1
|
Wan L, Zhou H, Zhou H, Gu J, Wang C, Liao Q, Gao H, Wu J, Huo X. Recent Advances in Polyphenylene Sulfide-Based Separators for Lithium-Ion Batteries. Polymers (Basel) 2025; 17:1237. [PMID: 40363018 PMCID: PMC12073824 DOI: 10.3390/polym17091237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2025] [Revised: 04/21/2025] [Accepted: 04/29/2025] [Indexed: 05/15/2025] Open
Abstract
Polyphenylene sulfide (PPS)-based separators have garnered significant attention as high-performance components for next-generation lithium-ion batteries (LIBs), driven by their exceptional thermal stability (>260 °C), chemical inertness, and mechanical durability. This review comprehensively examines advances in PPS separator design, focusing on two structurally distinct categories: porous separators engineered via wet-chemical methods (e.g., melt-blown spinning, electrospinning, thermally induced phase separation) and nonporous solid-state separators fabricated through solvent-free dry-film processes. Porous variants, typified by submicron pore architectures (<1 μm), enable electrolyte-mediated ion transport with ionic conductivities up to >1 mS·cm-1 at >55% porosity, while their nonporous counterparts leverage crystalline sulfur-atom alignment and trace electrolyte infiltration to establish solid-liquid biphasic conduction pathways, achieving ion transference numbers >0.8 and homogenized lithium flux. Dry-processed solid-state PPS separators demonstrate unparalleled thermal dimensional stability (<2% shrinkage at 280 °C) and mitigate dendrite propagation through uniform electric field distribution, as evidenced by COMSOL simulations showing stable Li deposition under Cu particle contamination. Despite these advancements, challenges persist in reconciling thickness constraints (<25 μm) with mechanical robustness, scaling solvent-free manufacturing, and reducing costs. Innovations in ultra-thin formats (<20 μm) with self-healing polymer networks, coupled with compatibility extensions to sodium/zinc-ion systems, are identified as critical pathways for advancing PPS separators. By addressing these challenges, PPS-based architectures hold transformative potential for enabling high-energy-density (>500 Wh·kg-1), intrinsically safe energy storage systems, particularly in applications demanding extreme operational reliability such as electric vehicles and grid-scale storage.
Collapse
Affiliation(s)
- Lianlu Wan
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China; (L.W.); (J.G.); (C.W.); (Q.L.); (H.G.); (J.W.)
| | - Haitao Zhou
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China; (L.W.); (J.G.); (C.W.); (Q.L.); (H.G.); (J.W.)
| | - Haiyun Zhou
- Jiangsu Tongling Electric Co., Ltd., Zhenjiang 212200, China
| | - Jie Gu
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China; (L.W.); (J.G.); (C.W.); (Q.L.); (H.G.); (J.W.)
| | - Chen Wang
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China; (L.W.); (J.G.); (C.W.); (Q.L.); (H.G.); (J.W.)
| | - Quan Liao
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China; (L.W.); (J.G.); (C.W.); (Q.L.); (H.G.); (J.W.)
| | - Hongquan Gao
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China; (L.W.); (J.G.); (C.W.); (Q.L.); (H.G.); (J.W.)
| | - Jianchun Wu
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China; (L.W.); (J.G.); (C.W.); (Q.L.); (H.G.); (J.W.)
| | - Xiangdong Huo
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China; (L.W.); (J.G.); (C.W.); (Q.L.); (H.G.); (J.W.)
| |
Collapse
|
2
|
Lim H, Chae MS, Jamal H, Khan F, Jeon I, Kim J, Kim JH. Triple-Layered Noncombustible PEO-Based Solid Electrolyte for Highly Safe Lithium-Metal Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2406200. [PMID: 39491500 DOI: 10.1002/smll.202406200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/28/2024] [Indexed: 11/05/2024]
Abstract
Lithium-metal batteries are currently recognized as promising next-generation technologies owing to their high energy density. Solid polymer electrolytes, particularly those based on polyethylene oxide (PEO), are lauded for their leakage resistance, safety, and flexible design. Despite the ongoing fire safety- and ionic conductivity-related concerns, a novel noncombustible solid polymer electrolytes with superior ionic conductivities are introduced here with additive decabromodiphenyl ethane and zeolite. To enhance the mechanical strength and ensure soft interactions at the electrode interface, a triple-layer structure with self-extinguishing properties and robust ionic conductivity is proposed. Notably, the softness at the electrode interface intensifies as the LiTFSI concentration increases; this higher concentration negatively impacts PEO crystallinity, enhancing the ionic conductivity owing to the presence of free Li+ and TFSI- ions. This novel electrolyte can achieve a conductivity of 1.5 mS cm-1 at 60 °C, maintain anodic stability up to 4.8 V, and exhibit flame retardancy. Furthermore, adding LiTFSI at 60% relative to PEO is shown to reduce LiF formation on the surface, enhancing anode stability. The [LiFePO4/triple-layered electrolyte/Li] lithium-metal batteries are capable of an initial capacity of 153 mAh g-1, sustained superior capacity retention of 87.9%, and high Coulombic efficiency (99.6%) over 1000 cycles at a 1C rate.
Collapse
Affiliation(s)
- Heesoo Lim
- Division of Energy & Environmental Technology, DGIST, Daegu, 42988, Republic of Korea
| | - Munseok S Chae
- Department of Nanotechnology Engineering, Pukyong National University, Busan, 48547, Republic of Korea
| | - Hasan Jamal
- Division of Energy & Environmental Technology, DGIST, Daegu, 42988, Republic of Korea
| | - Firoz Khan
- Interdisciplinary Research Center for Sustainable Energy Systems (IRC-SES), King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
| | - Injun Jeon
- Division of Energy & Environmental Technology, DGIST, Daegu, 42988, Republic of Korea
| | - Jongmin Kim
- Division of Energy & Environmental Technology, DGIST, Daegu, 42988, Republic of Korea
| | - Jae Hyun Kim
- Division of Energy & Environmental Technology, DGIST, Daegu, 42988, Republic of Korea
| |
Collapse
|
3
|
Zhang M, Zhang X, Liu S, Hou W, Lu Y, Hou L, Luo Y, Liu Y, Yuan C. Versatile Separators Toward Advanced Lithium-Sulfur Batteries: Status, Recent Progress, Challenges and Perspective. CHEMSUSCHEM 2024; 17:e202400538. [PMID: 38763902 DOI: 10.1002/cssc.202400538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/14/2024] [Accepted: 05/19/2024] [Indexed: 05/21/2024]
Abstract
Lithium-sulfur batteries (LSBs) have recently gained extensive attention due to their high energy density, low cost, and environmental friendliness. However, serious shuttle effect and uncontrolled growth of lithium dendrites restrict them from further commercial applications. As "the third electrode", functional separators are of equal significance as both anodes and cathodes in LSBs. The challenges mentioned above are effectively addressed with rational design and optimization in separators, thereby enhancing their reversible capacities and cycle stability. The review discusses the status/operation mechanism of functional separators, then primarily focuses on recent research progress in versatile separators with purposeful modifications for LSBs, and summarizes the methods and characteristics of separator modification, including heterojunction engineering, single atoms, quantum dots, and defect engineering. From the perspective of the anodes, distinct methods to inhibit the growth of lithium dendrites by modifying the separator are discussed. Modifying the separators with flame retardant materials or choosing a solid electrolyte is expected to improve the safety of LSBs. Besides, in-situ techniques and theoretical simulation calculations are proposed to advance LSBs. Finally, future challenges and prospects of separator modifications for next-generation LSBs are highlighted. We believe that the review will be enormously essential to the practical development of advanced LSBs.
Collapse
Affiliation(s)
- Mengjie Zhang
- School of Materials Science & Engineering, University of Jinan, Jinan, 250022, PR China
| | - Xu Zhang
- School of Materials Science & Engineering, University of Jinan, Jinan, 250022, PR China
| | - Sen Liu
- School of Materials Science & Engineering, University of Jinan, Jinan, 250022, PR China
| | - Wenshuo Hou
- School of Materials Science & Engineering, University of Jinan, Jinan, 250022, PR China
| | - Yang Lu
- Henan Joint International Research Laboratory of New Energy Storage Technology, Key Laboratory of Microelectronics and Energy of Henan Province, School of Physics and Electronic Engineering, Xinyang Normal University, Xinyang, 464000, P. R. China
| | - Linrui Hou
- School of Materials Science & Engineering, University of Jinan, Jinan, 250022, PR China
| | - Yongsong Luo
- Henan Joint International Research Laboratory of New Energy Storage Technology, Key Laboratory of Microelectronics and Energy of Henan Province, School of Physics and Electronic Engineering, Xinyang Normal University, Xinyang, 464000, P. R. China
- College of Physics and Electronic Engineering, Nanyang Normal University, Nanyang, 473061, P. R. China
| | - Yang Liu
- School of Materials Science & Engineering, University of Jinan, Jinan, 250022, PR China
| | - Changzhou Yuan
- School of Materials Science & Engineering, University of Jinan, Jinan, 250022, PR China
| |
Collapse
|
4
|
He J, Yang L, Ruan X, Liu Z, Liao K, Duan Q, Zhan Y. Electrospun PVDF-Based Polymers for Lithium-Ion Battery Separators: A Review. Polymers (Basel) 2024; 16:2895. [PMID: 39458723 PMCID: PMC11511470 DOI: 10.3390/polym16202895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Lithium-ion batteries (LIBs) have been widely applied in electronic communication, transportation, aerospace, and other fields, among which separators are vital for their electrochemical stability and safety. Electrospun polyvinylidene fluoride (PVDF)-based separators have a large specific surface area, high porosity, and remarkable thermal stability, which significantly enhances the electrochemistry and safety of LIBs. First, this paper reviewed recent research hotspots and processes of electrospun PVDF-based LIB separators; then, their pivotal parameters influencing morphology, structures, and properties of separators, especially in the process of electrospinning solution preparation, electrospinning process, and post-treatment methods were summarized. Finally, the challenges of PVDF-based LIB separators were proposed and discussed, which paved the way for the application of electrospun PVDF-based separators in LIBs and the development of LIBs with high electrochemistry and security.
Collapse
Affiliation(s)
- Juanxia He
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China; (J.H.); (L.Y.); (X.R.); (Z.L.); (K.L.)
- State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, Nanning 530004, China
| | - Lihong Yang
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China; (J.H.); (L.Y.); (X.R.); (Z.L.); (K.L.)
| | - Xingzhe Ruan
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China; (J.H.); (L.Y.); (X.R.); (Z.L.); (K.L.)
| | - Zechun Liu
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China; (J.H.); (L.Y.); (X.R.); (Z.L.); (K.L.)
| | - Kezhang Liao
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China; (J.H.); (L.Y.); (X.R.); (Z.L.); (K.L.)
| | - Qingshan Duan
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China;
| | - Yongzhong Zhan
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China; (J.H.); (L.Y.); (X.R.); (Z.L.); (K.L.)
| |
Collapse
|
5
|
Seo J, Im J, Kim M, Song D, Yoon S, Cho KY. Recent Progress of Advanced Functional Separators in Lithium Metal Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2312132. [PMID: 38453671 DOI: 10.1002/smll.202312132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/26/2024] [Indexed: 03/09/2024]
Abstract
As a representative in the post-lithium-ion batteries (LIBs) landscape, lithium metal batteries (LMBs) exhibit high-energy densities but suffer from low coulombic efficiencies and short cycling lifetimes due to dendrite formation and complex side reactions. Separator modification holds the most promise in overcoming these challenges because it utilizes the original elements of LMBs. In this review, separators designed to address critical issues in LMBs that are fatal to their destiny according to the target electrodes are focused on. On the lithium anode side, functional separators reduce dendrite propagation with a conductive lithiophilic layer and a uniform Li-ion channel or form a stable solid electrolyte interphase layer through the continuous release of active agents. The classification of functional separators solving the degradation stemming from the cathodes, which has often been overlooked, is summarized. Structural deterioration and the resulting leakage from cathode materials are suppressed by acidic impurity scavenging, transition metal ion capture, and polysulfide shuttle effect inhibition from functional separators. Furthermore, flame-retardant separators for preventing LMB safety issues and multifunctional separators are discussed. Further expansion of functional separators can be effectively utilized in other types of batteries, indicating that intensive and extensive research on functional separators is expected to continue in LIBs.
Collapse
Affiliation(s)
- Junhyeok Seo
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, Gyeonggi, 15588, Republic of Korea
| | - Juyeon Im
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, Gyeonggi, 15588, Republic of Korea
| | - Minjae Kim
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, Gyeonggi, 15588, Republic of Korea
| | - Dahee Song
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, Gyeonggi, 15588, Republic of Korea
| | - Sukeun Yoon
- Division of Advanced Materials Engineering, Kongju National University, Cheonan, Chungnam, 31080, Republic of Korea
| | - Kuk Young Cho
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, Gyeonggi, 15588, Republic of Korea
| |
Collapse
|
6
|
Du H, Wang Y, Kang Y, Zhao Y, Tian Y, Wang X, Tan Y, Liang Z, Wozny J, Li T, Ren D, Wang L, He X, Xiao P, Mao E, Tavajohi N, Kang F, Li B. Side Reactions/Changes in Lithium-Ion Batteries: Mechanisms and Strategies for Creating Safer and Better Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401482. [PMID: 38695389 DOI: 10.1002/adma.202401482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/17/2024] [Indexed: 05/21/2024]
Abstract
Lithium-ion batteries (LIBs), in which lithium ions function as charge carriers, are considered the most competitive energy storage devices due to their high energy and power density. However, battery materials, especially with high capacity undergo side reactions and changes that result in capacity decay and safety issues. A deep understanding of the reactions that cause changes in the battery's internal components and the mechanisms of those reactions is needed to build safer and better batteries. This review focuses on the processes of battery failures, with voltage and temperature as the underlying factors. Voltage-induced failures result from anode interfacial reactions, current collector corrosion, cathode interfacial reactions, overcharge, and over-discharge, while temperature-induced failure mechanisms include SEI decomposition, separator damage, and interfacial reactions between electrodes and electrolytes. The review also presents protective strategies for controlling these reactions. As a result, the reader is offered a comprehensive overview of the safety features and failure mechanisms of various LIB components.
Collapse
Affiliation(s)
- Hao Du
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Yadong Wang
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Yuqiong Kang
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Yun Zhao
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Yao Tian
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Xianshu Wang
- National and Local Joint Engineering Research Center of Lithium-Ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Battery Materials of Yunnan Province, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, P. R. China
| | - Yihong Tan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zheng Liang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - John Wozny
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL, 60115, USA
| | - Tao Li
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL, 60115, USA
| | - Dongsheng Ren
- Institute of Nuclear & New Energy Technology, Tsinghua University, Beijing, 100084, China
| | - Li Wang
- Institute of Nuclear & New Energy Technology, Tsinghua University, Beijing, 100084, China
| | - Xiangming He
- Institute of Nuclear & New Energy Technology, Tsinghua University, Beijing, 100084, China
| | - Peitao Xiao
- College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, 410073, China
| | - Eryang Mao
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Naser Tavajohi
- Department of Chemistry, Umeå University, Umeå, 90187, Sweden
| | - Feiyu Kang
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Baohua Li
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| |
Collapse
|
7
|
Liu H, Zhang H, Ren B, Zheng Y, Cao W, Lu Y, Nie Z, Xu F, Huang W, Zhu J. Robust Ionics Reinforced Fiber As Implantable Sensor for Early Operando Monitoring Cell Thermal Safety of Commercial Lithium-Ion Batteries. NANO LETTERS 2024; 24:2315-2321. [PMID: 38341875 DOI: 10.1021/acs.nanolett.3c04709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2024]
Abstract
Commercial batteries have been largely applied in mobile electronics, electric vehicles, and scalable energy storage systems. However, thermal runaway of batteries still obstructs the reliability of electric equipment. Considering this, building upon recent investigations of energy thermal safety, commercially available organogel fiber-based implantable sensors have been developed through 3D printing technology for first operando implantable monitoring of cell temperature. The printed fibers present excellent reliability and superelasticity because of internal supramolecular cross-linking. High temperature sensitivity (-39.84% °C-1/-1.557% °C-1) within a wide range (-15 to 80 °C) is achieved, and the corresponding mechanism is clarified based on in situ temperature-dependent Raman technology. Furthermore, taking the pouch cell as an example, combined with finite element analysis, the real-time observation system of cell temperature is successfully demonstrated through an implanted sensor with wireless Bluetooth transmission. This enlightening approach paves the way for achieving safety monitoring and smart warnings for various electric equipment.
Collapse
Affiliation(s)
- Haodong Liu
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China
| | - Hongjian Zhang
- School of Flexible Electronics (SoFE) and Henan Institute of Flexible Electronics (HIFE), Henan University, 379 Mingli Road, Zhengzhou 450046, China
| | - Bing Ren
- People's Hospital of Shou County, 5 Dongjin Avenue, Huainan, 232261, China
| | - Yapeng Zheng
- State Key Laboratory of Fire Science, University of Science and Technology of China, 443 Huangshan Road, Hefei 230027, China
| | - Wei Cao
- Institute of Advanced Materials (IAM), Key Laboratory of Institute of Advanced Materials, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Yufei Lu
- School of Flexible Electronics (SoFE) and Henan Institute of Flexible Electronics (HIFE), Henan University, 379 Mingli Road, Zhengzhou 450046, China
| | - Zhentao Nie
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China
| | - Feng Xu
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China
- Institute of Advanced Materials (IAM), Key Laboratory of Institute of Advanced Materials, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Jixin Zhu
- State Key Laboratory of Fire Science, University of Science and Technology of China, 443 Huangshan Road, Hefei 230027, China
| |
Collapse
|
8
|
Chen L, Gui X, Zhang Q, Hou B, Wu X, Wu S, Zhen L, Mo D, Duan J, Liu J, Yao H. Direct Fabrication of PET-Based Thermotolerant Separators for Lithium-Ion Batteries with Ion Irradiation Technology. ACS APPLIED MATERIALS & INTERFACES 2023; 15:59422-59431. [PMID: 38096428 DOI: 10.1021/acsami.3c13519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Lithium-ion batteries (LIBs) play a pivotal role as essential components in various applications, including mobile devices, energy storage power supplies, and electric vehicles. The widespread utilization of LIBs underscores their significance in the field of energy storage. High-performance LIBs should exhibit two key characteristics that have been persistently sought: high energy density and safety. The separator, a critical part of LIBs, is of paramount importance in ensuring battery safety, thus requiring its high thermal stability and uniform nanochannels. Here, the novel ion-track etched polyethylene terephthalate (ITE PET) separator is controllably fabricated with ion irradiation technology. Unlike conventional polypropylene (PP) separators, the ITE PET separator demonstrated vertically aligned nanochannels with uniform channel size and distribution. The remarkable characteristics of the ITE PET separator include not only high electrolyte wettability but also exceptional thermal stability, capable of withstanding temperatures as high as 180 °C. Furthermore, the ITE PET separator exhibits a higher lithium-ion transfer number (0.59), which is advantageous in enhancing battery performance. The structural and inherent advantages of ITE PET separators contribute to enhance the C-rate capacity, electrochemical, and long-term cycling (300 cycles) stability observed in the corresponding batteries. The newly developed method for fabricating ITE PET separators, which possess high thermal stability and a uniform channel structure, fulfills the demand for high-temperature-resistant separators without requiring any modification procedures. Moreover, this method can be easily scaled up using simple processes, making it a competitive strategy for producing thermotolerant separators.
Collapse
Affiliation(s)
- Linjing Chen
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, China
| | - Xiaoyu Gui
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Qizhong Zhang
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, China
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Borui Hou
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuanxuan Wu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- College of Physics Science and Technology, Hebei University, Baoding 071002, China
| | - Shuhang Wu
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, China
| | - Liping Zhen
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, China
| | - Dan Mo
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, China
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Jinglai Duan
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, China
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Jie Liu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Huijun Yao
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, China
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
9
|
Zeng Z, Shao Z, Shen R, Li H, Jiang J, Wang X, Li W, Guo S, Liu Y, Zheng G. Coaxial Electrospun Tai Chi-Inspired Lithium-Ion Battery Separator with High Performance and Fireproofing Capacity. ACS APPLIED MATERIALS & INTERFACES 2023; 15:44259-44267. [PMID: 37672751 DOI: 10.1021/acsami.3c08757] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Organic flame-retardant-loaded battery separator offers a new opportunity for battery safety. However, its poor thermal stability still poses serious safety issues. Inspired by Tai Chi, an "internal-cultivating and external-practicing" core-shell nanofibrous membrane was prepared by coaxial electrospinning, wherein the shell layer was a mixture of polyvinylidene fluoride, silicon dioxide (SiO2), and graphene oxide (GO) and the core layer contained triphenyl phosphate (TPP). SiO2 and GO enhanced the thermal stability and electrochemical performance. The encapsulated TPP prevented heat transfer and the degradation of electrochemical performance caused by its direct dissolution. This separator exhibited outstanding thermal stability and flame retardancy: it did not burn and remained relatively intact (91.2%) in an open flame for 15 s. The battery assembled with a composite separator showed excellent performance: the initial capacity reached 164 mA h/g and maintained 95% after 100 charge-discharge cycles. This novel strategy endows high-performance lithium batteries with relatively higher safety.
Collapse
Affiliation(s)
- Ziyue Zeng
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361102, China
- Shenzhen Research Institute of Xiamen University, Shenzhen 518000, China
| | - Zungui Shao
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361102, China
- Shenzhen Research Institute of Xiamen University, Shenzhen 518000, China
| | - Ruimin Shen
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361102, China
- Shenzhen Research Institute of Xiamen University, Shenzhen 518000, China
| | - Haonan Li
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361102, China
- Shenzhen Research Institute of Xiamen University, Shenzhen 518000, China
| | - Jiaxin Jiang
- School of Mechanical and Automotive Engineering, Xiamen University of Technology, Xiamen 361024, China
| | - Xiang Wang
- School of Mechanical and Automotive Engineering, Xiamen University of Technology, Xiamen 361024, China
| | - Wenwang Li
- School of Mechanical and Automotive Engineering, Xiamen University of Technology, Xiamen 361024, China
| | - Shumin Guo
- School of Mathematical Sciences, Xiamen University, Xiamen 361102, China
| | - Yifang Liu
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361102, China
- Shenzhen Research Institute of Xiamen University, Shenzhen 518000, China
| | - Gaofeng Zheng
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361102, China
- Shenzhen Research Institute of Xiamen University, Shenzhen 518000, China
| |
Collapse
|
10
|
Liu C, Han M, Chen CL, Yin J, Zhang L, Sun J. Decorating Phosphorus Anode with SnO 2 Nanoparticles To Enhance Polyphosphides Chemisorption for High-Performance Lithium-Ion Batteries. NANO LETTERS 2023; 23:3507-3515. [PMID: 37027828 DOI: 10.1021/acs.nanolett.3c00656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Phosphorus has been regarded as one of the most promising next-generation lithium-ion battery anode materials, because of its high theoretical specific capacity and safe working potential. However, the shuttle effect and sluggish conversion kinetics hamper its practical application. To overcome these limitations, we decorated SnO2 nanoparticles at the surface of phosphorus using an electrostatic self-assembly method, in which SnO2 can participate in the discharge/charge reaction, and the Li2O formed can chemically adsorb and suppress the shuttle of soluble polyphosphides across the separator. Additionally, the Sn/Li-Sn alloy can enhance the electrical conductivity of the overall electrode. Meanwhile, the similar volume changes and simultaneous lithiation/delithiation process in phosphorus and SnO2/Sn are beneficial for avoiding additional particle damage near two-phase boundaries. Consequently, this hybrid anode exhibits a high reversible capacity of ∼1180.4 mAh g-1 after 120 cycles and superior high-rate performance with ∼78.5% capacity retention from 100 to 1000 mA g-1.
Collapse
Affiliation(s)
- Cheng Liu
- Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, Huaiyin Normal University, Huai'an, Jiangsu 223300, People's Republic of China
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | - Muyao Han
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | - Cheng-Lung Chen
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, Taiwan 80424, People's Republic of China
| | - Jingzhou Yin
- Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, Huaiyin Normal University, Huai'an, Jiangsu 223300, People's Republic of China
| | - Lili Zhang
- Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, Huaiyin Normal University, Huai'an, Jiangsu 223300, People's Republic of China
| | - Jie Sun
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| |
Collapse
|
11
|
Dong X, Zhu T, Liu G, Chen J, Li H, Sun J, Gu X, Zhang S. Brominated flame retardants coated separators for high-safety lithium-sulfur batteries. J Colloid Interface Sci 2023; 643:223-231. [PMID: 37060698 DOI: 10.1016/j.jcis.2023.03.203] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/13/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023]
Abstract
Lithium-sulfur batteries (LSBs) have become highly promising next-generation secondary lithium batteries owing to their high theoretical energy density and abundance of sulfur. Nevertheless, the large-scale application of LSBs is still restricted by the shuttle effect of lithium polysulfide (LiPSs) and the potential fire hazard caused by flammable electrolytes. Herein, three electrolyte-insoluble brominated flame retardants (BFRs) are selected and coated on both sides of commercial polypropylene separators by a facile slurry coating method. The effects of the three BFRs on the safety and electrochemical properties of LSBs are characterized and compared. The coating modification separators greatly improves the flame retardancy of LSBs through radical elimination mechanism. The self-extinguishing time of the electrolyte is reduced from 0.66 s/mg to 0.20 s/mg. Moreover, it is demonstrated that the oxygen (O)-containing BFRs exert a significant adsorption capacity and are more advantageous than O-free BFRs in LSBs. In addition, octabromoether (BDDP) coated separator is more effective in trapping LiPSs than decabromodiphenyl ether (DBDPO) due to higher O content, which can mitigate the shuttle effect and enhance the cycle and rate performance of LSBs. This simple coating strategy for separators with BFRs offers a strongly competitive option for the large-scale production of high-safety LSBs.
Collapse
Affiliation(s)
- Xinxin Dong
- State Key Laboratory of Organic-Inorganic Composites, Center for Fire Safety Materials, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Tao Zhu
- State Key Laboratory of Organic-Inorganic Composites, Center for Fire Safety Materials, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Guoqing Liu
- State Key Laboratory of Organic-Inorganic Composites, Center for Fire Safety Materials, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Jinxuan Chen
- State Key Laboratory of Organic-Inorganic Composites, Center for Fire Safety Materials, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Hongfei Li
- State Key Laboratory of Organic-Inorganic Composites, Center for Fire Safety Materials, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Jun Sun
- State Key Laboratory of Organic-Inorganic Composites, Center for Fire Safety Materials, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Xiaoyu Gu
- State Key Laboratory of Organic-Inorganic Composites, Center for Fire Safety Materials, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Sheng Zhang
- State Key Laboratory of Organic-Inorganic Composites, Center for Fire Safety Materials, Beijing University of Chemical Technology, Beijing 100029, PR China.
| |
Collapse
|
12
|
Han C, Cao Y, Zhang S, Bai L, Yang M, Fang S, Gong H, Tang D, Pan F, Jiang Z, Sun J. Separator with Nitrogen-Phosphorus Flame-Retardant for LiNi x Co y Mn 1- x - y O 2 Cathode-Based Lithium-Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2207453. [PMID: 36960488 DOI: 10.1002/smll.202207453] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/17/2023] [Indexed: 06/18/2023]
Abstract
With the pursuit of high-energy-density for lithium-ion batteries (LIBs), the hidden safety problems of batteries have gradually emerged. LiNix Coy Mn1- x - y O2 (NCM) is considered as an ideal cathode material to meet the urgent needs of high-energy-density batteries. However, the oxygen precipitation reaction of NCM cathode at high temperature brings serious safety concerns. In order to promote high-safety lithium-ion batteries, herein, a new type of flame-retardant separator is prepared using flame-retardant (melamine pyrophosphate, MPP) and thermal stable Poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP). MPP takes the advantage of nitrogen-phosphorus synergistic effect upon the increased internal temperature of LIBs, including the dilution effect of noncombustible gas and the rapidly suppression of undesirable thermal runaway. The developed flame-retardant separators show negligible shrinkage over 200 °C and it takes only 0.54 s to extinguish the flame in the ignition test, which are much superior to commercial polyolefin separators. Moreover, pouch cells are assembled to demonstrate the application potential of PVDF-HFP/MPP separators and further verify the safety performance. It is anticipated that the separator with nitrogen-phosphorus flame-retardant can be extensively applied to various high-energy-density devices owing to simplicity and cost-effectiveness.
Collapse
Affiliation(s)
- Chengyu Han
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| | - Yu Cao
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Shaojie Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Liyang Bai
- Jiewei Power Co. Ltd. , Tianjin, 300112, China
| | - Ming Yang
- Science and Technology on Power Sources Laboratory, Tianjin Institute of Power Sources, Tianjin, 300384, China
| | - Siyu Fang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Haochen Gong
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Di Tang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Fusheng Pan
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515031, China
| | - Zhongyi Jiang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515031, China
| | - Jie Sun
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
13
|
Luo G, Liu D, Zhao J, Hussain A, Raza W, Wu Y, Liu F, Cai X. Negatively Charged Holey Titania Nanosheets Added Electrolyte to Realize Dendrite-Free Lithium Metal Battery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206176. [PMID: 36587971 DOI: 10.1002/smll.202206176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/26/2022] [Indexed: 06/17/2023]
Abstract
Electrolyte modulation and electrode structure design are two common strategies to suppress dendrites growth on Li metal anode. In this work, a self-adaptive electrode construction method to suppress Li dendrites growth is reported, which merges the merits of electrolyte modulation and electrode structure design strategies. In detail, negatively charged titania nanosheets with densely packed nanopores on them are prepared. These holey nanosheets in the electrolyte move spontaneously onto the anode under electrical field, building a mesoporous structure on the electrode surface. The as-formed porous electrode has large surface area with good lithiophilicity, which can efficiently transfer lithium ion (Li+ ) inside the electrode, and induce the genuine lithium plating/stripping. Moreover, the negative charges and nanopores on the sheets can also regulate the lithium-ion flux to promote uniform deposition of Li metal. As a result, the symmetric and full cells using the holey titania nanosheets containing electrolyte, show much better performance than the ones using electrolyte without holey nanosheets inside. This work points out a new route for the practical applications of Li-metal batteries.
Collapse
Affiliation(s)
- Geng Luo
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong Province, 518060, P. R. China
| | - Dongqing Liu
- College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen, Guangdong Province, 518060, P. R. China
| | - Jie Zhao
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong Province, 518060, P. R. China
| | - Arshad Hussain
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong Province, 518060, P. R. China
| | - Waseem Raza
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong Province, 518060, P. R. China
| | - Yanyan Wu
- School of Science and Ministry of Industry and Information Technology Key Laboratory of Micro-Nano Optoelectronic Information System, Harbin Institute of Technology, Shenzhen, Guangdong Province, 518055, P. R. China
| | - Fude Liu
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong Province, 518060, P. R. China
| | - Xingke Cai
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong Province, 518060, P. R. China
| |
Collapse
|
14
|
Li YC, Wu ZP, Zong ZH, Cao XZ. Rheological Role of Stiff Nanorings on Concurrently Strengthening and Toughening Polymer Nanocomposites. ACS Macro Lett 2023; 12:183-188. [PMID: 36692488 DOI: 10.1021/acsmacrolett.2c00610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Nanorings, which are increasingly uncovered in natural systems and synthesized in man-made materials, exhibit dynamics distinct from those known for linear chains. We show in this study that, when immersed in a polymer melt matrix, segments of a stiff nanoring (SNR) have more facilitated subdiffusion, i.e., with a larger scaling exponent in the mean squared displacement, than those belonging to one flexible counterpart, while the whole SNR is more suppressed by its surroundings. It is revealed that adding SNRs contributes to achieving the long-anticipated rheological objective of sol- and gel-like characteristics at high and low shearing frequencies, respectively. This study suggests the promising prospect of exploiting SNRs to concurrently strengthen and toughen target polymer nanocomposites.
Collapse
Affiliation(s)
- Yu-Chao Li
- Department of Physics and Fujian Provincial Key Laboratory for Soft Functional Materials Research, College of Physical Science and Technology, Xiamen University, Xiamen 361005, P.R. China
| | - Zong-Pei Wu
- Department of Physics and Fujian Provincial Key Laboratory for Soft Functional Materials Research, College of Physical Science and Technology, Xiamen University, Xiamen 361005, P.R. China
| | - Ze-Hao Zong
- Department of Physics and Fujian Provincial Key Laboratory for Soft Functional Materials Research, College of Physical Science and Technology, Xiamen University, Xiamen 361005, P.R. China
| | - Xue-Zheng Cao
- Department of Physics and Fujian Provincial Key Laboratory for Soft Functional Materials Research, College of Physical Science and Technology, Xiamen University, Xiamen 361005, P.R. China
| |
Collapse
|
15
|
Cui S, Zhang J, Fan S, Xing X, Deng L, Gong Y. SiO xC y Microspheres with Homogeneous Atom Distribution for a High-Performance Li-Ion Battery. NANO LETTERS 2022; 22:9559-9565. [PMID: 36449467 DOI: 10.1021/acs.nanolett.2c03699] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The broad application of silicon-based materials is limited by large volume fluctuation, high preparation costs, and complicated preparation processes. Here, we synthesized SiOxCy microspheres on 3D copper foams by a simple chemical vapor deposition method using a low-cost silane coupling agent (KH560) as precursors. The SiOxCy microspheres are available with a large mass loading (>3 mg/cm2) on collectors and can be directly used as the electrode without any binders or extra conductive agents. As a result, the as-prepared SiOxCy shows a high reversible capacity of ∼1240 mAh g-1 and can be cycled more than 1900 times without decay. Ex situ characterizations show that the volume change of the microspheres is only 55% and the spherical morphology as well as the 3D structure remain intact after cycles. Full-cell electrochemical tests paired with LiFePO4 as cathodes show 87% capacity retention after 500 cycles, better than most reported results, thus showing the commercial potential of the material.
Collapse
Affiliation(s)
- Shiqiang Cui
- School of Materials Science and Engineering, Beihang University, Beijing100191, People's Republic of China
- School of Sciences, Hebei University of Science and Technology, Shijiazhuang050018, People's Republic of China
| | - Jiangjiang Zhang
- School of Sciences, Hebei University of Science and Technology, Shijiazhuang050018, People's Republic of China
| | - Shangze Fan
- School of Sciences, Hebei University of Science and Technology, Shijiazhuang050018, People's Republic of China
| | - Xuteng Xing
- School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang050018, People's Republic of China
| | - Libo Deng
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen518060, People's Republic of China
| | - Yongji Gong
- School of Materials Science and Engineering, Beihang University, Beijing100191, People's Republic of China
- Key Laboratory of Intelligent Sensing Materials and Chip Integration Technology of Zhejiang Province, Hangzhou, 310051, People's Republic of China
| |
Collapse
|
16
|
Cai R, Zhang W, Zhou J, Yang K, Sun L, Yang L, Ran L, Shao R, Fukuda T, Tan G, Liu H, Wan J, Zhang Q, Dong L. Unraveling Atomic-Scale Origins of Selective Ionic Transport Pathways and Sodium-Ion Storage Mechanism in Bi 2 S 3 Anodes. SMALL METHODS 2022; 6:e2200995. [PMID: 36250994 DOI: 10.1002/smtd.202200995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/18/2022] [Indexed: 06/16/2023]
Abstract
It is a major challenge to achieve a high-performance anode for sodium-ion batteries (SIBs) with high specific capacity, high rate capability, and cycling stability. Bismuth sulfide, which features a high theoretical specific capacity, tailorable morphology, and low cost, has been considered as a promising anode for SIBs. Nevertheless, due to a lack of direct atomistic observation, the detailed understanding of fundamental intercalation behavior and Bi2 S3 's (de)sodiation mechanisms remains unclear. Here, by employing in situ high-resolution transmission electron microscopy, consecutive electron diffraction coupled with theoretical calculations, it is not only for the first time identified that Bi2 S3 exhibits specific ionic transport pathways preferred to diffuse along the (110) direction instead of the (200) plane, but also tracks their real-time phase transformations (de)sodiation involving multi-step crystallographic tuning. The finite-element analysis further disclosed multi-reaction induced deformation and the relevant stress evolution originating from the combined effect of the mechanical and electrochemical interaction. These discoveries not only deepen the understanding of fundamental science about the microscopic reaction mechanism of metal chalcogenide anodes but also provide important implications for performance optimization.
Collapse
Affiliation(s)
- Ran Cai
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Wenqi Zhang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Jinhua Zhou
- Department of Electronic and Information Engineering, Changshu Institute of Technology, Suzhou, 215500, P. R. China
| | - Kaishuai Yang
- Department of Electronic and Information Engineering, Changshu Institute of Technology, Suzhou, 215500, P. R. China
| | - Linfeng Sun
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Le Yang
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing, 10081, P. R. China
| | - Leguan Ran
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Ruiwen Shao
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Toshio Fukuda
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Guoqiang Tan
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Haodong Liu
- Department of Chemical Engineering, University of California San Diego, La Jolla, California, 92093, USA
| | - Jiayu Wan
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Qiaobao Zhang
- Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen, Fujian, 361005, P. R. China
| | - Lixin Dong
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 999077, P. R. China
| |
Collapse
|
17
|
Zhu T, Chen D, Liu G, Qi P, Gu X, Li H, Sun J, Zhang S. A Facile Immobilization Strategy for Soluble Phosphazene to Actualize Stable and Safe Lithium-Sulfur Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203693. [PMID: 36007148 DOI: 10.1002/smll.202203693] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Lithium-sulfur batteries (LSBs) have attracted extensive attention owing to their high energy density and abundant sulfur resources. However, LSBs are still restricted by the unsatisfactory electrochemical performance resulting from the shuttle effect of lithium polysulfide (LiPSs), and the potential fire hazard caused by inflammable ether electrolytes and polyolefin separators. Herein, a facile immobilization strategy for hexachlorocyclotriphosphazene (HCCP) is creatively applied to address the above issues simultaneously. Insoluble HCCP cross-linked microspheres (H-CMP) are firstly obtained at ambient temperature using tannic acid (TA) as a cross-linking agent and then a multifunctional separator coating is constructed based on H-CMP. The released phosphorus-related radicals from H-CMP in wide temperatures effectively prevent the combustion of electrolytes and separators, and hence improve the fire safety of the Li-S pouch cell. Furthermore, H-CMP availably chemisorbs LiPSs to interdict the shuttle effect, thereby dramatically improving the electrochemical performance of LSBs. The effectiveness of this strategy is also verified in high sulfur loading (6.38 mg cm-2 ), high temperature (50 °C), and Li-S pouch cells. More importantly, H-CMP exhibits sufficient stability for Li metal and suppression of Li dendrites. This facile immobilization strategy for multifunctional phosphazenes provides a competitive option for the large-scale fabrication of high-safety and high-performance LSBs.
Collapse
Affiliation(s)
- Tao Zhu
- State Key Laboratory of Organic-Inorganic Composites, Center for Fire Safety Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Dongli Chen
- State Key Laboratory of Organic-Inorganic Composites, Center for Fire Safety Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Guoqing Liu
- State Key Laboratory of Organic-Inorganic Composites, Center for Fire Safety Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Peng Qi
- State Key Laboratory of Organic-Inorganic Composites, Center for Fire Safety Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xiaoyu Gu
- State Key Laboratory of Organic-Inorganic Composites, Center for Fire Safety Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Hongfei Li
- State Key Laboratory of Organic-Inorganic Composites, Center for Fire Safety Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Jun Sun
- State Key Laboratory of Organic-Inorganic Composites, Center for Fire Safety Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Sheng Zhang
- State Key Laboratory of Organic-Inorganic Composites, Center for Fire Safety Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
18
|
Synergistic Effect of Dual-Ceramics for Improving the Dispersion Stability and Coating Quality of Aqueous Ceramic Coating Slurries for Polyethylene Separators in Li Secondary Batteries. BATTERIES-BASEL 2022. [DOI: 10.3390/batteries8080082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We demonstrate that dispersion stability and excellent coating quality are achieved in polyethylene (PE) separators by premixing heterogeneous ceramics such as silica (SiO2) and alumina (Al2O3) in an aqueous solution, without the need for functional additives such as dispersing agents and surfactants. Due to the opposite polarities of the zeta potentials of SiO2 and Al2O3, SiO2 forms a sheath around the Al2O3 surface. Electrostatic repulsion occurs between the Al2O3 particles encapsulated in SiO2 to improve the dispersion stability of the slurry. The CCSs fabricated using a dual ceramic (SiO2 and Al2O3)-containing aqueous coating slurry, denoted as DC-CCSs, exhibit improved physical properties, such as a wetting property, electrolyte uptake, and ionic conductivity, compared to bare PE separators and CCSs coated with a single ceramic of Al2O3 (SC-CCSs). Consequently, DC-CCSs exhibit an improved electrochemical performance, in terms of rate capability and cycle performance. The half cells consisting of DC-CCSs retain 93.8% (97.12 mAh g−1) of the initial discharge capacity after 80 cycles, while the bare PE and SC-CCSs exhibit 22.5% and 26.6% capacity retention, respectively. The full cells consisting of DC-CCSs retain 90.9% (102.9 mAh g−1) of the initial discharge capacity after 400 cycles, while the bare PE and SC-CCS exhibit 64.7% and 73.4% capacity retention, respectively.
Collapse
|
19
|
Liao J, Zhang X, Zhang Q, Hu Q, Li Y, Du Y, Xu J, Gu L, Zhou X. Synthesis of KVPO 4F/Carbon Porous Single Crystalline Nanoplates for High-Rate Potassium-Ion Batteries. NANO LETTERS 2022; 22:4933-4940. [PMID: 35671041 DOI: 10.1021/acs.nanolett.2c01604] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
With high theoretical capacity and operating voltage, KVPO4F is a potential high energy density cathode material for potassium-ion batteries. However, its performance is usually limited by F loss, poor electronic conductivity, and unsteady electrode/electrolyte interface. Herein, a simple one-step sintering process is developed, where vanadium-oxalate-phosphite/phosphate frameworks and fluorinated polymer are used to synthesize carbon-coated KVPO4F nanoplates. It is found that the V-F-C bond generated by fluorinated-polymer-derived carbon at the interface of KVPO4F/C nanoplates diminishes the F loss, as well as enhances K-ions migration ability and the electronic conductivity of KVPO4F. The as-synthesized KVPO4F/C cathode delivers a reversible capacity of 106.5 mAh g-1 at 0.2 C, a high working voltage of 4.28 V, and a rate capability with capacity of 73.8 mAh g-1 at the ultrahigh current density of 100 C. In addition, a KVPO4F/C//soft carbon full cell exhibits a high energy density of 235.5 Wh kg-1.
Collapse
Affiliation(s)
- Jiaying Liao
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Xinxin Zhang
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Qinghua Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Qiao Hu
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Yafei Li
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Yichen Du
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Jianzhi Xu
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Lin Gu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaosi Zhou
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
20
|
Zhou HY, Yan SS, Li J, Dong H, Zhou P, Wan L, Chen XX, Zhang WL, Xia YC, Wang PC, Wang BG, Liu K. Lithium Bromide-Induced Organic-Rich Cathode/Electrolyte Interphase for High-Voltage and Flame-Retardant All-Solid-State Lithium Batteries. ACS APPLIED MATERIALS & INTERFACES 2022; 14:24469-24479. [PMID: 35587195 DOI: 10.1021/acsami.2c05016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Poly(ethylene oxide) (PEO)-based solid electrolyte suffers from limited anodic stability and an intrinsic flammable issue, hindering the achievement of high energy density and safe all-solid-state lithium batteries. Herein, we surprisingly found out that a bromine-rich additive, decabromodiphenyl ethane (DBDPE), could be preferably oxidized at an elevated voltage and decompose to lithium bromide at an elevated potential followed by inducing an organic-rich cathode/electrolyte interphase (CEI) on NCM811 surface, enabling both high-voltage resistance (up to 4.5 V) and flame-retardancy for the PEO-based electrolyte. On the basis of this novel solid electrolyte, all-solid-state Li/NCM811 batteries deliver an average reversible capacity of 151.4 mAh g-1 over the first 150 cycles with high capacity retention (83.0%) and high average Coulombic efficiency (99.7%) even at a 4.5 V cutoff voltage with a unprecedented flame-retardant properties. In view of these exploration, our studies revealed the critical role of LiBr in inducing an organic-rich thin and uniform CEI passivating layer with enhanced lithium ion surface diffusion and high-voltage resistant properties, which provides a new protocol for the further design of a high-voltage PEO-based all-solid-state electrolyte.
Collapse
Affiliation(s)
- Hang-Yu Zhou
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Shuai-Shuai Yan
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Jun Li
- Sinopec Shanghai Research Institute of Petrochemical Technology, Shanghai 201208, China
| | - Hao Dong
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Pan Zhou
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Lei Wan
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Xiao-Xia Chen
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Wei-Li Zhang
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Ying-Chun Xia
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Pei-Can Wang
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Bao-Guo Wang
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Kai Liu
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
21
|
Yang M, Ji Y, Dong Y, Yuan B, Dong L, Liu Y, Hao S, Yang C, Wu X, Kong Q, Han J, He W. Talcum-doped composite separator with superior wettability and heatproof properties for high-rate lithium metal batteries. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.12.079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
22
|
Liang L, Chen X, Yuan W, Chen H, Liao H, Zhang Y. Highly Conductive, Flexible, and Nonflammable Double-Network Poly(ionic liquid)-Based Ionogel Electrolyte for Flexible Lithium-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2021; 13:25410-25420. [PMID: 34009949 DOI: 10.1021/acsami.1c06077] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The solid-state lithium-ion battery is proposed as the ultimate form of battery and has rapidly become an updated attentive research field due to its high safety and extreme temperature tolerance. However, current solid-state electrolytes hardly meet the requirement in practical applications due to its low ionic conductivity, weak mechanical properties, and poor interfacial contact between the electrolyte and the electrode. In this work, we developed a double-network-supported poly(ionic liquid)-based ionogel electrolyte (DN-Ionogel) via a one-step method. Due to its compact cross-linking structure, the leakage-free DN-Ionogel electrolyte exhibits outstanding flexibility and favorable mechanical properties. In this ionogel electrolyte, the double network favors dissociation of lithium bis(trifluoromethanesulfony)imide (LiTFSI), further resulting in remarkable ionic conductivity (1.8 × 10-3 S/cm, room temperature), wide electrochemical window (up to 5.0 V), and high lithium-ion transference number (0.33). Furthermore, the cell (LiFePO4||DN-Ionogel||Lithium) delivers a discharge capacity as high as 150.5 mAh/g, stable cyclic performance (over 200 cycles), and superior rate behavior.
Collapse
Affiliation(s)
- Ling Liang
- School of Mechanical Engineering, Hunan University of Technology, Zhuzhou 412007, China
| | - Xianhong Chen
- School of Mechanical Engineering, Hunan University of Technology, Zhuzhou 412007, China
| | - Wenfang Yuan
- School of Mechanical Engineering, Hunan University of Technology, Zhuzhou 412007, China
| | - Han Chen
- School of Mechanical Engineering, Hunan University of Technology, Zhuzhou 412007, China
- Changsha University, Changsha 410300, China
| | - Haiyang Liao
- School of Mechanical Engineering, Hunan University of Technology, Zhuzhou 412007, China
| | - Yongqi Zhang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313002, China
| |
Collapse
|