1
|
Wang T, Salaverría S, Aguilar-Galindo F, Besteiro-Sáez J, Mateo LM, Angulo-Portugal P, Rodríguez-Fernández J, Pérez D, Corso M, Peña D, de Oteyza DG. Relating Radical Delocalization, Charge Transfer, and Magnetic Ground State in Acene-Derived Oxyradicals. NANO LETTERS 2025; 25:6516-6523. [PMID: 40228061 PMCID: PMC12023016 DOI: 10.1021/acs.nanolett.5c00263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/24/2025] [Accepted: 04/08/2025] [Indexed: 04/16/2025]
Abstract
At the same time that our capabilities to synthesize open-shell carbon-based materials are rapidly growing with the development of on-surface synthesis under vacuum conditions, interest in π-magnetism is rising due to its excellent prospects for potential applications. As a result, increasing efforts are being focused on the detailed understanding of open-shell carbon nanostructures and all of the parameters that determine their spin densities and magnetic ground states. Here we present a facile route to synthesize different open-shell acene derivatives with closely related structures by the addition of functional groups. A systematic comparison allows us to draw conclusions on the role of the functional groups and their number and distribution, as well as on the role of the radical state delocalization in relation with the presence or absence of charge transfer at interfaces, which consequently affects the molecule's π-magnetism.
Collapse
Affiliation(s)
- Tao Wang
- State
Key Laboratory of Organometallic Chemistry, Shanghai Institute of
Organic Chemistry, University of Chinese
Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- Donostia
International Physics Center, 20018 San Sebastián, Spain
| | - Sergio Salaverría
- Nanomaterials
and Nanotechnology Research Center (CINN), CSIC-UNIOVI-PA, 33940 El Entrego, Spain
| | - Fernando Aguilar-Galindo
- Departamento
de Química, Universidad Autónoma
de Madrid, 28049 Madrid, Spain
- Institute
for Advanced Research in Chemical Sciences, (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Javier Besteiro-Sáez
- Centro Singular
de Investigación en Química Biolóxica e Materiais
Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago
de Compostela, Spain
| | - Luis M. Mateo
- Centro Singular
de Investigación en Química Biolóxica e Materiais
Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago
de Compostela, Spain
| | | | - Jonathan Rodríguez-Fernández
- Nanomaterials
and Nanotechnology Research Center (CINN), CSIC-UNIOVI-PA, 33940 El Entrego, Spain
- Physics
Department, University of Oviedo, 33007 Oviedo, Spain
| | - Dolores Pérez
- Centro Singular
de Investigación en Química Biolóxica e Materiais
Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago
de Compostela, Spain
| | - Martina Corso
- Donostia
International Physics Center, 20018 San Sebastián, Spain
- Centro
de Fisica de Materiales (CFM/MPC), CSIC-UPV/EHU, 20018 San Sebastián, Spain
| | - Diego Peña
- Centro Singular
de Investigación en Química Biolóxica e Materiais
Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago
de Compostela, Spain
- Oportunius,
Galician Innovation Agency (GAIN), 15702 Santiago de Compostela, Spain
| | - Dimas G. de Oteyza
- Donostia
International Physics Center, 20018 San Sebastián, Spain
- Nanomaterials
and Nanotechnology Research Center (CINN), CSIC-UNIOVI-PA, 33940 El Entrego, Spain
| |
Collapse
|
2
|
Bera J, Kabdulov M, Wakayama Y, Huhn T, Hayakawa R. Multilevel Resonant Tunneling through Purely Organic Radical Molecules in a Si-Based Double-Tunnel Junction. ACS APPLIED MATERIALS & INTERFACES 2025; 17:23018-23024. [PMID: 40189863 DOI: 10.1021/acsami.5c00839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
The use of purely organic radicals is promising, especially for future applications in molecular spintronics. However, the techniques used to form their molecular junctions, including break-junction and scanning tunneling microscopy techniques, are unsuitable for the integration of molecular devices in a large-scale setting. In this study, a Si-based double-tunnel junction with purely organic radicals, where adamantyl nitronyl nitroxide p-terphenyl (NN-TP) molecules are embedded as quantum dots in the oxide layer of a metal-oxide-semiconductor (MOS) structure, was demonstrated. Notably, this MOS structure functions as a tunnel junction, which has a high affinity for the current Si technology. In this study, multilevel resonant tunneling through the discrete energy levels of the NN-TP molecules at 7 K was achieved; moreover, the tunneling current was observed at 100 K. Furthermore, our device exhibited resonant tunneling through a singly occupied molecular orbital, indicating the survival of an unpaired electron in the radical molecules. Thus, our findings hold promise for incorporating the attractive functions of organic radicals into Si-based solid-state devices, thereby enabling the large-scale integration of molecular devices.
Collapse
Affiliation(s)
- Jayanta Bera
- Quantum Device Engineering Group, Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Mikhail Kabdulov
- Department of Chemistry, University of Konstanz, Konstanz 78457, Germany
| | - Yutaka Wakayama
- Quantum Device Engineering Group, Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Thomas Huhn
- Department of Chemistry, University of Konstanz, Konstanz 78457, Germany
| | - Ryoma Hayakawa
- Quantum Device Engineering Group, Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| |
Collapse
|
3
|
Moise G, Fernández S, Joll K, Vaganov MV, García F, Timmel CR, Peña D, Ardavan A. The Electronic Spin State of Diradicals Obtained from the Nuclear Perspective: The Strange Case of Chichibabin Radicals. Chemphyschem 2025; 26:e202400707. [PMID: 39714901 PMCID: PMC11913470 DOI: 10.1002/cphc.202400707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 12/24/2024]
Abstract
With a view towards the development of molecular spintronics, non-linear optics, and qubits, a great amount of research effort aims to establish the factors which govern the spin classification of diradicals. Electron spin resonance (ESR) is an indispensable tool for such research. However, in some cases, the mere presence of an ESR spectrum is insufficient to ascertain that the presumed diradical is indeed a triplet state. In a comparative case study of a Chichibabin diradical and a monoradical analogue, we show how the signals from different spin states present in liquid solutions of these species may be disentangled. Ultimately, the correct spin classification depends on ESR techniques which probe the spin quantum number directly. In this work, electron nuclear double resonance experiments reveal that the nuclei provide a clear experimental probe of the electronic spin configuration.
Collapse
Affiliation(s)
- Gabriel Moise
- Centre for Advanced Electron Spin ResonanceThe Clarendon LaboratoryDepartment of PhysicsUniversity of OxfordParks RoadOxfordOX1 3PUUnited Kingdom
| | - Saleta Fernández
- Centro Singular de Investigación en Química Biolóxica e Materiais MolecularesUniversidade de Santiago de CompostelaC/Jenaro de la Fuente s/n (esquina Avda. Mestre Mateo), Campus VidaSantiago de Compostela15705Spain
| | - Kit Joll
- Centre for Advanced Electron Spin ResonanceThe Clarendon LaboratoryDepartment of PhysicsUniversity of OxfordParks RoadOxfordOX1 3PUUnited Kingdom
- Centre for Advanced Electron Spin ResonanceInorganic Chemistry LaboratoryUniversity of OxfordSouth Parks RoadOxfordOX1 3QRUnited Kingdom
| | - Mikhail V. Vaganov
- Centre for Advanced Electron Spin ResonanceThe Clarendon LaboratoryDepartment of PhysicsUniversity of OxfordParks RoadOxfordOX1 3PUUnited Kingdom
| | - Fátima García
- Centro Singular de Investigación en Química Biolóxica e Materiais MolecularesUniversidade de Santiago de CompostelaC/Jenaro de la Fuente s/n (esquina Avda. Mestre Mateo), Campus VidaSantiago de Compostela15705Spain
| | - Christiane R. Timmel
- Centre for Advanced Electron Spin ResonanceInorganic Chemistry LaboratoryUniversity of OxfordSouth Parks RoadOxfordOX1 3QRUnited Kingdom
| | - Diego Peña
- Centro Singular de Investigación en Química Biolóxica e Materiais MolecularesUniversidade de Santiago de CompostelaC/Jenaro de la Fuente s/n (esquina Avda. Mestre Mateo), Campus VidaSantiago de Compostela15705Spain
| | - Arzhang Ardavan
- Centre for Advanced Electron Spin ResonanceThe Clarendon LaboratoryDepartment of PhysicsUniversity of OxfordParks RoadOxfordOX1 3PUUnited Kingdom
| |
Collapse
|
4
|
Paschke F, Ortiz R, Mishra S, Vilas-Varela M, Albrecht F, Peña D, Melle-Franco M, Gross L. A Route toward the On-Surface Synthesis of Organic Ferromagnetic Quantum Spin Chains. J Am Chem Soc 2025; 147:7859-7867. [PMID: 39967246 PMCID: PMC11887423 DOI: 10.1021/jacs.4c18123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/10/2025] [Accepted: 02/11/2025] [Indexed: 02/20/2025]
Abstract
Engineering sublattice imbalance is an intuitive way to induce high-spin ground states in bipartite polycyclic conjugated hydrocarbons (PCHs). Such molecules can be employed as building blocks of quantum spin chains, which are outstanding platforms to study fundamental models in quantum magnetism. This is exemplified by recent reports on the bottom-up synthesis of antiferromagnetic spin chains that provided insights into paradigmatic quantum phenomena such as fractionalization. In contrast to antiferromagnetism, demonstration of ferromagnetic coupling between PCHs has been scarce. Previous attempts in this direction were limited by the formation of nonbenzenoid rings leading to spin quenching or the use of spacer motifs that weaken the magnitude of ferromagnetic exchange. Here, we demonstrate the on-surface synthesis of short ferromagnetic spin chains based on dibenzotriangulene, a triplet PCH. Our synthetic strategy centers on the concept of achieving a direct (without spacer motifs) majority-minority sublattice coupling between adjacent molecules. This leads to a global sublattice imbalance in spin chains scaling with the chain length and therefore a ferromagnetic ground state with a strong intermolecular ferromagnetic exchange. Through scanning probe measurements and quantum chemical calculations, we analyze the electronic and magnetic properties of ferromagnetic dimers and trimers of dibenzotriangulene and confirm their quintet and septet ground states, respectively, with an intermolecular ferromagnetic exchange of 7 meV. Furthermore, we elucidate the role of sublattice coupling on magnetism through complementary experiments on antiferromagnetic dibenzotriangulene dimers with majority-majority and minority-minority sublattice couplings. We expect our study to provide impetus for the design of organic ferromagnetic materials.
Collapse
Affiliation(s)
- Fabian Paschke
- IBM Research
Europe – Zurich,, 8803 Rüschlikon, Switzerland
| | - Ricardo Ortiz
- CICECO -
Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | | | - Manuel Vilas-Varela
- Center for
Research in Biological Chemistry and Molecular Materials (CiQUS),
and Department of Organic Chemistry, University
of Santiago de Compostela, 15702 Santiago de Compostela, Spain
| | | | - Diego Peña
- Center for
Research in Biological Chemistry and Molecular Materials (CiQUS),
and Department of Organic Chemistry, University
of Santiago de Compostela, 15702 Santiago de Compostela, Spain
- Oportunius,
Galician Innovation Agency (GAIN), 15702 Santiago de Compostela, Spain
| | - Manuel Melle-Franco
- CICECO -
Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Leo Gross
- IBM Research
Europe – Zurich,, 8803 Rüschlikon, Switzerland
| |
Collapse
|
5
|
Pawlak R, Anindya KN, Chahib O, Liu JC, Hiret P, Marot L, Luzet V, Palmino F, Chérioux F, Rochefort A, Meyer E. On-Surface Synthesis and Characterization of Radical Spins in Kagome Graphene. ACS NANO 2025; 19:4768-4777. [PMID: 39793973 PMCID: PMC11803911 DOI: 10.1021/acsnano.4c15519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/26/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025]
Abstract
Flat bands in Kagome graphene might host strong electron correlations and frustrated magnetism upon electronic doping. However, the porous nature of Kagome graphene opens a semiconducting gap due to quantum confinement, preventing its fine-tuning by electrostatic gates. Here we induce zero-energy states into a semiconducting Kagome graphene by inserting π-radicals at selected locations. We utilize the on-surface reaction of tribromotrioxoazatriangulene molecules to synthesize carbonyl-functionalized Kagome graphene on Au(111), thereafter modified in situ by exposure to atomic hydrogen. Atomic force microscopy and tunneling spectroscopy unveil the stepwise chemical transformation of the carbonyl groups into radicals, which creates local magnetic defects of spin state S = 1/2 and zero-energy states as confirmed by density functional theory. The ability to imprint local magnetic moments opens up prospects to study the interplay between topology, magnetism, and electron correlation in Kagome graphene.
Collapse
Affiliation(s)
- Rémy Pawlak
- Department
of Physics, University of Basel, Klingelbergstrasse 82, Basel 4056, Switzerland
| | - Khalid N. Anindya
- Engineering
Physics Department, Polytechnique Montréal, Montréal (Québec) H3C 3A7, Canada
| | - Outhmane Chahib
- Department
of Physics, University of Basel, Klingelbergstrasse 82, Basel 4056, Switzerland
| | - Jung-Ching Liu
- Department
of Physics, University of Basel, Klingelbergstrasse 82, Basel 4056, Switzerland
| | - Paul Hiret
- Department
of Physics, University of Basel, Klingelbergstrasse 82, Basel 4056, Switzerland
| | - Laurent Marot
- Department
of Physics, University of Basel, Klingelbergstrasse 82, Basel 4056, Switzerland
| | - Vincent Luzet
- Université
de Franche-Comté, FEMTO-ST, CNRS, Besançon F-25000, France
| | - Frank Palmino
- Université
de Franche-Comté, FEMTO-ST, CNRS, Besançon F-25000, France
| | - Frédéric Chérioux
- Université
de Franche-Comté, FEMTO-ST, CNRS, Besançon F-25000, France
| | - Alain Rochefort
- Engineering
Physics Department, Polytechnique Montréal, Montréal (Québec) H3C 3A7, Canada
| | - Ernst Meyer
- Department
of Physics, University of Basel, Klingelbergstrasse 82, Basel 4056, Switzerland
| |
Collapse
|
6
|
Besteiro-Sáez J, Mateo LM, Salaverría S, Wang T, Angulo-Portugal P, Calupitan JP, Rodríguez-Fernández J, García-Fuente A, Ferrer J, Pérez D, Corso M, de Oteyza DG, Peña D. [19]Starphene: Combined In-Solution and On-Surface Synthesis Towards the Largest Starphene. Angew Chem Int Ed Engl 2024; 63:e202411861. [PMID: 39110601 DOI: 10.1002/anie.202411861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Indexed: 11/10/2024]
Abstract
Starphenes are structurally appealing three-fold symmetric polycyclic aromatic compounds with potential interesting applications in molecular electronics and nanotechnology. This family of star-shaped polyarenes can be regarded as three acenes that are connected through a single benzene ring. In fact, just like acenes, unsubstituted large starphenes are poorly soluble and highly reactive molecules under ambient conditions making their synthesis difficult to achieve. Herein, we report two different synthetic strategies to obtain a starphene formed by 19 cata-fused benzene rings distributed within three hexacene branches. This molecule, which is the largest starphene that has been obtained to date, was prepared by combining solution-phase and on-surface synthesis. [19]Starphene was characterized by high-resolution scanning tunneling microscopy (STM) and spectroscopy (STS) showing a remarkable small HOMO-LUMO transport gap (0.9 eV).
Collapse
Affiliation(s)
- Javier Besteiro-Sáez
- Centro de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Luis M Mateo
- Centro de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Sergio Salaverría
- Nanomaterials and Nanotechnology Research Center (CINN), CSIC-UNIOVI-PA, 33940, El Entrego, Spain
| | - Tao Wang
- Donostia International Physics Center, 20018, San Sebastián, Spain
| | - Paula Angulo-Portugal
- Centro de Física de Materiales (CFM-MPC), CSIC-UPV/EHU, Donostia, 20018 San Sebastián, Spain
| | - Jan Patrick Calupitan
- Centro de Física de Materiales (CFM-MPC), CSIC-UPV/EHU, Donostia, 20018 San Sebastián, Spain
- Institut Parisien de Chimie Moléculaire (IPCM), Sorbonne Université, CNRS, F-75005, Paris, France
| | | | | | - Jaime Ferrer
- Physics Department, University of Oviedo, 33007, Oviedo, Spain
| | - Dolores Pérez
- Centro de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Martina Corso
- Donostia International Physics Center, 20018, San Sebastián, Spain
- Centro de Física de Materiales (CFM-MPC), CSIC-UPV/EHU, Donostia, 20018 San Sebastián, Spain
| | - Dimas G de Oteyza
- Nanomaterials and Nanotechnology Research Center (CINN), CSIC-UNIOVI-PA, 33940, El Entrego, Spain
- Donostia International Physics Center, 20018, San Sebastián, Spain
| | - Diego Peña
- Centro de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
- Oportunius, Galician Innovation Agency (GAIN), 15702, Santiago de Compostela, Spain
| |
Collapse
|
7
|
Li D, Silveira OJ, Matsuda T, Hayashi H, Maeda H, Foster AS, Kawai S. On-Surface Synthesis of Triaza[5]triangulene through Cyclodehydrogenation and its Magnetism. Angew Chem Int Ed Engl 2024; 63:e202411893. [PMID: 39039830 DOI: 10.1002/anie.202411893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/22/2024] [Accepted: 07/22/2024] [Indexed: 07/24/2024]
Abstract
Triangulenes as neutral radicals are becoming promising candidates for future applications such as spintronics and quantum technologies. To extend the potential of the advanced materials, it is of importance to control their electronic and magnetic properties by multiple graphitic nitrogen doping. Here, we synthesize triaza[5]triangulene on Au(111) by cyclodehydrogenation, and its derivatives by cleaving C-N bonds. Bond-resolved scanning tunneling microscopy and scanning tunneling spectroscopy provided detailed structural information and evidence for open-shell singlet ground state. The antiferromagnetic arrangement of the spins in positively doped triaza[5]triangulene was further confirmed by density function theory calculations. The key aspect of triangulenes with multiple graphitic nitrogen is the extra pz electrons composing the π orbitals, favoring charge transfer to the substrate and changing their low-energy excitations. Our findings pave the way for the exploration of exotic low-dimensional quantum phases of matter in heteroatom doped organic systems.
Collapse
Affiliation(s)
- Donglin Li
- Center for Basic Research on Materials, National Institute for Materials Science, Tsukuba, 305-0047, Japan
| | - Orlando J Silveira
- Department of Applied Physics, Aalto University, P.O. Box 11100, Aalto, Espoo, 00076, Finland
| | - Takuma Matsuda
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, Kusatsu, 525-8577, Japan
| | - Hironobu Hayashi
- Center for Basic Research on Materials, National Institute for Materials Science, Tsukuba, 305-0047, Japan
| | - Hiromitsu Maeda
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, Kusatsu, 525-8577, Japan
| | - Adam S Foster
- Department of Applied Physics, Aalto University, P.O. Box 11100, Aalto, Espoo, 00076, Finland
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, 920-1192, Japan
| | - Shigeki Kawai
- Center for Basic Research on Materials, National Institute for Materials Science, Tsukuba, 305-0047, Japan
- Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, 305-8571, Japan
| |
Collapse
|
8
|
Jiménez-Martín A, Sosnová Z, Soler D, Mallada B, González-Herrero H, Edalatmanesh S, Martín N, Écija D, Jelínek P, de la Torre B. Atomically Precise Control of Topological State Hybridization in Conjugated Polymers. ACS NANO 2024; 18:29902-29912. [PMID: 39404161 PMCID: PMC11526428 DOI: 10.1021/acsnano.4c10357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/30/2024] [Accepted: 10/04/2024] [Indexed: 10/30/2024]
Abstract
Realization of topological quantum states in carbon nanostructures has recently emerged as a promising platform for hosting highly coherent and controllable quantum dot spin qubits. However, their adjustable manipulation remains elusive. Here, we report the atomically accurate control of the hybridization level of topologically protected quantum edge states emerging from topological interfaces in bottom-up-fabricated π-conjugated polymers. Our investigation employed a combination of low-temperature scanning tunneling microscopy and spectroscopy, along with high-resolution atomic force microscopy, to effectively modify the hybridization level of neighboring edge states by the selective dehydrogenation reaction of molecular units in a pentacene-based polymer and demonstrate their reversible character. Density functional theory, tight binding, and complete active space calculations for the Hubbard model were employed to support our findings, revealing that the extent of orbital overlap between the topological edge states can be finely tuned based on the geometry and electronic bandgap of the interconnecting region. These results demonstrate the utility of topological edge states as components for designing complex quantum arrangements for advanced electronic devices.
Collapse
Affiliation(s)
- Alejandro Jiménez-Martín
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute (CATRIN), Palacký
University, 78371 Olomouc, Czech Republic
- Institute
of Physics of the Czech Academy of Sciences, 16200 Prague, Czech Republic
- Faculty
of Nuclear Sciences and Physical Engineering, Czech Technical University, 11519 Prague, Czech
Republic
| | - Zdenka Sosnová
- Institute
of Physics of the Czech Academy of Sciences, 16200 Prague, Czech Republic
| | - Diego Soler
- Institute
of Physics of the Czech Academy of Sciences, 16200 Prague, Czech Republic
| | - Benjamin Mallada
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute (CATRIN), Palacký
University, 78371 Olomouc, Czech Republic
- Institute
of Physics of the Czech Academy of Sciences, 16200 Prague, Czech Republic
| | - Héctor González-Herrero
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute (CATRIN), Palacký
University, 78371 Olomouc, Czech Republic
- Departamento
de Física de la Materia Condensada, Universidad Autónoma, E-28049 Madrid, Spain
- Condensed
Matter Physics Center (IFIMAC), Universidad
Autónoma, E-28049 Madrid, Spain
| | - Shayan Edalatmanesh
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute (CATRIN), Palacký
University, 78371 Olomouc, Czech Republic
- Institute
of Physics of the Czech Academy of Sciences, 16200 Prague, Czech Republic
| | - Nazario Martín
- Departamento
de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense, 28040 Madrid, Spain
- IMDEA
Nanoscience, Campus Universitario de Cantoblanco, 28049 Madrid, Spain
| | - David Écija
- IMDEA
Nanoscience, Campus Universitario de Cantoblanco, 28049 Madrid, Spain
| | - Pavel Jelínek
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute (CATRIN), Palacký
University, 78371 Olomouc, Czech Republic
- Institute
of Physics of the Czech Academy of Sciences, 16200 Prague, Czech Republic
| | - Bruno de la Torre
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute (CATRIN), Palacký
University, 78371 Olomouc, Czech Republic
- Nanomaterials
and Nanotechnology Research Center (CINN), CSIC-UNIOVI-PA, 33940 El Entrego, Spain
| |
Collapse
|
9
|
Sinha A, So H. Synthesis of chiral graphene structures and their comprehensive applications: a critical review. NANOSCALE HORIZONS 2024; 9:1855-1895. [PMID: 39171372 DOI: 10.1039/d4nh00021h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
From a molecular viewpoint, chirality is a crucial factor in biological processes. Enantiomers of a molecule have identical chemical and physical properties, but chiral molecules found in species exist in one enantiomer form throughout life, growth, and evolution. Chiral graphene materials have considerable potential for application in various domains because of their unique structural framework, properties, and controlled synthesis, including chiral creation, segregation, and transmission. This review article provides an in-depth analysis of the synthesis of chiral graphene materials reported over the past decade, including chiral nanoribbons, chiral tunneling, chiral dichroism, chiral recognition, and chiral transfer. The second segment focuses on the diverse applications of chiral graphene in biological engineering, electrochemical sensors, and photodetectors. Finally, we discuss research challenges and potential future uses, along with probable outcomes.
Collapse
Affiliation(s)
- Animesh Sinha
- Department of Mechanical Convergence Engineering, Hanyang University, Seoul 04763, South Korea.
| | - Hongyun So
- Department of Mechanical Convergence Engineering, Hanyang University, Seoul 04763, South Korea.
- Institute of Nano Science and Technology, Hanyang University, Seoul 04763, South Korea
| |
Collapse
|
10
|
Sakaguchi H, Kojima T, Cheng Y, Nobusue S, Fukami K. Electrochemical on-surface synthesis of a strong electron-donating graphene nanoribbon catalyst. Nat Commun 2024; 15:5972. [PMID: 39075056 PMCID: PMC11286955 DOI: 10.1038/s41467-024-50086-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 06/27/2024] [Indexed: 07/31/2024] Open
Abstract
On-surface synthesis of edge-functionalized graphene nanoribbons (GNRs) has attracted much attention. However, producing such GNRs on a large scale through on-surface synthesis under ultra-high vacuum on thermally activated metal surfaces has been challenging. This is mainly due to the decomposition of functional groups at temperatures of 300 to 500 °C and limited monolayer GNR growth based on the metal catalysis. To overcome these obstacles, we developed an on-surface electrochemical technique that utilizes redox reactions of asymmetric precursors at an electric double layer where a strong electric field is confined to the liquid-solid interface. We successfully demonstrate layer-by-layer growth of strong electron-donating GNRs on electrodes at temperatures <80 °C without decomposing functional groups. We show that high-voltage facilitates previously unknown heterochiral di-cationic polymerization. Electrochemically produced GNRs exhibiting one of the strongest electron-donating properties known, enable extraordinary silicon-etching catalytic activity, exceeding those of noble metals, with superior photoconductive properties. Our technique advances the possibility of producing various edge-functional GNRs.
Collapse
Affiliation(s)
- Hiroshi Sakaguchi
- Institute of Advanced Energy, Kyoto University, Uji, 611-0011, Japan.
| | - Takahiro Kojima
- Institute of Advanced Energy, Kyoto University, Uji, 611-0011, Japan
| | - Yingbo Cheng
- Institute of Advanced Energy, Kyoto University, Uji, 611-0011, Japan
| | - Shunpei Nobusue
- Institute of Advanced Energy, Kyoto University, Uji, 611-0011, Japan
| | - Kazuhiro Fukami
- Department of Materials Science and Engineering, Kyoto University, Kyoto, 606-8501, Japan
| |
Collapse
|
11
|
Qin T, Wang T, Zhu J. Recent progress in on-surface synthesis of nanoporous graphene materials. Commun Chem 2024; 7:154. [PMID: 38977754 PMCID: PMC11231364 DOI: 10.1038/s42004-024-01222-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/07/2024] [Indexed: 07/10/2024] Open
Abstract
Nanoporous graphene (NPG) materials are generated by removing internal degree-3 vertices from graphene and introducing nanopores with specific topological structures, which have been widely explored and exploited for applications in electronic devices, membranes, and energy storage. The inherent properties of NPGs, such as the band structures, field effect mobilities and topological properties, are crucially determined by the geometric structure of nanopores. On-surface synthesis is an emerging strategy to fabricate low-dimensional carbon nanostructures with atomic precision. In this review, we introduce the progress of on-surface synthesis of atomically precise NPGs, and classify NPGs from the aspects of element types, topological structures, pore shapes, and synthesis strategies. We aim to provide a comprehensive overview of the recent advancements, promoting interdisciplinary collaboration to further advance the synthesis and applications of NPGs.
Collapse
Affiliation(s)
- Tianchen Qin
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, and National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, P. R. China
| | - Tao Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, P. R. China.
| | - Junfa Zhu
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, and National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, P. R. China.
| |
Collapse
|
12
|
Jacobse PH, Sarker M, Saxena A, Zahl P, Wang Z, Berger E, Aluru NR, Sinitskii A, Crommie MF. Tunable Magnetic Coupling in Graphene Nanoribbon Quantum Dots. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400473. [PMID: 38412424 DOI: 10.1002/smll.202400473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Indexed: 02/29/2024]
Abstract
Carbon-based quantum dots (QDs) enable flexible manipulation of electronic behavior at the nanoscale, but controlling their magnetic properties requires atomically precise structural control. While magnetism is observed in organic molecules and graphene nanoribbons (GNRs), GNR precursors enabling bottom-up fabrication of QDs with various spin ground states have not yet been reported. Here the development of a new GNR precursor that results in magnetic QD structures embedded in semiconducting GNRs is reported. Inserting one such molecule into the GNR backbone and graphitizing it results in a QD region hosting one unpaired electron. QDs composed of two precursor molecules exhibit nonmagnetic, antiferromagnetic, or antiferromagnetic ground states, depending on the structural details that determine the coupling behavior of the spins originating from each molecule. The synthesis of these QDs and the emergence of localized states are demonstrated through high-resolution atomic force microscopy (HR-AFM), scanning tunneling microscopy (STM) imaging, and spectroscopy, and the relationship between QD atomic structure and magnetic properties is uncovered. GNR QDs provide a useful platform for controlling the spin-degree of freedom in carbon-based nanostructures.
Collapse
Affiliation(s)
- Peter H Jacobse
- Department of Physics, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Mamun Sarker
- Department of Chemistry, University of Nebraska, Lincoln, NE, 68588, USA
- Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Anshul Saxena
- Walker Department of Mechanical Engineering, University of Texas, Austin, TX, 78712, USA
- Oden Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, TX, 78712, USA
| | - Percy Zahl
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Ziyi Wang
- Department of Physics, University of California, Berkeley, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Kavli Energy NanoSciences Institute at the University of California Berkeley and the Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Emma Berger
- Department of Physics, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Narayana R Aluru
- Walker Department of Mechanical Engineering, University of Texas, Austin, TX, 78712, USA
- Oden Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, TX, 78712, USA
| | - Alexander Sinitskii
- Department of Chemistry, University of Nebraska, Lincoln, NE, 68588, USA
- Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Michael F Crommie
- Department of Physics, University of California, Berkeley, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Kavli Energy NanoSciences Institute at the University of California Berkeley and the Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| |
Collapse
|
13
|
Zhu X, Li K, Liu J, Wang Z, Ding Z, Su Y, Yang B, Yan K, Li G, Yu P. Topological Structure Realized in Cove-Edged Graphene Nanoribbons via Incorporation of Periodic Pentagon Rings. J Am Chem Soc 2024; 146:7152-7158. [PMID: 38421279 DOI: 10.1021/jacs.4c00270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Cove-edged zigzag graphene nanoribbons are predicted to show metallic, topological, or trivial semiconducting band structures, which are precisely determined by their cove offset positions at both edges as well as the ribbon width. However, due to the challenge of introducing coves into zigzag-edged graphene nanoribbons, only a few cove-edged graphene nanoribbons with trivial semiconducting bandgaps have been realized experimentally. Here, we report that the topological band structure can be realized in cove-edged graphene nanoribbons by embedding periodic pentagon rings on the cove edges through on-surface synthesis. Upon noncontact atomic force microscopy and scanning tunneling spectroscopy measurements, the chemical and electronic structures of cove-edged graphene nanoribbons with periodic pentagon rings have been characterized for different lengths. Combined with theoretical calculations, we find that upon inducing periodic pentagon rings the cove-edged graphene nanoribbons exhibit nontrivial topological structures. Our results provide insights for the design and understanding of the topological character in cove-edged graphene nanoribbons.
Collapse
Affiliation(s)
- Xujie Zhu
- School of Physical Science and Technology, ShanghaiTech University, 201210 Shanghai, China
| | - Kezhen Li
- School of Physical Science and Technology, ShanghaiTech University, 201210 Shanghai, China
| | - Jian Liu
- School of Physical Science and Technology, ShanghaiTech University, 201210 Shanghai, China
| | - Zhou Wang
- School of Physical Science and Technology, ShanghaiTech University, 201210 Shanghai, China
| | - Zhihao Ding
- School of Physical Science and Technology, ShanghaiTech University, 201210 Shanghai, China
| | - Yunlong Su
- School of Physical Science and Technology, ShanghaiTech University, 201210 Shanghai, China
| | - Bo Yang
- School of Physical Science and Technology, ShanghaiTech University, 201210 Shanghai, China
| | - KaKing Yan
- School of Physical Science and Technology, ShanghaiTech University, 201210 Shanghai, China
| | - Gang Li
- School of Physical Science and Technology, ShanghaiTech University, 201210 Shanghai, China
- ShanghaiTech Laboratory for Topological Physics, ShanghaiTech University, 201210 Shanghai, China
| | - Ping Yu
- School of Physical Science and Technology, ShanghaiTech University, 201210 Shanghai, China
| |
Collapse
|
14
|
Berdonces-Layunta A, Matěj A, Jiménez-Martín A, Lawrence J, Mohammed MSG, Wang T, Mallada B, de la Torre B, Martínez A, Vilas-Varela M, Nieman R, Lischka H, Nachtigallová D, Peña D, Jelínek P, de Oteyza DG. The effect of water on gold supported chiral graphene nanoribbons: rupture of conjugation by an alternating hydrogenation pattern. NANOSCALE 2024; 16:734-741. [PMID: 38086686 DOI: 10.1039/d3nr02933f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
In the last few years we have observed a breakpoint in the development of graphene-derived technologies, such as liquid phase filtering and their application to electronics. In most of these cases, they imply exposure of the material to solvents and ambient moisture, either in the fabrication of the material or the final device. The present study demonstrates the sensitivity of graphene nanoribbon (GNR) zigzag edges to water, even in extremely low concentrations. We have addressed the unique reactivity of (3,1)-chiral GNR with moisture on Au(111). Water shows a reductive behaviour, hydrogenating the central carbon of the zigzag segments. By combining scanning tunnelling microscopy (STM) with simulations, we demonstrate how their reactivity reaches a thermodynamic limit when half of the unit cells are reduced, resulting in an alternating pattern of hydrogenated and pristine unit cells starting from the terminal segments. Once a quasi-perfect alternation is reached, the reaction stops regardless of the water concentration. The hydrogenated segments limit the electronic conjugation of the GNR, but the reduction can be reversed both by tip manipulation and annealing. Selective tip-induced dehydrogenation allowed the stabilization of radical states at the edges of the ribbons, while the annealing of the sample completely recovered the original, pristine GNR.
Collapse
Affiliation(s)
- Alejandro Berdonces-Layunta
- Donostia International Physics Center, 20018 San Sebastian, Spain.
- Centro de Fisica de Materiales, 20018 San Sebastian, Spain
| | - Adam Matěj
- Institute of Physics, Czech Academy of Sciences, 16200 Prague, Czech Republic.
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacky University, 783 71 Olomouc, Czech Republic.
- Department of Physical Chemistry, Faculty of Science, Palacky University, 779 00 Olomouc, Czech Republic
| | - Alejandro Jiménez-Martín
- Institute of Physics, Czech Academy of Sciences, 16200 Prague, Czech Republic.
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacky University, 783 71 Olomouc, Czech Republic.
- Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Brehova 7, Prague 1 115 19, Czech Republic
| | - James Lawrence
- Donostia International Physics Center, 20018 San Sebastian, Spain.
- Centro de Fisica de Materiales, 20018 San Sebastian, Spain
| | - Mohammed S G Mohammed
- Donostia International Physics Center, 20018 San Sebastian, Spain.
- Centro de Fisica de Materiales, 20018 San Sebastian, Spain
| | - Tao Wang
- Donostia International Physics Center, 20018 San Sebastian, Spain.
- Centro de Fisica de Materiales, 20018 San Sebastian, Spain
| | - Benjamin Mallada
- Institute of Physics, Czech Academy of Sciences, 16200 Prague, Czech Republic.
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacky University, 783 71 Olomouc, Czech Republic.
- Department of Physical Chemistry, Faculty of Science, Palacky University, 779 00 Olomouc, Czech Republic
| | - Bruno de la Torre
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacky University, 783 71 Olomouc, Czech Republic.
| | - Adrián Martínez
- Centro Singular de Investigacion en Quimica Bioloxica e Materiais Moleculares (CiQUS), and Departamento de Quimica Organica, Universidade de Santiago de Compostela, 15705 Santiago de Compostela, Spain
| | - Manuel Vilas-Varela
- Centro Singular de Investigacion en Quimica Bioloxica e Materiais Moleculares (CiQUS), and Departamento de Quimica Organica, Universidade de Santiago de Compostela, 15705 Santiago de Compostela, Spain
| | - Reed Nieman
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA
| | - Hans Lischka
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA
| | - Dana Nachtigallová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 16000 Prague, Czech Republic
- IT4Innovations, VSB-Technical University of Ostrava, 17. listopadu 2172/15, Ostrava-Poruba 70800, Czech Republic
| | - Diego Peña
- Centro Singular de Investigacion en Quimica Bioloxica e Materiais Moleculares (CiQUS), and Departamento de Quimica Organica, Universidade de Santiago de Compostela, 15705 Santiago de Compostela, Spain
| | - Pavel Jelínek
- Institute of Physics, Czech Academy of Sciences, 16200 Prague, Czech Republic.
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacky University, 783 71 Olomouc, Czech Republic.
| | - Dimas G de Oteyza
- Donostia International Physics Center, 20018 San Sebastian, Spain.
- Centro de Fisica de Materiales, 20018 San Sebastian, Spain
- Nanomaterials and Nanotechnology Research Center (CINN), CSIC-UNIOVI-PA, 33940 El Entrego, Spain.
| |
Collapse
|
15
|
Hieulle J, Garcia Fernandez C, Friedrich N, Vegliante A, Sanz S, Sánchez-Portal D, Haley MM, Casado J, Frederiksen T, Pascual JI. From Solution to Surface: Persistence of the Diradical Character of a Diindenoanthracene Derivative on a Metallic Substrate. J Phys Chem Lett 2023; 14:11506-11512. [PMID: 38088859 DOI: 10.1021/acs.jpclett.3c02401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Organic diradicals are envisioned as elementary building blocks for designing a new generation of spintronic devices and have been used in constructing prototypical field effect transistors and nonlinear optical devices. Open-shell systems, however, are also reactive, thus requiring design strategies to "protect" their radical character from the environment, especially when they are embedded in solid-state devices. Here, we report the persistence on a metallic surface of the diradical character of a diindeno[b,i]anthracene (DIAn) core protected by bulky end-groups. Our scanning tunneling spectroscopy measurements on single-molecules detected singlet-triplet excitations that were absent for DIAn species packed in assembled structures. Density functional theory simulations unravel that the molecular geometry on the metal substrate can crucially modify the value of the singlet-triplet gap via the delocalization of the radical sites. The persistence of the diradical character over metallic substrates is a promising finding for integrating radical-based materials into functional devices.
Collapse
Affiliation(s)
| | | | | | | | - Sofia Sanz
- Donostia International Physics Center (DIPC), 20018 Donostia-San Sebastián, Spain
| | - Daniel Sánchez-Portal
- Donostia International Physics Center (DIPC), 20018 Donostia-San Sebastián, Spain
- Centro de Física de Materiales MPC (CSIC/UPV-EHU), 20018 Donostia-San Sebastián, Spain
| | - Michael M Haley
- Department of Chemistry & Biochemistry and the Materials Science Institute, University of Oregon, Eugene, Oregon 97403-1253, United States
| | - Juan Casado
- Department of Physical Chemistry, University of Malaga, Campus de Teatinos s/n, 229071 Malaga, Spain
| | - Thomas Frederiksen
- Donostia International Physics Center (DIPC), 20018 Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| | - José Ignacio Pascual
- CIC nanoGUNE-BRTA, 20018 Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
16
|
Calupitan JP, Berdonces-Layunta A, Aguilar-Galindo F, Vilas-Varela M, Peña D, Casanova D, Corso M, de Oteyza DG, Wang T. Emergence of π-Magnetism in Fused Aza-Triangulenes: Symmetry and Charge Transfer Effects. NANO LETTERS 2023; 23:9832-9840. [PMID: 37870305 PMCID: PMC10722538 DOI: 10.1021/acs.nanolett.3c02586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/24/2023]
Abstract
On-surface synthesis has paved the way toward the fabrication and characterization of conjugated carbon-based molecular materials that exhibit π-magnetism such as triangulenes. Aza-triangulene, a nitrogen-substituted derivative, was recently shown to display rich on-surface chemistry, offering an ideal platform to investigate structure-property relations regarding spin-selective charge transfer and magnetic fingerprints. Herein, we study electronic changes upon fusion of single molecules into larger dimeric derivatives. We show that the closed-shell structure of aza-triangulene on Ag(111) leads to closed-shell dimers covalently coupled through sterically accessible carbon atoms. Meanwhile, its open-shell structure on Au(111) leads to coupling via atoms displaying a high spin density, resulting in symmetric or asymmetric products. Interestingly, whereas all dimers on Au(111) exhibit similar charge transfer properties, only asymmetric ones show magnetic fingerprints due to spin-selective charge transfer. These results expose clear relationships among molecular symmetry, charge transfer, and spin states of π-conjugated carbon-based nanostructures.
Collapse
Affiliation(s)
- Jan Patrick Calupitan
- Centro
de Física de Materiales (CFM-MPC), CSIC-UPV/EHU, 20018 San Sebastián, Spain
- Donostia
International Physics Center, 20018 San Sebastián, Spain
| | - Alejandro Berdonces-Layunta
- Centro
de Física de Materiales (CFM-MPC), CSIC-UPV/EHU, 20018 San Sebastián, Spain
- Donostia
International Physics Center, 20018 San Sebastián, Spain
| | - Fernando Aguilar-Galindo
- Departamento
de Química, Universidad Autónoma
de Madrid, 28049 Madrid, Spain
- Institute
for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Manuel Vilas-Varela
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CiQUS) and Departamento de Química
Orgánica, Universidade de Santiago
de Compostela, 15782 Santiago de Compostela, Spain
| | - Diego Peña
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CiQUS) and Departamento de Química
Orgánica, Universidade de Santiago
de Compostela, 15782 Santiago de Compostela, Spain
| | - David Casanova
- Donostia
International Physics Center, 20018 San Sebastián, Spain
- Ikerbasque, Basque Foundation
for Science, 48009 Bilbao, Spain
| | - Martina Corso
- Centro
de Física de Materiales (CFM-MPC), CSIC-UPV/EHU, 20018 San Sebastián, Spain
- Donostia
International Physics Center, 20018 San Sebastián, Spain
| | - Dimas G. de Oteyza
- Centro
de Física de Materiales (CFM-MPC), CSIC-UPV/EHU, 20018 San Sebastián, Spain
- Donostia
International Physics Center, 20018 San Sebastián, Spain
- Nanomaterials
and Nanotechnology Research Center (CINN), CSIC-UNIOVI-PA, 33940 El Entrego, Spain
| | - Tao Wang
- Centro
de Física de Materiales (CFM-MPC), CSIC-UPV/EHU, 20018 San Sebastián, Spain
- Donostia
International Physics Center, 20018 San Sebastián, Spain
| |
Collapse
|
17
|
Liu Y, Li C, Xue FH, Su W, Wang Y, Huang H, Yang H, Chen J, Guan D, Li Y, Zheng H, Liu C, Qin M, Wang X, Wang R, Li DY, Liu PN, Wang S, Jia J. Quantum Phase Transition in Magnetic Nanographenes on a Lead Superconductor. NANO LETTERS 2023; 23:9704-9710. [PMID: 37870505 DOI: 10.1021/acs.nanolett.3c02208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Quantum spins, also known as spin operators that preserve SU(2) symmetry, lack a specific orientation in space and are hypothesized to display unique interactions with superconductivity. However, spin-orbit coupling and crystal field typically cause a significant magnetic anisotropy in d/f shell spins on surfaces. Here, we fabricate atomically precise S = 1/2 magnetic nanographenes on Pb(111) through engineering sublattice imbalance in the graphene honeycomb lattice. Through tuning the magnetic exchange strength between the unpaired spin and Cooper pairs, a quantum phase transition from the singlet to the doublet state has been observed, consistent with the quantum spin models. From our calculations, the particle-hole asymmetry is induced by the Coulomb scattering potential and gives a transition point about kBTk ≈ 1.6Δ. Our work demonstrates that delocalized π electron magnetism hosts highly tunable magnetic bound states, which can be further developed to study the Majorana bound states and other rich quantum phases of low-dimensional quantum spins on superconductors.
Collapse
Affiliation(s)
- Yu Liu
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), TD Lee Institute, Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Hefei National Laboratory, Hefei 230088, China
- Shanghai Research Center for Quantum Sciences, 99 Xiupu Road, Shanghai 201315, China
| | - Can Li
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), TD Lee Institute, Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Hefei National Laboratory, Hefei 230088, China
- Shanghai Research Center for Quantum Sciences, 99 Xiupu Road, Shanghai 201315, China
| | - Fu-Hua Xue
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science Technology, 130 Meilong Road, Shanghai 200237, China
| | - Wei Su
- Beijing Computational Science Research Center, Beijing 100084, China
- College of Physics and Electronic Engineering, Center for Computational Sciences, Sichuan Normal University, Chengdu 610068, China
| | - Ying Wang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science Technology, 130 Meilong Road, Shanghai 200237, China
| | - Haili Huang
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), TD Lee Institute, Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Hefei National Laboratory, Hefei 230088, China
- Shanghai Research Center for Quantum Sciences, 99 Xiupu Road, Shanghai 201315, China
| | - Hao Yang
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), TD Lee Institute, Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Hefei National Laboratory, Hefei 230088, China
- Shanghai Research Center for Quantum Sciences, 99 Xiupu Road, Shanghai 201315, China
| | - Jiayi Chen
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), TD Lee Institute, Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Hefei National Laboratory, Hefei 230088, China
- Shanghai Research Center for Quantum Sciences, 99 Xiupu Road, Shanghai 201315, China
| | - Dandan Guan
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), TD Lee Institute, Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Hefei National Laboratory, Hefei 230088, China
- Shanghai Research Center for Quantum Sciences, 99 Xiupu Road, Shanghai 201315, China
| | - Yaoyi Li
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), TD Lee Institute, Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Hefei National Laboratory, Hefei 230088, China
- Shanghai Research Center for Quantum Sciences, 99 Xiupu Road, Shanghai 201315, China
| | - Hao Zheng
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), TD Lee Institute, Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Hefei National Laboratory, Hefei 230088, China
- Shanghai Research Center for Quantum Sciences, 99 Xiupu Road, Shanghai 201315, China
| | - Canhua Liu
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), TD Lee Institute, Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Hefei National Laboratory, Hefei 230088, China
- Shanghai Research Center for Quantum Sciences, 99 Xiupu Road, Shanghai 201315, China
| | - Mingpu Qin
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), TD Lee Institute, Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xiaoqun Wang
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), TD Lee Institute, Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Rui Wang
- National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China
- Collaborative Innovation Center for Advanced Microstructures, Nanjing 210093, China
| | - Deng-Yuan Li
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science Technology, 130 Meilong Road, Shanghai 200237, China
| | - Pei-Nian Liu
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science Technology, 130 Meilong Road, Shanghai 200237, China
| | - Shiyong Wang
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), TD Lee Institute, Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Hefei National Laboratory, Hefei 230088, China
- Shanghai Research Center for Quantum Sciences, 99 Xiupu Road, Shanghai 201315, China
| | - Jinfeng Jia
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), TD Lee Institute, Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Hefei National Laboratory, Hefei 230088, China
- Shanghai Research Center for Quantum Sciences, 99 Xiupu Road, Shanghai 201315, China
| |
Collapse
|
18
|
Borin Barin G, Di Giovannantonio M, Lohr TG, Mishra S, Kinikar A, Perrin ML, Overbeck J, Calame M, Feng X, Fasel R, Ruffieux P. On-surface synthesis and characterization of teranthene and hexanthene: ultrashort graphene nanoribbons with mixed armchair and zigzag edges. NANOSCALE 2023; 15:16766-16774. [PMID: 37818609 DOI: 10.1039/d3nr03736c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
Graphene nanoribbons (GNRs) exhibit a broad range of physicochemical properties that critically depend on their width and edge topology. GNRs with armchair edges (AGNRs) are usually more stable than their counterparts with zigzag edges (ZGNRs) where the low-energy spin-polarized edge states render the ribbons prone to being altered by undesired chemical reactions. On the other hand, such edge-localized states make ZGNRs highly appealing for applications in spintronic and quantum technologies. For GNRs fabricated via on-surface synthesis under ultrahigh vacuum conditions on metal substrates, the expected reactivity of zigzag edges is a serious concern in view of substrate transfer and device integration under ambient conditions, but corresponding investigations are scarce. Using 10-bromo-9,9':10',9''-teranthracene as a precursor, we have thus synthesized hexanthene (HA) and teranthene (TA) as model compounds for ultrashort GNRs with mixed armchair and zigzag edges, characterized their chemical and electronic structure by means of scanning probe methods, and studied their chemical reactivity upon air exposure by Raman spectroscopy. We present a detailed identification of molecular orbitals and vibrational modes, assign their origin to armchair or zigzag edges, and discuss the chemical reactivity of these edges based on characteristic Raman spectral features.
Collapse
Affiliation(s)
- Gabriela Borin Barin
- Nanotech@Surfaces Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland.
| | - Marco Di Giovannantonio
- Nanotech@Surfaces Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland.
| | - Thorsten G Lohr
- Center for Advancing Electronics Dresden, Department of Chemistry and Food Chemistry, TU Dresden, Dresden 01062, Germany
| | - Shantanu Mishra
- Nanotech@Surfaces Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland.
| | - Amogh Kinikar
- Nanotech@Surfaces Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland.
| | - Mickael L Perrin
- Transport at Nanoscale Interfaces Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
- Department of Information Technology and Electrical Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Jan Overbeck
- Transport at Nanoscale Interfaces Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Michel Calame
- Transport at Nanoscale Interfaces Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
- Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland
- Swiss Nanoscience Institute, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland
| | - Xinliang Feng
- Center for Advancing Electronics Dresden, Department of Chemistry and Food Chemistry, TU Dresden, Dresden 01062, Germany
- Max Planck Institute of Microstructure Physics, Weinberg 2, 06120 Halle, Germany
| | - Roman Fasel
- Nanotech@Surfaces Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland.
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Pascal Ruffieux
- Nanotech@Surfaces Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland.
| |
Collapse
|
19
|
Yin R, Wang Z, Tan S, Ma C, Wang B. On-Surface Synthesis of Graphene Nanoribbons with Atomically Precise Structural Heterogeneities and On-Site Characterizations. ACS NANO 2023; 17:17610-17623. [PMID: 37666005 DOI: 10.1021/acsnano.3c06128] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Graphene nanoribbons (GNRs) are strips of graphene, with widths of a few nanometers, that are promising candidates for future applications in nanodevices and quantum information processing due to their highly tunable structure-dependent electronic, spintronic, topological, and optical properties. Implantation of periodic structural heterogeneities, such as heteroatoms, nanopores, and non-hexagonal rings, has become a powerful manner for tailoring the designer properties of GNRs. The bottom-up synthesis approach, by combining on-surface chemical reactions based on rationally designed molecular precursors and in situ tip-based microscopic and spectroscopic techniques, promotes the construction of atomically precise GNRs with periodic structural modulations. However, there are still obstacles and challenges lying on the way toward the understanding of the intrinsic structure-property relations, such as the strong screening and Fermi level pinning effect of the normally used transition metal substrates and the lack of collective tip-based techniques that can cover multi-internal degrees of freedom of the GNRs. In this Perspective, we briefly review the recent progress in the on-surface synthesis of GNRs with diverse structural heterogeneities and highlight the structure-property relations as characterized by the noncontact atomic force microscopy and scanning tunneling microscopy/spectroscopy. We furthermore motivate to deliver the need for developing strategies to achieve quasi-freestanding GNRs and for exploiting multifunctional tip-based techniques to collectively probe the intrinsic properties.
Collapse
Affiliation(s)
- Ruoting Yin
- Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information & Quantum Physics, New Cornerstone Science Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhengya Wang
- Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information & Quantum Physics, New Cornerstone Science Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Shijing Tan
- Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information & Quantum Physics, New Cornerstone Science Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Chuanxu Ma
- Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information & Quantum Physics, New Cornerstone Science Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Bing Wang
- Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information & Quantum Physics, New Cornerstone Science Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| |
Collapse
|
20
|
Du Q, Su X, Liu Y, Jiang Y, Li C, Yan K, Ortiz R, Frederiksen T, Wang S, Yu P. Orbital-symmetry effects on magnetic exchange in open-shell nanographenes. Nat Commun 2023; 14:4802. [PMID: 37558678 PMCID: PMC10412602 DOI: 10.1038/s41467-023-40542-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 08/01/2023] [Indexed: 08/11/2023] Open
Abstract
Open-shell nanographenes appear as promising candidates for future applications in spintronics and quantum technologies. A critical aspect to realize this potential is to design and control the magnetic exchange. Here, we reveal the effects of frontier orbital symmetries on the magnetic coupling in diradical nanographenes through scanning probe microscope measurements and different levels of theoretical calculations. In these open-shell nanographenes, the exchange energy exhibits a remarkable variation between 20 and 160 meV. Theoretical calculations reveal that frontier orbital symmetries play a key role in affecting the magnetic coupling on such a large scale. Moreover, a triradical nanographene is demonstrated for investigating the magnetic interaction among three unpaired electrons with unequal magnetic exchange, in agreement with Heisenberg spin model calculations. Our results provide insights into both theoretical design and experimental realization of nanographene materials with different exchange interactions through tuning the orbital symmetry, potentially useful for realizing magnetically operable graphene-based nanomaterials.
Collapse
Affiliation(s)
- Qingyang Du
- School of Physical Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Xuelei Su
- School of Physical Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Yufeng Liu
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yashi Jiang
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Can Li
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - KaKing Yan
- School of Physical Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Ricardo Ortiz
- Donostia International Physics Center (DIPC) - UPV/EHU, 20018, San Sebastián, Spain.
| | - Thomas Frederiksen
- Donostia International Physics Center (DIPC) - UPV/EHU, 20018, San Sebastián, Spain.
- IKERBASQUE, Basque Foundation for Science, 48013, Bilbao, Spain.
| | - Shiyong Wang
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Ping Yu
- School of Physical Science and Technology, ShanghaiTech University, 201210, Shanghai, China.
| |
Collapse
|
21
|
Luo H, Liu FZ, Liu Y, Chu Z, Yan K. Biasing Divergent Polycyclic Aromatic Hydrocarbon Oxidation Pathway by Solvent-Free Mechanochemistry. J Am Chem Soc 2023. [PMID: 37428958 DOI: 10.1021/jacs.3c00614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Precise control in reaction selectivity is the goal in modern organic synthesis, and it has been widely studied throughout the synthetic community. In comparison, control of divergent reactivity of a given reagent under different reaction conditions is relatively less explored aspect of chemical selectivity. We herein report an unusual reaction between polycyclic aromatic hydrocarbons and periodic acid H5IO6 (1), where the product outcome is dictated by the choice of reaction conditions. That is, reactions under solution-based condition give preferentially C-H iodination products, while reactions under solvent-free mechanochemical condition provide C-H oxidation quinone products. Control experiments further indicated that the iodination product is not a reaction intermediate toward the oxidation product and vice versa. Mechanistic studies unveiled an in situ crystalline-to-crystalline phase change in 2 during ball-milling treatment, where we assigned it as a polymeric hydrogen-bond network of 1. We believe that this polymeric crystalline phase shields the more embedded electrophilic I═O group of 1 from C-H iodination and bias a divergent C-H oxidation pathway (with I═O) in the solid state. Collectively, this work demonstrates that mechanochemistry can be employed to completely switch a reaction pathway and unmask hidden reactivity of chemical reagents.
Collapse
Affiliation(s)
- Hao Luo
- School of Physical Science and Technology, ShanghaiTech University, 201210 Shanghai, China
| | - Fang-Zi Liu
- School of Physical Science and Technology, ShanghaiTech University, 201210 Shanghai, China
| | - Yan Liu
- School of Physical Science and Technology, ShanghaiTech University, 201210 Shanghai, China
| | - Zhaoyang Chu
- School of Physical Science and Technology, ShanghaiTech University, 201210 Shanghai, China
| | - KaKing Yan
- School of Physical Science and Technology, ShanghaiTech University, 201210 Shanghai, China
| |
Collapse
|
22
|
Wang T, Fan Q, Zhu J. Steering On-Surface Reactions by Kinetic and Thermodynamic Strategies. J Phys Chem Lett 2023; 14:2251-2262. [PMID: 36821589 DOI: 10.1021/acs.jpclett.3c00001] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
On-surface synthesis has emerged as a powerful tool to fabricate various functional low-dimensional nanostructures with atomic precision, thus becoming a promising platform for the preparation of next-generation semiconductive, magnetic, and topological nanodevices. With the aid of scanning tunneling microscopy/spectroscopy and noncontact atomic force microscopy, both the chemical structures and physical properties of the obtained products can be well characterized. A major challenge in this field is how to efficiently steer reaction pathways and improve the yield/quality of products. To address this problem, in recent years various kinetic and thermodynamic strategies have been successfully employed to control on-surface reactions. In this Perspective, we discuss these strategies in view of basic reaction steps on surfaces, including molecular adsorption, diffusion, and reaction. We hope this Perspective will help readers to deepen the understanding of the mechanisms of on-surface reactions and rationally design reaction procedures for the fabrication of high-quality functional nanomaterials on surfaces.
Collapse
Affiliation(s)
- Tao Wang
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, and National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China
- Donostia International Physics Center, San Sebastián 20018, Spain
| | - Qitang Fan
- Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Junfa Zhu
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, and National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China
| |
Collapse
|
23
|
Steering Large Magnetic Exchange Coupling in Nanographenes near the Closed-Shell to Open-Shell Transition. J Am Chem Soc 2023; 145:2968-2974. [PMID: 36708335 DOI: 10.1021/jacs.2c11431] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The design of open-shell carbon-based nanomaterials is at the vanguard of materials science, steered by their beneficial magnetic properties like weaker spin-orbit coupling than that of transition metal atoms and larger spin delocalization, which are of potential relevance for future spintronics and quantum technologies. A key parameter in magnetic materials is the magnetic exchange coupling (MEC) between unpaired spins, which should be large enough to allow device operation at practical temperatures. In this work, we theoretically and experimentally explore three distinct families of nanographenes (NGs) (A, B, and C) featuring majority zigzag peripheries. Through many-body calculations, we identify a transition from a closed-shell ground state to an open-shell ground state upon an increase of the molecular size. Our predictions indicate that the largest MEC for open-shell NGs occurs in proximity to the transition between closed-shell and open-shell states. Such predictions are corroborated by the on-surface syntheses and structural, electronic, and magnetic characterizations of three NGs (A[3,5], B[4,5], and C[4,3]), which are the smallest open-shell systems in their respective chemical families and are thus located the closest to the transition boundary. Notably, two of the NGs (B[4,5] and C[4,3]) feature record values of MEC (close to 200 meV) measured on the Au(111) surface. Our strategy for maximizing the MEC provides perspectives for designing carbon nanomaterials with robust magnetic ground states.
Collapse
|
24
|
Lawrence J, Berdonces-Layunta A, Edalatmanesh S, Castro-Esteban J, Wang T, Jimenez-Martin A, de la Torre B, Castrillo-Bodero R, Angulo-Portugal P, Mohammed MSG, Matěj A, Vilas-Varela M, Schiller F, Corso M, Jelinek P, Peña D, de Oteyza DG. Circumventing the stability problems of graphene nanoribbon zigzag edges. Nat Chem 2022; 14:1451-1458. [PMID: 36163268 PMCID: PMC10665199 DOI: 10.1038/s41557-022-01042-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/09/2022] [Indexed: 11/09/2022]
Abstract
Carbon nanostructures with zigzag edges exhibit unique properties-such as localized electronic states and spins-with exciting potential applications. Such nanostructures however are generally synthesized under vacuum because their zigzag edges are unstable under ambient conditions: a barrier that must be surmounted to achieve their scalable integration into devices for practical purposes. Here we show two chemical protection/deprotection strategies, demonstrated on labile, air-sensitive chiral graphene nanoribbons. Upon hydrogenation, the chiral graphene nanoribbons survive exposure to air, after which they are easily converted back to their original structure by annealing. We also approach the problem from another angle by synthesizing a form of the chiral graphene nanoribbons that is functionalized with ketone side groups. This oxidized form is chemically stable and can be converted to the pristine hydrocarbon form by hydrogenation and annealing. In both cases, the deprotected chiral graphene nanoribbons regain electronic properties similar to those of the pristine nanoribbons. We believe both approaches may be extended to other graphene nanoribbons and carbon-based nanostructures.
Collapse
Affiliation(s)
- James Lawrence
- Donostia International Physics Center, San Sebastián, Spain
- Centro de Física de Materiales (MPC), CSIC-UPV/EHU, San Sebastián, Spain
| | - Alejandro Berdonces-Layunta
- Donostia International Physics Center, San Sebastián, Spain
- Centro de Física de Materiales (MPC), CSIC-UPV/EHU, San Sebastián, Spain
| | | | - Jesús Castro-Esteban
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Tao Wang
- Donostia International Physics Center, San Sebastián, Spain
- Centro de Física de Materiales (MPC), CSIC-UPV/EHU, San Sebastián, Spain
| | - Alejandro Jimenez-Martin
- Institute of Physics, Czech Academy of Sciences, Prague, Czech Republic
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Olomouc, Czech Republic
- Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Prague, Czech Republic
| | - Bruno de la Torre
- Institute of Physics, Czech Academy of Sciences, Prague, Czech Republic
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Olomouc, Czech Republic
| | | | | | - Mohammed S G Mohammed
- Donostia International Physics Center, San Sebastián, Spain
- Centro de Física de Materiales (MPC), CSIC-UPV/EHU, San Sebastián, Spain
| | - Adam Matěj
- Institute of Physics, Czech Academy of Sciences, Prague, Czech Republic
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Olomouc, Czech Republic
| | - Manuel Vilas-Varela
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Frederik Schiller
- Donostia International Physics Center, San Sebastián, Spain
- Centro de Física de Materiales (MPC), CSIC-UPV/EHU, San Sebastián, Spain
| | - Martina Corso
- Donostia International Physics Center, San Sebastián, Spain
- Centro de Física de Materiales (MPC), CSIC-UPV/EHU, San Sebastián, Spain
| | - Pavel Jelinek
- Institute of Physics, Czech Academy of Sciences, Prague, Czech Republic.
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Olomouc, Czech Republic.
| | - Diego Peña
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, Santiago de Compostela, Spain.
| | - Dimas G de Oteyza
- Donostia International Physics Center, San Sebastián, Spain.
- Centro de Física de Materiales (MPC), CSIC-UPV/EHU, San Sebastián, Spain.
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain.
- Nanomaterials and Nanotechnology Research Center (CINN), CSIC-UNIOVI-PA, El Entrego, Spain.
| |
Collapse
|
25
|
Friedrich N, Menchón RE, Pozo I, Hieulle J, Vegliante A, Li J, Sánchez-Portal D, Peña D, Garcia-Lekue A, Pascual JI. Addressing Electron Spins Embedded in Metallic Graphene Nanoribbons. ACS NANO 2022; 16:14819-14826. [PMID: 36037149 PMCID: PMC9527809 DOI: 10.1021/acsnano.2c05673] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
Spin-hosting graphene nanostructures are promising metal-free systems for elementary quantum spintronic devices. Conventionally, spins are protected from quenching by electronic band gaps, which also hinder electronic access to their quantum state. Here, we present a narrow graphene nanoribbon substitutionally doped with boron heteroatoms that combines a metallic character with the presence of localized spin 1/2 states in its interior. The ribbon was fabricated by on-surface synthesis on a Au(111) substrate. Transport measurements through ribbons suspended between the tip and the sample of a scanning tunneling microscope revealed their ballistic behavior, characteristic of metallic nanowires. Conductance spectra show fingerprints of localized spin states in the form of Kondo resonances and inelastic tunneling excitations. Density functional theory rationalizes the metallic character of the graphene nanoribbon due to the partial depopulation of the valence band induced by the boron atoms. The transferred charge builds localized magnetic moments around the boron atoms. The orthogonal symmetry of the spin-hosting state's and the valence band's wave functions protects them from mixing, maintaining the spin states localized. The combination of ballistic transport and spin localization into a single graphene nanoribbon offers the perspective of electronically addressing and controlling carbon spins in real device architectures.
Collapse
Affiliation(s)
| | - Rodrigo E. Menchón
- Donostia
International Physics Center (DIPC), 20018 Donostia-San Sebastián, Spain
| | - Iago Pozo
- CiQUS,
Centro Singular de Investigación en Química Biolóxica
e Materiais Moleculares, 15705 Santiago de Compostela, Spain
| | | | | | - Jingcheng Li
- CIC
nanoGUNE-BRTA, 20018 Donostia-San Sebastián, Spain
| | - Daniel Sánchez-Portal
- Donostia
International Physics Center (DIPC), 20018 Donostia-San Sebastián, Spain
- Centro
de Física de Materiales CSIC-UPV/EHU, 20018 Donostia-San Sebastián, Spain
| | - Diego Peña
- CiQUS,
Centro Singular de Investigación en Química Biolóxica
e Materiais Moleculares, 15705 Santiago de Compostela, Spain
| | - Aran Garcia-Lekue
- Donostia
International Physics Center (DIPC), 20018 Donostia-San Sebastián, Spain
- Ikerbasque,
Basque Foundation for Science, 48013 Bilbao, Spain
| | - José Ignacio Pascual
- CIC
nanoGUNE-BRTA, 20018 Donostia-San Sebastián, Spain
- Ikerbasque,
Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
26
|
de Oteyza DG, Frederiksen T. Carbon-based nanostructures as a versatile platform for tunable π-magnetism. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:443001. [PMID: 35977474 DOI: 10.1088/1361-648x/ac8a7f] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
Emergence ofπ-magnetism in open-shell nanographenes has been theoretically predicted decades ago but their experimental characterization was elusive due to the strong chemical reactivity that makes their synthesis and stabilization difficult. In recent years, on-surface synthesis under vacuum conditions has provided unprecedented opportunities for atomically precise engineering of nanographenes, which in combination with scanning probe techniques have led to a substantial progress in our capabilities to realize localized electron spin states and to control electron spin interactions at the atomic scale. Here we review the essential concepts and the remarkable advances in the last few years, and outline the versatility of carbon-basedπ-magnetic materials as an interesting platform for applications in spintronics and quantum technologies.
Collapse
Affiliation(s)
- Dimas G de Oteyza
- Nanomaterials and Nanotechnology Research Center (CINN), CSIC-UNIOVI-PA, E-33940 El Entrego, Spain
- Donostia International Physics Center (DIPC)-UPV/EHU, E-20018 San Sebastián, Spain
| | - Thomas Frederiksen
- Donostia International Physics Center (DIPC)-UPV/EHU, E-20018 San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, E-48013 Bilbao, Spain
| |
Collapse
|
27
|
Yin J, Jacobse PH, Pyle D, Wang Z, Crommie MF, Dong G. Programmable Fabrication of Monodisperse Graphene Nanoribbons via Deterministic Iterative Synthesis. J Am Chem Soc 2022; 144:16012-16019. [PMID: 36017775 DOI: 10.1021/jacs.2c05670] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
While enormous progress has been achieved in synthesizing atomically precise graphene nanoribbons (GNRs), the preparation of GNRs with a fully predetermined length and monomer sequence remains an unmet challenge. Here, we report a fabrication method that provides access to structurally diverse and monodisperse "designer" GNRs through utilization of an iterative synthesis strategy, in which a single monomer is incorporated into an oligomer chain during each chemical cycle. Surface-assisted cyclodehydrogenation is subsequently employed to generate the final nanoribbons, and bond-resolved scanning tunneling microscopy is utilized to characterize them.
Collapse
Affiliation(s)
- Jiangliang Yin
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Peter H Jacobse
- Department of Physics, University of California at Berkeley, Berkeley, California 94720, United States.,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Daniel Pyle
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Ziyi Wang
- Department of Physics, University of California at Berkeley, Berkeley, California 94720, United States.,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Michael F Crommie
- Department of Physics, University of California at Berkeley, Berkeley, California 94720, United States.,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Kavli Energy NanoSciences Institute at the University of California, Berkeley and the Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Guangbin Dong
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|