersions. Mol Pharm 2025; 22:397-407. [PMID: 39704640 DOI: 10.1021/acs.molpharmaceut.4c00986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Oppositely charged species can form electrostatic interactions in aqueous solution, and these may lead to reduced solubility of the interacting components. Herein, insoluble complex formation between the lipophilic weakly basic drugs, cinnarizine or loratadine, and the enteric polymer, hydroxypropyl methylcellulose acetate succinate (HPMCAS), was studied and used to better understand drug and polymer release from their corresponding amorphous solid dispersions (ASDs). Surface area normalized release experiments were performed at various pH conditions for three different grades of HPMCAS, LF, MF and HF, as well as their ASDs. Both polymer and drug release rates were measured for the ASDs. Complexation tendency was evaluated by measuring the extent of polymer loss from the aqueous phase in the presence of the drug. Results showed that release from ASDs with HPMCAS-LF was less impacted by the presence of a cationic form of the drug than ASDs prepared with the HF grade. Furthermore, an increase in pH, leading to a reduction in the extent of ionized drug also led to an improvement in release rate. These observations provide a baseline to understand the role of drug-polymer electrostatic interactions on release from ASDs formulated with HPMCAS. Future studies should focus on adding complexity to media conditions by employing simulated intestinal fluids with solubilizing components.
Collapse
Affiliation(s)
- Pradnya Bapat
- Department of Industrial and Molecular Pharmaceutics, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Lynne S Taylor
- Department of Industrial and Molecular Pharmaceutics, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
9
|
Benson EG, Moseson DE, Bhalla S, Wang F, Wang M, Zheng K, Narwankar PK, Taylor LS. Dissolution of copovidone-based amorphous solid dispersions: Influence of atomic layer coating, hydration kinetics, and formulation. J Pharm Sci 2025; 114:323-335. [PMID: 39389537 DOI: 10.1016/j.xphs.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/02/2024] [Accepted: 10/02/2024] [Indexed: 10/12/2024]
Abstract
Atomic layer coating (ALC) is an emerging, solvent-free technique to coat amorphous solid dispersion (ASD) particles with a nanolayer ceramic coating that has been shown to improve powder characteristics and limit drug crystallization. Herein, we evaluate the impact of aluminum oxide coatings with varying thickness and conformality on the release behavior of ritonavir/copovidone ASDs. Release performance of powders, neat tablets, and formulated tablets was studied. Confocal fluorescence microscopy (CFM) was used to visualize particle hydration and phase separation during immersion of the ASD in aqueous media. CFM revealed particle hydration requires defects for solvent penetration, but coatings, regardless of thickness, had minor impacts on powder dissolution provided defects were present. In tablets where less surface area is exposed to the dissolution media due to gel formation, slowed hydration kinetics resulted in phase separation of the drug from the polymer in coated samples, limiting release. Formulation with two superdisintegrants, crospovidone and croscarmellose sodium, as well as lactose achieved ∼90% release in less than 10 minutes, matching the uncoated ASD particles of the same formulation. This study highlights the importance of hydration rate, as well as the utility of confocal fluorescence microscopy to provide insight into release and phase behavior of ASDs.
Collapse
Affiliation(s)
- Emily G Benson
- Department of Industrial and Molecular Pharmaceutics, College of Pharmacy, Purdue University, West Lafayette, IN 47907, United States
| | - Dana E Moseson
- Department of Industrial and Molecular Pharmaceutics, College of Pharmacy, Purdue University, West Lafayette, IN 47907, United States
| | - Shradha Bhalla
- Department of Industrial and Molecular Pharmaceutics, College of Pharmacy, Purdue University, West Lafayette, IN 47907, United States
| | - Fei Wang
- Applied Materials, Inc., 3100 Bowers Ave, Santa Clara, CA 95054, United States
| | - Miaojun Wang
- Applied Materials, Inc., 3100 Bowers Ave, Santa Clara, CA 95054, United States
| | - Kai Zheng
- Applied Materials, Inc., 3100 Bowers Ave, Santa Clara, CA 95054, United States
| | - Pravin K Narwankar
- Applied Materials, Inc., 3100 Bowers Ave, Santa Clara, CA 95054, United States
| | - Lynne S Taylor
- Department of Industrial and Molecular Pharmaceutics, College of Pharmacy, Purdue University, West Lafayette, IN 47907, United States.
| |
Collapse
|
10
|
Chakraborty S, Bansal AK. Application of atomic force microscopy in the development of amorphous solid dispersion. J Pharm Sci 2025; 114:70-81. [PMID: 39481473 DOI: 10.1016/j.xphs.2024.10.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/18/2024] [Accepted: 10/18/2024] [Indexed: 11/02/2024]
Abstract
Development of Amorphous Solid Dispersion (ASD) requires an in-depth characterization at different stages due to its structural and functional complexity. Various tools are conventionally used to investigate the processing, stability, and functionality of ASDs. However, many subtle features remain poorly understood due to lack of nano-scale characterization tools in routine practice. Atomic force microscopy (AFM) is a type of scanning probe microscopy, used for high resolution imaging and measuring features at the nano-scale. In recent years AFM has been used increasingly as a characterization tool in different areas of the development of ASD, including drug-polymer miscibility, localized characterization of the phase separated domains, lateral molecular diffusivity on ASD surface, crystallinity and crystallization kinetics in ASD, phase behavior of ASD during dissolution, and conformation of polymer during dissolution. In this review, we have highlighted the current applications of AFM in capturing critical aspects of stability and dissolution behavior of ASD. Potential areas of future development in this domain have been discussed.
Collapse
Affiliation(s)
- Soumalya Chakraborty
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-S.A.S. Nagar, Punjab 160062, India
| | - Arvind K Bansal
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-S.A.S. Nagar, Punjab 160062, India.
| |
Collapse
|
11
|
Yu M, Zhou D, Oberoi HS, Salem AH, McKee LA, Arnholt JR, Purohit HS, Law D. Scale-up and clinical bioavailability assessment of a 45% drug loaded amorphous nanoparticle formulation of a BCS IV compound for oral delivery. J Pharm Sci 2025; 114:383-393. [PMID: 39427713 DOI: 10.1016/j.xphs.2024.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 10/22/2024]
Abstract
A 45 % drug loaded (DL) amorphous nanoparticle (ANP) formulation for a BCS IV drug demonstrated promising pharmacokinetics in dogs (Purohit, et al., J. Pharm. Sci. 2023(113)1007-1019). This preclinical data enabled a human proof-of-concept assessment opportunity. The ANP freeze dried powder for oral suspension was prepared using solvent/antisolvent precipitation followed by organic solvent removal and freeze drying (FD). Challenges manifested during scale-up from 50 g to 280 g. Given the preclinical data, formulation change was restricted, therefore, process modifications were implemented. Cold collection after precipitation prevented particle growth but resulted in 75 nm particles at clinical scale (CS), compared to 150 nm at laboratory scale (LS). This size decrease rendered stabilizer amounts suboptimal for FD operation. Consequently, when FD powder was resuspended in water a smaller fraction of particles was below 450 nm (by filtration), ∼65 % for CS compared to ∼85 % for LS. Formulation was stable for > 6 months, evaluated by monitoring moisture content, assay, powder X-ray diffraction (PXRD), and redispersion time. Despite ∼65 % re-dispersibility, this 45 % DL formulation in humans had higher Cmax and AUC ∼73 % and ∼46 % respectively in fasted-state, and under fed-state it met bioequivalence criteria for AUC but Cmax was 20 % lower compared to reference (10 % DL ASD tablets) demonstrating advantage of ANP strategy over ASD approach.
Collapse
Affiliation(s)
- Mengqi Yu
- Small molecule CMC development, Drug Product Development, AbbVie Inc., North Chicago, IL 60064, United States
| | - Deliang Zhou
- Small molecule CMC development, Drug Product Development, AbbVie Inc., North Chicago, IL 60064, United States
| | - Hardeep S Oberoi
- Small molecule CMC development, Drug Product Development, AbbVie Inc., North Chicago, IL 60064, United States
| | - Ahmed Hamed Salem
- Clinical Pharmacy, Ain Shams University, Cairo, Egypt; Clinical Pharmacology, AbbVie Inc., North Chicago, IL, USA
| | - Laura A McKee
- Process Research and development, Technical Operations, AbbVie Inc., North Chicago, IL, USA
| | - Jason R Arnholt
- Small molecule CMC development, Analytical Research and Development, AbbVie Inc., North Chicago, IL, USA
| | - Hitesh S Purohit
- Small molecule CMC development, Drug Product Development, AbbVie Inc., North Chicago, IL 60064, United States.
| | - Devalina Law
- Small molecule CMC development, Drug Product Development, AbbVie Inc., North Chicago, IL 60064, United States.
| |
Collapse
|
12
|
Deac A, Que C, Cousineau ML, Indulkar AS, Gao Y, Zhang GGZ, Taylor LS. Dissolution mechanisms of amorphous solid dispersions: Role of polymer molecular weight and identification of a new failure mode. J Pharm Sci 2025; 114:486-496. [PMID: 39461502 DOI: 10.1016/j.xphs.2024.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/14/2024] [Accepted: 10/14/2024] [Indexed: 10/29/2024]
Abstract
The mechanisms of drug release from amorphous solid dispersions (ASDs) are complex and not fully explored, making it difficult to optimize for in vivo performance. A recurring behavior has been the limit of congruency (LoC), a drug loading above which the ASD surface forms an amorphous drug-rich barrier in the presence of water, which hinders release, especially in non-sink conditions. Drug-polymer interactions and drug glass transition temperature were reported to affect the LoC. However, the effect of polymer molecular weight has not been explored. ASDs of clotrimazole and different molecular weight grades of poly (vinylpyrrolidone) (PVP) were studied for their release to obtain their LoC drug loadings. Failure modes underpinning the LoC were investigated using fluorescence confocal microscopy to analyze the ASD/solution interface and phase behavior of ASD films at high relative humidity. ASDs with good release formed stable drug-rich nanodroplets at the ASD/solution interface, while ASDs with poor release were limited by one of two failure modes, depending on PVP molecular weight. In Failure Mode I the nanodroplets quickly agglomerated, while in Failure Mode II the system underwent phase inversion. This work highlights the importance of identifying the mechanisms underlying the LoC to improve the release of higher drug loading ASDs.
Collapse
Affiliation(s)
- Alexandru Deac
- Department of Industrial and Molecular Pharmaceutics, College of Pharmacy, Purdue University, West Lafayette, IN 47907, United States
| | - Chailu Que
- Department of Industrial and Molecular Pharmaceutics, College of Pharmacy, Purdue University, West Lafayette, IN 47907, United States
| | - Michelle L Cousineau
- Department of Industrial and Molecular Pharmaceutics, College of Pharmacy, Purdue University, West Lafayette, IN 47907, United States
| | - Anura S Indulkar
- Development Sciences, Research and Development, AbbVie Inc., North Chicago, IL 60064, United States
| | - Yi Gao
- Formulation Development, Drug Product Science & Technology, AbbVie Inc., North Chicago, IL 60064, United States.
| | - Geoff G Z Zhang
- Department of Industrial and Molecular Pharmaceutics, College of Pharmacy, Purdue University, West Lafayette, IN 47907, United States; Development Sciences, Research and Development, AbbVie Inc., North Chicago, IL 60064, United States; ProPhysPharm LLC, Lincolnshire, IL 60069, United States
| | - Lynne S Taylor
- Department of Industrial and Molecular Pharmaceutics, College of Pharmacy, Purdue University, West Lafayette, IN 47907, United States.
| |
Collapse
|
13
|
Ueda K, Moseson DE, Taylor LS. Amorphous solubility advantage: Theoretical considerations, experimental methods, and contemporary relevance. J Pharm Sci 2025; 114:18-39. [PMID: 39222748 DOI: 10.1016/j.xphs.2024.08.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/24/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Twenty-five years ago, Hancock and Parks asked a provocative question: "what is the true solubility advantage for amorphous pharmaceuticals?" Difficulties in determining the amorphous solubility have since been overcome due to significant advances in theoretical understanding and experimental methods. The amorphous solubility is now understood to be the concentration after the drug undergoes liquid-liquid or liquid-glass phase separation, forming a water-saturated drug-rich phase in metastable equilibrium with an aqueous phase containing molecularly dissolved drug. While crystalline solubility is an essential parameter impacting the absorption of crystalline drug formulations, amorphous solubility is a vital factor for considering absorption from supersaturating formulations. However, the amorphous solubility of drugs is complex, especially in the presence of formulation additives and gastrointestinal components, and concentration-based measurements may not indicate the maximum drug thermodynamic activity. This review discusses the concept of the amorphous solubility advantage, including a historical perspective, theoretical considerations, experimental methods for amorphous solubility measurement, and the contribution of supersaturation and amorphous solubility to drug absorption. Leveraging amorphous solubility and understanding the associated physicochemical principles can lead to more effective development strategies for poorly water-soluble drugs, ultimately benefiting therapeutic outcomes.
Collapse
Affiliation(s)
- Keisuke Ueda
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Dana E Moseson
- Worldwide Research and Development, Pfizer, Inc., Groton, CT 06340, United States
| | - Lynne S Taylor
- Department of Industrial and Molecular Pharmaceutics, College of Pharmacy, Purdue University, West Lafayette, IN 47907, United States.
| |
Collapse
|
14
|
Moseson DE, Li N, Rantanen J, Ueda K, Zhang GGZ. Professor Lynne S. Taylor: Scientist, educator, and adventurer. J Pharm Sci 2025; 114:2-9. [PMID: 39426563 DOI: 10.1016/j.xphs.2024.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024]
Abstract
This special edition of the Journal of Pharmaceutical Sciences is dedicated to Professor Lynne S. Taylor (Retter Distinguished Professor of Pharmacy, Department of Industrial and Molecular Pharmaceutics, Purdue University), to honor her distinguished career as a pharmaceutical scientist and educator. The goal of this commentary is to provide an overview of Professor Taylor's career path, summarize her key research contributions, and provide some insight into her personal and professional contributions as an educator, mentor, wife, mother, friend, and adventurer.
Collapse
Affiliation(s)
- Dana E Moseson
- Worldwide Research and Development, Pfizer, Inc., Groton, Connecticut 06340, United States.
| | - Na Li
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Jukka Rantanen
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Keisuke Ueda
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Geoff G Z Zhang
- ProPhysPharm LLC, Lincolnshire, Illinois 60069, United States; Department of Industrial and Molecular Pharmaceutics, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
15
|
Indulkar AS, Alex S, Zhang GGZ. Impact of dissolution medium pH and ionization state of the drug on the release performance of amorphous solid dispersions. J Pharm Sci 2025; 114:497-506. [PMID: 39454946 DOI: 10.1016/j.xphs.2024.10.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/16/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024]
Abstract
Amorphous solid dispersions (ASDs) are widely employed as a strategy to improve oral bioavailability of poorly water soluble compounds. Typically, optimal dissolution performance from a polyvinylpyrrolidone vinyl acetate (PVPVA) based ASD is observed at relatively low drug loading limit. Above a certain drug load, termed limit of congruency (LoC), the release from ASDs significantly decreases. So far, the majority of the dissolution behavior has been tested in conditions where the drug primarily exists in unionized form. In this work, the impact of pH of the dissolution environment on the release performance of ASDs of an ionizable drug was studied. Atazanavir (ATZ), a weakly basic drug with a pKa of 4.5 was used as a model compound and PVPVA was used as a non-ionizable matrix polymer. Dissolution rate was measured using Wood's apparatus which normalizes the surface area of the dissolving tablet. The pH of the dissolution media was varied between 1 and 6.8, to cover a range where ATZ exists as >99 % ionized or unionized species. At pH 6.8, near complete release was observed only when the drug load was ≤ 6 %. Unlike typically observed drastic decline in release behavior for PVPVA based ASDs above LoC, ATZ ASDs underwent gradual decline in dissolution behavior when the DL was increased to 8 %. This was attributed to potential formation of an ATZ-PVPVA associated phase with dissolution rate slower than neat PVPVA. However, the 10 % DL ASD showed negligible ATZ release. On another extreme (pH 1) where ATZ is ∼100 % ionized, the dissolution rate of ATZ was faster than that of PVPVA. ASD dissolution rate was found to be slower than that of the neat drug but faster than PVPVA and interestingly, did not change with DL. This can be attributed to formation of an ionized ATZ-PVPVA phase which controls the dissolution rate of the ASD. At pH 3, where the drug is ∼97 % ionized, near complete release was observed for drug loads ≤ 8 %. To observe significant increase in drug loading with near complete release, >98 % ionization of ATZ was required. At pH 2 where ATZ is ∼99.7 % ionized, near complete release was observed for drug loads up to 30 %. Furthermore, the deterioration in dissolution performance with an increase in drug load continued to be gradual at pH 2. The enhancement in dissolution performance did not correlate with solubility enhancement of ATZ due to ionization. We theorize that the enhancement in the dissolution performance due to ionization is the result of formation of an ionized ATZ-PVPVA phase which increases the hydrophilicity and the miscibility of the ASD. This can help resist water induced phase separation during ASD dissolution and therefore, result in continuous, and congruent dissolution of the drug and polymer.
Collapse
Affiliation(s)
- Anura S Indulkar
- Small Molecule CMC Development, Research and Development, AbbVie Inc., North Chicago, IL 60064, United States.
| | - Samantha Alex
- Small Molecule CMC Development, Research and Development, AbbVie Inc., North Chicago, IL 60064, United States
| | - Geoff G Z Zhang
- Small Molecule CMC Development, Research and Development, AbbVie Inc., North Chicago, IL 60064, United States
| |
Collapse
|
16
|
B S, Ghosh A. Mechanistic Insights into Amorphous Solid Dispersions: Bridging Theory and Practice in Drug Delivery. Pharm Res 2025; 42:1-23. [PMID: 39849216 DOI: 10.1007/s11095-024-03808-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 12/12/2024] [Indexed: 01/25/2025]
Abstract
Improving the bioavailability of poorly water-soluble drugs presents a significant challenge in pharmaceutical development. Amorphous solid dispersions (ASDs) have garnered substantial attention for their capability to augment the solubility and dissolution rate of poorly water-soluble drugs, thereby markedly enhancing their bioavailability. ASDs, characterized by a metastable equilibrium where the active pharmaceutical ingredient (API) is molecularly dispersed, offer enhanced absorption compared to crystalline forms. This review explores recent research advancements in ASD, emphasizing dissolution mechanisms, phase separation phenomena, and the importance of drug loading and congruency limits on ASD performance. Principal occurrences such as liquid-liquid phase separation (LLPS) and supersaturation are discussed, highlighting their impact on drug solubility, absorption and subsequent bioavailability. Additionally, it addresses the role of polymers in controlling supersaturation, stabilizing drug-rich nanodroplets, and inhibiting recrystallization. Recent advancements and emerging technologies offer new avenues for ASD characterization and production and demonstrate the potential of ASDs to enhance bioavailability and reduce variability, making possible for more effective and patient-friendly pharmaceutical formulations. Future research directions are proposed, focusing on advanced computational models for predicting ASD stability, use of novel polymeric carriers, and methods for successful preparations.
Collapse
Affiliation(s)
- Srividya B
- Solid State Pharmaceutics Research Laboratory, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835215, Jharkhand, India
| | - Animesh Ghosh
- Solid State Pharmaceutics Research Laboratory, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835215, Jharkhand, India.
| |
Collapse
|
17
|
Wang H, Luan Y, Li M, Wu S, Zhang S, Xue J. Crystallization and intermolecular hydrogen bonding in carbamazepine-polyvinyl pyrrolidone solid dispersions: An experiment and molecular simulation study on drug content variation. Int J Pharm 2024; 666:124769. [PMID: 39341386 DOI: 10.1016/j.ijpharm.2024.124769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/08/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
The choice of drug content is a critical factor as far as the solid dispersion is concerned. This investigation aims to build the relationship between the drug content, intermolecular hydrogen bonding and the crystalline of the carbamazepine-polyvinyl pyrrolidone solid dispersion. In this work, the microstructural changes of solid dispersions were investigated using experimental characterization combined with molecular simulation. Experimental investigations demonstrated that increasing the drug content enhances the intermolecular hydrogen bonding between drugs, resulting in the crystalline phase of the drug emerged in the solid dispersion. This negatively affects the solubility and stability of solid dispersions. Molecular simulations were then used to analyze the changes of intermolecular hydrogen bonding at different drug content in the system. It revealed a tenfold increase in drug-drug hydrogen bonding concentration as drug content elevated from 10% to 50%, while the drug-excipient hydrogen bonding concentration decreased by 45%. The correlation analysis proves the significant relationships among the drug content, intermolecular hydrogen bonding, and crystallinity of solid dispersion. Using polynomial fitting analysis, the quantitative relationships between the drug content and crystalline properties were investigated. This study will offer valuable insights into the impact of drug content on the performance of solid dispersion.
Collapse
Affiliation(s)
- Huaqi Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Yajie Luan
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Mengke Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Sizhu Wu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Sidian Zhang
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, PR China.
| | - Jiajia Xue
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China.
| |
Collapse
|
18
|
Yadav H, Maiti S. Locust bean gum glutarate nanocomposite hydrogel microspheres of gliclazide: Optimization by Box-Behnken design and preclinical evaluation of anti-diabetic efficacy. Int J Biol Macromol 2024; 283:136963. [PMID: 39490492 DOI: 10.1016/j.ijbiomac.2024.136963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/16/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024]
Abstract
In this study, carboxymethyl locust bean gum was synthesized and nanocomposite hydrogel microspheres (GHMs) of gliclazide were produced based on nanosilicate reinforcement and aluminium-ion driven gelation process, followed by covalent crosslinking with glutaric anhydride (GA). The effect of three independent variables (polymer and GA concentration, incubation time) on the drug entrapment efficiency (DEE%) and percent drug release at 8 h, was optimized using Box-Behnken design. The highest DEE (%) and lowest drug release was achieved at the following optimized conditions: polymer (2.43 %), GA (0.34 %), and incubation (27 min). The nanoscilicate-enriched matrix provided a maximum of 75.13 % DEE, 92.33 % gel fraction, and excellent flowability. The optimized microspheres had virtually spherical morphology, according to FE-SEM analysis. FTIR study indicated a hydrogen bonding interaction between the drug and other formulation components. X-ray and DSC measurements suggested that the crystallinity of the drug decreased following integration into the matrix. The optimized GHM demonstrated anomalous diffusion of gliclazide in simulated gastrointestinal fluids for 12 h without disintegration. In streptozotocin (50 mg/kg BW)-induced diabetic rats, the optimized formulation diminished blood glucose level by about 72 % in 12 h. Thus, the nanocomposite GHMs created by combining nanosilicate with GA had an outstanding potential for long-term control of diabetes.
Collapse
Affiliation(s)
- Harsh Yadav
- Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh, India
| | - Sabyasachi Maiti
- Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh, India.
| |
Collapse
|
19
|
Zhang HJ, Chiang CW, Maschmeyer-Tombs T, Conklin B, Napolitano JG, Lubach JW, Nagapudi K, Mao C, Chen Y. Generality of Enhancing the Dissolution Rates of Free Acid Amorphous Solid Dispersions by the Incorporation of Sodium Hydroxide. Mol Pharm 2024; 21:3395-3406. [PMID: 38836777 DOI: 10.1021/acs.molpharmaceut.4c00118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
The incorporation of a counterion into an amorphous solid dispersion (ASD) has been proven to be an attractive strategy to improve the drug dissolution rate. In this work, the generality of enhancing the dissolution rates of free acid ASDs by incorporating sodium hydroxide (NaOH) was studied by surface-area-normalized dissolution. A set of diverse drug molecules, two common polymer carriers (copovidone or PVPVA and hydroxypropyl methylcellulose acetate succinate or HPMCAS), and two sample preparation methods (rotary evaporation and spray drying) were investigated. When PVPVA was used as the polymer carrier for the drugs in this study, enhancements of dissolution rates from 7 to 78 times were observed by the incorporation of NaOH into the ASDs at a 1:1 molar ratio with respect to the drug. The drugs having lower amorphous solubilities showed greater enhancement ratios, providing a promising path to improve the drug release performance from their ASDs. Samples generated by rotary evaporation and spray drying demonstrated comparable dissolution rates and enhancements when NaOH was added, establishing a theoretical foundation to bridge the ASD dissolution performance for samples prepared by different solvent-removal processes. In the comparison of polymer carriers, when HPMCAS was applied in the selected system (indomethacin ASD), a dissolution rate enhancement of 2.7 times by the incorporated NaOH was observed, significantly lower than the enhancement of 53 times from the PVPVA-based ASD. This was attributed to the combination of a lower dissolution rate of HPMCAS and the competition for NaOH between IMC and HPMCAS. By studying the generality of enhancing ASD dissolution rates by the incorporation of counterions, this study provides valuable insights into further improving drug release from ASD formulations of poorly water-soluble drugs.
Collapse
Affiliation(s)
- Helen J Zhang
- Small Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
- Department of Molecular and Cell Biology, University of California, Berkeley, 142 Weill Hall #3200, Berkeley, California 94720, United States
| | - Cheng W Chiang
- Small Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Tristan Maschmeyer-Tombs
- Small Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Breanna Conklin
- Small Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Jose G Napolitano
- Small Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Joseph W Lubach
- Small Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Karthik Nagapudi
- Small Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Chen Mao
- Small Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Yinshan Chen
- Small Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
20
|
Petrova SP, Mohamed MA, Wu H, Taylor LS, Edgar KJ. Threading the needle: Achieving simplicity and performance in cellulose alkanoate ω-carboxyalkanoates for amorphous solid dispersion. Carbohydr Polym 2024; 333:121988. [PMID: 38494207 DOI: 10.1016/j.carbpol.2024.121988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/07/2024] [Accepted: 02/24/2024] [Indexed: 03/19/2024]
Abstract
Most active pharmaceutical ingredients (APIs) suffer from poor water solubility, often keeping them from reaching patients. To overcome the issues of poor drug solubility and subsequent low bioavailability, amorphous solid dispersions (ASDs) have garnered much attention. Cellulose ester derivatives are of interest for ASD applications as they are benign, sustainable-based, and successful in commercial drug delivery systems, e.g. in osmotic pump systems and as commercial ASD polymers. Synthesis of carboxy-pendant cellulose esters is a challenge, due in part to competing reactions between carboxyls and hydroxyls, forming ester crosslinks. Herein we demonstrate proof-of-concept for a scalable synthetic route to simple, yet highly promising ASD polymers by esterifying cellulose polymers through ring-opening of cyclic succinic or glutaric anhydride. We describe the complexity of such ring-opening reactions, not previously well-described, and report ways to avoid gelation. We report synthesis, characterization, and preliminary in vitro ASD evaluations of fifteen such derivatives. Synthetic routes were designed to accommodate these criteria: no protecting groups, no metal catalysts, mild conditions with standard reagents, simple purification, and one-pot synthesis. Finally, these designed ASD polymers included members that maintained fast-crystallizing felodipine in solution and release it from an ASD at rather high 20 % drug loading (DL).
Collapse
Affiliation(s)
- Stella P Petrova
- Department of Chemistry, Virginia Tech, Blacksburg, VA 24061, United States of America; Department of Sustainable Biomaterials, Virginia Tech, Blacksburg, VA 24061, United States of America.
| | - Mennatallah A Mohamed
- Department of Industrial and Molecular Pharmaceutics, Purdue University, West Lafayette, IN 47907, United States of America
| | - Huiming Wu
- Department of Chemistry, Virginia Tech, Blacksburg, VA 24061, United States of America
| | - Lynne S Taylor
- Department of Industrial and Molecular Pharmaceutics, Purdue University, West Lafayette, IN 47907, United States of America
| | - Kevin J Edgar
- Department of Sustainable Biomaterials, Virginia Tech, Blacksburg, VA 24061, United States of America; Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, United States of America.
| |
Collapse
|
21
|
Barr KE, Ohnsorg ML, Liberman L, Corcoran LG, Sarode A, Nagapudi K, Feder CR, Bates FS, Reineke TM. Drug-Polymer Nanodroplet Formation and Morphology Drive Solubility Enhancement of GDC-0810. Bioconjug Chem 2024; 35:499-516. [PMID: 38546823 DOI: 10.1021/acs.bioconjchem.4c00018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
Nanodroplet formation is important to achieve supersaturation of active pharmaceutical ingredients (APIs) in an amorphous solid dispersion. The aim of the current study was to explore how polymer composition, architecture, molar mass, and surfactant concentration affect polymer-drug nanodroplet morphology with the breast cancer API, GDC-0810. The impact of nanodroplet size and morphology on dissolution efficacy and drug loading capacity was explored using polarized light microscopy, dynamic light scattering, and cryogenic transmission electron microscopy. Poly(N-isopropylacrylamide-stat-N,N-dimethylacrylamide) (PND) was synthesized as two linear derivatives and two bottlebrush derivatives with carboxylated or PEGylated end-groups. Hydroxypropyl methylcellulose acetate succinate grade MF (HPMCAS-MF) and poly(vinylpyrrolidone-co-vinyl acetate) (PVPVA) were included as commercial polymer controls. We report the first copolymerization synthesis of a PVPVA bottlebrush copolymer, which was the highest performing excipient in this study, maintaining 688 μg/mL GDC-0810 concentration at 60 wt % drug loading. This is likely due to strong polymer-drug noncovalent interactions and the compaction of GDC-0810 along the PVPVA bottlebrush backbone. Overall, it was observed that the most effective formulations had a hydrodynamic radius less than 25 nm with tightly compacted nanodroplet morphologies.
Collapse
Affiliation(s)
- Kaylee E Barr
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Monica L Ohnsorg
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Lucy Liberman
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Louis G Corcoran
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Apoorva Sarode
- Synthetic Molecule Pharmaceutical Sciences, Genentech, Inc., South San Francisco, California 94080, United States
| | - Karthik Nagapudi
- Synthetic Molecule Pharmaceutical Sciences, Genentech, Inc., South San Francisco, California 94080, United States
| | - Christina R Feder
- Synthetic Molecule Pharmaceutical Sciences, Genentech, Inc., South San Francisco, California 94080, United States
| | - Frank S Bates
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Theresa M Reineke
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
22
|
Purohit HS, Zhou D, Yu M, Zaroudi M, Oberoi H, López ADLR, Kelkar MS, He Y, Gates B, Nere N, Law D. Proof-of-Concept in Developing a 45% Drug Loaded Amorphous Nanoparticle Formulation. J Pharm Sci 2024; 113:1007-1019. [PMID: 37832919 DOI: 10.1016/j.xphs.2023.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/06/2023] [Accepted: 10/06/2023] [Indexed: 10/15/2023]
Abstract
Amorphous solid dispersion (ASD) is an enabling approach utilized to deliver poorly soluble compounds. ASDs can spontaneously generate drug-rich amorphous nanoparticles upon dissolution, which can act as a reservoir for maintaining supersaturation during oral absorption. But, conventional ASDs are often limited in drug loadings to < 20 %. For indications where the dose is high, this can translate into a significant pill burden. The aim of this research was to develop a high drug loading (DL) amorphous nanoparticle (ANP) formulation that can release the drug-rich nanoparticles into solution upon contact with aqueous environment. Nanoparticles were directly engineered using solvent/anti-solvent precipitation. The obtained nanoparticle suspension was then concentrated followed by solidification to a re-dispersible amorphous dosage form using spray drying or lyophilization. The impact of process variables was studied using dynamic light scattering (DLS), scanning electron microscopy (SEM), high performance liquid chromatography (HPLC), nuclear magnetic resonance (NMR) and differential scanning calorimetry (DSC). It was observed that spray drying led to a non-re-dispersible formulation. Sucrose and trehalose containing lyocakes resulted in re-dispersible formulations. The trehalose containing lyocakes, in a dog study, gave comparable performance to the reference tablet in the fasted state but lower area under the curve (AUC) in fed state.
Collapse
Affiliation(s)
- Hitesh S Purohit
- Small molecule CMC development, Drug Product Development, AbbVie Inc., North Chicago, IL, USA.
| | - Deliang Zhou
- Small Molecule Drug Product Development, BeiGene, Beijing, China
| | - Mengqi Yu
- Small molecule CMC development, Drug Product Development, AbbVie Inc., North Chicago, IL, USA
| | | | - Hardeep Oberoi
- Small molecule CMC development, Drug Product Development, AbbVie Inc., North Chicago, IL, USA
| | | | - Manish S Kelkar
- Small molecule CMC development, Process Engineering, AbbVie Inc., North Chicago, IL, USA
| | - Yan He
- Small molecule CMC development, Analytical Research and Development, AbbVie Inc., North Chicago, IL, USA
| | - Bradley Gates
- Small molecule CMC development, Process Chemistry, AbbVie Inc., North Chicago, IL, USA
| | - Nandkishor Nere
- Small molecule CMC development, Process Engineering, AbbVie Inc., North Chicago, IL, USA
| | - Devalina Law
- Small molecule CMC development, Drug Product Development, AbbVie Inc., North Chicago, IL, USA.
| |
Collapse
|
23
|
Deac A, Luebbert C, Qi Q, Courtney RM, Indulkar AS, Gao Y, Zhang GGZ, Sadowski G, Taylor LS. Dissolution Mechanisms of Amorphous Solid Dispersions: Application of Ternary Phase Diagrams To Explain Release Behavior. Mol Pharm 2024; 21:1900-1918. [PMID: 38469754 DOI: 10.1021/acs.molpharmaceut.3c01179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
The use of amorphous solid dispersions (ASDs) in commercial drug products has increased in recent years due to the large number of poorly soluble drugs in the pharmaceutical pipeline. However, the release behavior of ASDs is complex and remains not well understood. Often, the drug release from ASDs is rapid and complete at lower drug loadings (DLs) but becomes slow and incomplete at higher DLs. The DL where release becomes hindered is termed the limit of congruency (LoC). Currently, there are no approaches to predict the LoC. However, recent findings show that one potential cause leading to the LoC is a change in phase morphology after water-induced phase separation at the ASD/solution interface. In this study, the phase behavior of ASDs in contact with aqueous solutions was described thermodynamically by constructing experimental and computational ternary phase diagrams, and these were used to predict morphology changes and ultimately the LoC. Experimental ternary phase diagrams were obtained by equilibrating ASD/water mixtures over time. Computational ternary phase diagrams were obtained by Perturbed Chain Statistical Associating Fluid Theory (PC-SAFT). The morphology of the hydrophobic phase was studied with fluorescence confocal microscopy. It was demonstrated that critical point (plait point) composition approximately corresponded to the ASD DL, where the hydrophobic phase, formed during phase separation, became interconnected and hindered ASD release. This work provides mechanistic insights into the ASD release behavior and highlights the potential of in silico ASD design using phase diagrams.
Collapse
Affiliation(s)
- Alexandru Deac
- Department of Industrial and Molecular Pharmaceutics, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | | | - Qingqing Qi
- Department of Industrial and Molecular Pharmaceutics, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Reagan M Courtney
- Department of Industrial and Molecular Pharmaceutics, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Anura S Indulkar
- Development Sciences, Research and Development, AbbVie Inc., North Chicago, Illinois 60064, United States
| | - Yi Gao
- Development Sciences, Research and Development, AbbVie Inc., North Chicago, Illinois 60064, United States
| | - Geoff G Z Zhang
- Development Sciences, Research and Development, AbbVie Inc., North Chicago, Illinois 60064, United States
| | | | - Lynne S Taylor
- Department of Industrial and Molecular Pharmaceutics, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
24
|
Bapat P, Paul S, Tseng YC, Taylor LS. Interplay of Drug-Polymer Interactions and Release Performance for HPMCAS-Based Amorphous Solid Dispersions. Mol Pharm 2024; 21:1466-1478. [PMID: 38346390 DOI: 10.1021/acs.molpharmaceut.3c01106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
The interplay between drug and polymer chemistry and its impact on drug release from an amorphous solid dispersion (ASD) is a relatively underexplored area. Herein, the release rates of several drugs of diverse chemistry from hydroxypropyl methylcellulose acetate succinate (HPMCAS)-based ASDs were explored using surface area normalized dissolution. The tendency of the drug to form an insoluble complex with HPMCAS was determined through coprecipitation experiments. The role of pH and the extent of drug ionization were probed to evaluate the role of electrostatic interactions in complex formation. Relationships between the extent of complexation and the drug release rate from an ASD were observed, whereby the drugs could be divided into two groups. Drugs with a low extent of insoluble complex formation with HPMCAS tended to be neutral or anionic and showed reasonable release at pH 6.8 even at higher drug loadings. Cationic drugs formed insoluble complexes with HPMCAS and showed poor release when formulated as an ASD. Thus, and somewhat counterintuitively, a weakly basic drug showed a reduced release rate from an ASD at a bulk solution pH where it was ionized, relative to when unionized. The opposite trend was observed in the absence of polymer for the neat amorphous drug. In conclusion, electrostatic interactions between HPMCAS and lipophilic cationic drugs led to insoluble complex formation, which in turn resulted in ASDs with poor release performance.
Collapse
Affiliation(s)
- Pradnya Bapat
- Department of Industrial and Molecular Pharmaceutics, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Shubhajit Paul
- Material and Analytical Sciences, Research and Development, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut 06877, United States
| | - Yin-Chao Tseng
- Material and Analytical Sciences, Research and Development, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut 06877, United States
| | - Lynne S Taylor
- Department of Industrial and Molecular Pharmaceutics, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
25
|
Chiang CW, Tang S, Mao C, Chen Y. Effect of Buffer pH and Concentration on the Dissolution Rates of Sodium Indomethacin-Copovidone and Indomethacin-Copovidone Amorphous Solid Dispersions. Mol Pharm 2023; 20:6451-6462. [PMID: 37917181 DOI: 10.1021/acs.molpharmaceut.3c00827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
The incorporation of counterions into amorphous solid dispersions (ASDs) has been proven to be effective for improving the dissolution rates of ionizable drugs in ASDs. In this work, the effect of dissolution buffer pH and concentration on the dissolution rate of indomethacin-copovidone 40:60 (IMC-PVPVA, w/w) ASD with or without incorporated sodium hydroxide (NaOH) was studied by surface area-normalized dissolution to provide further mechanistic understanding of this phenomenon. Buffer pH from 4.7 to 7.2 and concentration from 20 to 100 mM at pH 5.5 were investigated. As the buffer pH decreased, the IMC dissolution rate from both ASDs decreased. Compared to IMC-PVPVA ASD, the dissolution rate decrease from IMCNa-PVPVA ASD was more resistant to the decrease of buffer pH. In contrast, while buffer concentration had a negligible impact on the IMC dissolution rate from IMC-PVPVA ASD, the increase of buffer concentration significantly reduced the IMC dissolution rate from IMCNa-PVPVA ASD. Surrogate evaluation of microenvironment pH modification by the dissolution of IMCNa-PVPVA ASD demonstrated the successful elevation of buffer microenvironment pH and the suppression of such pH elevation by the increase of buffer concentration. These results are consistent with the hypothesis that the dissolution rate enhancement by the incorporation of counterions originates from the enhanced drug solubility by ionization and the modification of diffusion layer pH in favor of drug dissolution. At the studied drug loading (∼40%), relatively congruent release between IMC and PVPVA was observed when IMC was ionized in ASD or in solution, highlighting the importance of studying the ionization effect on the congruent release of ASDs, especially when drug ionization is expected in vivo. Overall, this work further supports the application of incorporating counterions into ASDs for improving the dissolution rates of ionizable drugs when enabling formulation development is needed.
Collapse
Affiliation(s)
- Cheng W Chiang
- Small Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Shijia Tang
- Small Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Chen Mao
- Small Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Yinshan Chen
- Small Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
26
|
Yang R, Zhang GGZ, Zemlyanov DY, Purohit HS, Taylor LS. Drug Release from Surfactant-Containing Amorphous Solid Dispersions: Mechanism and Role of Surfactant in Release Enhancement. Pharm Res 2023; 40:2817-2845. [PMID: 37052841 DOI: 10.1007/s11095-023-03502-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/18/2023] [Indexed: 04/14/2023]
Abstract
PURPOSE To understand how surfactants affect drug release from ternary amorphous solid dispersions (ASDs), and to investigate different mechanisms of release enhancement. METHODS Ternary ASDs containing ritonavir (RTV), polyvinylpyrrolidone/vinyl acetate (PVPVA) and a surfactant (sodium dodecyl sulfate (SDS), Tween 80, Span 20 or Span 85) were prepared with rotary evaporation. Release profiles of ternary ASDs were measured with surface normalized dissolution. Phase separation morphologies of ASD compacts during hydration/dissolution were examined in real-time with a newly developed confocal fluorescence microscopy method. The water ingress rate of different formulations was measured with dynamic vapor sorption. Microscopy was employed to check for matrix crystallization during release studies. RESULTS All surfactants improved drug release at 30% DL, while only SDS and Tween 80 improved drug release at higher DLs, although SDS promoted matrix crystallization. The dissolution rate of neat polymer increased when SDS and Tween 80 were present. The water ingress rate also increased in the presence of all surfactants. Surfactant-incorporation affected both the kinetic and thermodynamics factors governing phase separation of RTV-PVPVA-water system, modifying the phase morphology during ASD dissolution. Importantly, SDS increased the miscibility of RTV-PVPVA-water system, whereas other surfactants mainly affected the phase separation kinetics/drug-rich barrier persistence. CONCLUSION Incorporation of surfactants enhanced drug release from RTV-PVPVA ASDs compared to the binary system. Increased drug-polymer-water miscibility and disruption of the drug-rich barrier at the gel-solvent interface via plasticization are highlighted as two key mechanisms underlying surfactant impacts based on direct visualization of the phase separation process upon hydration and release.
Collapse
Affiliation(s)
- Ruochen Yang
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, IN, 47907, USA
| | - Geoff G Z Zhang
- Development Sciences, Research and Development, AbbVie Inc., North Chicago, IL, 60064, USA
| | - Dmitry Y Zemlyanov
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, 47907, USA
| | - Hitesh S Purohit
- Development Sciences, Research and Development, AbbVie Inc., North Chicago, IL, 60064, USA.
| | - Lynne S Taylor
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
27
|
Luebbert C, Stoyanov E. Tailored ASD destabilization - Balancing shelf life stability and dissolution performance with hydroxypropyl cellulose. Int J Pharm X 2023; 5:100187. [PMID: 37396620 PMCID: PMC10314205 DOI: 10.1016/j.ijpx.2023.100187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 07/04/2023] Open
Abstract
Amorphous solid dispersion (ASD) formulations are preferred enabling formulations for poorly water soluble active pharmaceutical ingredients (API) as they reliably enhance the dissolution behavior and solubility. Balancing a high stability against unwanted transformations such as crystallization and amorphous phase separation during storage on the one hand and optimizing the dissolution behavior of the formulation (high supersaturation and maintenance for long time) on the other hand are essential during formulation development. This study assessed the potential of ternary ASDs (one API and two polymers) containing the polymers hydroxypropyl cellulose together with poly(vinylpyrrolidone-co-vinyl acetate) (PVP VA64) or hydroxypropyl cellulose acetate succinate to stabilize the amorphously embedded APIs fenofibrate and simvastatin during storage and to enhance the dissolution performance. Thermodynamic predictions using the PC-SAFT model revealed for each combination of polymers the optimal polymer ratio, maximum API load that is thermodynamically stable as well as miscibility of the two polymers. The stability predictions were validated by three months enduring stability tests, followed by a characterization of the dissolution behavior. The thermodynamically most stable ASDs were found to be the ASDs with deteriorated dissolution performance. Within the investigated polymer combinations, physical stability and dissolution performance opposed each other.
Collapse
Affiliation(s)
| | - Edmont Stoyanov
- Nisso Chemical Europe GmbH, Berliner Allee 42, Düsseldorf D-40212, Germany
| |
Collapse
|
28
|
Bapat P, Paul S, Thakral NK, Tseng YC, Taylor LS. Does Media Choice Matter When Evaluating the Performance of Hydroxypropyl Methylcellulose Acetate Succinate-Based Amorphous Solid Dispersions? Mol Pharm 2023; 20:5714-5727. [PMID: 37751517 DOI: 10.1021/acs.molpharmaceut.3c00586] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Hydroxypropyl methylcellulose acetate succinate (HPMCAS) is a weakly acidic polymer that is widely used in the formulation of amorphous solid dispersions (ASDs). While the pH-dependent solubility of HPMCAS is widely recognized, the role of other solution properties, including buffer capacity, is less well understood in the context of ASD dissolution. The goal of this study was to elucidate the rate-limiting steps for drug and HPMCAS release from ASDs formulated with two poorly water soluble model drugs, indomethacin and indomethacin methyl ester. The surface area normalized release rate of the drug and/or polymer in a variety of media was determined. The HPMCAS gel layer apparent pH was determined by incorporating pH sensitive dyes into the polymer matrix. Water uptake extent and rate into the ASDs were measured gravimetrically. For neat HPMCAS, the rate-limiting step for polymer dissolution was observed to be the polymer solubility at the polymer-solution interface. This, in turn, was impacted by the gel layer pH which was found to be substantially lower than the bulk solution pH, varying with medium buffer capacity. For the ASDs, the HPMCAS release rate was found to control the drug release rate. However, both drugs reduced the polymer release rate with indomethacin methyl ester having a larger impact. In low buffer capacity media, the presence of the drug had less impact on release rates when compared to observations in higher strength buffers, suggesting changes in the rate-limiting steps for HPMCAS dissolution. The observations made in this study can contribute to the fundamental understanding of acidic polymer dissolution in the presence and absence of a molecularly dispersed lipophilic drug and will help aid in the design of more in vivo relevant release testing experiments.
Collapse
Affiliation(s)
- Pradnya Bapat
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Shubhajit Paul
- Material and Analytical Sciences, Research and Development, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut 06877, United States
| | - Naveen K Thakral
- Material and Analytical Sciences, Research and Development, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut 06877, United States
| | - Yin-Chao Tseng
- Material and Analytical Sciences, Research and Development, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut 06877, United States
| | - Lynne S Taylor
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
29
|
Yu M, Oberoi HS, Purohit HS, Fowler CA, Law D. Design of Redispersible High-Drug-Load Amorphous Formulations: Impact of Ionic vs Nonionic Surfactants on Processing and Performance. Mol Pharm 2023; 20:5827-5841. [PMID: 37876176 DOI: 10.1021/acs.molpharmaceut.3c00684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Amorphous solid dispersions (ASDs) are an enabling formulation approach used to enhance bioavailability of poorly water-soluble molecules in oral drug products. Drug-rich amorphous nanoparticles generated in situ during ASD dissolution maintain supersaturation that drives enhanced absorption. However, in situ formation of nanoparticles requires large quantities of polymers to release drugs rapidly, resulting in an ASD drug load <25%. Delivering directly engineered drug-rich amorphous nanoparticles can reduce the quantities of polymers significantly without sacrificing bioavailability. Preparation of 90% drug-load amorphous nanoparticles (ANPs) of <300 nm diameter using solvent/antisolvent nanoprecipitation, organic solvent removal, and spray drying was demonstrated previously on model compound ABT-530 with Copovidone and sodium dodecyl sulfate (anionic). In this work, nonionic surfactant d-α-tocopheryl polyethylene glycol succinate (Vitamin E TPGS, or TPGS) was used to prepare ANPs as a comparison. Characterization of ANPs by dynamic light scattering, filtrate potency assay, scanning electron microscopy, and differential scanning calorimetry revealed differences in surface properties of nanoparticles afforded by surfactants. This work demonstrates the importance of understanding the impact of the stabilizing agents on nanoparticle behavior when designing a high-drug-load amorphous formulation for poorly water-soluble compounds as well as the impact on redispersion.
Collapse
Affiliation(s)
- Mengqi Yu
- Research & Development, AbbVie Inc., North Chicago, Illinois 60064, United States
| | - Hardeep S Oberoi
- Research & Development, AbbVie Inc., North Chicago, Illinois 60064, United States
| | - Hitesh S Purohit
- Research & Development, AbbVie Inc., North Chicago, Illinois 60064, United States
| | - Craig A Fowler
- Research & Development, AbbVie Inc., North Chicago, Illinois 60064, United States
| | - Devalina Law
- Research & Development, AbbVie Inc., North Chicago, Illinois 60064, United States
| |
Collapse
|
30
|
Wu J, Mooter GVD. The influence of hydrogen bonding between different crystallization tendency drugs and PVPVA on the stability of amorphous solid dispersions. Int J Pharm 2023; 646:123440. [PMID: 37742824 DOI: 10.1016/j.ijpharm.2023.123440] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/13/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
Amorphous solid dispersion (ASD) is one of the formulation strategies for drugs displaying low solubility and low oral bioavailability. In this study, high drug-loaded ASDs of drugs with different crystallization tendencies were prepared by spray drying. The aim was to investigate the influence of hydrogen bonding between the drug and the model polymer PVPVA on the physical stability of ASDs containing drugs with different crystallization tendencies. From the 60-day stability study results, the intermolecular hydrogen bonding has a considerable stabilizing effect on the ASDs of the drug with a moderate crystallization tendency. Nimesulide (hydrogen bond donor) can maintain the amorphous form for a longer time than Fenofibrate (no-hydrogen bond donor) during storage. In the ASDs with fast crystallization tendency drugs (naproxen and caffeine), intermolecular hydrogen bonds are not very effective in preventing drug crystallization, and the effect on the stability of ASD is relatively weak. However, for drugs with a slow tendency to crystallize (indomethacin and miconazole), the ASDs remained in an amorphous state during the monitored storage period, making it impossible to compare the effect of intermolecular hydrogen bonds on the stability of this type of ASDs. It also reveals that intermolecular hydrogen bonds can increase the drug loading capacity of ASDs. The relationship between drug loading and ASD stability was further analyzed by the state diagram. This study clearly pointed out that the physical stability of ASDs of drugs with different crystallization tendencies is affected to a different extent by intermolecular hydrogen bonds.
Collapse
Affiliation(s)
- Jingya Wu
- Drug Delivery and Disposition, KU Leuven, Department of Pharmaceutical and Pharmacological Sciences, Campus Gasthuisberg ON2, Herestraat 49 b921, 3000 Leuven, Belgium
| | - Guy Van den Mooter
- Drug Delivery and Disposition, KU Leuven, Department of Pharmaceutical and Pharmacological Sciences, Campus Gasthuisberg ON2, Herestraat 49 b921, 3000 Leuven, Belgium.
| |
Collapse
|
31
|
Moseson DE, Taylor LS. Crystallinity: A Complex Critical Quality Attribute of Amorphous Solid Dispersions. Mol Pharm 2023; 20:4802-4825. [PMID: 37699354 DOI: 10.1021/acs.molpharmaceut.3c00526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Does the performance of an amorphous solid dispersion rely on having 100% amorphous content? What specifications are appropriate for crystalline content within an amorphous solid dispersion (ASD) drug product? In this Perspective, the origin and significance of crystallinity within amorphous solid dispersions will be considered. Crystallinity can be found within an ASD from one of two pathways: (1) incomplete amorphization, or (2) crystal creation (nucleation and crystal growth). While nucleation and crystal growth is the more commonly considered pathway, where crystals originate as a physical stability failure upon accelerated or prolonged storage, manufacturing-based origins of crystallinity are possible as well. Detecting trace levels of crystallinity is a significant analytical challenge, and orthogonal methods should be employed to develop a holistic assessment of sample properties. Probing the impact of crystallinity on release performance which may translate to meaningful clinical significance is inherently challenging, requiring optimization of dissolution test variables to address the complexity of ASD formulations, in terms of drug physicochemical properties (e.g., crystallization tendency), level of crystallinity, crystal reference material selection, and formulation characteristics. The complexity of risk presented by crystallinity to product performance will be illuminated through several case studies, highlighting that a one-size-fits-all approach cannot be used to set specification limits, as the risk of crystallinity can vary widely based on a multitude of factors. Risk assessment considerations surrounding drug physicochemical properties, formulation fundamentals, physical stability, dissolution, and crystal micromeritic properties will be discussed.
Collapse
Affiliation(s)
- Dana E Moseson
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
- Worldwide Research and Development Pfizer, Inc., Groton, Connecticut 06340, United States
| | - Lynne S Taylor
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
32
|
Bertoni S, Albertini B, Ronowicz-Pilarczyk J, Passerini N. Tailoring the release of drugs having different water solubility by hybrid polymer-lipid microparticles with a biphasic structure. Eur J Pharm Biopharm 2023; 190:171-183. [PMID: 37517450 DOI: 10.1016/j.ejpb.2023.07.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 08/01/2023]
Abstract
The aim of this study is to investigate the potential of hybrid polymer-lipid microparticles with a biphasic structure (b-MPs) as drug delivery system. Hybrid b-MPs of Compritol®888 ATO as main lipid constituent of the shell and polyethylene glycol 400 as core material were produced by an innovative solvent-free approach based on spray congealing. To assess the suitability of hybrid b-MPs to encapsulate various types of APIs, three model drugs (fluconazole, tolbutamide and nimesulide) with extremely different water solubility were loaded into the polymeric core. The hybrid systems were characterized in terms of particle size, morphology and physical state. Various techniques (e.g. optical, Confocal Raman and Scanning Electron Microscopy) were used to investigate the influence of the drugs on different aspects of the b-MPs, including external and internal morphology, properties at the lipid/polymer interface and drug distribution. Hybrid b-MPs were suitable for the encapsulation of all drugs (encapsulation efficiency > 90 %) regardless the drug hydrophobic/hydrophilic properties. Finally, the drug release behaviors from hybrid b-MPs were studied and compared with traditional solid lipid MPs (consisting of only the lipid carrier). Due to the combination of lipid and polymeric materials, hybrid b-MPs showed a wide array of release profiles that depends on their composition, the type of loaded drug, the drug loading amount and location, providing a versatile platform and allowing the formulators to finely balance the release performance of drugs intended for oral administration. Overall, the study demonstrates that hybrid, solvent-free b-MPs produced by spray congealing are an extremely versatile delivery platform able to efficiently encapsulate and release very different types of drug compounds.
Collapse
Affiliation(s)
- Serena Bertoni
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via S. Donato 19/2, Bologna 40127, Italy
| | - Beatrice Albertini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via S. Donato 19/2, Bologna 40127, Italy.
| | - Joanna Ronowicz-Pilarczyk
- Department of Inorganic and Analytical Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Jurasza 2, Bydgoszcz 85-089, Poland
| | - Nadia Passerini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via S. Donato 19/2, Bologna 40127, Italy
| |
Collapse
|
33
|
Li J, Wang Y, Yu D. Effects of Additives on the Physical Stability and Dissolution of Polymeric Amorphous Solid Dispersions: a Review. AAPS PharmSciTech 2023; 24:175. [PMID: 37603110 DOI: 10.1208/s12249-023-02622-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 07/20/2023] [Indexed: 08/22/2023] Open
Abstract
Polymeric amorphous solid dispersion (ASD) is a popular approach for enhancing the solubility of poorly water-soluble drugs. However, achieving both physical stability and dissolution performance in an ASD prepared with a single polymer can be challenging. Therefore, a secondary excipient can be added. In this paper, we review three classes of additives that can be added internally to ASDs: (i) a second polymer, to form a ternary drug-polymer-polymer ASD, (ii) counterions, to facilitate in situ salt formation, and (iii) surfactants. In an ASD prepared with a combination of polymers, each polymer exerts a unique function, such as a stabilizer in the solid state and a crystallization inhibitor during dissolution. In situ salt formation in ASD usually leads to substantial increases in the glass transition temperature, contributing to improved physical stability. Surfactants can enhance the wettability of ASD particles, thereby promoting rapid drug release. However, their potential adverse effects on physical stability and dissolution, resulting from enhanced molecular mobility and competitive molecular interaction with the polymer, respectively, warrant careful consideration. Finally, we discuss the impact of magnesium stearate and inorganic salts, excipients added externally upon downstream processing, on the solid-state stability as well as the dissolution of ASD tablets.
Collapse
Affiliation(s)
- Jinghan Li
- Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota, 55455, USA
| | - Yihan Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, 20 North Pine Street, Baltimore, Maryland, 21201, USA
| | - Dongyue Yu
- Pharmaceutical Candidate Optimization, Bristol Myers Squibb, Route 206 and Province Line Road, Princeton, New Jersey, 08540, USA.
| |
Collapse
|
34
|
Zhang J, Guo M, Luo M, Cai T. Advances in the development of amorphous solid dispersions: The role of polymeric carriers. Asian J Pharm Sci 2023; 18:100834. [PMID: 37635801 PMCID: PMC10450425 DOI: 10.1016/j.ajps.2023.100834] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/26/2023] [Accepted: 07/23/2023] [Indexed: 08/27/2023] Open
Abstract
Amorphous solid dispersion (ASD) is one of the most effective approaches for delivering poorly soluble drugs. In ASDs, polymeric materials serve as the carriers in which the drugs are dispersed at the molecular level. To prepare the solid dispersions, there are many polymers with various physicochemical and thermochemical characteristics available for use in ASD formulations. Polymer selection is of great importance because it influences the stability, solubility and dissolution rates, manufacturing process, and bioavailability of the ASD. This review article provides a comprehensive overview of ASDs from the perspectives of physicochemical characteristics of polymers, formulation designs and preparation methods. Furthermore, considerations of safety and regulatory requirements along with the studies recommended for characterizing and evaluating polymeric carriers are briefly discussed.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- College of Biological and Chemical Engineering, Changsha University, Changsha 410022, China
| | - Minshan Guo
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Minqian Luo
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Ting Cai
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
35
|
Kim SH, Bae IS, Lee HU, Moon JY, Lee YC. A Bioactive Compound-Loaded Zinc-Aminoclay Encapsulated, Pickering Emulsion System for Treating Acne-Inducing Microbes. Int J Mol Sci 2023; 24:9669. [PMID: 37298619 PMCID: PMC10253637 DOI: 10.3390/ijms24119669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/30/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Acne is a common skin condition caused by the growth of certain bacteria. Many plant extracts have been investigated for their potential to combat acne-inducing microbes, and one such plant extract is microwave-assisted Opuntia humifusa extract (MA-OHE). The MA-OHE was loaded onto zinc-aminoclay (ZnAC) and encapsulated in a Pickering emulsion system (MA-OHE/ZnAC PE) to evaluate its therapeutic potential against acne-inducing microbes. Dynamic light scattering and scanning electron microscopy were used to characterize MA-OHE/ZnAC PE with a mean particle diameter of 353.97 nm and a PDI of 0.629. The antimicrobial effect of MA-OHE/ZnAC was evaluated against Staphylococcus aureus (S. aureus) and Cutibacterium acnes (C. acnes), which contribute to acne inflammation. The antibacterial activity of MA-OHE/ZnAC was 0.1 and 0.025 mg/mL to S. aureus and C. acnes, respectively, which were close to naturally derived antibiotics. Additionally, the cytotoxicity of MA-OHE, ZnAC, and MA-OHE/ZnAC was tested, and the results showed that they had no cytotoxic effects on cultured human keratinocytes in a range of 10-100 μg/mL. Thus, MA-OHE/ZnAC is suggested to be a promising antimicrobial agent for treating acne-inducing microbes, while MA-OHE/ZnAC PE is a potentially advantageous dermal delivery system.
Collapse
Affiliation(s)
- Seong-Hyeon Kim
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Republic of Korea;
| | - In-Sun Bae
- Swsonaki Inc., Gwangyang Frontier-Valley 3rd, 30 Gaseok-ro, Incheon 22827, Republic of Korea;
| | - Hyun Uk Lee
- Research Center for Materials Analysis, Korea Basic Science Institute, Daejeon 34133, Republic of Korea;
| | - Ju-Young Moon
- Department of Beauty Design Management, Hansung University, 116, Samseongyo-ro 16gil, Seoul 02876, Republic of Korea
| | - Young-Chul Lee
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Republic of Korea;
| |
Collapse
|
36
|
Dohrn S, Kyeremateng SO, Bochmann E, Sobich E, Wahl A, Liepold B, Sadowski G, Degenhardt M. Thermodynamic Modeling of the Amorphous Solid Dispersion-Water Interfacial Layer and Its Impact on the Release Mechanism. Pharmaceutics 2023; 15:pharmaceutics15051539. [PMID: 37242781 DOI: 10.3390/pharmaceutics15051539] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/12/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
During the dissolution of amorphous solid dispersion (ASD) formulations, the gel layer that forms at the ASD/water interface strongly dictates the release of the active pharmaceutical ingredient (API) and, hence, the dissolution performance. Several studies have demonstrated that the switch of the gel layer from eroding to non-eroding behavior is API-specific and drug-load (DL)-dependent. This study systematically classifies the ASD release mechanisms and relates them to the phenomenon of the loss of release (LoR). The latter is thermodynamically explained and predicted via a modeled ternary phase diagram of API, polymer, and water, and is then used to describe the ASD/water interfacial layers (below and above the glass transition). To this end, the ternary phase behavior of the APIs, naproxen, and venetoclax with the polymer poly(vinylpyrrolidone-co-vinyl acetate) (PVPVA64) and water was modeled using the perturbed-chain statistical associating fluid theory (PC-SAFT). The glass transition was modeled using the Gordon-Taylor equation. The DL-dependent LoR was found to be caused by API crystallization or liquid-liquid phase separation (LLPS) at the ASD/water interface. If crystallization occurs, it was found that API and polymer release was impeded above a threshold DL at which the APIs crystallized directly at the ASD interface. If LLPS occurs, an API-rich phase and a polymer-rich phase are formed. Above a threshold DL, the less mobile and hydrophobic API-rich phase accumulates at the interface which prevents API release. LLPS is further influenced by the composition and glass transition temperature of the evolving phases and was investigated at 37 °C and 50 °C regarding impact of temperature of. The modeling results and LoR predictions were experimentally validated by means of dissolution experiments, microscopy, Raman spectroscopy, and size exclusion chromatography. The experimental results were found to be in very good agreement with the predicted release mechanisms deduced from the phase diagrams. Thus, this thermodynamic modeling approach represents a powerful mechanistic tool that can be applied to classify and quantitatively predict the DL-dependent LoR release mechanism of PVPVA64-based ASDs in water.
Collapse
Affiliation(s)
- Stefanie Dohrn
- AbbVie Deutschland GmbH & Co. KG, Global Pharmaceutical R&D, Knollstraße, D-67061 Ludwigshafen am Rhein, Germany
| | - Samuel O Kyeremateng
- AbbVie Deutschland GmbH & Co. KG, Global Pharmaceutical R&D, Knollstraße, D-67061 Ludwigshafen am Rhein, Germany
| | - Esther Bochmann
- AbbVie Deutschland GmbH & Co. KG, Global Pharmaceutical R&D, Knollstraße, D-67061 Ludwigshafen am Rhein, Germany
| | - Ekaterina Sobich
- AbbVie Deutschland GmbH & Co. KG, Global Pharmaceutical R&D, Knollstraße, D-67061 Ludwigshafen am Rhein, Germany
| | - Andrea Wahl
- AbbVie Deutschland GmbH & Co. KG, Global Pharmaceutical R&D, Knollstraße, D-67061 Ludwigshafen am Rhein, Germany
| | - Bernd Liepold
- AbbVie Deutschland GmbH & Co. KG, Global Pharmaceutical R&D, Knollstraße, D-67061 Ludwigshafen am Rhein, Germany
| | - Gabriele Sadowski
- Laboratory of Thermodynamics, Department of Chemical and Biochemical Engineering, TU Dortmund University, Emil-Figge-Str. 70, D-44227 Dortmund, Germany
| | - Matthias Degenhardt
- AbbVie Deutschland GmbH & Co. KG, Global Pharmaceutical R&D, Knollstraße, D-67061 Ludwigshafen am Rhein, Germany
| |
Collapse
|
37
|
Thompson SA, Davis DA, Miller DA, Kucera SU, Williams RO. Pre-Processing a Polymer Blend into a Polymer Alloy by KinetiSol Enables Increased Ivacaftor Amorphous Solid Dispersion Drug Loading and Dissolution. Biomedicines 2023; 11:1281. [PMID: 37238952 PMCID: PMC10215938 DOI: 10.3390/biomedicines11051281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/13/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023] Open
Abstract
This study compares the effects of pre-processing multiple polymers together to form a single-phase polymer alloy prior to amorphous solid dispersion formulation. KinetiSol compounding was used to pre-process a 1:1 (w/w) ratio of hypromellose acetate succinate and povidone to form a single-phase polymer alloy with unique properties. Ivacaftor amorphous solid dispersions comprising either a polymer, an unprocessed polymer blend, or the polymer alloy were processed by KinetiSol and examined for amorphicity, dissolution performance, physical stability, and molecular interactions. A polymer alloy ivacaftor solid dispersion with a drug loading of 50% w/w was feasible versus 40% for the other compositions. Dissolution in fasted simulated intestinal fluid revealed that the 40% ivacaftor polymer alloy solid dispersion reached a concentration of 595 µg/mL after 6 h, 33% greater than the equivalent polymer blend dispersion. Fourier transform infrared spectroscopy and solid-state nuclear magnetic resonance revealed changes in the ability of the povidone contained in the polymer alloy to hydrogen bond with the ivacaftor phenolic moiety, explaining the differences in the dissolution performance. This work demonstrates that the creation of polymer alloys from polymer blends is a promising technique that provides the ability to tailor properties of a polymer alloy to maximize the drug loading, dissolution performance, and stability of an ASD.
Collapse
Affiliation(s)
- Stephen A. Thompson
- Molecular Pharmaceutics and Drug Delivery Division, College of Pharmacy, The University of Texas at Austin, 2409 W. University Ave, PHR 4.214, Austin, TX 78712, USA
| | - Daniel A. Davis
- AustinPx, LLC, 111 W Cooperative Way, Suite 300, Georgetown, TX 78626, USA
| | - Dave A. Miller
- AustinPx, LLC, 111 W Cooperative Way, Suite 300, Georgetown, TX 78626, USA
| | - Sandra U. Kucera
- AustinPx, LLC, 111 W Cooperative Way, Suite 300, Georgetown, TX 78626, USA
| | - Robert O. Williams
- Molecular Pharmaceutics and Drug Delivery Division, College of Pharmacy, The University of Texas at Austin, 2409 W. University Ave, PHR 4.214, Austin, TX 78712, USA
| |
Collapse
|
38
|
Deac A, Qi Q, Indulkar AS, Gao Y, Zhang GGZ, Taylor LS. Dissolution Mechanisms of Amorphous Solid Dispersions: A Close Look at the Dissolution Interface. Mol Pharm 2023; 20:2217-2234. [PMID: 36926898 DOI: 10.1021/acs.molpharmaceut.3c00020] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Despite the recent success of amorphous solid dispersions (ASDs) at enabling the delivery of poorly soluble small molecule drugs, ASD-based dosage forms are limited by low drug loading. This is partially due to a sharp decline in drug release from the ASD at drug loadings surpassing the 'limit of congruency' (LoC). In some cases, the LoC is as low as 5% drug loading, significantly increasing the risk of pill burden. Despite efforts to understand the mechanism responsible for the LoC, a clear picture of the molecular processes occurring at the ASD/solution interface remains elusive. In this study, the ASD/solution interface was studied for two model compounds formulated as ASDs with copovidone. The evolution of a gel layer and its phase behavior was captured in situ with fluorescence confocal microscopy, where fluorescent probes were added to label the hydrophobic and hydrophilic phases. Phase separation was detected in the gel layer for most of the ASDs. The morphology of the hydrophobic phase was found to correlate with the release behavior, where a discrete phase resulted in good release and a continuous phase formed a barrier leading to poor release. The continuous phase formed at a lower drug loading for the system with stronger drug-polymer interactions. This was due to incorporation of the polymer into the hydrophobic phase. The study highlights the complex molecular and phase behavior at the ASD/solution interface of copovidone-based ASDs and provides a thermodynamic argument for qualitatively predicting the release behavior based on drug-polymer interactions.
Collapse
Affiliation(s)
- Alexandru Deac
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Qingqing Qi
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Anura S Indulkar
- Development Sciences, Research and Development, AbbVie Inc., North Chicago, Illinois 60064, United States
| | - Yi Gao
- Development Sciences, Research and Development, AbbVie Inc., North Chicago, Illinois 60064, United States
| | - Geoff G Z Zhang
- Development Sciences, Research and Development, AbbVie Inc., North Chicago, Illinois 60064, United States
| | - Lynne S Taylor
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
39
|
Halligan E, Zhuo S, Colbert DM, Alsaadi M, Tie BSH, Bezerra GSN, Keane G, Geever LM. Modulation of the Lower Critical Solution Temperature of Thermoresponsive Poly( N-vinylcaprolactam) Utilizing Hydrophilic and Hydrophobic Monomers. Polymers (Basel) 2023; 15:polym15071595. [PMID: 37050207 PMCID: PMC10096650 DOI: 10.3390/polym15071595] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/23/2023] [Accepted: 03/06/2023] [Indexed: 04/14/2023] Open
Abstract
Four-dimensional printing is primarily based on the concept of 3D printing technology. However, it requires additional stimulus and stimulus-responsive materials. Poly-N-vinylcaprolactam is a temperature-sensitive polymer. Unique characteristics of poly-N-vinylcaprolactam -based hydrogels offer the possibility of employing them in 4D printing. The main aim of this study is to alter the phase transition temperature of poly-N-vinylcaprolactam hydrogels. This research focuses primarily on incorporating two additional monomers with poly-N-vinylcaprolactam: Vinylacetate and N-vinylpyrrolidone. This work contributes to this growing area of research by altering (increasing and decreasing) the lower critical solution temperature of N-vinylcaprolactam through photopolymerisation. Poly-N-vinylcaprolactam exhibits a lower critical solution temperature close to the physiological temperature range of 34-37 °C. The copolymers were analysed using various characterisation techniques, such as FTIR, DSC, and UV-spectrometry. The main findings show that the inclusion of N-vinylpyrrolidone into poly-N-vinylcaprolactam increased the lower critical solution temperature above the physiological temperature. By incorporating vinylacetate, the lower critical solution temperature dropped to 21 °C, allowing for potential self-assembly of 4D-printed objects at room temperature. In this case, altering the lower critical solution temperature of the material can potentially permit the transformation of the 4D-printed object at a particular temperature.
Collapse
Affiliation(s)
- Elaine Halligan
- Polymer, Recycling, Industrial, Sustainability and Manufacturing (PRISM) Center, Technological University of the Shannon: Midlands Midwest, Dublin Road, Athlone, N37 HD68 Co. Westmeath, Ireland
| | - Shuo Zhuo
- Polymer, Recycling, Industrial, Sustainability and Manufacturing (PRISM) Center, Technological University of the Shannon: Midlands Midwest, Dublin Road, Athlone, N37 HD68 Co. Westmeath, Ireland
| | - Declan Mary Colbert
- Polymer, Recycling, Industrial, Sustainability and Manufacturing (PRISM) Center, Technological University of the Shannon: Midlands Midwest, Dublin Road, Athlone, N37 HD68 Co. Westmeath, Ireland
| | - Mohamad Alsaadi
- Polymer, Recycling, Industrial, Sustainability and Manufacturing (PRISM) Center, Technological University of the Shannon: Midlands Midwest, Dublin Road, Athlone, N37 HD68 Co. Westmeath, Ireland
- CONFIRM Centre for Smart Manufacturing, University of Limerick, V94 C928 Co. Limerick, Ireland
| | - Billy Shu Hieng Tie
- Polymer, Recycling, Industrial, Sustainability and Manufacturing (PRISM) Center, Technological University of the Shannon: Midlands Midwest, Dublin Road, Athlone, N37 HD68 Co. Westmeath, Ireland
| | - Gilberto S N Bezerra
- Polymer, Recycling, Industrial, Sustainability and Manufacturing (PRISM) Center, Technological University of the Shannon: Midlands Midwest, Dublin Road, Athlone, N37 HD68 Co. Westmeath, Ireland
| | - Gavin Keane
- Centre for Industrial Service & Design, Technological University of the Shannon: Midlands Midwest, Dublin Road, Athlone, N37 HD68 Co. Westmeath, Ireland
| | - Luke M Geever
- Applied Polymer Technologies Gateway, Material Research Institute, Technological University of the Shannon: Midlands Midwest, Dublin Road, Athlone, N37 HD68 Co. Westmeath, Ireland
| |
Collapse
|
40
|
Nguyen HT, Van Duong T, Taylor LS. Impact of Gastric pH Variations on the Release of Amorphous Solid Dispersion Formulations Containing a Weakly Basic Drug and Enteric Polymers. Mol Pharm 2023; 20:1681-1695. [PMID: 36730186 PMCID: PMC9997068 DOI: 10.1021/acs.molpharmaceut.2c00895] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Enteric polymers are widely used in amorphous solid dispersion (ASD) formulations. The aim of the current study was to explore ASD failure mechanisms across a wide range of pH conditions that mimic in vivo gastric compartment variations where enteric polymers such as hydroxypropyl methylcellulose phthalate (HPMCP) and hydroxypropyl methylcellulose acetate succinate (HPMCAS) are largely insoluble. Delamanid (DLM), a weakly basic drug used to treat tuberculosis, was selected as the model compound. Both DLM free base and the edisylate salt were formulated with HPMCP, while DLM edisylate ASDs were also prepared with different grades of HPMCAS. Two-stage release testing was conducted with the gastric stage pH varied between pH 1.6 and 5.0, prior to transfer to intestinal conditions of pH 6.5. ASD particles were collected following suspension in the gastric compartment and evaluated using X-ray powder diffraction and scanning electron microscopy. Additional samples were also evaluated with polarized light microscopy. In general, ASDs with HPMCP showed improved overall release for all testing conditions, relative to ASDs with HPMCAS. ASDs with the edisylate salt likewise outperformed those with DLM free base. Impaired release for certain formulations at intestinal pH conditions was attributed to surface drug crystallization that initiated during suspension in the gastric compartment where the polymer is insoluble; crystallization appeared more extensive for HPMCAS ASDs. These findings suggest that gastric pH variations should be evaluated for ASD formulations containing weakly basic drugs and enteric polymers.
Collapse
Affiliation(s)
- Hanh Thuy Nguyen
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Tu Van Duong
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Lynne S Taylor
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
41
|
Zhang S, Wang T, Xue J, Xu H, Wu S. Hydrogen Bonding Principle-Based Molecular Design of a Polymer Excipient and Impacts on Hydrophobic Drug Properties: Molecular Simulation and Experiment. Biomacromolecules 2023; 24:1675-1688. [PMID: 36867105 DOI: 10.1021/acs.biomac.2c01473] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Although some commercial excipients for improving the solubility of highly crystalline drugs are widely used, they still cannot cover all types of hydrophobic drugs. In this regard, with phenytoin as the target drug, related molecular structures of polymer excipients were designed. The optimal repeating units of NiPAm and HEAm were screened out through quantum mechanical simulation and Monte Carlo simulation methods, and the copolymerization ratio was also determined. Using molecular dynamics simulation technology, it was confirmed that the dispersibility and intermolecular hydrogen bonds of phenytoin in the designed copolymer were better than those in the commercial PVP materials. At the same time, the designed copolymers and solid dispersions were also prepared during the experiment, and the improvement of their solubility was confirmed, which is in accordance with the simulation predictions. The new ideas and simulation technology may be used for drug modification and development.
Collapse
Affiliation(s)
- Sidian Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Tao Wang
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, P. R. China
| | - Jiajia Xue
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Haiyan Xu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, P. R. China
| | - Sizhu Wu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
42
|
Correa-Soto CE, Gao Y, Indulkar AS, Zhang GGZ, Taylor LS. Release Enhancement by Plasticizer Inclusion for Amorphous Solid Dispersions Containing High T g Drugs. Pharm Res 2023; 40:777-790. [PMID: 36859747 DOI: 10.1007/s11095-023-03483-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/10/2023] [Indexed: 03/03/2023]
Abstract
PURPOSE Plasticizers are commonly used in the preparation of amorphous solid dispersions (ASDs) with the main goal of aiding processability; however, to the best of our knowledge, the impact of plasticizers on drug release has not been explored. The goal of this study was to evaluate diverse plasticizers, including glycerol and citrate derivatives, as additives to increase the drug loading where good drug release could be achieved from copovidone (PVPVA)-based dispersions, focusing on high glass transition (Tg) drugs, atazanavir (ATZ) and ledipasvir (LED). METHODS ASDs were prepared using the high Tg compounds, atazanavir (ATZ) and ledipasvir (LED), as model drugs. Release was evaluated using surface normalized dissolution testing. Differential scanning calorimetry was used to measure glass transition temperature and water vapor sorption was performed on select samples. RESULTS The presence of a plasticizer at 5% w/w for ATZ and 10% w/w for LED ASDs, led to improved drug release. For ATZ ASDs, in the absence of plasticizer, release was very poor at drug loadings of 10% w/w and above. Good release was obtained for plasticized ASDs up to a drug loading of 25%. The corresponding improvement for LED was from 5 to 20% DL. Interestingly, for a low Tg compound, ritonavir, relatively smaller improvements in release as a function of drug loading were achieved through plasticizer incorporation. CONCLUSIONS The use of plasticizers represents a potential new strategy to increase drug loading in ASDs for high Tg compounds with a low tendency to crystallize and may help improve a major limitation of ASD formulations, namely the high excipient burden.
Collapse
Affiliation(s)
- Clara E Correa-Soto
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, IN, 47907, USA
- Pivotal Drug Product, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA, USA
| | - Yi Gao
- Development Sciences, Research and Development, AbbVie Inc., North Chicago, IL, 60064, USA
| | - Anura S Indulkar
- Development Sciences, Research and Development, AbbVie Inc., North Chicago, IL, 60064, USA
| | - Geoff G Z Zhang
- Development Sciences, Research and Development, AbbVie Inc., North Chicago, IL, 60064, USA.
| | - Lynne S Taylor
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
43
|
Supersaturation and phase behavior during dissolution of amorphous solid dispersions. Int J Pharm 2023; 631:122524. [PMID: 36549404 DOI: 10.1016/j.ijpharm.2022.122524] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/04/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022]
Abstract
Amorphous solid dispersion (ASD) is a promising strategy to enhance solubility and bioavailability of poorly water-soluble drugs. Due to higher free energy of ASD, supersaturated drug solution could be generated during dissolution. When amorphous solubility of a drug is exceeded, drug-rich nanodroplets could form and act as a reservoir to maintain the maximum free drug concentration in solution, facilitating the absorption of the drug in vivo. Dissolution behavior of ASD has received increasing interests. This review will focus on the recent advances in ASD dissolution, including the generation and maintenance of supersaturated drug solution in absence or presence of liquid-liquid phase separation. Mechanism of drug release from ASD including polymer-controlled dissolution and drug-controlled dissolution will be introduced. Formation of amorphous drug-rich nanodroplets during dissolution and the underlying mechanism will be discussed. Phase separation morphology of hydrated ASD plays a critical role in dissolution behavior of ASD, which will be highlighted. Supersaturated drug solution shows poor physical stability and tends to crystallize. The effect of polymer and surfactant on supersaturated drug solution will be demonstrated and some unexpected results will be shown. Physicochemical properties of drug and polymer could impact ASD dissolution and some of them even show opposite effect on dissolution and physical stability of ASD in solid state, respectively. This review will contribute to a better understanding of ASD dissolution and facilitate a rational design of ASD formulation.
Collapse
|
44
|
Deac A, Qi Q, Indulkar AS, Purohit HS, Gao Y, Zhang GGZ, Taylor LS. Dissolution Mechanisms of Amorphous Solid Dispersions: Role of Drug Load and Molecular Interactions. Mol Pharm 2023; 20:722-737. [PMID: 36545917 DOI: 10.1021/acs.molpharmaceut.2c00892] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
High drug load amorphous solid dispersions (ASDs) have been a challenge to formulate partially because drug release is inhibited at high drug loads. The maximum drug load prior to inhibition of release has been termed the limit of congruency (LoC) and has been most widely studied for copovidone (PVPVA)-based ASDs. The terminology was derived from the observation that below LoC, the polymer controlled the kinetics and the drug and the polymer released congruently, while above LoC, the release rates diverged and were impaired. Recent studies show a correlation between the LoC value and drug-polymer interaction strength, where a lower LoC was observed for systems with stronger interactions. The aim of this study was to investigate the causality between drug-PVPVA interaction strength and LoC. Four chemical analogues with diverse abilities to interact with PVPVA were used as model drugs. The distribution of the polymer between the dilute aqueous phase and the insoluble nanoparticles containing drug was studied with solution nuclear magnetic resonance spectroscopy and traditional separation techniques to understand the thermodynamics of the systems in a dilute environment. Polymer diffusion to and from ASD particles suspended in aqueous solution was monitored for drug loads above the LoC to investigate the thermodynamic driving force for polymer release. The surface composition of ASD compacts before and after exposure to buffer was studied with Fourier transform infrared spectroscopy to capture potential kinetic barriers to release. It was found that ASD compacts with drug loads above the LoC formed an insoluble barrier on the surface that was in pseudo-equilibrium with the aqueous phase and prevented further release of drugs and polymers during dissolution. The insoluble barrier contained a substantial amount of the polymer for the strongly interacting drug-polymer systems. In contrast, a negligible amount was found for the weakly interacting systems. This observation provides an explanation for the ability of strongly interacting systems to form an insoluble barrier at lower drug loads. The study highlights the importance of thermodynamic and kinetic factors on the dissolution behavior of ASDs and provides a potential framework for maximizing the drug load in ASDs.
Collapse
Affiliation(s)
- Alexandru Deac
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana47907, United States
| | - Qingqing Qi
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana47907, United States
| | - Anura S Indulkar
- Development Sciences, Research and Development, AbbVie Inc, North Chicago, Illinois60064, United States
| | - Hitesh S Purohit
- Development Sciences, Research and Development, AbbVie Inc, North Chicago, Illinois60064, United States
| | - Yi Gao
- Development Sciences, Research and Development, AbbVie Inc, North Chicago, Illinois60064, United States
| | - Geoff G Z Zhang
- Development Sciences, Research and Development, AbbVie Inc, North Chicago, Illinois60064, United States
| | - Lynne S Taylor
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana47907, United States
| |
Collapse
|
45
|
Yang R, Zhang GGZ, Zemlyanov DY, Purohit HS, Taylor LS. Release Mechanisms of Amorphous Solid Dispersions: Role of Drug-Polymer Phase Separation and Morphology. J Pharm Sci 2023; 112:304-317. [PMID: 36306863 DOI: 10.1016/j.xphs.2022.10.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/07/2022] [Accepted: 10/20/2022] [Indexed: 11/13/2022]
Abstract
Formulating poorly soluble molecules as amorphous solid dispersions (ASDs) is an effective strategy to improve drug release. However, drug release rate and extent tend to rapidly diminish with increasing drug loading (DL). The poor release at high DLs has been postulated to be linked to the process of amorphous-amorphous phase separation (AAPS), although the exact connection between phase separation and release properties remains somewhat unclear. Herein, release profiles of ASDs formulated with ritonavir (RTV) and polyvinylpyrrolidone/vinyl acetate (PVPVA) at different DLs were determined using surface normalized dissolution. Surface morphologies of partially dissolved ASD compacts were evaluated with confocal fluorescence microscopy, using Nile red and Alexa Fluor 488 as fluorescence markers to track the hydrophobic and hydrophilic phases respectively. ASD phase behavior during hydration and release of components were also visualized in real time using a newly developed in situ confocal fluorescence microscopy method. RTV-PVPVA ASDs showed complete and rapid drug release below 30% DL, partial drug release at 30% DL and no drug release above 30% DL. It was observed that formation of discrete drug-rich droplets at lower DLs led to rapid and congruent release of both drug and polymer, whereas formation of continuous drug-rich phase at the ASD matrix-solution interface was the cause of poor release above certain DLs. Thus, the domain size and interconnectivity of phase separated drug-rich domains appear to be critical factors impacting drug release from RTV-PVPVPA ASDs.
Collapse
Affiliation(s)
- Ruochen Yang
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, IN, 47907, USA
| | - Geoff G Z Zhang
- Drug Product Development, AbbVie Inc., North Chicago, IL, 60064, USA
| | - Dmitry Y Zemlyanov
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, 47907, USA
| | - Hitesh S Purohit
- Drug Product Development, AbbVie Inc., North Chicago, IL, 60064, USA.
| | - Lynne S Taylor
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
46
|
Moseson DE, Hiew TN, Su Y, Taylor LS. Formulation and Processing Strategies which Underpin Susceptibility to Matrix Crystallization in Amorphous Solid Dispersions. J Pharm Sci 2023; 112:108-122. [PMID: 35367246 DOI: 10.1016/j.xphs.2022.03.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 11/18/2022]
Abstract
Through matrix crystallization, an amorphous solid may transform directly into its more stable crystalline state, reducing the driving force for dissolution. Herein, the mechanism of matrix crystallization in an amorphous solid dispersion (ASD) was probed. ASDs of bicalutamide/copovidone were prepared by solvent evaporation and hot melt extrusion, and sized by mortar and pestle or cryomilling techniques, modulating the level of mechanical activation experienced by the sample. Drug loading (DL) of the binary ASD was varied from 5-50%, and ternary systems were formulated at 30% DL with two surfactants (sodium dodecyl sulfate, Vitamin E TPGS). Imaging of partially dissolved or crystallized compacts by scanning electron microscopy with energy-dispersive X-ray analysis and confocal fluorescence microscopy was performed to investigate pathways of hydration, phase separation, and crystallization. Monitoring drug and polymer release of ASD powder under non-sink conditions provided insight into supersaturation and desupersaturation profiles. Systems at the greatest risk of matrix crystallization had high DLs, underwent mechanical activation, and/or contained surfactant. Systems having greatest resistance to matrix crystallization had rapid and congruent drug and polymer release. This study has implications for formulation and process design of ASDs and risk assessment of matrix crystallization.
Collapse
Affiliation(s)
- Dana E Moseson
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Tze Ning Hiew
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Yongchao Su
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States; Analytical Research and Development, Merck & Co., Inc., Rahway, NJ 07065, United States
| | - Lynne S Taylor
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States.
| |
Collapse
|
47
|
Zhao P, Han W, Shu Y, Li M, Sun Y, Sui X, Liu B, Tian B, Liu Y, Fu Q. Liquid-liquid phase separation drug aggregate: Merit for oral delivery of amorphous solid dispersions. J Control Release 2023; 353:42-50. [PMID: 36414193 DOI: 10.1016/j.jconrel.2022.11.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022]
Abstract
As a promising strategy, amorphous solid dispersion has been extensively employed in improving the oral bioavailability of insoluble drugs. Despite the numerous advantages, the problems associated with supersaturation stability limit its further application. Recently, the formation and stability of the liquid-liquid phase separation drug aggregate (LLPS-DA) have been found to be vital for supersaturation maintenance. An in-depth review of LLPS-DA was required to further explore the supersaturation maintenance mechanism in vivo. Hence, this study aimed to present a short review to introduce the LLPS-DA, highlight the in vivo advantages for oral administration, and discuss the prospects to help understand the in vivo behavior of LLPS-DA.
Collapse
Affiliation(s)
- Peixu Zhao
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Wen Han
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Yecheng Shu
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Mo Li
- Liaoning Institute for Drug Control, No. 7 Chongshan West Road, Shenyang 110016, China
| | - Yichi Sun
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Xiaofan Sui
- Liaoning Institute for Drug Control, No. 7 Chongshan West Road, Shenyang 110016, China
| | - Bingyang Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Baocheng Tian
- School of Pharmacy, Binzhou Medical University, No. 346, Guanhai Road, Yantai 264003, China
| | - Yanhua Liu
- Department of Pharmaceutics, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China
| | - Qiang Fu
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China.
| |
Collapse
|
48
|
Hiew TN, Saboo S, Zemlyanov DY, Punia A, Wang M, Smith D, Lowinger M, Solomos MA, Schenck L, Taylor LS. Improving Dissolution Performance and Drug Loading of Amorphous Dispersions Through a Hierarchical Particle Approach. J Pharm Sci 2022:S0022-3549(22)00583-4. [PMID: 36574837 DOI: 10.1016/j.xphs.2022.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/01/2022] [Accepted: 12/18/2022] [Indexed: 12/26/2022]
Abstract
Co-precipitation is an emerging manufacturing strategy for amorphous solid dispersions (ASDs). Herein, the interplay between processing conditions, surface composition, and release performance was evaluated using grazoprevir and hypromellose acetate succinate as the model drug and polymer, respectively. Co-precipitated amorphous dispersion (cPAD) particles were produced in the presence and absence of an additional polymer that was either dissolved or dispersed in the anti-solvent. This additional polymer in the anti-solvent was deposited on the surfaces of the cPAD particles during isolation and drying to create hierarchical particles, which we define here as a core ASD particle with an additional water soluble component that is coating the particle surfaces. The resultant hierarchical particles were characterized using X-ray powder diffraction, differential scanning calorimetry, scanning electron microscopy, and X-ray photoelectron spectroscopy (XPS). Release performance was evaluated using a two-stage dissolution test. XPS analysis revealed a trend whereby cPAD particles with a lower surface drug concentration showed improved release relative to particles with a higher surface drug concentration, for nominally similar drug loadings. This surface drug concentration could be impacted by whether the secondary polymer was dissolved in the anti-solvent or dispersed in the anti-solvent prior to isolating final dried hierarchical cPAD powders. Grazoprevir exposure in dogs was higher when the hierarchical cPAD was dosed, with ∼1.8 fold increase in AUC compared to the binary cPAD. These observations highlight the important interplay between processing conditions and ASD performance in the context of cPAD particles and illustrate a hierarchical particle design as a successful approach to alter ASD surface chemistry to improve dissolution performance.
Collapse
Affiliation(s)
- Tze Ning Hiew
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, IN 47907, United States
| | - Sugandha Saboo
- Oral Formulation Sciences, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Dmitry Y Zemlyanov
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, United States
| | - Ashish Punia
- Analytical Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Michael Wang
- Biopharmaceutics, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Daniel Smith
- Analytical Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Michael Lowinger
- Oral Formulation Sciences, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Marina A Solomos
- Process Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Luke Schenck
- Process Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Lynne S Taylor
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, IN 47907, United States.
| |
Collapse
|
49
|
Combining drug salt formation with amorphous solid dispersions - a double edged sword. J Control Release 2022; 352:47-60. [PMID: 36206947 PMCID: PMC9733678 DOI: 10.1016/j.jconrel.2022.09.056] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 09/26/2022] [Indexed: 11/08/2022]
Abstract
Glass transition temperature (Tg) is important for amorphous compounds because it can have implications on their physical and chemical stability. With drugs that possess ionizable acidic or basic groups, salt formation is a potential strategy to reduce re-crystallization tendency through Tg elevation. While salt formation has been reported to impact re-crystallization tendency, it is not known if this holds true for all drugs and if it is useful in the context of amorphous solid dispersion (ASD) formulations. In addition, little information on the impact of salt formation on drug release performance of ASD is available. Herein, the influence of salt formation and Tg elevation on the release performance of lumefantrine (Tg = 19.7 °C) when formulated as an ASD with copovidone (PVPVA) was examined. Lumefantrine salts and lumefantrine salt-PVPVA ASDs with drug loadings (DLs) ranging from 5 to 30% were prepared. The acids used for salt formation were benzoic acid, benzenesulfonic acid, camphorsulfonic acid, hydrochloric acid, p-toluenesulfonic acid, poly(ethylene) glycol 250 diacid (PEG 250 diacid), and sulfuric acid. Salt formation resulted in an elevation of Tg compared to lumefantrine free base, with the largest increase in Tg observed with lumefantrine sulfate. With a lower Tg salt, ASDs could be formulated at higher DLs while ensuring drug release. In contrast, drug release ceased at a DL as low as 5% when Tg of the salt was high. However, ASDs with lower Tgs such as the benzoate and PEG 250 diacid salts showed poor stability against re-crystallization when stored under stress storage conditions. When using a salt in an ASD formulation, attention should be paid to the Tg of the salt, since it may show opposing effects on physical stability and drug release, at least for PVPVA-based ASDs.
Collapse
|
50
|
Evaluation of Different Thermoanalytical Methods for the Analysis of the Stability of Naproxen-Loaded Amorphous Solid Dispersions. Pharmaceutics 2022; 14:pharmaceutics14112508. [PMID: 36432698 PMCID: PMC9692747 DOI: 10.3390/pharmaceutics14112508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
The aim of this research was to investigate three thermoanalytical techniques from the glass transition temperature (Tg) determination point of view. In addition, the examination of the correlation between the measured Tg values and the stability of the amorphous solid dispersions (ASDs) was also an important part of the work. The results showed that a similar tendency of the Tg can be observed in the case of the applied methods. However, Tg values measured by thermally stimulated depolarization currents showed higher deviation from the theoretical calculations than the values measured by modulated differential scanning calorimetry, referring better to the drug-polymer interactions. Indeed, the investigations after the stress stability tests revealed that micro-thermal analysis can indicate the most sensitive changes in the Tg values, better indicating the instability of the samples. In addition to confirming that the active pharmaceutical ingredient content is a crucial factor in the stability of ASDs containing naproxen and poly(vinylpyrrolidone-co-vinyl acetate), it is worthwhile applying orthogonal techniques to better understand the behavior of ASDs. The development of stable ASDs can be facilitated via mapping the molecular mobilities with suitable thermoanalytical methods.
Collapse
|