1
|
Fu Y, He X, Zang Y, Chen Y, Pan M. Angular dispersion-enabled dynamic metasurface for tunable reflective focusing. OPTICS EXPRESS 2025; 33:19270-19281. [PMID: 40515138 DOI: 10.1364/oe.559037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 04/09/2025] [Indexed: 06/16/2025]
Abstract
Active metasurfaces have garnered significant attention due to their potential to replace conventional bulky optical systems, offering advantages in terms of reduced weight and compactness. In this study, we introduce the incident angle as a novel degree of freedom for controlling wavefront modulation in dielectric metasurfaces. By utilizing the angular dispersion of Mie resonances supported by a silicon ring disk, different reflective phases are modulated under varying incident angles. As a proof of concept, we numerically demonstrate a dynamic metalens whose reflective focal length is tuned by the incident angle. By balancing reflectivity and reflection phase through an intelligent approach, we demonstrate a metalens with a focal length that switches with the incident angle: 10 μm at 15° incident angle and 20 μm at 20° incident angle, achieving focusing efficiencies of approximately 13.5% and 18.13%, respectively. Continuous focal tuning, facilitated by progressive incident angle adjustments, is also spontaneously enabled by global coupling. Our design introduces a new degree of freedom for the dynamic control of metasurfaces and provides an approach in the development of portable zoom lenses.
Collapse
|
2
|
Yan B, Zhang S, Zhang B, Pei Y, Jiang X. Tunable high-performance optical switch via quasi-bound states in the continuum controlled by graphene Fermi energy. OPTICS EXPRESS 2025; 33:19904-19911. [PMID: 40515186 DOI: 10.1364/oe.561904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Accepted: 04/16/2025] [Indexed: 06/16/2025]
Abstract
Through controlled breaking of the symmetry of the system, multiple bound states in the continuum (BICs) are transformed into quasi-BICs (QBICs), generating high quality factor resonance peaks. These peaks can be used to generate optical switches, thereby enhancing both the quantity and modulation depth of optical switches. We propose a bilayer graphene sandwich dielectric corrugated structure to realize an optical switch. The spectral positions of the transmission and reflection resonance peaks can be tuned via modulation of graphene of Fermi energy. When the Fermi energy is 1 eV or 0.2 eV, the ON or OFF state of the optical switch can be selected. The modulation depths of all transmission and reflection are close to 100% and are mainly supported by the electric quadrupole (EQ) component. Our research provides a feasible way to design excellent applications based on QBIC in tunable optical switches.
Collapse
|
3
|
Brugnolo P, Arslanagić S, Jacobsen RE. Bound States in the Continuum in Cylindrical All-Dielectric Metasurface Cavities. PHYSICAL REVIEW LETTERS 2025; 134:096902. [PMID: 40131060 DOI: 10.1103/physrevlett.134.096902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/30/2024] [Accepted: 01/17/2025] [Indexed: 03/26/2025]
Abstract
Bound states in the continuum are presently demonstrated in all-dielectric, metasurface-based cavities of circularly cylindrical shapes. While their cross-sectional sizes may be arbitrary, emphasis is put on the much-needed excitation of these intriguing states in subwavelength cavities. The employed metasurfaces are characterized by effective electric and magnetic surface impedances, allowing for a swift analytical analysis of the underlying problem. The inclusion of magnetic responses, in addition to the electric one, enhances the versatility of the proposed cavities, significantly extending their application, particularly in optical contexts where magnetism is absent. To demonstrate the potential of the proposed method, an all-dielectric metasurface composed of appropriately arranged silicon particles is designed and investigated in the optical frequency range, resulting in a quality factor of ∼1.7×10^{4}.
Collapse
Affiliation(s)
- Pietro Brugnolo
- Technical University of Denmark, Department of Space Research and Technology, Lyngby DK-2800, Denmark
| | - Samel Arslanagić
- Technical University of Denmark, Department of Space Research and Technology, Lyngby DK-2800, Denmark
| | - Rasmus E Jacobsen
- Technical University of Denmark, Department of Space Research and Technology, Lyngby DK-2800, Denmark
| |
Collapse
|
4
|
Arriaga-Dávila J, Rosero-Arias C, Jonker D, Córdova-Castro M, Zscheile J, Kirchner R, Aguirre-Soto A, Boyd R, De Leon I, Gardeniers H, Susarrey-Arce A. From Single to Multi-Material 3D Printing of Glass-Ceramics for Micro-Optics. SMALL METHODS 2025:e2401809. [PMID: 39901648 DOI: 10.1002/smtd.202401809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 01/12/2025] [Indexed: 02/05/2025]
Abstract
Feynman's statement, "There is plenty of room at the bottom", underscores vast potential at the atomic scale, envisioning microscopic machines. Today, this vision extends into 3D space, where thousands of atoms and molecules are volumetrically patterned to create light-driven technologies. To fully harness their potential, 3D designs must incorporate high-refractive-index elements with exceptional mechanical and chemical resilience. The frontier, however, lies in creating spatially patterned micro-optical architectures in glass and ceramic materials of dissimilar compositions. This multi-material capability enables novel ways of shaping light, leveraging the interaction between diverse interfaced chemical compositions to push optical boundaries. Specifically, it encompasses both multi-material integration within the same architectures and the use of different materials for distinct architectural features in an optical system. Integrating fluid handling systems with two-photon lithography (TPL) provides a promising approach for rapidly prototyping such complex components. This review examines single and multi-material TPL processes, discussing photoresin customization, essential physico-chemical conditions, and the need for cross-scale characterization to assess optical quality. It reflects on challenges in characterizing multi-scale architectures and outlines advancements in TPL for both single and spatially patterned multi-material structures. The roadmap provides a bridge between research and industry, emphasizing collaboration and contributions to advancing micro-optics.
Collapse
Affiliation(s)
- Joel Arriaga-Dávila
- Department of Chemical Engineering, Mesoscale Chemical Systems, MESA+ Institute, University of Twente, PO Box 217, Enschede, 7500 AE, The Netherlands
| | - Cristian Rosero-Arias
- Department of Chemical Engineering, Mesoscale Chemical Systems, MESA+ Institute, University of Twente, PO Box 217, Enschede, 7500 AE, The Netherlands
- School of Engineering and Sciences, Tecnológico de Monterrey, Eugenio Garza Sada 2501, Monterrey, NL, 64849, Mexico
| | - Dirk Jonker
- Department of Chemical Engineering, Mesoscale Chemical Systems, MESA+ Institute, University of Twente, PO Box 217, Enschede, 7500 AE, The Netherlands
| | | | - Josua Zscheile
- HETEROMERGE GmbH, Gostritzer Str. 61, 01217, Dresden, Germany
| | - Robert Kirchner
- HETEROMERGE GmbH, Gostritzer Str. 61, 01217, Dresden, Germany
- Center for Advancing Electronics Dresden, TU Dresden, Helmholtzstraße 18, 01069, Dresden, Germany
| | - Alan Aguirre-Soto
- School of Engineering and Sciences, Tecnológico de Monterrey, Eugenio Garza Sada 2501, Monterrey, NL, 64849, Mexico
| | - Robert Boyd
- Department of Physics, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
- Department of Physics, University of Rochester, Rochester, NY, 14627, USA
| | - Israel De Leon
- School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, Ontario, K1N6N5, Canada
- ASML Netherlands B.V., De Run 6501, DR Veldhoven, 5504, The Netherlands
| | - Han Gardeniers
- Department of Chemical Engineering, Mesoscale Chemical Systems, MESA+ Institute, University of Twente, PO Box 217, Enschede, 7500 AE, The Netherlands
| | - Arturo Susarrey-Arce
- Department of Chemical Engineering, Mesoscale Chemical Systems, MESA+ Institute, University of Twente, PO Box 217, Enschede, 7500 AE, The Netherlands
| |
Collapse
|
5
|
Zhemchuzhna L, Iurov A, Gumbs G, Huang D. Polarizability, plasmons and damping in pseudospin-1 gapped materials with a flat band. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 37:085701. [PMID: 39652972 DOI: 10.1088/1361-648x/ad9c0a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 12/09/2024] [Indexed: 12/18/2024]
Abstract
The subject of our present investigation is the collective electronic properties of various types of pseudospin-1 Dirac-cone materials with a flat band and finite bandgaps in their low-energy spectra. Specifically, we have calculated the dynamical polarization, plasmon dispersions, as well as their decay rates due to Landau damping and presented the closed-form analytical expressions for the wave function overlaps for both the gapped dice lattice and the Lieb lattice. The gapped dice lattice is a special case of the more generalα-T3model such that its band structure is symmetric and the flat band remains dispersionless. On the other hand, the Lieb lattice has a flat band which appears at the lowest point of its conduction band. Our results for these two materials exhibit unique features in the plasmon spectra and their damping regions, which have never been previously reported. For example, the particle-hole modes of a Lieb lattice appear as finite-size regions, while the plasmon modes exist only in areas with small wave numbers but an extended range of frequencies.
Collapse
Affiliation(s)
- Liubov Zhemchuzhna
- Department of Physics and Computer Science, Medgar Evers College of City University of New York, Brooklyn, NY 11225, United States of America
- Department of Physics & Engineering Physics, Fordham University, Bronx, NY 10458, United States of America
- Department of Physics and Astronomy, Hunter College of the City University of New York, 695 Park Avenue, New York, NY 10065, United States of America
| | - Andrii Iurov
- Department of Physics and Computer Science, Medgar Evers College of City University of New York, Brooklyn, NY 11225, United States of America
| | - Godfrey Gumbs
- Department of Physics and Astronomy, Hunter College of the City University of New York, 695 Park Avenue, New York, NY 10065, United States of America
- Donostia International Physics Center (DIPC), P de Manuel Lardizabal, 4, 20018 San Sebastian, Basque Country, Spain
| | - Danhong Huang
- Space Vehicles Directorate, US Air Force Research Laboratory, Kirtland Air Force Base, Albuquerque, NM 87117, United States of America
| |
Collapse
|
6
|
Zygmuntowicz J, Kosiorek M, Wachowski M, Śnieżek L, Szachogłuchowicz I, Piotrkiewicz P, Kaszuwara W, Konopka K. The Structural and Mechanical Properties of Al 2O 3-Ni Composites Obtained by Magnetic Field-Assisted Centrifugal Slip Casting. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3902. [PMID: 39203080 PMCID: PMC11355720 DOI: 10.3390/ma17163902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/24/2024] [Accepted: 08/02/2024] [Indexed: 09/03/2024]
Abstract
This study investigates the influence of a magnetic field on the microstructure and properties of Al2O3-Ni composites fabricated via centrifugal slip casting at 1500 rpm. Al2O3 and Ni powders were combined with water and deflocculants, homogenized, and then cast into a porous plaster mold surrounded by Nd-Fe-B magnets. The resulting composites, sintered in a reducing atmosphere, exhibited a three-zone structure with varying Ni content due to the combined effects of the magnetic field and centrifugal force. SEM, EDX, and XRD analyses confirmed the distribution and composition of the phases. Hardness tests revealed the highest values at the outermost zone, with a gradual decrease toward the inner zones. Compression tests employing digital image correlation revealed high internal stresses and a significant improvement in compressive strength compared to non-magnetic field methods. This study confirms that magnetic field-assisted centrifugal slip casting significantly enhances the structural, hardness, and compressive strength properties of Al2O3-Ni composites, indicating promising potential for advanced applications.
Collapse
Affiliation(s)
- Justyna Zygmuntowicz
- Faculty of Materials Science and Engineering, Warsaw University of Technology, 141 Woloska St., 02-507 Warsaw, Poland; (P.P.); (W.K.); (K.K.)
| | - Magdalena Kosiorek
- Institute of Power Engineering—National Research Institute, 8 Mory St., 01-330 Warsaw, Poland;
- Institute of Heat Engineering, Faculty of Power and Aeronautical Engineering, Warsaw University of Technology, 21/25 Nowowiejska St., 00-665 Warsaw, Poland
| | - Marcin Wachowski
- Faculty of Mechanical Engineering, Military University of Technology, 2 gen. S. Kaliskiego St., 00-908 Warsaw, Poland; (M.W.); (L.Ś.); (I.S.)
| | - Lucjan Śnieżek
- Faculty of Mechanical Engineering, Military University of Technology, 2 gen. S. Kaliskiego St., 00-908 Warsaw, Poland; (M.W.); (L.Ś.); (I.S.)
| | - Ireneusz Szachogłuchowicz
- Faculty of Mechanical Engineering, Military University of Technology, 2 gen. S. Kaliskiego St., 00-908 Warsaw, Poland; (M.W.); (L.Ś.); (I.S.)
| | - Paulina Piotrkiewicz
- Faculty of Materials Science and Engineering, Warsaw University of Technology, 141 Woloska St., 02-507 Warsaw, Poland; (P.P.); (W.K.); (K.K.)
| | - Waldemar Kaszuwara
- Faculty of Materials Science and Engineering, Warsaw University of Technology, 141 Woloska St., 02-507 Warsaw, Poland; (P.P.); (W.K.); (K.K.)
| | - Katarzyna Konopka
- Faculty of Materials Science and Engineering, Warsaw University of Technology, 141 Woloska St., 02-507 Warsaw, Poland; (P.P.); (W.K.); (K.K.)
| |
Collapse
|
7
|
Liang Y, Tsai DP, Kivshar Y. From Local to Nonlocal High-Q Plasmonic Metasurfaces. PHYSICAL REVIEW LETTERS 2024; 133:053801. [PMID: 39159090 DOI: 10.1103/physrevlett.133.053801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 05/26/2024] [Accepted: 06/28/2024] [Indexed: 08/21/2024]
Abstract
The physics of bound states in the continuum (BICs) allows the design and demonstration of optical resonant structures with large values of the quality factor (Q factor) by employing dielectric structures with low losses. However, BIC is a general wave phenomenon that should be observed in many systems, including the metal-dielectric structures supporting surface plasmon polaritons where optical resonances are hindered by losses. Here we suggest and develop a comprehensive strategy to achieve high-Q resonances in plasmonic metasurfaces by effectively tailoring the resonant modes from local to nonlocal regimes, thus transitioning from quasi-isolated localized resonances to extended resonant modes involving strong interaction among neighboring structure metaunits.
Collapse
Affiliation(s)
| | - Din Ping Tsai
- Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- Centre for Biosystems, Neuroscience and Nanotechnology, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | | |
Collapse
|
8
|
Wang H, Niu J, Chen Q, Zhao S, Shao H, Yang Y, Chen H, Li S, Qian H. All-optical modulator with photonic topological insulator made of metallic quantum wells. NANOPHOTONICS (BERLIN, GERMANY) 2024; 13:3575-3580. [PMID: 39634839 PMCID: PMC11501365 DOI: 10.1515/nanoph-2024-0197] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 06/17/2024] [Indexed: 12/07/2024]
Abstract
All-optical modulators hold significant prospects for future information processing technologies for they are able to process optical signals without the electro-optical convertor which limits the achievable modulation bandwidth. However, owing to the hardly-controlled optical backscattering in the commonly-used device geometries and the weak optical nonlinearities of the conventional material systems, constructing an all-optical modulator with a large bandwidth and a deep modulation depth in an integration manner is still challenging. Here, we propose an approach to achieving an on-chip ultrafast all-optical modulator with ultra-high modulation efficiency and a small footprint by using photonic topological insulators (PTIs) made of metallic quantum wells (MQWs). Since PTIs have attracted significant attention because of their unidirectional propagating edge states, which mitigate optical backscattering caused by structural imperfections or defects. Meanwhile, MQWs have shown a large Kerr nonlinearity, facilitating the development of minimally sized nonlinear optical devices including all-optical modulators. The proposed photonic topological modulator shows a remarkable modulation depth of 15 dB with a substantial modulation bandwidth above THz in a tiny footprint of only 4 × 10 µm2, which manifests itself as one of the most compact optical modulators compared with the reported ones possessing a bandwidth above 100 GHz. Such a high-performance optical modulator could enable new functionalities in future optical communication and information processing systems.
Collapse
Affiliation(s)
- Haiteng Wang
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou310027, China
- ZJU-Hangzhou Global Science and Technology Innovation Center, Key Lab of Advanced Micro/Nano Electronic Devices & Smart Systems of Zhejiang, Zhejiang University, Hangzhou310027, China
- International Joint Innovation Center, ZJU-UIUC Institute, Zhejiang University, Haining314400, China
| | - Junru Niu
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou310027, China
- ZJU-Hangzhou Global Science and Technology Innovation Center, Key Lab of Advanced Micro/Nano Electronic Devices & Smart Systems of Zhejiang, Zhejiang University, Hangzhou310027, China
- International Joint Innovation Center, ZJU-UIUC Institute, Zhejiang University, Haining314400, China
| | - Qiaolu Chen
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou310027, China
- ZJU-Hangzhou Global Science and Technology Innovation Center, Key Lab of Advanced Micro/Nano Electronic Devices & Smart Systems of Zhejiang, Zhejiang University, Hangzhou310027, China
- International Joint Innovation Center, ZJU-UIUC Institute, Zhejiang University, Haining314400, China
| | - Sihan Zhao
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Silicon and Advanced Semiconductor Materials, and Zhejiang Province Key Laboratory of Quantum Technology and Device, School of Physics, Zhejiang University, Hangzhou310058, China
| | - Hua Shao
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou310027, China
- ZJU-Hangzhou Global Science and Technology Innovation Center, Key Lab of Advanced Micro/Nano Electronic Devices & Smart Systems of Zhejiang, Zhejiang University, Hangzhou310027, China
- International Joint Innovation Center, ZJU-UIUC Institute, Zhejiang University, Haining314400, China
| | - Yihao Yang
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou310027, China
- ZJU-Hangzhou Global Science and Technology Innovation Center, Key Lab of Advanced Micro/Nano Electronic Devices & Smart Systems of Zhejiang, Zhejiang University, Hangzhou310027, China
- International Joint Innovation Center, ZJU-UIUC Institute, Zhejiang University, Haining314400, China
| | - Hongsheng Chen
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou310027, China
- ZJU-Hangzhou Global Science and Technology Innovation Center, Key Lab of Advanced Micro/Nano Electronic Devices & Smart Systems of Zhejiang, Zhejiang University, Hangzhou310027, China
- International Joint Innovation Center, ZJU-UIUC Institute, Zhejiang University, Haining314400, China
| | - Shilong Li
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou310027, China
- ZJU-Hangzhou Global Science and Technology Innovation Center, Key Lab of Advanced Micro/Nano Electronic Devices & Smart Systems of Zhejiang, Zhejiang University, Hangzhou310027, China
- International Joint Innovation Center, ZJU-UIUC Institute, Zhejiang University, Haining314400, China
| | - Haoliang Qian
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou310027, China
- ZJU-Hangzhou Global Science and Technology Innovation Center, Key Lab of Advanced Micro/Nano Electronic Devices & Smart Systems of Zhejiang, Zhejiang University, Hangzhou310027, China
- International Joint Innovation Center, ZJU-UIUC Institute, Zhejiang University, Haining314400, China
| |
Collapse
|
9
|
Xie P, Deng Y, Ding Q, Zheng X, Zhou Z, Kivshar Y, Wang W. Strong Coupling of Resonant Metasurfaces with Epsilon-Near-Zero Guided Modes. NANO LETTERS 2024; 24:9027-9033. [PMID: 38984823 DOI: 10.1021/acs.nanolett.4c02158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
We study, both theoretically and experimentally, strong interaction between a quasi-bound state in the continuum (QBIC) supported by a resonant metasurface with an epsilon-near-zero (ENZ) guided mode excited in an ultrathin ITO layer. We observe and quantify the strong coupling regime of the QBIC-ENZ interaction in the hybrid metasurface manifested through the mode splitting over 200 meV. We also measure experimentally the resonant nonlinear response enhanced near the ENZ frequency and observe the effective nonlinear refractive index up to ∼4 × 10-13 m2/W in the ITO-integrated dielectric nanoresonators, which provides a promising platform for low-power nonlinear photonic devices.
Collapse
Affiliation(s)
- Peng Xie
- College of Physics, Sichuan University, Chengdu 610065, China
- Nonlinear Physics Center, Research School of Physics, Australian National University, Canberra Australian Capital Territory 2601, Australia
| | - Yanhui Deng
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
| | - Qi Ding
- College of Physics, Sichuan University, Chengdu 610065, China
- School of Engineering, Westlake University, Hangzhou 310030, China
| | - Xiaorui Zheng
- School of Engineering, Westlake University, Hangzhou 310030, China
| | - Zhangkai Zhou
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
| | - Yuri Kivshar
- Nonlinear Physics Center, Research School of Physics, Australian National University, Canberra Australian Capital Territory 2601, Australia
| | - Wei Wang
- College of Physics, Sichuan University, Chengdu 610065, China
| |
Collapse
|
10
|
Wu S, Yin C, Yuan S, Luo Y, Kan X, Zhang Y, Yu Q, Wu J. Generating complex vectorial optical fields via surface lattice resonances. OPTICS LETTERS 2024; 49:3564-3567. [PMID: 38950210 DOI: 10.1364/ol.523328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/04/2024] [Indexed: 07/03/2024]
Abstract
Vectorial optical fields (VOFs) with extra degrees of freedom hold promise for many photonic applications. However, current methods to generate VOFs are either bulky in size or exhibit limited functionalities. Here, we demonstrate a tunable VOF generator by exciting plasmonic surface lattice resonances (SLRs) with axial symmetry. By meticulously arranging bilayer circular arrays with opposite handedness, we achieve a high Q-factor of 103 via just a few particles despite the general belief that too small array size suppresses the SLRs. This work presents tunable complex VOFs with distinct inhomogeneous spatial polarization distributions, which may enable various applications in integrated and polarization optics.
Collapse
|
11
|
Rossi AW, Bourgeois MR, Walton C, Masiello DJ. Probing the Polarization of Low-Energy Excitations in 2D Materials from Atomic Crystals to Nanophotonic Arrays Using Momentum-Resolved Electron Energy Loss Spectroscopy. NANO LETTERS 2024; 24:7748-7756. [PMID: 38874581 DOI: 10.1021/acs.nanolett.4c01797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Spectroscopies utilizing free electron beams as probes offer detailed information on the reciprocal-space excitations of 2D materials such as graphene and transition metal dichalcogenide monolayers. Yet, despite the attention paid to such quantum materials, less consideration has been given to the electron-beam characterization of 2D periodic nanostructures such as photonic crystals, metasurfaces, and plasmon arrays, which can exhibit the same lattice and excitation symmetries as their atomic analogues albeit at drastically different length, momentum, and energy scales. Because of their lack of covalent bonding and influence of retarded electromagnetic interactions, important physical distinctions arise that complicate interpretation of scattering signals. Here we present a fully-retarded theoretical framework for describing the inelastic scattering of wide-field electron beams from 2D materials and apply it to investigate the complementarity in sample excitation information gained in the measurement of a honeycomb plasmon array versus angle-resolved optical spectroscopy in comparison to single monolayer graphene.
Collapse
Affiliation(s)
- Andrew W Rossi
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Marc R Bourgeois
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Caleb Walton
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - David J Masiello
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
12
|
Sun K, Cai Y, Huang L, Han Z. Ultra-narrowband and rainbow-free mid-infrared thermal emitters enabled by a flat band design in distorted photonic lattices. Nat Commun 2024; 15:4019. [PMID: 38740756 PMCID: PMC11091152 DOI: 10.1038/s41467-024-48499-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 05/02/2024] [Indexed: 05/16/2024] Open
Abstract
Most reported thermal emitters to date employing photonic nanostructures to achieve narrow bandwidth feature the rainbow effect due to the steep dispersion of the involved high-Q resonances. In this work, we propose to realize thermal emissions with high temporal coherence but free from rainbow effect, by harnessing a novel flat band design within a large range of wavevectors. This feature is achieved by introducing geometric perturbations into a square lattice of high-index disks to double the period along one direction. As a result of the first Brillouin zone halving, the guided modes will be folded to the Γ point and interact with originally existing guided-mode resonances to form a flat band of dispersion with overall high Q. Despite the use of evaporated amorphous materials, we experimentally demonstrate a thermal emission with the linewidth of 23 nm at 5.144 μm within a wide range of output angles (from -17.5° to 17.5°).
Collapse
Affiliation(s)
- Kaili Sun
- Shandong Provincial Key Laboratory of Optics and Photonic Devices, Center of Light Manipulation and Applications, School of Physics and Electronics, Shandong Normal University, Jinan, 250358, China
| | - Yangjian Cai
- Shandong Provincial Key Laboratory of Optics and Photonic Devices, Center of Light Manipulation and Applications, School of Physics and Electronics, Shandong Normal University, Jinan, 250358, China
| | - Lujun Huang
- School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, China.
| | - Zhanghua Han
- Shandong Provincial Key Laboratory of Optics and Photonic Devices, Center of Light Manipulation and Applications, School of Physics and Electronics, Shandong Normal University, Jinan, 250358, China.
| |
Collapse
|
13
|
Choi M, Munley C, Fröch JE, Chen R, Majumdar A. Nonlocal, Flat-Band Meta-Optics for Monolithic, High-Efficiency, Compact Photodetectors. NANO LETTERS 2024; 24:3150-3156. [PMID: 38477059 DOI: 10.1021/acs.nanolett.3c05139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Miniaturized photodetectors are becoming increasingly sought-after components for next-generation technologies, such as autonomous vehicles, integrated wearable devices, or gadgets embedded on the Internet of Things. A major challenge, however, lies in shrinking the device footprint while maintaining high efficiency. This conundrum can be solved by realizing a nontrivial relation between the energy and momentum of photons, such as dispersion-free devices, known as flat bands. Here, we leverage flat-band meta-optics to simultaneously achieve critical absorption over a wide range of incidence angles. For a monolithic silicon meta-optical photodiode, we achieved an ∼10-fold enhancement in the photon-to-electron conversion efficiency. Such enhancement over a large angular range of ∼36° allows incoming light to be collected via a large-aperture lens and focused on a compact photodiode, potentially enabling high-speed and low-light operation. Our research unveils new possibilities for creating compact and efficient optoelectronic devices with far-reaching impact on various applications, including augmented reality and light detection and ranging.
Collapse
Affiliation(s)
- Minho Choi
- Department of Electrical and Computer Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Christopher Munley
- Department of Physics, University of Washington, Seattle, Washington 98195, United States
| | - Johannes E Fröch
- Department of Electrical and Computer Engineering, University of Washington, Seattle, Washington 98195, United States
- Department of Physics, University of Washington, Seattle, Washington 98195, United States
| | - Rui Chen
- Department of Electrical and Computer Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Arka Majumdar
- Department of Electrical and Computer Engineering, University of Washington, Seattle, Washington 98195, United States
- Department of Physics, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
14
|
Linares-Moreau M, Brandner LA, Velásquez-Hernández MDJ, Fonseca J, Benseghir Y, Chin JM, Maspoch D, Doonan C, Falcaro P. Fabrication of Oriented Polycrystalline MOF Superstructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309645. [PMID: 38018327 DOI: 10.1002/adma.202309645] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/19/2023] [Indexed: 11/30/2023]
Abstract
The field of metal-organic frameworks (MOFs) has progressed beyond the design and exploration of powdery and single-crystalline materials. A current challenge is the fabrication of organized superstructures that can harness the directional properties of the individual constituent MOF crystals. To date, the progress in the fabrication methods of polycrystalline MOF superstructures has led to close-packed structures with defined crystalline orientation. By controlling the crystalline orientation, the MOF pore channels of the constituent crystals can be aligned along specific directions: these systems possess anisotropic properties including enhanced diffusion along specific directions, preferential orientation of guest species, and protection of functional guests. In this perspective, we discuss the current status of MOF research in the fabrication of oriented polycrystalline superstructures focusing on the specific crystalline directions of orientation. Three methods are examined in detail: the assembly from colloidal MOF solutions, the use of external fields for the alignment of MOF particles, and the heteroepitaxial ceramic-to-MOF growth. This perspective aims at promoting the progress of this field of research and inspiring the development of new protocols for the preparation of MOF systems with oriented pore channels, to enable advanced MOF-based devices with anisotropic properties.
Collapse
Affiliation(s)
- Mercedes Linares-Moreau
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, Graz, 8010, Austria
| | - Lea A Brandner
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, Graz, 8010, Austria
| | | | - Javier Fonseca
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, Barcelona, 08193, Spain
| | - Youven Benseghir
- Faculty of Chemistry, Institute of Functional Materials and Catalysis, University of Vienna, Währingerstr. 42, Vienna, A-1090, Austria
| | - Jia Min Chin
- Faculty of Chemistry, Institute of Functional Materials and Catalysis, University of Vienna, Währingerstr. 42, Vienna, A-1090, Austria
| | - Daniel Maspoch
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, Barcelona, 08193, Spain
- Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Barcelona, 08193, Spain
- ICREA, Pg. Lluís Companys 23, Barcelona, 08010, Spain
| | - Christian Doonan
- Department of Chemistry, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Paolo Falcaro
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, Graz, 8010, Austria
| |
Collapse
|
15
|
Shen Y, Wang J, Sheng H, Li X, Yang J, Liu H, Liu D. Double-Strip Array-Based Metasurfaces with BICs for Terahertz Thin Membrane Detection. MICROMACHINES 2023; 15:43. [PMID: 38258162 PMCID: PMC10819919 DOI: 10.3390/mi15010043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 12/22/2023] [Accepted: 12/23/2023] [Indexed: 01/24/2024]
Abstract
A double-strip array-based metasurface that supports the sharp quasi-bound states in the continuum (quasi-BICs) is demonstrated in terahertz regions. By tuning the structural parameters of metal strips, the conversion of BICs and quasi-BICs is controllable. The simulated results exhibit an achieved maximum Q-factor for quasi-BICs that exceeds 500, corresponding to a bandwidth that is less than 1 GHz. The optical response of quasi-BICs is mainly affected by the properties of substrates. Resonant frequencies decrease linearly with increasing refractive index. The bandwidth of quasi-BICs decreases to 0.9 GHz when n is 2.2. The sharp quasi-BICs are also sensitive to changes in material absorption. Low-loss materials show higher Q-factors. Thus, the selection of a suitable substrate material will be beneficial in achieving resonance with a high Q value. The sensitivity of DSAs for molecules is assessed using a thin membrane layer. The DSAs show high sensitivity, which achieves a frequency shift of 70 GHz when the thickness of the membrane is 10 μm, corresponding to a sensitivity of 87.5 GHz/RIU. This metasurface with sharp quasi-BICs is expected to perform well in THz sensing.
Collapse
Affiliation(s)
- Yanchun Shen
- College of Information Engineering, Guangzhou Railway Polytechnic, Guangzhou 511300, China; (J.W.); (X.L.); (J.Y.); (H.L.)
| | - Jinlan Wang
- College of Information Engineering, Guangzhou Railway Polytechnic, Guangzhou 511300, China; (J.W.); (X.L.); (J.Y.); (H.L.)
| | - Hongyu Sheng
- College of Robotics, Beijing Union University, Beijing 100101, China;
| | - Xiaoming Li
- College of Information Engineering, Guangzhou Railway Polytechnic, Guangzhou 511300, China; (J.W.); (X.L.); (J.Y.); (H.L.)
| | - Jing Yang
- College of Information Engineering, Guangzhou Railway Polytechnic, Guangzhou 511300, China; (J.W.); (X.L.); (J.Y.); (H.L.)
| | - Hongmei Liu
- College of Information Engineering, Guangzhou Railway Polytechnic, Guangzhou 511300, China; (J.W.); (X.L.); (J.Y.); (H.L.)
| | - Dejun Liu
- Department of Physics, Shanghai Normal University, Shanghai 200234, China
| |
Collapse
|
16
|
Li Y, Zhou Y, Liu Q, Lu Z, Luo XQ, Liu WM, Wang XL. Multi-Wavelength Selective and Broadband Near-Infrared Plasmonic Switches in Anisotropic Plasmonic Metasurfaces. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:3141. [PMID: 38133038 PMCID: PMC10745881 DOI: 10.3390/nano13243141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023]
Abstract
Anisotropic plasmonic metasurfaces have attracted broad research interest since they possess novel optical properties superior to natural materials and their tremendous design flexibility. However, the realization of multi-wavelength selective plasmonic metasurfaces that have emerged as promising candidates to uncover multichannel optical devices remains a challenge associated with weak modulation depths and narrow operation bandwidth. Herein, we propose and numerically demonstrate near-infrared multi-wavelength selective passive plasmonic switching (PPS) that encompasses high ON/OFF ratios and strong modulation depths via multiple Fano resonances (FRs) in anisotropic plasmonic metasurfaces. Specifically, the double FRs can be fulfilled and dedicated to establishing tailorable near-infrared dual-wavelength PPS. The multiple FRs mediated by in-plane mirror asymmetries cause the emergence of triple-wavelength PPS, whereas the multiple FRs governed by in-plane rotational asymmetries avail the implementation of the quasi-bound states in the continuum-endowed multi-wavelength PPS with the ability to unfold a tunable broad bandwidth. In addition, the strong polarization effects with in-plane anisotropic properties further validate the existence of the polarization-resolved multi-wavelength PPS. Our results provide an alternative approach to foster the achievement of multifunctional meta-devices in optical communication and information processing.
Collapse
Affiliation(s)
- Yan Li
- School of Nuclear Science and Technology, University of South China, Hengyang 421001, China
| | - Yaojie Zhou
- School of Electrical Engineering, University of South China, Hengyang 421001, China
| | - Qinke Liu
- School of Electrical Engineering, University of South China, Hengyang 421001, China
| | - Zhendong Lu
- School of Electrical Engineering, University of South China, Hengyang 421001, China
| | - Xiao-Qing Luo
- School of Electrical Engineering, University of South China, Hengyang 421001, China
| | - Wu-Ming Liu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Xin-Lin Wang
- School of Nuclear Science and Technology, University of South China, Hengyang 421001, China
- Hunan Province Key Laboratory for Ultra-Fast Micro/Nano Technology and Advanced Laser Manufacture, School of Mechanical Engineering, University of South China, Hengyang 421001, China
| |
Collapse
|
17
|
Zhang Y, Gao Y, Yang S, Li Z, Wang X, Zhang J. Modeling of a Broadband Microwave Composite Thin Film Absorber. MICROMACHINES 2023; 14:2119. [PMID: 38004975 PMCID: PMC10673469 DOI: 10.3390/mi14112119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/16/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023]
Abstract
Composite thin film absorbers show superior performance and have a wide range of applications. Obtaining a broadband composite thin film absorber is a challenge. In this work, we proposed a modeling of a broadband microwave composite thin film absorber based on the impedance matching theory and equivalent circuit model of the square loop. The unit cell of the absorber was composed of metal square loops with high magnetic conductivity deposited on the polyethylene substrate, and an FR-4 (epoxy glass cloth) substrate was the spacer substrate layer. The simulation results show that the absorptivity of the absorber reached more than 90% in the frequency range of 8.7-18 GHz for TE and TM waves under normal incidence. The thickness of the designed absorber was 2.05 mm (0.059 λmax, λmax corresponds to the maximum absorption wavelength). The simulation results show that the energy distribution in the proposed absorber was mainly localized in the top metal FSS layer due to the ohmic loss of metal, and the dielectric loss played a small role in the absorption of the absorber. Our work provides a design approach to improve the efficiency of optoelectronic devices and thermal detectors and has application prospects in radar and aircraft stealth applications.
Collapse
Affiliation(s)
- Ying Zhang
- School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China; (Y.Z.); (S.Y.); (Z.L.); (X.W.); (J.Z.)
- Beijing Key Laboratory for Precision Optoelectronic Measurement Instrument and Technology, Beijing 100081, China
| | - Yanze Gao
- School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China; (Y.Z.); (S.Y.); (Z.L.); (X.W.); (J.Z.)
- Beijing Key Laboratory for Precision Optoelectronic Measurement Instrument and Technology, Beijing 100081, China
| | - Suhui Yang
- School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China; (Y.Z.); (S.Y.); (Z.L.); (X.W.); (J.Z.)
- Beijing Key Laboratory for Precision Optoelectronic Measurement Instrument and Technology, Beijing 100081, China
| | - Zhuo Li
- School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China; (Y.Z.); (S.Y.); (Z.L.); (X.W.); (J.Z.)
- Beijing Key Laboratory for Precision Optoelectronic Measurement Instrument and Technology, Beijing 100081, China
| | - Xin Wang
- School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China; (Y.Z.); (S.Y.); (Z.L.); (X.W.); (J.Z.)
- Beijing Key Laboratory for Precision Optoelectronic Measurement Instrument and Technology, Beijing 100081, China
| | - Jinying Zhang
- School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China; (Y.Z.); (S.Y.); (Z.L.); (X.W.); (J.Z.)
- Beijing Key Laboratory for Precision Optoelectronic Measurement Instrument and Technology, Beijing 100081, China
| |
Collapse
|
18
|
Lai R, Chen H, Zhou Z, Yi Z, Tang B, Chen J, Yi Y, Tang C, Zhang J, Sun T. Design of a Penta-Band Graphene-Based Terahertz Metamaterial Absorber with Fine Sensing Performance. MICROMACHINES 2023; 14:1802. [PMID: 37763965 PMCID: PMC10536418 DOI: 10.3390/mi14091802] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/13/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023]
Abstract
This paper presents a new theoretical proposal for a surface plasmon resonance (SPR) terahertz metamaterial absorber with five narrow absorption peaks. The overall structure comprises a sandwich stack consisting of a gold bottom layer, a silica medium, and a single-layer patterned graphene array on top. COMSOL simulation represents that the five absorption peaks under TE polarization are at fI = 1.99 THz (95.82%), fⅡ = 6.00 THz (98.47%), fⅢ = 7.37 THz (98.72%), fⅣ = 8.47 THz (99.87%), and fV = 9.38 THz (97.20%), respectively, which is almost consistent with the absorption performance under TM polarization. In contrast to noble metal absorbers, its absorption rates and resonance frequencies can be dynamically regulated by controlling the Fermi level and relaxation time of graphene. In addition, the device can maintain high absorptivity at 0~50° in TE polarization and 0~40° in TM polarization. The maximum refractive index sensitivity can reach SV = 1.75 THz/RIU, and the maximum figure of merit (FOM) can reach FOMV = 12.774 RIU-1. In conclusion, our design has the properties of dynamic tunability, polarization independence, wide-incident-angle absorption, and fine refractive index sensitivity. We believe that the device has potential applications in photodetectors, active optoelectronic devices, sensors, and other related fields.
Collapse
Affiliation(s)
- Runing Lai
- Joint Laboratory for Extreme Conditions Matter Properties, Tianfu Institute of Research and Innovation, State Key Laboratory of Environmental Friendly Energy Materials, Key Laboratory of Manufacturing Process Testing Technology of Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China; (R.L.); (H.C.); (Z.Z.)
| | - Hao Chen
- Joint Laboratory for Extreme Conditions Matter Properties, Tianfu Institute of Research and Innovation, State Key Laboratory of Environmental Friendly Energy Materials, Key Laboratory of Manufacturing Process Testing Technology of Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China; (R.L.); (H.C.); (Z.Z.)
| | - Zigang Zhou
- Joint Laboratory for Extreme Conditions Matter Properties, Tianfu Institute of Research and Innovation, State Key Laboratory of Environmental Friendly Energy Materials, Key Laboratory of Manufacturing Process Testing Technology of Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China; (R.L.); (H.C.); (Z.Z.)
| | - Zao Yi
- Joint Laboratory for Extreme Conditions Matter Properties, Tianfu Institute of Research and Innovation, State Key Laboratory of Environmental Friendly Energy Materials, Key Laboratory of Manufacturing Process Testing Technology of Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China; (R.L.); (H.C.); (Z.Z.)
- School of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, China
| | - Bin Tang
- School of Microelectronics and Control Engineering, Changzhou University, Changzhou 213164, China;
| | - Jing Chen
- College of Electronic and Optical Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China;
| | - Yougen Yi
- College of Physics and Electronics, Central South University, Changsha 410083, China;
| | - Chaojun Tang
- College of Science, Zhejiang University of Technology, Hangzhou 310023, China;
| | - Jianguo Zhang
- Department of Physics, Jinzhong University, Jinzhong 030619, China;
| | - Tangyou Sun
- Guangxi Key Laboratory of Precision Navigation Technology and Application, Guilin University of Electronic Technology, Guilin 541004, China
| |
Collapse
|
19
|
Jiang X, Fang B, Zhan C. Theoretical Enhancement of the Goos-Hänchen Shift with a Metasurface Based on Bound States in the Continuum. MICROMACHINES 2023; 14:1109. [PMID: 37374694 DOI: 10.3390/mi14061109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/15/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023]
Abstract
The enhancement of the Goos-Hänchen (GH) shift has become a research hotspot due to its promoted application of the GH effect in various fields. However, currently, the maximum GH shift is located at the reflectance dip, making it difficult to detect GH shift signals in practical applications. This paper proposes a new metasurface to achieve reflection-type bound states in the continuum (BIC). The GH shift can be significantly enhanced by the quasi-BIC with a high quality factor. The maximum GH shift can reach more than 400 times the resonant wavelength, and the maximum GH shift is located exactly at the reflection peak with unity reflectance, which can be applied to detect the GH shift signal. Finally, the metasurface is used to detect the variation in the refractive index, and the sensitivity can reach 3.58 × 106 μm/RIU (refractive index unit) according to the simulation's calculations. The findings provide a theoretical basis to prepare a metasurface with high refractive index sensitivity, a large GH shift, and high reflection.
Collapse
Affiliation(s)
- Xiaowei Jiang
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
- College of Information Engineering, Quzhou College of Technology, Quzhou 324000, China
| | - Bin Fang
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
| | - Chunlian Zhan
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
| |
Collapse
|
20
|
Bao X, Wu X, Ke Y, Wu K, Jiang C, Wu B, Li J, Yue S, Zhang S, Shi J, Du W, Zhong Y, Hu H, Bai P, Gong Y, Zhang Q, Zhang W, Liu X. Giant Out-of-Plane Exciton Emission Enhancement in Two-Dimensional Indium Selenide via a Plasmonic Nanocavity. NANO LETTERS 2023; 23:3716-3723. [PMID: 37125916 DOI: 10.1021/acs.nanolett.2c04902] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Out-of-plane (OP) exciton-based emitters in two-dimensional semiconductor materials are attractive candidates for novel photonic applications, such as radially polarized sources, integrated photonic chips, and quantum communications. However, their low quantum efficiency resulting from forbidden transitions limits their practicality. In this work, we achieve a giant enhancement of up to 34000 for OP exciton emission in indium selenide (InSe) via a designed Ag nanocube-over-Au film plasmonic nanocavity. The large photoluminescence enhancement factor (PLEF) is attributed to the induced OP local electric field (Ez) within the nanocavity, which facilitates effective OP exciton-plasmon interaction and subsequent tremendous enhancement. Moreover, the nanoantenna effect resulting from the effective interaction improves the directivity of spontaneous radiation. Our results not only reveal an effective photoluminescence enhancement approach for OP excitons but also present an avenue for designing on-chip photonic devices with an OP dipole orientation.
Collapse
Affiliation(s)
- Xiaotian Bao
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Center for Advanced Quantum Studies, Beijing Normal University, Beijing 100875, People's Republic of China
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
| | - Xianxin Wu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yuxuan Ke
- School of Materials Science and Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Keming Wu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
| | - Chuanxiu Jiang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Bo Wu
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Jing Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Shuai Yue
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Shuai Zhang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Jianwei Shi
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Wenna Du
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yangguang Zhong
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
| | - Huatian Hu
- Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, Wuhan 430205, People's Republic of China
| | - Peng Bai
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, People's Republic of China
| | - Yiyang Gong
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
| | - Qing Zhang
- School of Materials Science and Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Wenkai Zhang
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Center for Advanced Quantum Studies, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Xinfeng Liu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
21
|
Yang Y, Fu H, Su H, Chen S, Wu S, Liang J, Wei T, Wang Y, Zhu S, Zhu J, Zhou L. Sodium-Based Concave Metasurfaces for High Performing Plasmonic Optical Filters by Templated Spin-on-Sodiophobic-Glass. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2300272. [PMID: 37015024 DOI: 10.1002/adma.202300272] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/22/2023] [Indexed: 06/19/2023]
Abstract
Optical filters have aroused tremendous excitement in advanced photonic instruments and modern digital displays due to their flexible capability of spectrum manipulation. Plasmonic metasurfaces of narrow bandwidth, high spectral contrast, and robust structure tolerance are highly desired for optical filtration (especially in the visible regime) but rather challenging as large spectral broadening from intrinsic ohmic loss and design/fabrication deviations. Here the high-performing sodium-based metasurfaces are demonstrated for optical filtration across 450 to 750 nm by unique structure design of spatially decoupled concave surfaces and precise fabrication through templated solidification of liquid metals. Thanks to the distinct suppression of metallic loss as well as fabrication tolerance of interfacial structures, the as-prepared concave metasurfaces enable a minimum linewidth of ≈15 nm, a maximal optical contrast of ≈93%, and a high measure-to-design spectral match ratio ≈1500. These results have for the first time pushed the operation wavelengths of sodium-based plasmonic devices from infrared to visible which in turn demonstrates the capability of filling the blank of commercial dielectric optical filters thus far.
Collapse
Affiliation(s)
- Yuhan Yang
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Nanjing University, Nanjing, 210093, P. R. China
| | - Hanyu Fu
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Nanjing University, Nanjing, 210093, P. R. China
| | - Huanhuan Su
- School of Electronic Engineering, Nanjing Xiaozhuang University, Nanjing, 211171, China
| | - Shuying Chen
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Nanjing University, Nanjing, 210093, P. R. China
| | - Shan Wu
- Key Laboratory of Functional Materials and Devices for Informatics of Anhui Higher Education Institutes, Fuyang Normal University, Fuyang, 236037, P. R. China
| | - Jie Liang
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Nanjing University, Nanjing, 210093, P. R. China
| | - Tianqi Wei
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Nanjing University, Nanjing, 210093, P. R. China
| | - Yang Wang
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Nanjing University, Nanjing, 210093, P. R. China
| | - Shining Zhu
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Nanjing University, Nanjing, 210093, P. R. China
| | - Jia Zhu
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Nanjing University, Nanjing, 210093, P. R. China
| | - Lin Zhou
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Nanjing University, Nanjing, 210093, P. R. China
| |
Collapse
|
22
|
Yang T, Li X, Yu B, Gong C. Design and Print Terahertz Metamaterials Based on Electrohydrodynamic Jet. MICROMACHINES 2023; 14:659. [PMID: 36985066 PMCID: PMC10059972 DOI: 10.3390/mi14030659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/11/2023] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
Terahertz metamaterials are some of the core components of the new generation of high-frequency optoelectronic devices, which have excellent properties that natural materials do not have. The unit structures are generally much smaller than the wavelength, so preparation is mainly based on semiconductor processes, such as coating, photolithography and etching. Although the processing resolution is high, it is also limited by complex processing, long cycles, and high cost. In this paper, a design method for dual-band terahertz metamaterials and a simple, rapid, low-cost metamaterial preparation scheme based on step-motor-driven electrohydrodynamic jet technology are proposed. By transforming an open-source 3D printer, the metamaterial structures can be directly printed without complex semiconductor processes. To verify effectiveness, the sample was directly printed using nano conductive silver paste as consumable material. Then, a fiber-based multi-mode terahertz time-domain spectroscopy system was built for testing. The experimental results were in good agreement with the theoretical simulation.
Collapse
|
23
|
Chen W, Li M, Zhang W, Chen Y. Dual-resonance sensing for environmental refractive index based on quasi-BIC states in all-dielectric metasurface. NANOPHOTONICS (BERLIN, GERMANY) 2023; 12:1147-1157. [PMID: 39634934 PMCID: PMC11501798 DOI: 10.1515/nanoph-2022-0776] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/12/2023] [Indexed: 12/07/2024]
Abstract
Metasurface provides a novel way to modulate light energy at specific wavelengths, namely resonances, where there is a sharp drop in the transmission spectrum. Based on the relationship between the resonant position and the environmental condition, various refractive index detection methods have been developed. However, the resonance spectrum is strongly affected by the environmental and instrumental fluctuations, and current researches usually focus on the improvement of a single sensing performance metric, such as the Q factor, sensitivity, detection range, etc. In this work, we proposed an all-dielectric metasurface for environmental refractive index sensing based on quasi-BIC with an enhanced stability, simultaneously taken into account an enlarged detection range, a high Q factor and a relatively high sensitivity. With this designed metasurface, dual-resonance sensing is realized because the interval between the two resonance peaks in the transmission spectrum decreases near linearly with the environmental refractive index. We experimentally demonstrated that compared to traditional single-resonance sensing, the errors caused by environmental and instrumental fluctuations can be minimized, and the stability can be improved. This metasurface has great potential for applications such as refractive index sensing, concentration detection, biomacromolecule identification, and cancerous cell screening.
Collapse
Affiliation(s)
- Wenjie Chen
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei230027, China
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei230027, China
| | - Ming Li
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei230027, China
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei230027, China
| | - Wenhao Zhang
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei230027, China
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei230027, China
| | - Yuhang Chen
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei230027, China
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei230027, China
| |
Collapse
|
24
|
Wang Z, Sun J, Li J, Wang L, Li Z, Zheng X, Wen L. Customizing 2.5D Out-of-Plane Architectures for Robust Plasmonic Bound-States-in-the-Continuum Metasurfaces. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206236. [PMID: 36594610 PMCID: PMC9982570 DOI: 10.1002/advs.202206236] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Bound states in the continuum (BICs) have a superior ability to confine electromagnetic waves and enhance light-matter interactions. However, the quality-factor of quasi-BIC is extremely sensitive to structural perturbations, thus the BIC metasurfaces usually require a very-high precision nanofabrication technique that greatly restricts their practical applications. Here, distinctive 2.5D out-of-plane architectures based plasmonic symmetry protected (SP)-BIC metasurfaces are proposed, which could deliver robust quality factors even with large structural perturbations. The high-throughput fabrication of such SP-BIC metasurfaces is realized by using the binary-pore anodic aluminum oxide template technique. Moreover, the deep neural network (DNN) is adapted to conduct multiparameter fittings, where the 2.5D hetero-out-of-plane architectures with robust high quality-factors and figures of merit are rapidly predicted and fabricated. Finally, owning to its large second-order surface sensitivity, the desired 2.5D hetero-out-of-plane architecture demonstrates a detection limit of endotoxin as low as 0.01 EU mL-1 , showing a good perspective of biosensors and others.
Collapse
Affiliation(s)
- Zichen Wang
- Zhejiang UniversityHangzhouZhejiang310027P. R. China
- Research Center for Industries of the Future (RCIF)School of EngineeringWestlake UniversityHangzhouZhejiang310030P. R. China
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang ProvinceSchool of EngineeringWestlake UniversityHangzhouZhejiang310030P. R. China
| | - Jiacheng Sun
- Research Center for Industries of the Future (RCIF)School of EngineeringWestlake UniversityHangzhouZhejiang310030P. R. China
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang ProvinceSchool of EngineeringWestlake UniversityHangzhouZhejiang310030P. R. China
| | - Jiye Li
- Research Center for Industries of the Future (RCIF)School of EngineeringWestlake UniversityHangzhouZhejiang310030P. R. China
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang ProvinceSchool of EngineeringWestlake UniversityHangzhouZhejiang310030P. R. China
| | - Lang Wang
- Research Center for Industries of the Future (RCIF)School of EngineeringWestlake UniversityHangzhouZhejiang310030P. R. China
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang ProvinceSchool of EngineeringWestlake UniversityHangzhouZhejiang310030P. R. China
| | - Zishun Li
- Research Center for Industries of the Future (RCIF)School of EngineeringWestlake UniversityHangzhouZhejiang310030P. R. China
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang ProvinceSchool of EngineeringWestlake UniversityHangzhouZhejiang310030P. R. China
| | - Xiaorui Zheng
- Research Center for Industries of the Future (RCIF)School of EngineeringWestlake UniversityHangzhouZhejiang310030P. R. China
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang ProvinceSchool of EngineeringWestlake UniversityHangzhouZhejiang310030P. R. China
| | - Liaoyong Wen
- Research Center for Industries of the Future (RCIF)School of EngineeringWestlake UniversityHangzhouZhejiang310030P. R. China
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang ProvinceSchool of EngineeringWestlake UniversityHangzhouZhejiang310030P. R. China
| |
Collapse
|
25
|
Jahan MSTI, Faruque MRI, Hossain MB, Abdullah S. An Ultra-Thin, Triple-Band, Incident Angle-Insensitive Perfect Metamaterial Absorber. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1623. [PMID: 36837252 PMCID: PMC9962083 DOI: 10.3390/ma16041623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 06/18/2023]
Abstract
We created an ultra-thin, triple-band incident angle-insensitive perfect metamaterial absorber (MMA) with a metallic patch and a continuous metal ground isolated by a central dielectric substrate. The top metallic patch, placed across the edges of the 0.58 mm thickness Rogers RO4003C (lossy) substrate, forms the bulk of the projected absorber's ultra-thin layer. Nonetheless, absorption is exceedingly strong, covering C-band, X-band and K-band and reaching levels of 97.8%, 99.9%, and 99.9%, respectively, under normal and even oblique (0° to 45°) incident conditions. In chosen ranges of frequency of 6.24, 10.608, and 18.624 GHz for both TM and TE mode, the displayed Q-factors were 62.4, 17.68, and 26.61, respectively. We correspondingly calculated the RAB (relative absorption bandwidth) to evaluate absorption performance. An equivalent circuit proved its performance capabilities, indicating that it would produce a high-quality MMA from ADS software. Furthermore, the absorber's performance has been verified in free space on a sample being tested using a different array of unit cells. Moreover, the proposed structures with HFSS simulators to display the MMA's absolute absorption at each absorption peak are somewhat inconsistent with the results of the CST simulator. Because of its superior performance, the ultra-thin absorber is suited for a wide range of applications, including satellite applications such as radar systems, stealth technology, imaging, and electromagnetic interference reduction.
Collapse
Affiliation(s)
| | - Mohammad Rashed Iqbal Faruque
- Space Science Centre (ANGKASA), Institute of Climate Change (IPI), Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| | | | | |
Collapse
|
26
|
Kalinic B, Cesca T, Balasa IG, Trevisani M, Jacassi A, Maier SA, Sapienza R, Mattei G. Quasi-BIC Modes in All-Dielectric Slotted Nanoantennas for Enhanced Er 3+ Emission. ACS PHOTONICS 2023; 10:534-543. [PMID: 36820324 PMCID: PMC9936627 DOI: 10.1021/acsphotonics.2c01703] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Indexed: 06/18/2023]
Abstract
In the quest for new and increasingly efficient photon sources, the engineering of the photonic environment at the subwavelength scale is fundamental for controlling the properties of quantum emitters. A high refractive index particle can be exploited to enhance the optical properties of nearby emitters without decreasing their quantum efficiency, but the relatively modest Q-factors (Q ∼ 5-10) limit the local density of optical states (LDOS) amplification achievable. On the other hand, ultrahigh Q-factors (up to Q ∼ 109) have been reported for quasi-BIC modes in all-dielectric nanostructures. In the present work, we demonstrate that the combination of quasi-BIC modes with high spectral confinement and nanogaps with spacial confinement in silicon slotted nanoantennas lead to a significant boosting of the electromagnetic LDOS in the optically active region of the nanoantenna array. We observe an enhancement of up to 3 orders of magnitude in the photoluminescence intensity and 2 orders of magnitude in the decay rate of the Er3+ emission at room temperature and telecom wavelengths. Moreover, the nanoantenna directivity is increased, proving that strong beaming effects can be obtained when the emitted radiation couples to the high Q-factor modes. Finally, via tuning the nanoanntenna aspect ratio, a selective control of the Er3+ electric and magnetic radiative transitions can be obtained, keeping the quantum efficiency almost unitary.
Collapse
Affiliation(s)
- Boris Kalinic
- Department
of Physics and Astronomy, University of
Padova, Via Marzolo 8, Padova, I-35131, Italy
| | - Tiziana Cesca
- Department
of Physics and Astronomy, University of
Padova, Via Marzolo 8, Padova, I-35131, Italy
| | - Ionut Gabriel Balasa
- Department
of Physics and Astronomy, University of
Padova, Via Marzolo 8, Padova, I-35131, Italy
| | - Mirko Trevisani
- Department
of Physics and Astronomy, University of
Padova, Via Marzolo 8, Padova, I-35131, Italy
| | - Andrea Jacassi
- The
Blackett Laboratory, Department of Physics, Imperial College London, London, SW7 2BW, United Kingdom
| | - Stefan A. Maier
- School
of Physics and Astronomy, Monash University, Clayton, Victoria3800, Australia
- The
Blackett Laboratory, Department of Physics, Imperial College London, LondonSW7 2BW, United Kingdom
| | - Riccardo Sapienza
- The
Blackett Laboratory, Department of Physics, Imperial College London, London, SW7 2BW, United Kingdom
| | - Giovanni Mattei
- Department
of Physics and Astronomy, University of
Padova, Via Marzolo 8, Padova, I-35131, Italy
| |
Collapse
|
27
|
Yang Y, Zhang Y, Zhang J, Zheng X, Gan Z, Lin H, Hong M, Jia B. Graphene Metamaterial 3D Conformal Coating for Enhanced Light Harvesting. ACS NANO 2023; 17:2611-2619. [PMID: 36533993 DOI: 10.1021/acsnano.2c10529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Silicon (Si) photovoltaic devices present possible avenues for overcoming global energy and environmental challenges. The high reflection and surface recombination losses caused by the Si interface and its nanofabrication process are the main hurdles for pursuing a high energy conversion efficiency. However, recent advances have demonstrated great success in improving device performance via proper Si interface modification with the optical and electrical features of two-dimensional (2D) materials. Firmly integrating large-area 2D materials with 3D Si nanostructures with no gap in between, which is essential for optimizing device performance, has rarely been achieved by any technique due to the complex 3D morphology of the nanostructures. Here we propose the concept of a 3D conformal coating of graphene metamaterials, in which the 2D graphene layers perfectly adapt to the 3D Si curvatures, leading to a universal 20% optical reflection decrease and a 60% surface passivation improvement. In a further application of this metamaterial 3D conformal coating methodology to standard Si solar cells, an overall 23% enhancement of the solar energy conversion efficiency is achieved. The 3D conformal coating strategy could be readily extended to various optoelectronic and semiconductor device systems with peculiar performance, offering a pathway for highly efficient energy-harvesting and storage solutions.
Collapse
Affiliation(s)
- Yunyi Yang
- School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Yinan Zhang
- Institute of Photonic Chips, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
- Centre for Artificial-Intelligence Nanophotonics, School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Jie Zhang
- Centre for Translational Atomaterials (CTAM), School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Xiaorui Zheng
- Centre for Translational Atomaterials (CTAM), School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
- School of Engineering, Westlake University, Hangzhou 310024, People's Republic of China
| | - Zhixing Gan
- Centre for Translational Atomaterials (CTAM), School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Han Lin
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| | - Minghui Hong
- School of Aerospace Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Baohua Jia
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia
- The Australian Research Council (ARC) Industrial Transformation Training Centre in Surface Engineering for Advanced Materials (SEAM), RMIT University, La Trobe Street, Melbourne, Victoria 3000, Australia
| |
Collapse
|
28
|
Jing Z, Jiaxian W, Lizhen G, Weibin Q. High-Sensitivity Sensing in All-Dielectric Metasurface Driven by Quasi-Bound States in the Continuum. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:505. [PMID: 36770466 PMCID: PMC9920430 DOI: 10.3390/nano13030505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/15/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Quasi-bound states in the continuum (quasi-BIC) in all-dielectric metasurfaces provide a crucial platform for sensing due to its ability to enhance strong matter interactions between light-waves and analytes. In this study, a novel high-sensitivity all-dielectric sensor composed of a periodic array of silicon (Si) plates with square nanoholes in the continuous near-infrared band is theoretically proposed. By adjusting the position of the square nanohole, the symmetry-protected BIC and Friedrich-Wintgen BIC (FW-BIC) can be excited. The torodial dipole (TD) and electric quadruple (EQ) are demonstrated to play a dominating role in the resonant modes by near-field analysis and multipole decomposition. The results show that the sensitivity, the Q-factor, and the corresponding figure of merit (FOM) can simultaneously reach 399 nm/RIU (RIU is refractive index unit), 4959, and 1281, respectively. Compared with other complex nanostructures, the proposed metasurface is more feasible and practical, which may open up an avenue for the development of ultrasensitive sensors.
Collapse
Affiliation(s)
- Zhao Jing
- Computer Science and Information Engineering School, Xiamen Institute of Technology, Xiamen 361021, China
| | - Wang Jiaxian
- Computer Science and Information Engineering School, Xiamen Institute of Technology, Xiamen 361021, China
| | - Gao Lizhen
- Computer Science and Information Engineering School, Xiamen Institute of Technology, Xiamen 361021, China
| | - Qiu Weibin
- College of Information Science and Engineering, Huaqiao University, Xiamen 361021, China
| |
Collapse
|
29
|
Ramachandran T, Faruque MRI, Singh MSJ, Khandaker MU, Salman M, Youssef AAF. Reduction of Radar Cross Section by Adopting Symmetrical Coding Metamaterial Design for Terahertz Frequency Applications. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1030. [PMID: 36770037 PMCID: PMC9921188 DOI: 10.3390/ma16031030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/08/2023] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
This work focused on the novel and compact 1-bit symmetrical coding-based metamaterial for radar cross section reduction in terahertz frequencies. A couple of coding particles were constructed to impersonate the elements '0' and '1', which have phase differences of 180°. All the analytical simulations were performed by adopting Computer Simulation Technology Microwave Studio 2019 software. Moreover, the transmission coefficient of the element '1' was examined as well by adopting similar software and validated by a high-frequency structure simulator. Meanwhile, the frequency range from 0 to 3 THz was set in this work. The phase response properties of each element were examined before constructing various coding metamaterial designs in smaller and bigger lattices. The proposed unit cells exhibit phase responses at 0.84 THz and 1.54 THz, respectively. Meanwhile, the analysis of various coding sequences was carried out and they manifest interesting monostatic and bistatic radar cross section (RCS) reduction performances. The Coding Sequence 2 manifests the best bistatic RCS reduction values in smaller lattices, which reduced from -69.8 dBm2 to -65.5 dBm2 at 1.54 THz. On the other hand, the monostatic RCS values for all lattices have an inclined line until they reach a frequency of 1.0 THz from more than -60 dBm2. However, from the 1.0 THz to 3.0 THz frequency range the RCS values have moderate discrepancies among the horizontal line for each lattice. Furthermore, two parametric studies were performed to examine the RCS reduction behaviour, for instance, multi-layer structures and as well tilt positioning of the proposed coding metamaterial. Overall it indicates that the integration of coding-based metamaterial successfully reduced the RCS values.
Collapse
Affiliation(s)
- Tayaallen Ramachandran
- Space Science Centre (ANGKASA), Institute of Climate Change (IPI), Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Mohammad Rashed Iqbal Faruque
- Space Science Centre (ANGKASA), Institute of Climate Change (IPI), Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Mandeep Singh Jit Singh
- Space Science Centre (ANGKASA), Institute of Climate Change (IPI), Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Mayeen Uddin Khandaker
- Centre for Applied Physics and Radiation Technologies, School of Engineering and Technology, Sunway University, Bandar Sunway, Petaling Jaya 47500, Malaysia
- Department of General Educational Development, Faculty of Science and Information Technology, Daffodil International University, DIU Rd., Dhaka 1341, Bangladesh
| | - Mohammad Salman
- College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait
| | - Ahmed A. F. Youssef
- College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait
| |
Collapse
|
30
|
Zhou Y, Chen MN. Surface plasmons in anisotropic 3D gapped topological insulators. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 35:085001. [PMID: 36541525 DOI: 10.1088/1361-648x/aca7aa] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Topological insulators (TIs) are materials having conductive surfaces but insulating bulk, which are ideal platforms for plasmonic applications. The most commonly known TIs, such as Bi2Se3and Bi2Te3, are in fact highly anisotropic. The dielectric constants are largely different parallel and perpendicular to the surface. Here, we have extended the electromagnetic calculations of the surface plasmons in TIs to the anisotropic case. Magnetic field perpendicular to the surface is allowed, which opens a gap among the surface states. We model anisotropic TIs as bulk dielectric materials with different in-plane and out-of-plane permittivities; the surface states caused by the band inversion lead to a two-dimensional conductivity which supports surface plasmons. We have found two rather than one surface modes. Due to such anisotropy, quasi transverse electric (TE) polarized mode may occur near the interband transition threshold. Far below the transition frequency, another mode with both TE and transverse magnetic polarized components dominates, the dispersion relation of which is seriously modified by the Hall conductivity. By taking Bi2Te3as an example, we have derived the conductivity tensor with the consideration of the hexagonal warping effect, and solved the above mentioned two surface plasmon modes. In the end, finite element method has been used to calculate the electric field distributions. Our extension of the electromagnetic calculations of surface plasmons including a specific kind of anisotropy might be useful in other surface conductive materials with similar symmetry as well.
Collapse
Affiliation(s)
- Yu Zhou
- School of Science, Hangzhou Dianzi University, Hangzhou 310018, People's Republic of China
| | - M N Chen
- School of Science, Hangzhou Dianzi University, Hangzhou 310018, People's Republic of China
| |
Collapse
|
31
|
Aigner A, Tittl A, Wang J, Weber T, Kivshar Y, Maier SA, Ren H. Plasmonic bound states in the continuum to tailor light-matter coupling. SCIENCE ADVANCES 2022; 8:eadd4816. [PMID: 36490330 PMCID: PMC9733921 DOI: 10.1126/sciadv.add4816] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 11/04/2022] [Indexed: 06/03/2023]
Abstract
Plasmon resonances play a pivotal role in enhancing light-matter interactions in nanophotonics, but their low-quality factors have hindered applications demanding high spectral selectivity. Here, we demonstrate the design and 3D laser nanoprinting of plasmonic nanofin metasurfaces, which support symmetry-protected bound states in the continuum up to the fourth order. By breaking the nanofins' out-of-plane symmetry in parameter space, we achieve high-quality factor (up to 180) modes under normal incidence. The out-of-plane symmetry breaking can be fine-tuned by the nanofins' triangle angle, opening a pathway to precisely control the ratio of radiative to intrinsic losses. This enables access to the under-, critical, and over-coupled regimes, which we exploit for pixelated molecular sensing. We observe a strong dependence of the sensing performance on the coupling regime, demonstrating the importance of judicious tailoring of light-matter interactions. Our demonstration provides a metasurface platform for enhanced light-matter interaction with a wide range of applications.
Collapse
Affiliation(s)
- Andreas Aigner
- Hybrid Nanosystems, Nano-Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Munich, 80539, Germany
| | - Andreas Tittl
- Hybrid Nanosystems, Nano-Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Munich, 80539, Germany
| | - Juan Wang
- Hybrid Nanosystems, Nano-Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Munich, 80539, Germany
| | - Thomas Weber
- Hybrid Nanosystems, Nano-Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Munich, 80539, Germany
| | - Yuri Kivshar
- Nonlinear Physics Center, Research School of Physics Australian National University, Canberra, ACT 2601, Australia
| | - Stefan A. Maier
- Hybrid Nanosystems, Nano-Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Munich, 80539, Germany
- School of Physics and Astronomy, Monash University, Clayton, Victoria 3800, Australia
- Department of Physics, Imperial College London, London SW7 2AZ, UK
| | - Haoran Ren
- School of Physics and Astronomy, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
32
|
Wu G, Si L, Xu H, Niu R, Zhuang Y, Sun H, Ding J. Phase-to-pattern inverse design for a fast realization of a functional metasurface by combining a deep neural network and a genetic algorithm. OPTICS EXPRESS 2022; 30:45612-45623. [PMID: 36522964 DOI: 10.1364/oe.478084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/04/2022] [Indexed: 06/17/2023]
Abstract
Metasurface provides an unprecedented means to manipulate electromagnetic waves within a two-dimensional planar structure. Traditionally, the design of meta-atom follows the pattern-to-phase paradigm, which requires a time-consuming brute-forcing process. In this work, we present a fast inverse meta-atom design method for the phase-to-pattern mapping by combining the deep neural network (DNN) and genetic algorithm (GA). The trained classification DNN with an accuracy of 92% controls the population generated by the GA within an arbitrary preset small phase range, which could greatly enhance the optimization efficiency with less iterations and a higher accuracy. As proof-of-concept demonstrations, two reflective functional metasurfaces including an orbital angular momentum generator and a metalens have been numerically investigated. The simulated results agree very well with the design goals. In addition, the metalens is also experimentally validated. The proposed method could pave a new avenue for the fast design of the meta-atoms and functional meta-devices.
Collapse
|
33
|
Fu M, Wang J, Guo S, Wang Z, Yang P, Niu Y. A Polarization-Insensitive Broadband Terahertz Absorber Using Patterned Graphene. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3763. [PMID: 36364549 PMCID: PMC9656102 DOI: 10.3390/nano12213763] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/19/2022] [Accepted: 10/22/2022] [Indexed: 06/16/2023]
Abstract
A polarization-insensitive broadband terahertz absorber with a sandwich structure of metal−dielectric-graphene is designed and simulated. The graphene is patterned as an array of graphene square blocks with circular apertures. The results of the simulations and theoretical analysis show that the absorption exceeds 99% from 0.93 to 1.65 THz while 90% from 0.80 to 1.87 THz, and a broad relative bandwidth of 80.2% is achieved. The absorption performance is passively enhanced by altering physical dimensions of the graphene pattern and actively adjusted by changing the chemical potential of graphene. When the chemical potential increases from 0.1 eV to 0.7 eV, the corresponding terahertz absorption increases from 59.1% to 99%. The mechanism of absorption is disclosed by analyzing the impedance matching theory and distribution of electric-field intensity. In addition, different polarization modes and incident angles are also studied. The proposed absorber has the superiorities of broad relative bandwidth, high absorption rate, polarization insensitivity, and a wide incident angle, which offers some potential applications in the field of terahertz technology such as imaging, detection, and cloaking.
Collapse
Affiliation(s)
- Maixia Fu
- Key Laboratory of Grain Information Processing and Control (Henan University of Technology), Ministry of Education, Zhengzhou 450001, China
- Henan Key Laboratory of Grain Photoelectric Detection and Control, Henan University of Technology, Zhengzhou 450001, China
- College of Information Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Jinyi Wang
- Key Laboratory of Grain Information Processing and Control (Henan University of Technology), Ministry of Education, Zhengzhou 450001, China
- Henan Key Laboratory of Grain Photoelectric Detection and Control, Henan University of Technology, Zhengzhou 450001, China
- College of Information Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Shaoshuai Guo
- Key Laboratory of Grain Information Processing and Control (Henan University of Technology), Ministry of Education, Zhengzhou 450001, China
- Henan Key Laboratory of Grain Photoelectric Detection and Control, Henan University of Technology, Zhengzhou 450001, China
- College of Information Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Zhaoying Wang
- Key Laboratory of Grain Information Processing and Control (Henan University of Technology), Ministry of Education, Zhengzhou 450001, China
- Henan Key Laboratory of Grain Photoelectric Detection and Control, Henan University of Technology, Zhengzhou 450001, China
- College of Information Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Pengxu Yang
- Key Laboratory of Grain Information Processing and Control (Henan University of Technology), Ministry of Education, Zhengzhou 450001, China
- Henan Key Laboratory of Grain Photoelectric Detection and Control, Henan University of Technology, Zhengzhou 450001, China
- College of Information Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yingying Niu
- Key Laboratory of Grain Information Processing and Control (Henan University of Technology), Ministry of Education, Zhengzhou 450001, China
- Henan Key Laboratory of Grain Photoelectric Detection and Control, Henan University of Technology, Zhengzhou 450001, China
- College of Information Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| |
Collapse
|
34
|
Mahros AM, Alharbi Y. Investigating the Absorption Spectra of a Plasmonic Metamaterial Absorber Based on Disc-in-Hole Nanometallic Structure. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3627. [PMID: 36296818 PMCID: PMC9611552 DOI: 10.3390/nano12203627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/12/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
In this work, we present and explore the characteristics of a plasmonic metamaterial absorber based on a metal-insulator-metal functional stack. The proposed structure consists of glass "sandwiched" between a silver reflector and a titanium metallic disc, embedded inside a Ti periodic nano-hole array, as an outside layer. In the visible and infrared regimes, the optical absorption spectra of such structures have been investigated using the finite difference time domain method. The impact of modifying nano-hole and embedded disc diameters on the absorber's performance has been investigated. Changing these two distinct structural parameters tunes the coupling effect between the localized and propagating surface plasmons. The adequate bandwidth, average spectral absorption rate, and short circuit current density are calculated to determine the performance of the designated absorber. The proposed structure of the plasmonic metamaterial absorber reaches an average absorption of over 94% in a bandwidth of 0.81 µm and near-perfect absorption of 98% around the wavelength of 0.7 µm, with an almost 100% relative absorption bandwidth and 41 mA/cm2 short circuit current density. In addition, the results show that the disc-in-hole absorber's structural parameters can be changed precisely and facilely to tailor to the absorption spectra.
Collapse
Affiliation(s)
- Amr M. Mahros
- Department of Engineering Physics, Alexandria University, Alexandria 21544, Egypt
- Department of Physics, University of Jeddah, Jeddah 21432, Saudi Arabia
| | - Yara Alharbi
- Department of Physics, University of Jeddah, Jeddah 21432, Saudi Arabia
| |
Collapse
|
35
|
Yang X, Xia D, Li J. Theoretical study of extremely narrow plasmonic surface lattice resonances observed by MIM nanogratings under normal incidence in asymmetric environments. NANOTECHNOLOGY 2022; 33:445201. [PMID: 35901661 DOI: 10.1088/1361-6528/ac84e0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
Nanoarray structures can support plasmonic surface lattice resonances (SLRs) with extremely narrow linewidths and huge electric field enhancement features, which are attractive applications in nanolasers, biochemical sensors, and nonlinear optics. However, current nanoarray structures located in an asymmetric dielectric environment with a refractive index contrast of 1.00/1.52 of the superstrate/substrate excite much poorer SLRs under normal incidence, which largely limits their application range. In this work, we report extremely narrow SLRs supported by one-dimensional metal-insulator-metal nanograting in asymmetric dielectric environments. The simulation results show that an SLRs with linewidth of 3.26 nm and quality factor of 233.2 can be excited under normal incidence. This high-quality SLRs is attributed to the interference formation between the out-of-plane dipole resonance mode and the out-of-plane quadrupole resonance mode. We also show that the resonance wavelength and quality factor can be tuned by changing the structure geometry and period, and we calculate the normal incidence SLRs quality factor to be up to 248 in 1.33/1.52 and 250 in 1.45/1.52. We expect the SLRs of this work to find potential applications in asymmetric dielectric environments.
Collapse
Affiliation(s)
- Xiuhua Yang
- Key Laboratory of Micro-Inertial Instrument and Advanced Navigation Technology, Ministry of Education, School of Instrument Science and Engineering, Southeast University, Nanjing 210096, People's Republic of China
| | - Dunzhu Xia
- Key Laboratory of Micro-Inertial Instrument and Advanced Navigation Technology, Ministry of Education, School of Instrument Science and Engineering, Southeast University, Nanjing 210096, People's Republic of China
| | - Jinhui Li
- Key Laboratory of Micro-Inertial Instrument and Advanced Navigation Technology, Ministry of Education, School of Instrument Science and Engineering, Southeast University, Nanjing 210096, People's Republic of China
| |
Collapse
|
36
|
Karthikeyan M, Jayabala P, Ramachandran S, Dhanabalan SS, Sivanesan T, Ponnusamy M. Tunable Optimal Dual Band Metamaterial Absorber for High Sensitivity THz Refractive Index Sensing. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2693. [PMID: 35957124 PMCID: PMC9370750 DOI: 10.3390/nano12152693] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
We present a simple dual band absorber design and investigate it in the terahertz (THz) region. The proposed absorber works in dual operating bands at 5.1 THz and 11.7 THz. By adjusting the graphene chemical potential, the proposed absorber has the controllability of the resonance frequency to have perfect absorption at various frequencies. The graphene surface plasmon resonance results in sharp and narrow resonance absorption peaks. For incident angles up to 8°, the structure possesses near-unity absorption. The proposed sensor absorber's functionality is evaluated using sensing medium with various refractive indices. The proposed sensor is simulated for glucose detection and a maximum sensitivity of 4.72 THz/RIU is observed. It has a maximum figure of merit (FOM) and Quality factor (Q) value of 14 and 32.49, respectively. The proposed optimal absorber can be used to identify malaria virus and cancer cells in blood. Hence, the proposed plasmonic sensor is a serious contender for biomedical uses in the diagnosis of bacterial infections, cancer, malaria, and other diseases.
Collapse
Affiliation(s)
- Madurakavi Karthikeyan
- Department of Communication, School of Electronics Engineering, Vellore Institute of Technology, Vellore 632014, India
| | - Pradeep Jayabala
- Department of Electronics and Communication Engineering, Sri Manakula Vinayagar Engineering College, Puducherry 605107, India
| | | | - Shanmuga Sundar Dhanabalan
- Functional Materials and Microsystems Research Group, Royal Melbourne Institute of Technology University, Melbourne, VIC 3001, Australia
| | - Thamizharasan Sivanesan
- School of Computer Science and Engineering, Vellore Institute of Technology, Vellore 632014, India
| | - Manimaran Ponnusamy
- School of Electronics Engineering, Vellore Institute of Technology, Chennai 600127, India
| |
Collapse
|
37
|
Lin H, Zhang Z, Zhang H, Lin KT, Wen X, Liang Y, Fu Y, Lau AKT, Ma T, Qiu CW, Jia B. Engineering van der Waals Materials for Advanced Metaphotonics. Chem Rev 2022; 122:15204-15355. [PMID: 35749269 DOI: 10.1021/acs.chemrev.2c00048] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The outstanding chemical and physical properties of 2D materials, together with their atomically thin nature, make them ideal candidates for metaphotonic device integration and construction, which requires deep subwavelength light-matter interaction to achieve optical functionalities beyond conventional optical phenomena observed in naturally available materials. In addition to their intrinsic properties, the possibility to further manipulate the properties of 2D materials via chemical or physical engineering dramatically enhances their capability, evoking new science on light-matter interaction, leading to leaped performance of existing functional devices and giving birth to new metaphotonic devices that were unattainable previously. Comprehensive understanding of the intrinsic properties of 2D materials, approaches and capabilities for chemical and physical engineering methods, the resulting property modifications and novel functionalities, and applications of metaphotonic devices are provided in this review. Through reviewing the detailed progress in each aspect and the state-of-the-art achievement, insightful analyses of the outstanding challenges and future directions are elucidated in this cross-disciplinary comprehensive review with the aim to provide an overall development picture in the field of 2D material metaphotonics and promote rapid progress in this fast emerging and prosperous field.
Collapse
Affiliation(s)
- Han Lin
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia.,The Australian Research Council (ARC) Industrial Transformation Training, Centre in Surface Engineering for Advanced Materials (SEAM), Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Zhenfang Zhang
- School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an 710048, China
| | - Huihui Zhang
- Centre for Translational Atomaterials, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122, Australia
| | - Keng-Te Lin
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| | - Xiaoming Wen
- Centre for Translational Atomaterials, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122, Australia
| | - Yao Liang
- Centre for Translational Atomaterials, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122, Australia
| | - Yang Fu
- Centre for Translational Atomaterials, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122, Australia
| | - Alan Kin Tak Lau
- Centre for Translational Atomaterials, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122, Australia
| | - Tianyi Ma
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia.,Centre for Translational Atomaterials, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122, Australia
| | - Cheng-Wei Qiu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Baohua Jia
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia.,The Australian Research Council (ARC) Industrial Transformation Training, Centre in Surface Engineering for Advanced Materials (SEAM), Swinburne University of Technology, Hawthorn, Victoria 3122, Australia.,Centre for Translational Atomaterials, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122, Australia
| |
Collapse
|
38
|
Metamaterial Vivaldi Antenna Array for Breast Cancer Detection. SENSORS 2022; 22:s22103945. [PMID: 35632355 PMCID: PMC9144498 DOI: 10.3390/s22103945] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/08/2022] [Accepted: 05/19/2022] [Indexed: 11/21/2022]
Abstract
The objective of this work is the design and validation of a directional Vivaldi antenna to detect tumor cells’ electromagnetic waves with a frequency of around 5 GHz. The proposed antenna is 33% smaller than a traditional Vivaldi antenna due to the use of metamaterials in its design. It has an excellent return loss of 25 dB at 5 GHz and adequate radiation characteristics as its gain is 6.2 dB at 5 GHz. The unit cell size of the proposed metamaterial is 0.058λ × 0.054λ at the operation frequency of 5 GHz. The proposed antenna was designed and optimized in CST microwave software, and the measured and simulated results were in good agreement. The experimental study demonstrates that an array composed with the presented antennas can detect the existence of tumors in a liquid breast phantom with positional accuracy through the analysis of the minimum amplitude of Sii.
Collapse
|
39
|
Qin Z, Li Y, Wang H, Wan W, Li C, Zhu Z, Cheng Y, Li S, Chen H, Wang J, Qu S. Polarization meta-converter for dynamic polarization states shifting with broadband characteristic. OPTICS EXPRESS 2022; 30:20014-20025. [PMID: 36221762 DOI: 10.1364/oe.453691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/24/2022] [Indexed: 06/16/2023]
Abstract
Polarization, as an important property of light, has been widely discussed in modern detecting and radar systems. A polarization converter that can be used to achieve dynamic control is regarded as an excellent alternative for implementing the integrated functionalities of communication and stealth. In this work, we propose a paradigm of meta-converter for dynamic polarization states shifting from linear-to-linear (LTL) to linear-to-circular (LTC) polarization. The strategy is achieved by loading voltage-controlled PIN diodes on the double-arrows metallic meta-resonators. The operation modes can be switched by changing the bias voltage. When the PIN diodes are turned on, the polarization meta-converter (PMC) will reflect and convert a linearly polarized electromagnetic (EM) wave into a circularly polarized one in 5.6-15.5 GHz with an axial ratio (AR) below 3dB. When the PIN diodes are turned off, the PMC will reflect and convert a linearly polarized EM wave into the orthogonal counterpart in 7.6-15.5 GHz with a polarization conversion ratio (PCR) over 88%. Simulations and experimental results show a good agreement, which manifests the feasibility of our proposed meta-converter. Moreover, the proposed PMC has great potential for polarization-dependent communication and stealth systems.
Collapse
|
40
|
Musa A, Hakim ML, Alam T, Islam MT, Alshammari AS, Mat K, M. MS, Almalki SHA, Islam MS. Polarization Independent Metamaterial Absorber with Anti-Reflection Coating Nanoarchitectonics for Visible and Infrared Window Applications. MATERIALS (BASEL, SWITZERLAND) 2022; 15:3733. [PMID: 35629759 PMCID: PMC9143169 DOI: 10.3390/ma15103733] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/29/2022] [Accepted: 05/02/2022] [Indexed: 12/19/2022]
Abstract
The visible and infrared wavelengths are the most frequently used electromagnetic (EM) waves in the frequency spectrum; able to penetrate the atmosphere and reach Earth's surface. These wavelengths have attracted much attention in solar energy harvesting; thermography; and infrared imaging applications for the detection of electrical failures; faults; or thermal leakage hot spots and inspection of tapped live energized components. This paper presents a numerical analysis of a compact cubic cross-shaped four-layer metamaterial absorber (MA) structure by using a simple metal-dielectric-metal-dielectric configuration for wideband visible and infrared applications. The proposed MA achieved above 80% absorption in both visible and near-infrared regions of the spectrum from 350 to 1250 nm wavelength with an overall unit cell size of 0.57λ × 0.57λ × 0.59λ. The SiO2 based anti-reflection coating of sandwiched tungsten facilitates to achieve the wide high absorption bandwidth. The perceptible novelty of the proposed metamaterial is to achieve an average absorptivity of 95.3% for both visible and infrared wavelengths with a maximum absorptivity of 98% from 400 nm to 900 nm. Furthermore, the proposed structure provides polarization insensitivity with a higher oblique incidence angle tolerance up to 45°.
Collapse
Affiliation(s)
- Ahmad Musa
- Pusat Sains Ankasa (ANGKASA), Institut Perubahan Iklim, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (A.M.); (M.L.H.)
| | - Mohammad Lutful Hakim
- Pusat Sains Ankasa (ANGKASA), Institut Perubahan Iklim, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (A.M.); (M.L.H.)
| | - Touhidul Alam
- Pusat Sains Ankasa (ANGKASA), Institut Perubahan Iklim, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (A.M.); (M.L.H.)
- Department of CSE, International Islamic University Chittagong (IIUC), Kumira, Chattogram 4318, Bangladesh
| | - Mohammad Tariqul Islam
- Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia;
- Electrical Engineering Department, College of Engineering, University of Ha’il, Ha’il 81481, Saudi Arabia;
| | - Ahmed S. Alshammari
- Electrical Engineering Department, College of Engineering, University of Ha’il, Ha’il 81481, Saudi Arabia;
| | - Kamarulzaman Mat
- Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia;
| | - M. Salaheldeen M.
- Department of Electrical Engineering, Faculty of Energy Engineering, Aswan University, Aswan 81528, Egypt;
| | - Sami H. A. Almalki
- Department of Electrical Engineering, College of Engineering, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Md. Shabiul Islam
- Faculty of Engineering (FOE), Multimedia University, Persiaran Multimedia, Cyberjaya 63100, Selangor, Malaysia;
| |
Collapse
|
41
|
Research of Gate-Tunable Phase Modulation Metasurfaces Based on Epsilon-Near-Zero Property of Indium-Tin-Oxide. PHOTONICS 2022. [DOI: 10.3390/photonics9050323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this paper, we proposed a reflection phase electrically tunable metasurface composed of an Au/Al2O3/ITO/Au grating structure. This antenna array can achieve a broad phase shift continuously and smoothly from 0° to 320° with a 5.85 V applied voltage bias. Tunability arises from field-effect modulation of the carrier concentrations or accumulation layer at the Al2O3/ITO interface, which excites electric and magnetic resonances in the epsilon-near-zero region. To make the reflected phase tuning range as wide as possible, some of the intensity of the reflected light is lost due to the excited surface plasmon effect. Simulation results show that the effect of optimal phase modulation can be realized at a wavelength range of 1550 nm by modulating the carrier concentration in our work. Additionally, we utilized an identical 13-unit array metasurface to demonstrate its application to the beam steering function. This active optical metasurface can enable a new realm of applications in ultrathin integrated photonic circuits.
Collapse
|
42
|
Bound States in the Continuum Empower Subwavelength Gratings for Refractometers in Visible. PHOTONICS 2022. [DOI: 10.3390/photonics9050292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This paper describes a compact refractometer in visible with optical bounds states in the continuum (BICs) using silicon nitride (Si3N4) based sub-wavelength medium contrast gratings (MCGs). The proposed device is highly sensitive to different polarization states of light and allows a wide dynamic range from 1.330 (aqueous environment) to 1.420 (biomolecules) monitoring, apart from its being thermally stable. The proposed sensor has a sensitivity of 363 nm/RIU for X polarized light and 137 nm/RIU for Y polarized light. The spectral characteristics have been obtained with a high angular resolution for the smaller angle of incidence, which confirms the BIC hybrid modes with good quality factors and enhanced field confinement. The device is based on a normal-to-the-surface optical launching strategy to achieve exceptional interrogation stability and alignment-free performance. This system can also be used in the CMOS photodetectors for on-chip label-free biosensing.
Collapse
|
43
|
Tuning Collective Plasmon Resonances of Femtosecond Laser-Printed Metasurface. MATERIALS 2022; 15:ma15051834. [PMID: 35269065 PMCID: PMC8911911 DOI: 10.3390/ma15051834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/23/2022] [Accepted: 02/26/2022] [Indexed: 02/04/2023]
Abstract
The optical response of properly excited periodically arranged plasmonic nanostructures is known to demonstrate sharp resonance features associated with high-Q collective modes demanding for various applications in light-matter interaction, filtering and sensing. Meanwhile, practical realization and replication of plasmonic platforms supporting high-Q modes via scalable inexpensive lithography-free approach is still challenging. Here, we justify direct ablation-free irradiation of Si-supported thin Au film by nanojoule-energy femtosecond laser pulses as a single-step and scalable technology for realization of plasmonic metasurfaces supporting collective plasmonic response. Using an adjustable aperture to control and upscale the size of the fabricated nanostructures, nanobumps and nanojets, we demonstrated plasmonic metasurface supporting collective resonances with a moderately high Q-factor (up to 17) and amplitude (up to 45%) within expanded spectral range (1.4-4.5 µm). Vacuum deposition of thin films above the as-fabricated nanostructure arrays was demonstrated to provide fine tuning of the resonance position, also expanding the choice of available materials for realization of plasmonic designs with extended functionality.
Collapse
|