1
|
Hao Z, Chen J, Zhao Q, Liu X, Yang M, Zhou X, Zhang Y. Phase Transformation Induced Basal Plane Capacitance Enhancement in Two-Dimensional Materials for Electro-Driven Ion Capture. NANO LETTERS 2025; 25:6753-6761. [PMID: 40207892 DOI: 10.1021/acs.nanolett.5c00982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
The capacitive deionization (CDI) technique using two-dimensional (2D) layered Faradaic electrodes offers a promising approach to desalination, but the desalination efficiency of currently engineered electrodes remains insufficient due to unclear charge storage mechanisms. Herein, based on typical 2H and 1T phases of MoS2, we systematically investigated the underlying structure-capacitance relationship of 2D materials at the atomic level by revealing differences in interlayer ion storage confined by molecular layers. Our study reveals that octahedrally coordinated 1T phase with a high spin state of unpaired electrons exhibits a higher pseudocapacitive ratio compared to the 2H phase because of the enhanced interfacial charge transfer polarization, reduced surface ion migration barriers, and increased interlayer ion enrichment. Furthermore, the potential molecular layer structure evolution triggers the dynamic migration of ion intercalation sites, further constraining the ion storage performance of the 2H phase. This study offers guidance for optimizing the ion storage performance of 2D materials through phase engineering.
Collapse
Affiliation(s)
- Zewei Hao
- State Key Laboratory of Water Pollution Control and Green Resource Recycling, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jiabin Chen
- State Key Laboratory of Water Pollution Control and Green Resource Recycling, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Qipeng Zhao
- State Key Laboratory of Water Pollution Control and Green Resource Recycling, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Xiaoqian Liu
- State Key Laboratory of Water Pollution Control and Green Resource Recycling, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Mingchao Yang
- State Key Laboratory of Water Pollution Control and Green Resource Recycling, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xuefei Zhou
- State Key Laboratory of Water Pollution Control and Green Resource Recycling, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Yalei Zhang
- State Key Laboratory of Water Pollution Control and Green Resource Recycling, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| |
Collapse
|
2
|
Jeong K, Kim C, Lee HY, Zhao J, Choi SH, Bae JA, Kim HS, Kim JY, Kim Y, Choi H, Gorospe AEG, Yoo SJ, Wang C, Lee D. Rapid Drying Principle for High-speed, Pinhole-Less, Uniform Wet Deposition Protocols of Water-Dispersed 2D Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2411447. [PMID: 39930742 DOI: 10.1002/adma.202411447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 01/04/2025] [Indexed: 04/18/2025]
Abstract
Inexpensive, high-speed deposition techniques that ensure uniformity, scalability, wide applicability, and tunable thickness are crucial for the practical application of 2D materials. In this work, rapid drying is identified as a key mechanism for pioneering two high-speed wet deposition methods: hot dipping and air knife sweeping (AKS). Both techniques allow thickness control proportional to flake concentration, achieving tiled monolayers and pinhole-free coverage across the entire substrate, as long as evaporation outpaces flake diffusion. AKS prevents non-uniformity along substrate edges by eliminating contact line pinning. The achieved deposition speed of 0.21 m2 min-1 with AKS significantly surpasses traditional methods, enabling the equipment for large substrates > 1 m2. Combined with the ultralow debonding force for mechanically susceptible flexible display production and short-circuit-proof nanometer-thin capacitors with capacitance comparable to commercial multilayer ceramic capacitors (MLCCs), these new protocols showcase simple and swift solutions for manufacturing 2D materials-based nanodevices.
Collapse
Affiliation(s)
- Kyeonghun Jeong
- Department of Materials Science and Engineering, Hongik University, Seoul, 04066, Republic of Korea
| | - Chansoo Kim
- Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA
- Department of Electrical & Systems Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Ha Young Lee
- Department of Materials Science and Engineering, Hongik University, Seoul, 04066, Republic of Korea
| | - Junyi Zhao
- Department of Electrical & Systems Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Soo-Hyung Choi
- Department of Chemical Engineering, Hongik University, Seoul, 04066, Republic of Korea
| | - Jeong-A Bae
- Department of Chemical Engineering, Hongik University, Seoul, 04066, Republic of Korea
| | - Hyun-Sik Kim
- Department of Materials Science and Engineering, University of Seoul, Seoul, 02504, Republic of Korea
| | - Jeong-Yeon Kim
- Department of Materials Science and Engineering, University of Seoul, Seoul, 02504, Republic of Korea
| | - Youjin Kim
- Department of Materials Science and Engineering, Hongik University, Seoul, 04066, Republic of Korea
| | - Heechae Choi
- Department of Chemistry, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, P. R. China
| | - Alloyssius E G Gorospe
- Department of Materials Science and Engineering, Hongik University, Seoul, 04066, Republic of Korea
| | - Seung Joon Yoo
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Chuan Wang
- Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA
- Department of Electrical & Systems Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Dongwook Lee
- Department of Materials Science and Engineering, Hongik University, Seoul, 04066, Republic of Korea
| |
Collapse
|
3
|
Li J, Li Y, Ma Y, Zhao Z, Peng H, Zhou T, Xu M, Fan D, Ma H, Qiu J, Guo Z. Electrochemical N-N Oxidatively Coupled Dehydrogenation of 3,5-Diamino-1 H-1,2,4-triazole for Value-Added Chemicals and Bipolar Hydrogen Production. J Am Chem Soc 2025; 147:9505-9518. [PMID: 40056423 PMCID: PMC11926877 DOI: 10.1021/jacs.4c17225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2025]
Abstract
Electrochemical H2 production from water favors low-voltage molecular oxidation to replace the oxygen evolution reaction as an energy-saving and value-added approach. However, there exists a mismatch between the high demand for H2 and slow anodic reactions, restricting practical applications of such hybrid systems. Here, we propose a bipolar H2 production approach, with anodic H2 generation from the N-N oxidatively coupled dehydrogenation (OCD) of 3,5-diamino-1H-1,2,4-triazole (DAT), in addition to the cathodic H2 generation. The system requires relatively low oxidation potentials of 0.872 and 1.108 V vs RHE to reach 10 and 500 mA cm-2, respectively. The bipolar H2 production in an H-type electrolyzer requires only 0.946 and 1.129 V to deliver 10 and 100 mA cm-2, respectively, with the electricity consumption (1.3 kWh per m3 H2) reduced by 68%, compared with conventional water splitting. Moreover, the process is highly appealing due to the absence of traditional hazardous synthetic conditions of azo compounds at the anode and crossover/mixing of H2/O2 in the electrolyzer. A flow-type electrolyzer operates stably at 500 mA cm-2 for 300 h. Mechanistic studies reveal that the Pt single atom and nanoparticle (Pt1,n) optimize the adsorption of the S active sites for H2 production over the Pt1,n@VS2 cathodic catalysts. At the anode, the stepwise dehydrogenation of -NH2 in DAT and then oxidative coupling of -N-N- predominantly form azo compounds while generating H2. The present report paves a new way for atom-economical bipolar H2 production from N-N oxidative coupling of aminotriazole and green electrosynthesis of value-added azo chemicals.
Collapse
Affiliation(s)
- Jiachen Li
- Xi'an Key Laboratory of Special Energy Materials, School of Chemical Engineering, Northwest University, Xi'an 710127, China
- Department of Chemistry, The University of Hong Kong, Hong Kong 999077, SAR ,China
| | - Yang Li
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an 710127, China
| | - Yuqiang Ma
- Xi'an Key Laboratory of Special Energy Materials, School of Chemical Engineering, Northwest University, Xi'an 710127, China
| | - Zihang Zhao
- Xi'an Key Laboratory of Special Energy Materials, School of Chemical Engineering, Northwest University, Xi'an 710127, China
| | - Huarong Peng
- Department of Chemistry, The University of Hong Kong, Hong Kong 999077, SAR ,China
| | - Tao Zhou
- Department of Chemistry, The University of Hong Kong, Hong Kong 999077, SAR ,China
| | - Ming Xu
- College of Chemistry, Chemical Engineering and Resource Utilization, Center for Innovative Research in Synthetic Chemistry and Resource Utilization, Northeast Forestry University, Harbin 150040, China
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an 710127, China
| | - Haixia Ma
- Xi'an Key Laboratory of Special Energy Materials, School of Chemical Engineering, Northwest University, Xi'an 710127, China
- Zhijian Laboratory, Xi'an 710025, China
| | - Jieshan Qiu
- State Key Laboratory of Chemical Resource Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhengxiao Guo
- Department of Chemistry, The University of Hong Kong, Hong Kong 999077, SAR ,China
| |
Collapse
|
4
|
Jeon H, Kwon HJ, Lee J, Han SK, Kim H, Heo J, Han J, Shin S, Park J, Cho MK, Preston DJ, Kim IS, Kim M, Lee WK. Strain-Enabled Band Structure Engineering in Layered PtSe 2 for Water Electrolysis under Ultralow Overpotential. ACS NANO 2025; 19:9107-9120. [PMID: 40012087 DOI: 10.1021/acsnano.4c18077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
This paper describes a simple design methodology to develop layered PtSe2 catalysts for hydrogen evolution reaction (HER) in water electrolysis operating under ultralow overpotentials. This approach relies on the transfer of mechanically exfoliated PtSe2 flakes to gold thin films on prestrained thermoplastic substrates. By relieving the prestrain, a tunable level of uniaxial internal compressive and tensile strain is developed in the flakes as a result of spontaneously formed surface wrinkles, giving rise to band structure modulations with overlapped values of the valence band maximum and conduction band minimum. This strain-engineered PtSe2 with an optimized level of internal tensile strain amplifies the HER performance of the PtSe2, with performance far greater than that of pure platinum due to significantly reduced charge transfer resistance. Density functional theory calculations provide fundamental insight into how strain-induced band structure engineering correlates with the promoted HER activity, especially at the atomic edge sites of the materials.
Collapse
Affiliation(s)
- Hotae Jeon
- Department of Materials Science and Engineering, Hongik University, Seoul 04066, Republic of Korea
| | - Hee Jung Kwon
- Department of Applied Chemistry, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Jaehyun Lee
- Department of Materials Science and Engineering, Hongik University, Seoul 04066, Republic of Korea
| | - Sun Kyung Han
- Department of Materials Science and Engineering, Hongik University, Seoul 04066, Republic of Korea
| | - Hyunjin Kim
- Department of Materials Science and Engineering, Hongik University, Seoul 04066, Republic of Korea
| | - Jaewon Heo
- Nanophotonics Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Junhwi Han
- Department of Materials Science and Engineering, Hongik University, Seoul 04066, Republic of Korea
| | - Seunghun Shin
- Department of Materials Science and Engineering, Hongik University, Seoul 04066, Republic of Korea
| | - Jiheon Park
- Department of Materials Science and Engineering, Hongik University, Seoul 04066, Republic of Korea
| | - Min Kyung Cho
- Advanced Analysis and Data Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Daniel J Preston
- Department of Mechanical Engineering, Rice University, Houston, Texas 77005, United States
- Rice Advanced Materials Institute (RAMI), Rice University, Houston, Texas 77005, United States
| | - In Soo Kim
- Nanophotonics Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- KIST-SKKU Carbon-Neutral Research Center, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Minho Kim
- Department of Applied Chemistry, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Won-Kyu Lee
- Department of Materials Science and Engineering, Hongik University, Seoul 04066, Republic of Korea
| |
Collapse
|
5
|
Zhu W, Zhang B, Yang Y, Zhao M, Fang Y, Cui Y, Tian J. Enhanced Electrocatalytic Performance of P-Doped MoS 2/rGO Composites for Hydrogen Evolution Reactions. Molecules 2025; 30:1205. [PMID: 40141981 PMCID: PMC11944752 DOI: 10.3390/molecules30061205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/26/2025] [Accepted: 03/04/2025] [Indexed: 03/28/2025] Open
Abstract
This study is based on the strategies of composite and element doping. Herein, P-MoS2/rGO materials were synthesized using a solvent-assisted hydrothermal method. The MoS2 nanosheets were uniformly and vertically grown on rGO; meanwhile, the optimized structure of MoS2 was achieved by P doping, resulting in improved catalytic performance and structural stability. Under alkaline conditions, the P-MoS2/rGO catalyst exhibits good electrocatalytic activity, demonstrating a Tafel slope of 70.7 mV dec-1 and an overpotential of 172.8 mV at 10 mA/cm2. Notably, even after 3000 consecutive LSV tests, the curves still show a high degree of overlap, indicating exceptional stability.
Collapse
Affiliation(s)
- Wenjun Zhu
- School of Mechanical and Electrical Engineering, Jingdezhen Ceramic University, Jingdezhen 333403, China
- Jingdezhen Mingxing Aerospace Forging Co., Ltd., Jingdezhen 333403, China
- Richangsheng Architectural New Materials Design Research lnstitute Co., Ltd., Hangzhou 310000, China
| | - Bofeng Zhang
- School of Mechanical and Electrical Engineering, Jingdezhen Ceramic University, Jingdezhen 333403, China
| | - Yao Yang
- Jingdezhen Mingxing Aerospace Forging Co., Ltd., Jingdezhen 333403, China
| | - Minghai Zhao
- School of Mechanical and Electrical Engineering, Jingdezhen Ceramic University, Jingdezhen 333403, China
| | - Yuwen Fang
- School of Mechanical and Electrical Engineering, Jingdezhen Ceramic University, Jingdezhen 333403, China
| | - Yang Cui
- Richangsheng Architectural New Materials Design Research lnstitute Co., Ltd., Hangzhou 310000, China
| | - Jian Tian
- School of Materials Science and Engineering, College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| |
Collapse
|
6
|
Luo Y, Zhang Y, Zhu J, Tian X, Liu G, Feng Z, Pan L, Liu X, Han N, Tan R. Material Engineering Strategies for Efficient Hydrogen Evolution Reaction Catalysts. SMALL METHODS 2024; 8:e2400158. [PMID: 38745530 PMCID: PMC11672190 DOI: 10.1002/smtd.202400158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/27/2024] [Indexed: 05/16/2024]
Abstract
Water electrolysis, a key enabler of hydrogen energy production, presents significant potential as a strategy for achieving net-zero emissions. However, the widespread deployment of water electrolysis is currently limited by the high-cost and scarce noble metal electrocatalysts in hydrogen evolution reaction (HER). Given this challenge, design and synthesis of cost-effective and high-performance alternative catalysts have become a research focus, which necessitates insightful understandings of HER fundamentals and material engineering strategies. Distinct from typical reviews that concentrate only on the summary of recent catalyst materials, this review article shifts focus to material engineering strategies for developing efficient HER catalysts. In-depth analysis of key material design approaches for HER catalysts, such as doping, vacancy defect creation, phase engineering, and metal-support engineering, are illustrated along with typical research cases. A special emphasis is placed on designing noble metal-free catalysts with a brief discussion on recent advancements in electrocatalytic water-splitting technology. The article also delves into important descriptors, reliable evaluation parameters and characterization techniques, aiming to link the fundamental mechanisms of HER with its catalytic performance. In conclusion, it explores future trends in HER catalysts by integrating theoretical, experimental and industrial perspectives, while acknowledging the challenges that remain.
Collapse
Affiliation(s)
- Yue Luo
- School of ResourcesEnvironment and MaterialsGuangxi UniversityNanning530004China
| | - Yulong Zhang
- College of Mechatronical and Electrical EngineeringHebei Agricultrual UnivesityBaoding07001China
| | - Jiayi Zhu
- Warwick Electrochemical EngineeringWMGUniversity of WarwickCoventryCV4 7ALUK
| | - Xingpeng Tian
- Warwick Electrochemical EngineeringWMGUniversity of WarwickCoventryCV4 7ALUK
| | - Gang Liu
- IDTECH (Suzhou) Co. Ltd.Suzhou215217China
| | - Zhiming Feng
- Department of Chemical EngineeringImperial College LondonLondonSW7 2AZUK
| | - Liwen Pan
- School of ResourcesEnvironment and MaterialsGuangxi UniversityNanning530004China
- Education Department of Guangxi Zhuang Autonomous RegionKey Laboratory of High Performance Structural Materials and Thermo‐surface Processing (Guangxi University)Nanning530004China
| | - Xinhua Liu
- School of Transportation Science and EngineeringBeihang UniversityBeijing100191China
| | - Ning Han
- Department of Materials EngineeringKU LeuvenKasteelpark Arenberg 44, bus 2450HeverleeB‐3001Belgium
| | - Rui Tan
- Warwick Electrochemical EngineeringWMGUniversity of WarwickCoventryCV4 7ALUK
- Department of Chemcial EngineeringSwansea UniversitySwanseaSA1 8ENUnited Kingdom
| |
Collapse
|
7
|
Lim J, Heo SJ, Jung M, Kim T, Byeon J, Park H, Jang JE, Hong J, Moon J, Pak S, Cha S. Highly Sustainable h-BN Encapsulated MoS 2 Hydrogen Evolution Catalysts. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402272. [PMID: 39148206 DOI: 10.1002/smll.202402272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/18/2024] [Indexed: 08/17/2024]
Abstract
Despite the importance of the stability of the 2D catalysts in harsh electrolyte solutions, most studies have focused on improving the catalytic performance of molybdenum disulfide (MoS2) catalysts rather than the sustainability of hydrogen evolution. In previous studies, the vulnerability of MoS2 crystals is reported that the moisture and oxygen molecules can cause the oxidation of MoS2 crystals, accelerating the degradation of crystal structure. Therefore, optimization of catalytic stability is crucial for approaching practical applications in 2D catalysts. Here, it is proposed that monolayered MoS2 catalysts passivated with an atomically thin hexagonal boron nitride (h-BN) layer can effectively sustain hydrogen evolution reaction (HER) and demonstrate the ultra-high current density (500 mA cm⁻2 over 11 h) and super stable (64 h at 150 mA cm⁻2) catalytic performance. It is further confirmed with density functional theory (DFT) calculations that the atomically thin h-BN layer effectively prevents direct adsorption of water/acid molecules while allowing the protons to be adsorbed/penetrated. The selective penetration of protons and prevention of crystal structure degradation lead to maintained catalytic activity and maximized catalytic stability in the h-BN covered MoS2 catalysts. These findings propose a promising opportunity for approaching the practical application of 2D MoS2 catalysts having long-term stability at high-current operation.
Collapse
Affiliation(s)
- Jungmoon Lim
- Department of Physics, Sungkyunkwan University (SKKU), Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Su Jin Heo
- Department of Electrical Engineering and Computer Science, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Min Jung
- Department of Physics, Sungkyunkwan University (SKKU), Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Taehun Kim
- Department of Physics, Sungkyunkwan University (SKKU), Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Junsung Byeon
- Department of Physics, Sungkyunkwan University (SKKU), Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - HongJu Park
- Department of Physics, Sungkyunkwan University (SKKU), Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Jae Eun Jang
- Department of Electrical Engineering and Computer Science, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu, 42988, Republic of Korea
| | - John Hong
- School of Materials Science and Engineering, Kookmin University, Seoul, 02707, Republic of Korea
| | - Janghyuk Moon
- Department of Energy Systems Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Sangyeon Pak
- School of Electronic and Electrical Engineering, Hongik University, Seoul, 04066, Republic of Korea
| | - SeungNam Cha
- Department of Physics, Sungkyunkwan University (SKKU), Suwon, Gyeonggi-do, 16419, Republic of Korea
| |
Collapse
|
8
|
Guo S, Zhou X, Lee JK, Guo Q, Liu X, Wu Y, Ma M, Zhang Z, Liu Z. Nanoscale Identification of Local Strain Effect on TMD Catalysis. J Am Chem Soc 2024; 146:31920-31926. [PMID: 39514092 DOI: 10.1021/jacs.4c11190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Strain engineering plays a crucial role in activating the basal plane of the TMD catalysts. However, experimental evidence linking strain strength to activity and distinguishing effects of compressive and tensile strain remains elusive due to the absence of high-resolution in situ correlation techniques. Here, we utilize nanobubble imaging by on-chip total-internal reflection microscopy to visualize active sites on the basal plane of strained MoS2 during hydrogen evolution reaction and atomic force microscopy to correlatively capture the nanoscale morphology and strain maps. By integrating the activity, morphology, and strain maps into comprehensive statistical analyses, we elucidate the strain effect on local activity at both multiprotrusion and (sub)single-protrusion levels. Our findings demonstrate that strain effectively activates sulfur vacancies on the basal plane, with tensile strain significantly enhancing local activity compared to compressive strain. Furthermore, we observe a time-dependent propagation of activity from high-activity to low-activity regions within single protrusions. This work clarifies the interplay between structural morphology and catalytic activity and provides new guidelines for the rational design of optimal TMD catalysts.
Collapse
Affiliation(s)
- Shasha Guo
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Xiuxian Zhou
- School of Materials Science and Engineering, Nanyang Technological University, 639798 Singapore
| | - Jinn-Kye Lee
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 637371 Singapore
| | - Qing Guo
- Institute of High-Performance Computing (IHPC) and Centre for Frontier AI Research (CFAR), Agency for Science, Technology and Research (A*STAR), 138632 Singapore
| | - Xiao Liu
- School of Materials Science and Engineering, Nanyang Technological University, 639798 Singapore
| | - Yao Wu
- School of Materials Science and Engineering, Nanyang Technological University, 639798 Singapore
| | - Mingyu Ma
- School of Materials Science and Engineering, Nanyang Technological University, 639798 Singapore
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 637371 Singapore
| | - Zhengyang Zhang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 637371 Singapore
| | - Zheng Liu
- School of Materials Science and Engineering, Nanyang Technological University, 639798 Singapore
- CINTRA CNRS/NTU/THALES, UMI 3288, Research Techno Plaza, 639798 Singapore
| |
Collapse
|
9
|
Liu Z, Sun Z, Qu X, Nie K, Yang Y, Li B, Chong S, Yin Z, Huang W. Solution-Processable Microstructuring of 1T'-Phase Janus MoSSe Monolayers for Boosted Hydrogen Production. J Am Chem Soc 2024; 146:23252-23264. [PMID: 39120959 DOI: 10.1021/jacs.4c05692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2024]
Abstract
Janus monolayers of transition metal dichalcogenides (TMDs) offer versatile applications due to their tunable polymorphisms. While previous studies focused on conventional 2H-phase Janus monolayers, the scalable synthesis of an unconventional 1T' phase remains challenging. We present a novel solution strategy for fabricating Janus 1T'-MoOSe and MoSSe monolayers by growing sandwiched Se-Mo-O/S shells onto Au nanocores. The Janus Au@1T'-MoSSe catalyst exhibits superior electrocatalytic hydrogen evolution reaction (HER) activity compared to 1T'-MoS2, -MoSe2, and -MoOSe, attributed to its unique electronic structure and intrinsic strain. Remarkably, photoexciting the nanoplasmonic Au cores further enhances the HER via a localized surface plasmon (LSP) effect that drives hot electron injection into surface sulfur vacancies of 1T'-MoSSe monolayer shells, accelerating proton reduction. This synergistic activation of anion vacancies by internal strain and external light-induced Au LSPs, coupled with our scalable synthesis, provides a pathway for developing tailorable polymorphic Janus TMDs for specific applications.
Collapse
Affiliation(s)
- Zhengqing Liu
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University, Xi'an 710129, China
| | - Zhehao Sun
- Research School of Chemistry, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Xiaoyan Qu
- Frontier Institute of Science and Technology, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Kunkun Nie
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University, Xi'an 710129, China
| | - Yawei Yang
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, International Center for Dielectric Research, and Shaanxi Engineering Research Center of Advanced Energy Materials and Devices, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Binjie Li
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University, Xi'an 710129, China
| | - Shaokun Chong
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University, Xi'an 710129, China
| | - Zongyou Yin
- Research School of Chemistry, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University, Xi'an 710129, China
| |
Collapse
|
10
|
Wang Y, Ma H, Liu J, Zhang Z, Yu Y, Zuo S. Broad-spectrum hybrid-driven triple-interface Z-Scheme 1T/2H phase sailboat-like molybdenum disulfide (MoS 2)/protonated N-defect nanoporous graphitic carbon nitride (g-C 3N 4) nanosheets piezo-photocatalyst: Superior degradation and hydrogen evolution. J Colloid Interface Sci 2024; 665:655-680. [PMID: 38552582 DOI: 10.1016/j.jcis.2024.03.145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/08/2024] [Accepted: 03/21/2024] [Indexed: 04/17/2024]
Abstract
Incorporating piezo-response into photocatalysis holds great promise for eco-friendly strategies in environmental remediation and sustainable energy conversion. Herein, flexible N-defect nanoporous g-C3N4 nanosheets (NPCNs) was prepared via one-step method, then whose surface was protonated. And existed dense 1T/2H phase and vertical interfaces in non-layer-dependent-piezo-response sailboat-like-MoS2 (Sv-MS) formed by in-situ stresses during nucleation and growth by experiments and MD-simulations. Noble-metal-free Z-scheme PC/VM heterojunction with broad-spectrum absorption, enhanced piezo-response and intimate triple-interface was established by electrostatic self-assembly, performing efficient hybrid-driven piezo-photocatalysis. With a systematic modification of morphology, grain size, phase composition, and surface condition of the components, the optimal PC(3.6H)/VM(u2) exhibited high piezo-photocatalytic rates for degradation of organic dyes and antibiotic (RhB (0.565 min-1), MO (0.052 min-1), MB (1.557 min-1), TC (0.062 min-1)) and hydrogen evolution (3528 μmolg-1h-1) under visible-light and ultrasonic-wave, with maintenance under NIR-light (λmax = 1000 nm) attributed to up-conversion effect (RhB: 0.212 min-1, H2: 2355 μmolg-1h-1). Furthermore, the piezo-photocatalytic mechanism was proposed by experiments and DFT-calculations for effective triple-interface Z-Scheme charge migration. This work provides a rational protocol for constructing diverse-energy-triggered, multiple-interfaces and broad-solar-spectrum (UV-Vis-NIR) piezo-photocatalysts in degradation and hydrogen evolution.
Collapse
Affiliation(s)
- Yimeng Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road East, Chaoyang District, Beijing, People's Republic of China
| | - Hecheng Ma
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road East, Chaoyang District, Beijing, People's Republic of China
| | - Jianjun Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road East, Chaoyang District, Beijing, People's Republic of China.
| | - Ziang Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road East, Chaoyang District, Beijing, People's Republic of China
| | - Yingchun Yu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road East, Chaoyang District, Beijing, People's Republic of China
| | - Shengli Zuo
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road East, Chaoyang District, Beijing, People's Republic of China
| |
Collapse
|
11
|
Liang QM, Chen SK, Ding Z, Wang JC, Hu C, Shi J, Wang S, Han L, Yang Y. Continuous Strain Regulation of Palladium-Gold at the Atomic Level. NANO LETTERS 2024; 24:7637-7644. [PMID: 38874010 DOI: 10.1021/acs.nanolett.4c01395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Revealing the effect of surface structure changes on the electrocatalytic performance is beneficial to the development of highly efficient catalysts. However, precise regulation of the catalyst surface at the atomic level remains challenging. Here, we present a continuous strain regulation of palladium (Pd) on gold (Au) via a mechanically controllable surface strain (MCSS) setup. It is found that the structural changes induced by the strain setup can accelerate electron transfer at the solid-liquid interface, thus achieving a significantly improved performance toward hydrogen evolution reaction (HER). In situ X-ray diffraction (XRD) experiments further confirm that the enhanced activity is attributed to the increased interplanar spacing resulting from the applied strain. Theoretical calculations reveal that the tensile strain modulates the electronic structure of the Pd active sites and facilitates the desorption of the hydrogen intermediates. This work provides an effective approach for revealing the relationships between the electrocatalyst surface structure and catalytic activity.
Collapse
Affiliation(s)
- Qing-Man Liang
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Joint Surgery and Sports Medicine, Zhongshan Hospital, Xiamen University, Xiamen 361005, China
| | - Su-Kang Chen
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Joint Surgery and Sports Medicine, Zhongshan Hospital, Xiamen University, Xiamen 361005, China
| | - Zan Ding
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Joint Surgery and Sports Medicine, Zhongshan Hospital, Xiamen University, Xiamen 361005, China
| | - Ji-Chun Wang
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Joint Surgery and Sports Medicine, Zhongshan Hospital, Xiamen University, Xiamen 361005, China
| | - Chun Hu
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Joint Surgery and Sports Medicine, Zhongshan Hospital, Xiamen University, Xiamen 361005, China
| | - Jia Shi
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Joint Surgery and Sports Medicine, Zhongshan Hospital, Xiamen University, Xiamen 361005, China
| | - Shaojie Wang
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Joint Surgery and Sports Medicine, Zhongshan Hospital, Xiamen University, Xiamen 361005, China
| | - Lu Han
- School of Materials and Metallurgy, University of Science and Technology Liaoning, Anshan 114051, China
| | - Yang Yang
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Joint Surgery and Sports Medicine, Zhongshan Hospital, Xiamen University, Xiamen 361005, China
| |
Collapse
|
12
|
Pham PV, Mai TH, Dash SP, Biju V, Chueh YL, Jariwala D, Tung V. Transfer of 2D Films: From Imperfection to Perfection. ACS NANO 2024; 18:14841-14876. [PMID: 38810109 PMCID: PMC11171780 DOI: 10.1021/acsnano.4c00590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/03/2024] [Accepted: 04/12/2024] [Indexed: 05/31/2024]
Abstract
Atomically thin 2D films and their van der Waals heterostructures have demonstrated immense potential for breakthroughs and innovations in science and technology. Integrating 2D films into electronics and optoelectronics devices and their applications in electronics and optoelectronics can lead to improve device efficiencies and tunability. Consequently, there has been steady progress in large-area 2D films for both front- and back-end technologies, with a keen interest in optimizing different growth and synthetic techniques. Parallelly, a significant amount of attention has been directed toward efficient transfer techniques of 2D films on different substrates. Current methods for synthesizing 2D films often involve high-temperature synthesis, precursors, and growth stimulants with highly chemical reactivity. This limitation hinders the widespread applications of 2D films. As a result, reports concerning transfer strategies of 2D films from bare substrates to target substrates have proliferated, showcasing varying degrees of cleanliness, surface damage, and material uniformity. This review aims to evaluate, discuss, and provide an overview of the most advanced transfer methods to date, encompassing wet, dry, and quasi-dry transfer methods. The processes, mechanisms, and pros and cons of each transfer method are critically summarized. Furthermore, we discuss the feasibility of these 2D film transfer methods, concerning their applications in devices and various technology platforms.
Collapse
Affiliation(s)
- Phuong V. Pham
- Department
of Physics, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - The-Hung Mai
- Department
of Physics, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Saroj P. Dash
- Department
of Microtechnology and Nanoscience, Chalmers
University of Technology, Gothenburg 41296, Sweden
| | - Vasudevanpillai Biju
- Research
Institute for Electronic Science, Hokkaido
University, Hokkaido 001-0020, Japan
| | - Yu-Lun Chueh
- Department
of Materials Science and Engineering, National
Tsing Hua University, Hsinchu 30013, Taiwan
| | - Deep Jariwala
- Department
of Electrical and Systems Engineering, University
of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Vincent Tung
- Department
of Chemical System Engineering, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| |
Collapse
|
13
|
Park J, Cho I, Jeon H, Lee Y, Zhang J, Lee D, Cho MK, Preston DJ, Shong B, Kim IS, Lee WK. Conversion of Layered WS 2 Crystals into Mixed-Domain Electrochemical Catalysts by Plasma-Assisted Surface Reconstruction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2314031. [PMID: 38509794 DOI: 10.1002/adma.202314031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/11/2024] [Indexed: 03/22/2024]
Abstract
Electrocatalytic water splitting is crucial to generate clean hydrogen fuel, but implementation at an industrial scale remains limited due to dependence on expensive platinum (Pt)-based electrocatalysts. Here, an all-dry process to transform electrochemically inert bulk WS2 into a multidomain electrochemical catalyst that enables scalable and cost-effective implementation of the hydrogen evolution reaction (HER) in water electrolysis is reported. Direct dry transfer of WS2 flakes to a gold thin film deposited on a silicon substrate provides a general platform to produce the working electrodes for HER with tunable charge transfer resistance. By treating the mechanically exfoliated WS2 with sequential Ar-O2 plasma, mixed domains of WS2, WO3, and tungsten oxysulfide form on the surfaces of the flakes, which gives rise to a superior HER with much greater long-term stability and steady-state activity compared to Pt. Using density functional theory, ultraefficient atomic sites formed on the constituent nanodomains are identified, and the quantification of atomic-scale reactivities and resulting HER activities fully support the experimental observations.
Collapse
Affiliation(s)
- Jiheon Park
- Department of Materials Science and Engineering, Hongik University, Seoul, 04066, Republic of Korea
| | - Iaan Cho
- Department of Chemical Engineering, Hongik University, Seoul, 04066, Republic of Korea
| | - Hotae Jeon
- Department of Materials Science and Engineering, Hongik University, Seoul, 04066, Republic of Korea
| | - Youjin Lee
- Department of Materials Science and Engineering, Hongik University, Seoul, 04066, Republic of Korea
| | - Jian Zhang
- International Research Center for EM Metamaterials and Institute of Advanced Magnetic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Dongwook Lee
- Department of Materials Science and Engineering, Hongik University, Seoul, 04066, Republic of Korea
| | - Min Kyung Cho
- Advanced Analysis and Data Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Daniel J Preston
- Department of Mechanical Engineering, Rice University, Houston, TX, 77005, USA
| | - Bonggeun Shong
- Department of Chemical Engineering, Hongik University, Seoul, 04066, Republic of Korea
| | - In Soo Kim
- Nanophotonics Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- KIST-SKKU Carbon-Neutral Research Center, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Won-Kyu Lee
- Department of Materials Science and Engineering, Hongik University, Seoul, 04066, Republic of Korea
| |
Collapse
|
14
|
Li Q, Kudo A, Ma J, Kawashima R, Toyama K, Xu W, Gao Z, Liang Y, Jiang H, Li Z, Cui Z, Zhu S, Chen M. Tuning Electrocatalytic Activities of Dealloyed Nanoporous Catalysts by Macroscopic Strain Engineering. NANO LETTERS 2024; 24:5543-5549. [PMID: 38652819 DOI: 10.1021/acs.nanolett.4c00781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
It is technically challenging to quantitatively apply strains to tune catalysis because most heterogeneous catalysts are nanoparticles, and lattice strains can only be applied indirectly via core-shell structures or crystal defects. Herein, we report quantitative relations between macroscopic strains and hydrogen evolution reaction (HER) activities of dealloyed nanoporous gold (NPG) by directly applying macroscopic strains upon bulk NPG. It was found that macroscopic compressive strains lead to a decrease, while macroscopic tensile strains improve the HER activity of NPG, which is in line with the d-band center model. The overpotential and onset potential of HER display approximately a linear relation with applied macroscopic strains, revealing an ∼2.9 meV decrease of the binding energy per 0.1% lattice strains from compressive to tensile. The methodology with the high strain sensitivity of electrocatalysis, developed in this study, paves a new way to investigate the insights of strain-dependent electrocatalysis with high precision.
Collapse
Affiliation(s)
- Qite Li
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, P. R. China
- WPI Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai 980-8577, Japan
| | - Akira Kudo
- WPI Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai 980-8577, Japan
| | - Jinling Ma
- WPI Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai 980-8577, Japan
| | - Ryotaro Kawashima
- Department of Mechanical and Aerospace Engineering, Tohoku University, Sendai 980-8577, Japan
| | - Kota Toyama
- Department of Electrical and Computer Engineering, Tohoku University, Sendai 980-8577, Japan
| | - Wence Xu
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, P. R. China
| | - Zhonghui Gao
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, P. R. China
| | - Yanqin Liang
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, P. R. China
| | - Hui Jiang
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, P. R. China
| | - Zhaoyang Li
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, P. R. China
| | - Zhenduo Cui
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, P. R. China
| | - Shengli Zhu
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, P. R. China
| | - Mingwei Chen
- WPI Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai 980-8577, Japan
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, P.R. China
| |
Collapse
|
15
|
Diao L, Wang P, Feng G, Zhang B, Miao Z, Xu LP, Zhou J. Interface-Engineered 3D porous MoS 2-ReS 2 in-plane heterojunction as efficient hydrogen evolution reaction electrocatalysts. J Colloid Interface Sci 2024; 661:957-965. [PMID: 38330667 DOI: 10.1016/j.jcis.2024.02.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/03/2024] [Accepted: 02/05/2024] [Indexed: 02/10/2024]
Abstract
Constructing in-plane heterojunctions with high interfacial density using two-dimensional materials represents a promising yet challenging avenue for enhancing the hydrogen evolution reaction (HER) in water electrolysis. In this work, we report that three-dimensional porous MoS2-ReS2 in-plane heterojunctions, fabricated via chemical vapor deposition, exhibit robust electrocatalytic activity for the water splitting reaction. The optimized MoS2-ReS2 in-plane heterojunction achieves superior HER performance across a wide pH range, requiring an overpotential of only 200 mV to reach a current density of 10 mA cm-2 in alkaline seawater. Thus, it outperforms standalone MoS2 and ReS2. Furthermore, the catalyst exhibits remarkable stability, enduring up to 200 h in alkaline seawater. Experimental results coupled with density functional theory calculations confirm that electron redistribution at the MoS2-ReS2 heterointerface is likely driven by disparities in in-plane work functions between the two phases. This leads to charge accumulation at the interface, thereby enhancing the adsorptive activity of S atoms toward H* intermediates and facilitating the dissociation of water molecules at the interface. This discovery offers valuable insights into the electrocatalytic mechanisms at the interface and provides a roadmap for designing high-performance, earth-abundant HER electrocatalysts suitable for practical applications.
Collapse
Affiliation(s)
- Lechen Diao
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, China
| | - Pingping Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, China
| | - Guozhou Feng
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, China
| | - Biao Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Zhichao Miao
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, China.
| | - Li-Ping Xu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Jin Zhou
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, China.
| |
Collapse
|
16
|
Li C, Chen Q, Zheng R, Huan J, Bai J, Zhu L, Huang Y, Zhu X, Sun Y. Regulation of Sulfur Atoms in MoS x by Magneto-Electrodeposition for Hydrogen Evolution Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308729. [PMID: 38078778 DOI: 10.1002/smll.202308729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/22/2023] [Indexed: 05/25/2024]
Abstract
Compared with crystalline molybdenum sulfide (MoS2) employed as an efficient hydrogen evolution reaction (HER) catalyst, amorphous MoSx exhibits better activity. To synthesize amorphous MoSx, electrodeposition serving as a convenient and time-saving method is successfully applied. However, the loading mass is hindered by limited mass transfer efficiency and the available active sites require further improvement. Herein, magneto-electrodeposition is developed to synthesize MoSx with magnetic fields up to 9 T to investigate the effects of a magnetic field in the electrodeposition processing, as well as the induced electrochemical performance. Owing to the magneto-hydrodynamic effect, the loading mass of MoSx is obviously increased, and the terminal S2- serving as the active site is enhanced. The optimized MoSx catalyst delivers outstanding HER performance, achieving an overpotential of 50 mV at a current density of 10 mA cm-2 and the corresponding Tafel slope of 59 mV dec-1. The introduction of a magnetic field during the electrodeposition process will provide a novel route to prepare amorphous MoSx with improved electrochemical performance.
Collapse
Affiliation(s)
- Changdian Li
- Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Qian Chen
- Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Ruobing Zheng
- Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Jie Huan
- Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Jin Bai
- Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| | - Lili Zhu
- Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| | - Yanan Huang
- Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| | - Xuebin Zhu
- Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| | - Yuping Sun
- Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| |
Collapse
|
17
|
Zhou S, Kosari M, Zeng HC. Boosting CO 2 Hydrogenation to Methanol over Monolayer MoS 2 Nanotubes by Creating More Strained Basal Planes. J Am Chem Soc 2024; 146:10032-10043. [PMID: 38563705 DOI: 10.1021/jacs.4c00781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The controlled creation, selective exposure, and activation of more basal planes while simultaneously minimizing the generation and exposure of edge sites are crucial for accelerating methanol synthesis from CO2 hydrogenation over MoS2 catalysts but remain a bottleneck. Here, we report a facile method to fabricate heteronanotube catalysts with single-layer MoS2 coaxially encapsulating the carbon nanotubes (CNTs@MoS2) through host-guest chemistry. Inheriting the long tubular structure of CNTs, the grown MoS2 nanotubes exhibit significantly more basal planes than bulk MoS2 crystals. More importantly, the tubular curvature not only promotes strain and sulfur vacancy (Sv) generation but also preferentially exposes more in-plane Sv while limiting edge Sv exposure, which is conducive to methanol synthesis. Both the strain and layer number of MoS2 can be easily and finely adjusted by altering CNT diameter and quantity of precursors. Remarkably, CNTs@MoS2 with monolayer MoS2 and maximum strain displayed methanol selectivity of 78.1% and methanol space time yield of 1.6 g gMoS2-1 h-1 at 260 °C and GHSV of 24000 mL gcat.-1 h-1, representing the best results to date among Mo-based catalysts. This study provides prospects for novel catalyst design by synthesizing coaxial tubular heterostructure to create additional catalytic sites and ultimately enhance conversion and selectivity.
Collapse
Affiliation(s)
- Shenghui Zhou
- Department of Chemical and Biomolecular Engineering, College of Design and Engineering, National University of Singapore, Singapore 119260, Singapore
- The Cambridge Centre for Advanced Research and Education in Singapore, 1 CREATE Way, Singapore 138602, Singapore
| | - Mohammadreza Kosari
- Department of Chemical and Biomolecular Engineering, College of Design and Engineering, National University of Singapore, Singapore 119260, Singapore
| | - Hua Chun Zeng
- Department of Chemical and Biomolecular Engineering, College of Design and Engineering, National University of Singapore, Singapore 119260, Singapore
- The Cambridge Centre for Advanced Research and Education in Singapore, 1 CREATE Way, Singapore 138602, Singapore
| |
Collapse
|
18
|
Wang J, He L, Zhang Y, Nong H, Li S, Wu Q, Tan J, Liu B. Locally Strained 2D Materials: Preparation, Properties, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2314145. [PMID: 38339886 DOI: 10.1002/adma.202314145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/28/2024] [Indexed: 02/12/2024]
Abstract
2D materials are promising for strain engineering due to their atomic thickness and exceptional mechanical properties. In particular, non-uniform and localized strain can be induced in 2D materials by generating out-of-plane deformations, resulting in novel phenomena and properties, as witnessed in recent years. Therefore, the locally strained 2D materials are of great value for both fundamental studies and practical applications. This review discusses techniques for introducing local strains to 2D materials, and their feasibility, advantages, and challenges. Then, the unique effects and properties that arise from local strain are explored. The representative applications based on locally strained 2D materials are illustrated, including memristor, single photon emitter, and photodetector. Finally, concluding remarks on the challenges and opportunities in the emerging field of locally strained 2D materials are provided.
Collapse
Affiliation(s)
- Jingwei Wang
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Liqiong He
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Yunhao Zhang
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Huiyu Nong
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Shengnan Li
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Qinke Wu
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Junyang Tan
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Bilu Liu
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| |
Collapse
|
19
|
Dao V, Di Liberto G, Yadav S, Uthirakumar P, Chen K, Pacchioni G, Lee IH. Pt Single Atoms Supported on Defect Ceria as an Active and Stable Dual-Site Catalyst for Alkaline Hydrogen Evolution. NANO LETTERS 2024; 24:1261-1267. [PMID: 38242169 DOI: 10.1021/acs.nanolett.3c04237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2024]
Abstract
This work evaluates the feasibility of alkaline hydrogen evolution reaction (HER) using Pt single-atoms (1.0 wt %) on defect-rich ceria (Pt1/CeOx) as an active and stable dual-site catalyst. The catalyst displayed a low overpotential and a small Tafel slope in an alkaline medium. Moreover, Pt1/CeOx presented a high mass activity and excellent durability, competing with those of the commercial Pt/C (20 wt %). In this picture, the defective CeOx is active for water adsorption and dissociation to create H* intermediates, providing the first site where the reaction occurs. The H* intermediate species then migrate to adsorb and react on the Pt2+ isolated atoms, the site where H2 is formed and released. DFT calculations were also performed to obtain mechanistic insight on the Pt1/CeOx catalyst for the HER. The results indicate a new possibility to improve the state-of-the-art alkaline HER catalysts via a combined effect of the O vacancies on the ceria support and Pt2+ single atoms.
Collapse
Affiliation(s)
- Vandung Dao
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Giovanni Di Liberto
- Dipartimento di Scienza dei Materiali, Università degli Studi di Milano-Bicocca, Via Roberto Cozzi 55, Milano 20125, Italy
| | - Sunny Yadav
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Periyayya Uthirakumar
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Kai Chen
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Gianfranco Pacchioni
- Dipartimento di Scienza dei Materiali, Università degli Studi di Milano-Bicocca, Via Roberto Cozzi 55, Milano 20125, Italy
| | - In-Hwan Lee
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
20
|
Dai B, Su Y, Guo Y, Wu C, Xie Y. Recent Strategies for the Synthesis of Phase-Pure Ultrathin 1T/1T' Transition Metal Dichalcogenide Nanosheets. Chem Rev 2024; 124:420-454. [PMID: 38146851 DOI: 10.1021/acs.chemrev.3c00422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
The past few decades have witnessed a notable increase in transition metal dichalcogenide (TMD) related research not only because of the large family of TMD candidates but also because of the various polytypes that arise from the monolayer configuration and layer stacking order. The peculiar physicochemical properties of TMD nanosheets enable an enormous range of applications from fundamental science to industrial technologies based on the preparation of high-quality TMDs. For polymorphic TMDs, the 1T/1T' phase is particularly intriguing because of the enriched density of states, and thus facilitates fruitful chemistry. Herein, we comprehensively discuss the most recent strategies for direct synthesis of phase-pure 1T/1T' TMD nanosheets such as mechanical exfoliation, chemical vapor deposition, wet chemical synthesis, atomic layer deposition, and more. We also review frequently adopted methods for phase engineering in TMD nanosheets ranging from chemical doping and alloying, to charge injection, and irradiation with optical or charged particle beams. Prior to the synthesis methods, we discuss the configuration of TMDs as well as the characterization tools mostly used in experiments. Finally, we discuss the current challenges and opportunities as well as emphasize the promising fields for the future development.
Collapse
Affiliation(s)
- Baohu Dai
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Yueqi Su
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Yuqiao Guo
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Changzheng Wu
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Yi Xie
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
21
|
Dou M, Yao M, Ding K, Cheng Y, Shao H, Li S, Chen Y. Ni(OH) 2-derived lamellar MoS 2/Ni 3S 2/NF with Fe-doped heterojunction catalysts for efficient overall water splitting. Dalton Trans 2023. [PMID: 37999648 DOI: 10.1039/d3dt02830e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Heterostructures formed by combining semiconductor materials with different band structures can provide work functions, d-band positions and electronic properties different from bulk materials and are considered as an effective strategy to improve the catalytic activity through electronic modification. In this study, an efficient MoS2/Fe-Ni3S2/NF heterojunction material was prepared by a two-step hydrothermal method. With the help of flake Ni(OH)2 synthesized in the first step, growth sites were provided for flake Ni3S2. The electronic structure of Ni3S2 was optimized by Fe doping, while the construction of the MoS2/Fe-Ni3S2 heterostructure allowed the catalyst to expose more active sites. MoS2/Fe-Ni3S2/NF exhibited a small charge transfer resistance and excellent electrocatalytic performance. At a current density of 10 mA cm-2, only low overpotentials of 148 mV and 118 mV were required for the oxygen precipitation reaction (OER) and hydrogen precipitation reaction (HER), respectively. Notably, when MoS2/Fe-Ni3S2/NF is used as the anode and cathode for overall hydrolysis, only 1.51 V is required to reach a current density of 10 mA cm-2, demonstrating its great potential for application in hydrolysis. This work provides a feasible idea for the rational construction of non-precious metal bifunctional electrocatalysts with excellent performance.
Collapse
Affiliation(s)
- Minghao Dou
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui, 230009, PR China.
| | - Mengjie Yao
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui, 230009, PR China.
| | - Kai Ding
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui, 230009, PR China.
| | - Yuye Cheng
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui, 230009, PR China.
| | - Hongyu Shao
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui, 230009, PR China.
| | - Shenjie Li
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui, 230009, PR China.
| | - Yanyan Chen
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui, 230009, PR China.
| |
Collapse
|
22
|
Wang F, Xie L, Sun N, Zhi T, Zhang M, Liu Y, Luo Z, Yi L, Zhao Q, Wang L. Deformable Catalytic Material Derived from Mechanical Flexibility for Hydrogen Evolution Reaction. NANO-MICRO LETTERS 2023; 16:32. [PMID: 37999792 PMCID: PMC10673806 DOI: 10.1007/s40820-023-01251-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/21/2023] [Indexed: 11/25/2023]
Abstract
Deformable catalytic material with excellent flexible structure is a new type of catalyst that has been applied in various chemical reactions, especially electrocatalytic hydrogen evolution reaction (HER). In recent years, deformable catalysts for HER have made great progress and would become a research hotspot. The catalytic activities of deformable catalysts could be adjustable by the strain engineering and surface reconfiguration. The surface curvature of flexible catalytic materials is closely related to the electrocatalytic HER properties. Here, firstly, we systematically summarized self-adaptive catalytic performance of deformable catalysts and various micro-nanostructures evolution in catalytic HER process. Secondly, a series of strategies to design highly active catalysts based on the mechanical flexibility of low-dimensional nanomaterials were summarized. Last but not least, we presented the challenges and prospects of the study of flexible and deformable micro-nanostructures of electrocatalysts, which would further deepen the understanding of catalytic mechanisms of deformable HER catalyst.
Collapse
Affiliation(s)
- Fengshun Wang
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NJUPT), 9 Wenyuan, Nanjing, 210023, People's Republic of China
| | - Lingbin Xie
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NJUPT), 9 Wenyuan, Nanjing, 210023, People's Republic of China
| | - Ning Sun
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NJUPT), 9 Wenyuan, Nanjing, 210023, People's Republic of China
| | - Ting Zhi
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NJUPT), 9 Wenyuan, Nanjing, 210023, People's Republic of China.
| | - Mengyang Zhang
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NJUPT), 9 Wenyuan, Nanjing, 210023, People's Republic of China
| | - Yang Liu
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NJUPT), 9 Wenyuan, Nanjing, 210023, People's Republic of China
| | - Zhongzhong Luo
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NJUPT), 9 Wenyuan, Nanjing, 210023, People's Republic of China
| | - Lanhua Yi
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, School of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Qiang Zhao
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NJUPT), 9 Wenyuan, Nanjing, 210023, People's Republic of China.
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications, 9 Wenyuan, Nanjing, 210023, People's Republic of China.
| | - Longlu Wang
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NJUPT), 9 Wenyuan, Nanjing, 210023, People's Republic of China.
| |
Collapse
|
23
|
Zhou S, Ma W, Anjum U, Kosari M, Xi S, Kozlov SM, Zeng HC. Strained few-layer MoS 2 with atomic copper and selectively exposed in-plane sulfur vacancies for CO 2 hydrogenation to methanol. Nat Commun 2023; 14:5872. [PMID: 37735457 PMCID: PMC10514200 DOI: 10.1038/s41467-023-41362-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 08/28/2023] [Indexed: 09/23/2023] Open
Abstract
In-plane sulfur vacancies (Sv) in molybdenum disulfide (MoS2) were newly unveiled for CO2 hydrogenation to methanol, whereas edge Sv were found to facilitate methane formation. Thus, selective exposure and activation of basal plane is crucial for methanol synthesis. Here, we report a mesoporous silica-encapsulated MoS2 catalysts with fullerene-like structure and atomic copper (Cu/MoS2@SiO2). The main approach is based on a physically constrained topologic conversion of molybdenum dioxide (MoO2) to MoS2 within silica. The spherical curvature enables the generation of strain and Sv in inert basal plane. More importantly, fullerene-like structure of few-layer MoS2 can selectively expose in-plane Sv and reduce the exposure of edge Sv. After promotion by atomic copper, the resultant Cu/MoS2@SiO2 exhibits stable specific methanol yield of 6.11 molMeOH molMo-1 h-1 with methanol selectivity of 72.5% at 260 °C, much superior to its counterparts lacking the fullerene-like structure and copper decoration. The reaction mechanism and promoting role of copper are investigated by in-situ DRIFTS and in-situ XAS. Theoretical calculations demonstrate that the compressive strain facilitates Sv formation and CO2 hydrogenation, while tensile strain accelerates the regeneration of active sites, rationalizing the critical role of strain.
Collapse
Affiliation(s)
- Shenghui Zhou
- Department of Chemical and Biomolecular Engineering, College of Design and Engineering, National University of Singapore, Singapore, 119260, Singapore
- The Cambridge Centre for Advanced Research and Education in Singapore, 1 CREATE Way, Singapore, 138602, Singapore
| | - Wenrui Ma
- Department of Chemical and Biomolecular Engineering, College of Design and Engineering, National University of Singapore, Singapore, 119260, Singapore
| | - Uzma Anjum
- Department of Chemical and Biomolecular Engineering, College of Design and Engineering, National University of Singapore, Singapore, 119260, Singapore
| | - Mohammadreza Kosari
- Department of Chemical and Biomolecular Engineering, College of Design and Engineering, National University of Singapore, Singapore, 119260, Singapore
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore, 627833, Singapore
| | - Shibo Xi
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore, 627833, Singapore
| | - Sergey M Kozlov
- Department of Chemical and Biomolecular Engineering, College of Design and Engineering, National University of Singapore, Singapore, 119260, Singapore.
| | - Hua Chun Zeng
- Department of Chemical and Biomolecular Engineering, College of Design and Engineering, National University of Singapore, Singapore, 119260, Singapore.
- The Cambridge Centre for Advanced Research and Education in Singapore, 1 CREATE Way, Singapore, 138602, Singapore.
| |
Collapse
|
24
|
Fan P, Chen H, Zhou X, Cao L, Li G, Li M, Qian G, Xing Y, Shen C, Wang X, Jin C, Gu G, Ding H, Gao HJ. Nanoscale Manipulation of Wrinkle-Pinned Vortices in Iron-Based Superconductors. NANO LETTERS 2023; 23:4541-4547. [PMID: 37162755 DOI: 10.1021/acs.nanolett.3c00982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The controlled manipulation of Abrikosov vortices is essential for both fundamental science and logical applications. However, achieving nanoscale manipulation of vortices while simultaneously measuring the local density of states within them remains challenging. Here, we demonstrate the manipulation of Abrikosov vortices by moving the pinning center, namely one-dimensional wrinkles, on the terminal layers of Fe(Te,Se) and LiFeAs, by utilizing low-temperature scanning tunneling microscopy/spectroscopy (STM/S). The wrinkles trap the Abrikosov vortices induced by the external magnetic field. In some of the wrinkle-pinned vortices, robust zero-bias conductance peaks are observed. We tailor the wrinkle into short pieces and manipulate the wrinkles by using an STM tip. Strikingly, we demonstrate that the pinned vortices move together with these wrinkles even at high magnetic field up to 6 T. Our results provide a universal and effective routine for manipulating wrinkle-pinned vortices and simultaneously measuring the local density of states on the iron-based superconductor surfaces.
Collapse
Affiliation(s)
- Peng Fan
- Beijing National Center for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Physical Sciences, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Hui Chen
- Beijing National Center for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Physical Sciences, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Hefei National Laboratory, Hefei, Anhui 230088, P. R. China
| | - Xingtai Zhou
- Beijing National Center for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Physical Sciences, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Lu Cao
- Beijing National Center for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Physical Sciences, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Geng Li
- Beijing National Center for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Physical Sciences, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Hefei National Laboratory, Hefei, Anhui 230088, P. R. China
| | - Meng Li
- Beijing National Center for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Physical Sciences, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Guojian Qian
- Beijing National Center for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Physical Sciences, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Yuqing Xing
- Beijing National Center for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Physical Sciences, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Chengmin Shen
- Beijing National Center for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Physical Sciences, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Xiancheng Wang
- Beijing National Center for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Physical Sciences, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Changqing Jin
- Beijing National Center for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Physical Sciences, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Genda Gu
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Hong Ding
- Beijing National Center for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Hong-Jun Gao
- Beijing National Center for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Physical Sciences, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Hefei National Laboratory, Hefei, Anhui 230088, P. R. China
| |
Collapse
|
25
|
Nguyen CT, Luu TA, Nguyen TD, Dam AT, Le LT, Han H, Lo ST, Phan PT, Pham HT, Nguyen HNT, Nguyen LL, Nguyen HQ, Tran PD. Exploring the Sub-nanoscale Structure of Cobalt Molybdenum Sulfide and the Role of a Cobalt Promoter in Catalytic Hydrogen Evolution. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 36913544 DOI: 10.1021/acsami.2c20237] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Cobalt-promoted molybdenum sulfide (CoMoS) is known as a promising catalyst for H2 evolution reaction and hydrogen desulfurization reaction. This material exhibits superior catalytic activity as compared to its pristine molybdenum sulfide counterpart. However, revealing the actual structure of cobalt-promoted molybdenum sulfide as well as the plausible contribution of a cobalt promoter is still challenging, especially when the material has an amorphous nature. Herein, we report, for the first time, on the use of positron annihilation spectroscopy (PAS), being a nondestructive nuclear radiation-based method, to visualize the position of a Co promoter within the structure of MoS at the atomic scale, which is inaccessible by conventional characterization tools. It is found that at low concentrations, a Co atom occupies preferably the Mo-vacancies, thus generating the ternary phase CoMoS whose structure is composed of a Co-S-Mo building block. Increasing the Co concentration, e.g., a Co/Mo molar ratio of higher than 1.12/1, leads to the occupation of both Mo-vacancies and S-vacancies by Co. In this case, secondary phases such as MoS and CoS are also produced together with the CoMoS one. Combining the PAS and electrochemical analyses, we highlight the important contribution of a Co promoter to enhancing the catalytic H2 evolution activity. Having more Co promoter in the Mo-vacancies promotes the H2 evolution rate, whereas having Co in the S-vacancies causes a drop in H2 evolution ability. Furthermore, the occupation of Co to the S-vacancies leads also to the destabilization of the CoMoS catalyst, resulting in a rapid degradation of catalytic activity.
Collapse
Affiliation(s)
- Chuc T Nguyen
- Vietnam Academy of Science and Technology, University of Science and Technology of Hanoi, 18 Hoang Quoc Viet, Hanoi 100000, Vietnam
| | - Tuyen Anh Luu
- Center for Nuclear Technologies, Vietnam Atomic Energy Institute, 217 Nguyen Trai, Ho Chi Minh City 700000, Vietnam
- Dzhelepov Laboratory of Nuclear Problems, JINR, 141980 Dubna, Moscow Region, Russia
| | - Thai D Nguyen
- Vietnam Academy of Science and Technology, University of Science and Technology of Hanoi, 18 Hoang Quoc Viet, Hanoi 100000, Vietnam
| | - An T Dam
- Vietnam Academy of Science and Technology, University of Science and Technology of Hanoi, 18 Hoang Quoc Viet, Hanoi 100000, Vietnam
| | - Ly T Le
- Vietnam Academy of Science and Technology, University of Science and Technology of Hanoi, 18 Hoang Quoc Viet, Hanoi 100000, Vietnam
| | - Hyuksu Han
- Department of Energy Engineering, Konkuk University, 120 Neungdong-ro Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Son T Lo
- Center for Nuclear Technologies, Vietnam Atomic Energy Institute, 217 Nguyen Trai, Ho Chi Minh City 700000, Vietnam
| | - Phuc T Phan
- Center for Nuclear Technologies, Vietnam Atomic Energy Institute, 217 Nguyen Trai, Ho Chi Minh City 700000, Vietnam
| | - Hue T Pham
- Center for Nuclear Technologies, Vietnam Atomic Energy Institute, 217 Nguyen Trai, Ho Chi Minh City 700000, Vietnam
| | - Hue N T Nguyen
- Center for Nuclear Technologies, Vietnam Atomic Energy Institute, 217 Nguyen Trai, Ho Chi Minh City 700000, Vietnam
| | - La Ly Nguyen
- Center for Nuclear Technologies, Vietnam Atomic Energy Institute, 217 Nguyen Trai, Ho Chi Minh City 700000, Vietnam
| | - Hung Q Nguyen
- Institute of Fundamental and Applied Sciences, Duy Tan University, 6 Tran Nhat Duat, Ho Chi Minh City 700000, Vietnam
- Faculty of Natural Sciences, Duy Tan University, 3 Quang Trung, Da Nang City 550000, Vietnam
| | - Phong D Tran
- Vietnam Academy of Science and Technology, University of Science and Technology of Hanoi, 18 Hoang Quoc Viet, Hanoi 100000, Vietnam
| |
Collapse
|
26
|
Wang Q, Wang S, Li J, Gan Y, Jin M, Shi R, Amini A, Wang N, Cheng C. Modified Spatially Confined Strategy Enabled Mild Growth Kinetics for Facile Growth Management of Atomically-Thin Tungsten Disulfides. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205638. [PMID: 36446619 PMCID: PMC9875684 DOI: 10.1002/advs.202205638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Chemical vapor deposition (CVD) has been widely used to produce high quality 2D transitional metal dichalcogenides (2D TMDCs). However, violent evaporation and large diffusivity discrepancy of metal and chalcogen precursors at elevated temperatures often result in poor regulation on X:M molar ratio (M = Mo, W etc.; X = S, Se, and Te), and thus it is rather challenging to achieve the desired products of 2D TMDCs. Here, a modified spatially confined strategy (MSCS) is utilized to suppress the rising S vapor concentration between two aspectant substrates, upon which the lateral/vertical growth of 2D WS2 can be selectively regulated via proper S:W zones correspond to greatly broadened time/growth windows. An S:W-time (SW-T) growth diagram was thus proposed as a mapping guide for the general understanding of CVD growth of 2D WS2 and the design of growth routes for the desired 2D WS2 . Consequently, a comprehensive growth management of atomically thin WS2 is achieved, including the versatile controls of domain size, layer number, and lateral/vertical heterostructures (MoS2 -WS2 ). The lateral heterostructures show an enhanced hydrogen evolution reaction performance. This study advances the substantial understanding to the growth kinetics and provides an effective MSCS protocol for growth design and management of 2D TMDCs.
Collapse
Affiliation(s)
- Qun Wang
- Department of Materials Science and EngineeringSouthern University of Science and TechnologyShenzhen518055P. R. China
| | - Shi Wang
- Department of Physics and Center for Quantum MaterialsHong Kong University of Science and TechnologyHong KongP. R. China
| | - Jingyi Li
- Department of Materials Science and EngineeringSouthern University of Science and TechnologyShenzhen518055P. R. China
| | - Yichen Gan
- Department of Materials Science and EngineeringSouthern University of Science and TechnologyShenzhen518055P. R. China
| | - Mengtian Jin
- Department of Materials Science and EngineeringSouthern University of Science and TechnologyShenzhen518055P. R. China
| | - Run Shi
- Department of Materials Science and EngineeringSouthern University of Science and TechnologyShenzhen518055P. R. China
| | - Abbas Amini
- Center for Infrastructure EngineeringWestern Sydney UniversityKingswoodNew South Wales2751Australia
| | - Ning Wang
- Department of Physics and Center for Quantum MaterialsHong Kong University of Science and TechnologyHong KongP. R. China
| | - Chun Cheng
- Department of Materials Science and EngineeringSouthern University of Science and TechnologyShenzhen518055P. R. China
- Guangdong Provincial Key Laboratory of Energy Materials for Electric PowerSouthern University of Science and TechnologyShenzhen518055China
| |
Collapse
|
27
|
Peña-Obeso PJ, Huirache-Acuña R, Ramirez-Zavaleta FI, Rivera JL. Stability of Non-Concentric, Multilayer, and Fully Aligned Porous MoS 2 Nanotubes. MEMBRANES 2022; 12:818. [PMID: 36005733 PMCID: PMC9415411 DOI: 10.3390/membranes12080818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
Nanotubes made of non-concentric and multiple small layers of porous MoS2 contain inner pores suitable for membrane applications. In this study, molecular dynamics simulations using reactive potentials were employed to estimate the stability of the nanotubes and how their stability compares to macroscopic single- (1L) and double-layer MoS2 flakes. The observed stability was explained in terms of several analyses that focused on the size of the area of full-covered layers, number of layers, polytype, and size of the holes in the 1L flakes. The reactive potential used in this work reproduced experimental results that have been previously reported, including the small dependency of the stability on the polytype, the formation of S-S bonds between inter- and intra-planes, and the limit of stability for two concentric rings forming a single ring-like flake.
Collapse
Affiliation(s)
- Pablo Jahir Peña-Obeso
- Facultad de Ingeniería Química, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58000, Mexico
| | - Rafael Huirache-Acuña
- Facultad de Ingeniería Química, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58000, Mexico
| | | | - José Luis Rivera
- Facultad de Ciencias Físico–Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58000, Mexico
| |
Collapse
|