1
|
Singh A, Chen YC, Wu KC, Shih YY, Huang TC, Wei WL, Chen YD, Nagaraju PH, Lin JC, Lin BH, Tang MT, Wang DY. Pioneering nucleation for stable ultraviolet-to-deep-blue illuminating two-dimensional perovskite nanoplates by using saturated salt solution. NANOSCALE 2025. [PMID: 40421999 DOI: 10.1039/d5nr01488c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2025]
Abstract
Two-dimensional (2D) metal halide perovskites are promising materials for efficient ultraviolet-to-blue light emission. However, synthesizing stable, phase-pure, and highly fluorescent 2D perovskite nanomaterials remains challenging. Here, a unique nucleation strategy is used for stabilizing the nucleation of the 2D phase in perovskite stock solution, increasing the luminance and stability of the resulting nanoplates. To kinetically control the formation of 2D perovskite nanoplates with specific n values, this strategy is mainly executed by using a saturated solution of PbX2 (X = Br or Cl), an optimized amount of CsX and PbX2 solution and small amounts of oleylamine (OLM) for adjusting the ratio of [PbxBry]2x-y/Cs+ in the stock solution. The saturated PbX2 solution plays a role in the formation of the [PbxBry]2x-y complex, resulting in the nucleation of 2D (OLM)2Csn-1PbnX3n+1 perovskite nanoplates and inhibition of 3D nanocrystal formation. The resulting 2D perovskite nanoplates with specific n values exhibited high photoluminescence (PL) from the ultraviolet to deep-blue region. Most importantly, this is the first report to demonstrate 2D (OLM)2PbCl4 perovskite nanoplates with n = 1, yielding unique ultraviolet emission. The 2D (OLM)2Csn-1PbnBr3n+1 perovskite nanoplates with n = 1, 2, and 3 demonstrated high emission from violet to deep-blue color. X-ray diffraction (XRD) and attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) patterns indicate complexation of PbBr2 and halide in the DMF solution, forming species of the Pb-halide complex ([PbxBry]2x-y, such as PbBr3- and PbBr42-). The Pb-halide complex facilitates the 2D arrangement of PbBr64- octahedra, resulting in phase-pure and stable 2D perovskite nanoplates. Improved luminance and stability are attributed to reduced defects as calculated with the help of Urbach energy. This study provides insights into the formation of 2D perovskite nanoplates controlled by manipulating nucleation in the saturated salt solution, offering a simple method for controlling layer thickness and phase purity.
Collapse
Affiliation(s)
- Anupriya Singh
- Department of Chemistry, National Taiwan Normal University, Taipei, 11677, Taiwan.
| | - Yi-Chia Chen
- Department of Chemistry, National Taiwan Normal University, Taipei, 11677, Taiwan.
| | - Kuan-Chang Wu
- Department of Chemistry, Tunghai University, Taichung 40704, Taiwan
| | - Yu-Ying Shih
- Department of Chemistry, National Taiwan Normal University, Taipei, 11677, Taiwan.
| | - Tzu-Chi Huang
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Wei-Lon Wei
- National Synchrotron Radiation Research Center, Hsinchu 300092, Taiwan
| | - Yu-Dian Chen
- Department of Chemistry, Tunghai University, Taichung 40704, Taiwan
| | | | - Jou-Chun Lin
- Department of Chemistry, National Taiwan Normal University, Taipei, 11677, Taiwan.
| | - Bi-Hsuan Lin
- National Synchrotron Radiation Research Center, Hsinchu 300092, Taiwan
| | - Mau-Tsu Tang
- National Synchrotron Radiation Research Center, Hsinchu 300092, Taiwan
| | - Di-Yan Wang
- Department of Chemistry, National Taiwan Normal University, Taipei, 11677, Taiwan.
| |
Collapse
|
2
|
Li J, Wang J, Chen Z, Hu Z, Hu X, Khumalo M, Niazi MBK, Luo D, Liu Y, Fu N, Xue Q. White-Light Emission from Halide Perovskites Based on a Single Emissive Layer. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 40404561 DOI: 10.1021/acsami.5c00780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2025]
Abstract
In contemporary society, lighting has become indispensable in both daily life and industrial activities. Researchers are actively developing new materials and technologies to meet global goals for clean, sustainable energy. Among them, halide perovskite materials play a vital role in light-emitting diodes (LEDs) due to their high carrier mobility, low exciton binding energy, and tunable emission wavelength. White perovskite light-emitting diodes (WPeLEDs) based on a single emission layer (SEL) feature simpler production processes and clearer luminescence mechanisms compared with other layered and series devices, attracting extensive research interest and showing great potential in practical applications. This Account systematically provides an overview of the recent advances in SEL-WPeLEDs. The concepts of perovskite materials and the luminescent principles of PeLEDs are first elaborated, and the typical approaches for perovskite film deposition are then summarized. Subsequently, the implementation strategies toward high-performance SEL-WPeLEDs of electric driving, including Perovskite with Self-trapped excitons, perovskite-organic molecule coupling, and metal ion doping, are carefully discussed. Finally, challenges and perspectives for the further development of SEL-PeLEDs are proposed.
Collapse
Affiliation(s)
- Jiayu Li
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Jing Wang
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China
| | - Ziming Chen
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Zeyuan Hu
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiaotian Hu
- College of Chemistry and Chemical Engineering/Film Energy Chemistry for Jiangxi Provincial Key Laboratory (FEC), Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| | - Melusi Khumalo
- Department of Mathematical Sciences, University of South Africa, Cnr Christian de Wet Rd & Pioneer Avenue, Florida 1709, South Africa
| | - Muhammad Bilal Khan Niazi
- Department of Chemical Engineering/Interdisciplinary Research Center for Refining and Advanced Chemicals, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia
| | - Dongxiang Luo
- Huangpu Hydrogen Innovation Center/Guangzhou Key Laboratory for Clean Energy and Materials, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Yanchun Liu
- The Key Laboratory of Energy-Efficient Functional Ceramics and Applied Technology of Guangdong Province, Guangzhou Redsun Gas Applications Co., LTD., Guangzhou 510450, P. R. China
| | - Nianqing Fu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Qifan Xue
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| |
Collapse
|
3
|
Zhang W, Wang Z, Li F, Gu Z, Chen K, Li G. Controlling the growth kinetics of CsPbX 3 nanocrystals through the spatial confinement effect. Chem Commun (Camb) 2025; 61:7061-7064. [PMID: 40260544 DOI: 10.1039/d5cc01340b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2025]
Abstract
Controlling CsPbX3 (X = Cl, Br, I) nanocrystal growth is challenging due to subsecond ionic metathesis. Here, spatial confinement at the hexane-acetonitrile interface enables precise control of kinetics, achieving ultra-wide PL tunability (434-520 nm for CsPbBr3, 541-662 nm for CsPbI3) from blue-violet to green and yellow-green to deep red.
Collapse
Affiliation(s)
- Wanying Zhang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China.
- Shenzhen Research Institute, China University of Geosciences, Shenzhen, 518052, P. R. China
| | - Zhiqing Wang
- State Key Laboratory of Silicate Materials for Architectures, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Fen Li
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China.
| | - Zixin Gu
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China.
| | - Keqiang Chen
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China.
- Shenzhen Research Institute, China University of Geosciences, Shenzhen, 518052, P. R. China
| | - Guogang Li
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China.
- Shenzhen Research Institute, China University of Geosciences, Shenzhen, 518052, P. R. China
| |
Collapse
|
4
|
Lv X, Su Y, Xiang H, Yang L, Chen X, Wang Y, Zhang K, Tang J, Ye Y, Cai B, Ma X, Wang X, Zeng H. TOP-Zn Steric Hindrance Effect Enables Ultra-Uniform CsPbX 3 Quantum Dots for Wide-Color Gamut Displays. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2409308. [PMID: 40190203 DOI: 10.1002/adma.202409308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 03/12/2025] [Indexed: 05/20/2025]
Abstract
Perovskite quantum dots (PQDs) are expected to be an ideal candidate for wide-color gamut displays owing to their high color purity. However, their color purity is challenged by remarkable spectral broadening due to non-uniform size distribution and crystal defects. Here, a ligand-ion (TOP-Zn) complex-modulating nucleation strategy is proposed to depress spectral broadening. This is achieved by enhancing the steric hindrance effect during lead-halogen octahedral assembly and reducing the reaction activity/sites of the system. This strategy is universal and has been confirmed to be effective for blue, green, and red PQDs, achieving narrowed spectral full-width-at-half-maximum (FWHM) of 15, 17, and 25 nm, respectively. These FWHMs are record-breaking and contribute to a wide color gamut coverage of ≈130% National Television Standards Committee and ≈100% Rec. 2020 standard. Meanwhile, these PQD-based light-emitting diodes (PeLEDs) exhibit a high external quantum efficiency (EQE) of exceeding 20% at their pure color range. These results provide a feasible path to achieve ultra-uniform and pure-color luminescent PQDs for wide-color gamut displays.
Collapse
Affiliation(s)
- Xinyi Lv
- MIIT Key Laboratory of Advanced Display Materials and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China
| | - Yuqin Su
- MIIT Key Laboratory of Advanced Display Materials and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China
| | - Hengyang Xiang
- MIIT Key Laboratory of Advanced Display Materials and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China
| | - Linxiang Yang
- MIIT Key Laboratory of Advanced Display Materials and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China
| | - Xinrui Chen
- MIIT Key Laboratory of Advanced Display Materials and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China
| | - Yifei Wang
- MIIT Key Laboratory of Advanced Display Materials and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China
| | - Kun Zhang
- MIIT Key Laboratory of Advanced Display Materials and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China
| | - Jiahao Tang
- MIIT Key Laboratory of Advanced Display Materials and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China
| | - Yuhui Ye
- National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Bo Cai
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, Jiangsu, 210023, China
| | - Xueying Ma
- National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Xiaoyong Wang
- National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Haibo Zeng
- MIIT Key Laboratory of Advanced Display Materials and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China
| |
Collapse
|
5
|
Saxena J, Murali R, Roy A, Al-Kahtani AA, Soma VR, Raavi SSK, Sadhanala A. FRET-driven hybrid polymer-perovskite matrices for efficient pure-red emission. NANOSCALE 2025; 17:7753-7759. [PMID: 40059840 DOI: 10.1039/d4nr05253f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Achieving efficient pure-red emission in perovskite-based high-definition display applications remains challenging due to persistent spectral, thermodynamic, and operational instability. Although significant progress has been made using red-emitting quasi-2D perovskites, quantum dots, and mixed-halide perovskites, their performance under operational conditions often remains limited. Here, we address these challenges by embedding mixed-halide perovskite nanocrystals (PeNCs) into a polymer matrix to create a donor-acceptor architecture. This hybrid system stabilizes the nanocrystals and enables efficient energy transfer via Förster resonance energy transfer (FRET). We observe enhanced acceptor photoluminescence and reduced donor lifetimes, confirming the effective FRET-mediated energy transfer arising from optimal spectral overlap. With a FRET rate of 0.18 ps-1 and a FRET efficiency of 88.9%, our approach provides spectrally stable, enhanced pure-red emission. Moreover, it demonstrates a pathway for designing customized energy cascades, paving the way for next-generation optoelectronic devices with improved stability and performance.
Collapse
Affiliation(s)
- Jyoti Saxena
- Centre for Nano Science and Engineering, Indian Institute of Science, Bengaluru 560012, Karnataka, India.
| | - Rahul Murali
- Ultrafast Photophysics and Photonics Laboratory, Department of Physics, Indian Institute of Technology Hyderabad, Kandi 502285, Telangana, India
| | - Avari Roy
- Centre for Nano Science and Engineering, Indian Institute of Science, Bengaluru 560012, Karnataka, India.
| | - Abdullah A Al-Kahtani
- King Saud University, College of Science, Chemistry Department, P. O. Box 2455, Riyadh-11451, Saudi Arabia
| | - Venugopal Rao Soma
- School of Physics, University of Hyderabad, Hyderabad 500046, Telangana, India
- DRDO Industry Academia - Centre of Excellence (DIA-CoE; formerly ACRHEM), University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Sai Santosh Kumar Raavi
- Ultrafast Photophysics and Photonics Laboratory, Department of Physics, Indian Institute of Technology Hyderabad, Kandi 502285, Telangana, India
| | - Aditya Sadhanala
- Centre for Nano Science and Engineering, Indian Institute of Science, Bengaluru 560012, Karnataka, India.
- King Saud University, College of Science, Chemistry Department, P. O. Box 2455, Riyadh-11451, Saudi Arabia
| |
Collapse
|
6
|
Wang J, Han D, Ji H, Zang Z, Zhou J, Wang N. Multi-cation synergy improves crystallization and antioxidation of CsSnBr 3for lead-free perovskite light-emitting diodes. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2025; 37:165001. [PMID: 39970534 DOI: 10.1088/1361-648x/adb823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 02/19/2025] [Indexed: 02/21/2025]
Abstract
Tin (Sn) perovskites have emerged as promising alternatives to address the toxicity concerns associated with lead-based (Pb) perovskite light-emitting diodes (PeLEDs). However, the inherent oxidation of Sn perovskite films leads to a serious efficiency roll-off in PeLEDs at increased current densities. Although three-dimensional CsSnBr3perovskites exhibit decent carrier mobilities and thermal stability, their rapid crystallization during solution processing results in inadequate surface coverage. This inadequate coverage increases non-radiative recombination and leakage current, thereby hindering Sn PeLED performance. Herein, we present a multi-cation synergistic strategy by introducing the organic cations formamidinium (FA+) and thiophene ethylamine (TEA+) into CsSnBr3perovskites. The addition of organic cations delays crystallization by forming hydrogen bonds interacting with the CsSnBr3. The smaller FA+enters the perovskite lattice and improves crystallinity, while the larger TEA+cation enhances surface coverage and passivates defect states. By further optimizing the interface between PEDOT:PSS and perovskite layers through the use of ethanolamine and a thin layer of LiF, we achieved a red Sn-based PeLED with an emission wavelength of 670 nm, a maximum luminance of 151 cd m-2, and an external quantum efficiency of 0.21%.
Collapse
Affiliation(s)
- Jie Wang
- College of Physics, Jilin University, Changchun, People's Republic of China
| | - Dongyuan Han
- College of Physics, Jilin University, Changchun, People's Republic of China
| | - Huiyu Ji
- College of Physics, Jilin University, Changchun, People's Republic of China
| | - Ziang Zang
- College of Physics, Jilin University, Changchun, People's Republic of China
| | - Jianheng Zhou
- College of Physics, Jilin University, Changchun, People's Republic of China
| | - Ning Wang
- College of Physics, Jilin University, Changchun, People's Republic of China
| |
Collapse
|
7
|
Wang L, Ooi ZY, Jia FY, Sun Y, Liu Y, Dai L, Ye J, Zhang J, Un HI, Chiang YH, Han S, Mirabelli AJ, Anaya M, Zhang Z, Lu Y, Zou C, Zhao B, Di D, Yang X, Guo D, Tan Y, Dong H, Liu S, Liu T, Zhou H, Stranks SD, Sun LD, Yan CH, Friend RH. Efficient perovskite LEDs with tailored atomic layer number emission at fixed wavelengths. SCIENCE ADVANCES 2025; 11:eadp9595. [PMID: 39951530 PMCID: PMC11827643 DOI: 10.1126/sciadv.adp9595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 01/13/2025] [Indexed: 02/16/2025]
Abstract
Colloidal quantum dots (QDs) have illuminated computer monitors and television screens due to their fascinating color-tunable properties depending on the size. Here, the electroluminescence (EL) wavelength of perovskite LEDs was tuned via the atomic layer number (ALN) of nanoplates (NPs) instead of the "size" in conventional QDs. We demonstrated efficient LEDs with controllably tailored emission from n = 3, 4, 5, and ≥7 ALN perovskite NPs with specific and discrete major peaks at 607, 638, 669, and 728 nanometers. These LEDs demonstrated peak external quantum efficiency (EQE) of 26.8% and high wavelength reproducibility with less than 1 to 2 nm difference between batches. High color stability without observable EL spectral change and operating stability with the best T50 of 267 minutes at 1.0 milliampere per square centimeter was also achieved. This work demonstrates a concept of tailoring specific ALN emission with fixed wavelengths, shedding light on efficient, emission-discrete, and color-stable LEDs for next-generation display.
Collapse
Affiliation(s)
- Ligang Wang
- School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
- Department of Applied Physics, Royal Institute of Technology, Albanova University Centre, 106 91 Stockholm, Sweden
| | - Zher Ying Ooi
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK
| | - Feng-Yan Jia
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Yuqi Sun
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
| | - Yun Liu
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632, Republic of Singapore
| | - Linjie Dai
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
| | - Junzhi Ye
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
| | - Jincan Zhang
- Department of Engineering, University of Cambridge, Cambridge CB3 0FA, UK
| | - Hio-Ieng Un
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
| | - Yu-Hsien Chiang
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
| | - Sanyang Han
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
| | | | - Miguel Anaya
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK
| | - Zhilong Zhang
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
| | - Yang Lu
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK
| | - Chen Zou
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering; International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, P. R. China
| | - Baodan Zhao
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering; International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, P. R. China
| | - Dawei Di
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering; International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, P. R. China
| | - Xiaodong Yang
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemical Engineering, Huanggang Normal University, Huanggang, Hubei, P. R. China
| | - Dengyang Guo
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
| | - Yu Tan
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Hao Dong
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Shaocheng Liu
- School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Tianjun Liu
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
| | - Huanping Zhou
- School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China
| | - Samuel D. Stranks
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK
| | - Ling-Dong Sun
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Chun-Hua Yan
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Richard H. Friend
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
| |
Collapse
|
8
|
Ming Z, Li S, Luo X, Liu S, Zhang D, Zhu X, Pan A, Wang X. Pure red emission with spectral stability in full iodine-based quasi-2D perovskite films by controlling phase distribution. NANOSCALE 2025; 17:3498-3506. [PMID: 39718139 DOI: 10.1039/d4nr04100c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Quasi-2D perovskites have emerged as a promising candidate material for displays owing to their high photoluminescence quantum yields and low-cost solution synthesis. However, achieving pure red quasi-2D perovskite films with luminescence centered at 630 nm and a narrow emission band presents a critical challenge for high-definition displays. Herein, by incorporating 18-crown-6 as additives that simultaneously passivate defects and regulate phase distribution, full iodine-based quasi-2D perovskite films with a single red emission peak and spectral stability are designed. Additionally, through the introduction of an appropriate amount of chlorobenzene and enhancement of annealing temperature, resulting in a narrower phase distribution, the full width at half maximum (FWHM) of the emission peak is significantly reduced. After optimization of the process, we fabricated quasi-2D perovskite films with pure red emission, which exhibited a PL peak at 627.9 nm and a narrow FWHM of 45.1 nm. Based on these pure red perovskite films, diverse complex patterns such as fluorescent anti-counterfeiting labels are implemented for data storage and information encryption. This study provides an effective approach toward developing quasi-2D perovskites with high color purity for high-definition purposes.
Collapse
Affiliation(s)
- Zhiqiang Ming
- School of Physics and Electronics, Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, and College of Materials Science and Engineering, Hunan University, Changsha 410082, China.
| | - Siyao Li
- School of Physics and Electronics, Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, and College of Materials Science and Engineering, Hunan University, Changsha 410082, China.
| | - Xinyi Luo
- School of Physics and Electronics, Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, and College of Materials Science and Engineering, Hunan University, Changsha 410082, China.
| | - Siman Liu
- School of Physics and Electronics, Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, and College of Materials Science and Engineering, Hunan University, Changsha 410082, China.
| | - Danliang Zhang
- School of Physics and Electronics, Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, and College of Materials Science and Engineering, Hunan University, Changsha 410082, China.
| | - Xiaoli Zhu
- School of Physics and Electronics, Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, and College of Materials Science and Engineering, Hunan University, Changsha 410082, China.
| | - Anlian Pan
- School of Physics and Electronics, Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, and College of Materials Science and Engineering, Hunan University, Changsha 410082, China.
| | - Xiao Wang
- School of Physics and Electronics, Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, and College of Materials Science and Engineering, Hunan University, Changsha 410082, China.
| |
Collapse
|
9
|
Zhan W, Cao J, Wang H, Ren M, Feng M, Fan Y, Guo J, Wang Y, Chen Y, Miao Y, Zhao Y. Acidic Engineering on Buried Interface toward Efficient Inorganic CsPbI 3 Perovskite Light-Emitting Diodes. NANO LETTERS 2025; 25:1593-1600. [PMID: 39818854 DOI: 10.1021/acs.nanolett.4c05694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Inorganic CsPbI3 perovskite has emerged as a promising emitter for deep-red light-emitting diodes (LEDs) due to its intrinsic thermal stability and suitable bandgap. However, uncontrollable CsPbI3 crystallization induced by an alkaline zinc oxide (ZnO) substrate in bulk film-based LEDs leads to insufficient external quantum efficiencies (EQEs) at high brightness, leaving obstacles in commercialization progress. Herein, we demonstrate an effective acidic engineering strategy with wide applicability to modify the surface property of ZnO and regulate CsPbI3 crystallization. Via systematically selecting 1,4-cyclohexanedicarboxylic acid with a mild acid dissociation constant to functionalize the buried interface, we mitigate the speed of the deprotonation reaction and achieve homogeneous CsPbI3 films with high phase purity and fewer defects. The resulting CsPbI3 perovskite LEDs (PeLEDs) exhibit a record EQE of 19.4% at a high luminance of 3400 cd m-2, representing the state-of-art bulk CsPbI3 PeLEDs. These findings provide valuable insights in the advancement of efficient CsPbI3 PeLEDs.
Collapse
Affiliation(s)
- Wenji Zhan
- School of Environmental Science and Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jingjing Cao
- School of Environmental Science and Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Haifei Wang
- School of Environmental Science and Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Meng Ren
- School of Environmental Science and Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Menglei Feng
- School of Environmental Science and Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yingping Fan
- School of Environmental Science and Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiahao Guo
- School of Environmental Science and Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yao Wang
- Global Institute of Future Technology, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Non-carbon Energy Conversion and Utilization Institute, Shanghai 200240, China
| | - Yuetian Chen
- School of Environmental Science and Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Non-carbon Energy Conversion and Utilization Institute, Shanghai 200240, China
| | - Yanfeng Miao
- School of Environmental Science and Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Non-carbon Energy Conversion and Utilization Institute, Shanghai 200240, China
| | - Yixin Zhao
- School of Environmental Science and Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
- Global Institute of Future Technology, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Non-carbon Energy Conversion and Utilization Institute, Shanghai 200240, China
- State Key Lab of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
10
|
Chen W, Hu L, Wang Y, Huang L, Wang Z, Tang X. Surface passivation strategies for CsPbBr 3 quantum dots aiming at nonradiative suppression and enhancement of electroluminescent light-emitting diodes. Dalton Trans 2025; 54:2156-2165. [PMID: 39711110 DOI: 10.1039/d4dt02705a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
With many fascinating characteristics, such as color-tunability, narrow-band emission, and low-cost solution processability, all-inorganic lead halide perovskite quantum dots (QDs) have attracted keen attention for electroluminescent light-emitting diodes (QLEDs) and display applications. However, the performance of perovskite QLED devices is intrinsically limited by the inefficient electrical carrier transport capacity. Herein, one facile but effective method is proposed to enhance the perovskite QLED performance by incorporating a short carbon chain ligand of 2-phenethylammonium bromide (PEABr) to passivate the CsPbBr3 QD surface. With the PEABr ligand, the Br- vacancies are passivated, which could eliminate nonradiative recombination of perovskite QDs; thus their optical properties are enhanced. Meanwhile, PEABr can interact with perovskite QDs to adjust the perovskite film morphology, resulting in low current leakage and efficient electron injection. After the PEABr treatment, the CsPbBr3 QD film exhibits strong green emission located at 516 nm, with an average photoluminescence lifetime of 45.71 ns and a photoluminescence quantum yield of up to 78.64%. In addition, the surface roughness of the CsPbBr3 QD film is reduced from 3.61 nm to 1.38 nm, which is essential to prepare a QD film with high surface coverage. As a result, the QLED device with PEABr treated CsPbBr3 QDs exhibits a maximum current efficiency of 32.69 cd A-1 corresponding to an external quantum efficiency of 9.67%, 3.88-fold higher than that of the control device (pure QDs as an emission layer). This research provides an effective strategy for the improvement of the perovskite QLED performance and may be helpful for extending their actual applications.
Collapse
Affiliation(s)
- Weiwei Chen
- College of Optoelectronic Engineering, Chongqing University of Post and Telecommunications, 400065, People's Republic of China.
| | - Lin Hu
- Chongqing Hongyu Precision Industry Group Co., Ltd, 400799, People's Republic of China.
| | - Yi Wang
- College of Optoelectronic Engineering, Chongqing University of Post and Telecommunications, 400065, People's Republic of China.
| | - Lei Huang
- College of Optoelectronic Engineering, Chongqing University of Post and Telecommunications, 400065, People's Republic of China.
| | - Zhen Wang
- College of Optoelectronic Engineering, Chongqing University of Post and Telecommunications, 400065, People's Republic of China.
| | - Xiaosheng Tang
- College of Optoelectronic Engineering, Chongqing University of Post and Telecommunications, 400065, People's Republic of China.
| |
Collapse
|
11
|
Chen K, Du Q, Cao Q, Du C, Feng S, Pan Y, Liang Y, Wang L, Chen J, Ma D. Ligand Engineering Achieves Suppression of Temperature Quenching in Pure Green Perovskite Nanocrystals for Efficient and Thermostable Electroluminescence. NANO-MICRO LETTERS 2024; 17:77. [PMID: 39604744 PMCID: PMC11602897 DOI: 10.1007/s40820-024-01564-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/10/2024] [Indexed: 11/29/2024]
Abstract
Formamidinium lead bromide (FAPbBr3) perovskite nanocrystals (NCs) are promising for display and lighting due to their ultra-pure green emission. However, the thermal quenching will exacerbate their performance degradation in practical applications, which is a common issue for halide perovskites. Here, we reported the heat-resistant FAPbBr3 NCs prepared by a ligand-engineered room-temperature synthesis strategy. An aromatic amine, specifically β-phenylethylamine (PEA) or 3-fluorophenylethylamine (3-F-PEA), was incoporated as the short-chain ligand to expedite the crystallization rate and control the size distribution of FAPbBr3 NCs. Employing this ligand engineering approach, we synthesized high quality FAPbBr3 NCs with uniform grain size and reduced long-chain alkyl ligands, resulting in substantially suppressed thermal quenching and enhanced carrier transportation in the perovskite NCs films. Most notably, more than 90% of the room temperature PL intensity in the 3-F-PEA modified FAPbBr3 NCs film was preserved at 380 K. Consequently, we fabricated ultra-pure green EL devices with a room temperature external quantum efficiency (EQE) as high as 21.9% at the luminance of above 1,000 cd m-2, and demonstrated less than 10% loss in EQE at 343 K. This study introduces a novel room temperature method to synthesize efficient FAPbBr3 NCs with exceptional thermal stability, paving the way for advanced optoelectronic device applications.
Collapse
Affiliation(s)
- Kaiwang Chen
- Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence From Molecular Aggregates, South China University of Technology, Guangzhou, 510640, People's Republic of China
| | - Qing Du
- Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence From Molecular Aggregates, South China University of Technology, Guangzhou, 510640, People's Republic of China
| | - Qiufen Cao
- Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence From Molecular Aggregates, South China University of Technology, Guangzhou, 510640, People's Republic of China
| | - Chao Du
- Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence From Molecular Aggregates, South China University of Technology, Guangzhou, 510640, People's Republic of China
| | - Shangwei Feng
- Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence From Molecular Aggregates, South China University of Technology, Guangzhou, 510640, People's Republic of China
| | - Yutong Pan
- Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence From Molecular Aggregates, South China University of Technology, Guangzhou, 510640, People's Republic of China
| | - Yue Liang
- Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence From Molecular Aggregates, South China University of Technology, Guangzhou, 510640, People's Republic of China
| | - Lei Wang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
| | - Jiangshan Chen
- Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence From Molecular Aggregates, South China University of Technology, Guangzhou, 510640, People's Republic of China.
| | - Dongge Ma
- Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence From Molecular Aggregates, South China University of Technology, Guangzhou, 510640, People's Republic of China.
| |
Collapse
|
12
|
Ye L, Chen J, Zhang M, Wang G, Zhang X. In Situ Formation of Iodide Precursor for Perovskite Quantum Dots with Application in Efficient Solar Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405518. [PMID: 39139103 DOI: 10.1002/smll.202405518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/29/2024] [Indexed: 08/15/2024]
Abstract
Perovskite quantum dots (PQDs) become a kind of competitive material for fabricating high-performance solar cells due to their solution processability and outstanding optoelectronic properties. However, the current synthesis method of PQDs is mostly based on the binary-precursor method, which results in a large deviation of the I/Pb input ratio in the reaction system from the stoichiometric ratio of PQDs. Herein, a ternary-precursor method with an iodide source self-filling ability is reported for the synthesis of the CsPbI3 PQDs with high optoelectronic properties. Systematically experimental characterizations and theoretical calculations are conducted to fundamentally understand the effects of the I/Pb input molar ratio on the crystallographic and optoelectronic properties of PQDs. The results reveal that increasing the I/Pb input molar ratio can obtain ideal cubic structure PQDs with iodine-rich surfaces, which can significantly reduce the surface defects of PQDs and realize high orientation of PQD solids, facilitating charge carrier transport in the PQD solids with diminished nonradiative recombination. Consequently, the PQD solar cells exhibit an impressive efficiency of 15.16%, which is largely improved compared with that of 12.83% for the control solar cell. This work provides a feasible strategy for synthesizing high-quality PQDs for high-performance optoelectronic devices.
Collapse
Affiliation(s)
- Lvhao Ye
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Jingxuan Chen
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Mingxu Zhang
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Guoliang Wang
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Xiaoliang Zhang
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| |
Collapse
|
13
|
Liu C, Zhang D, Sun J, Li D, Xiong Q, Lyu B, Guo W, Choy WCH. Constructing Multi‐Functional Polymeric‐Termination Surface Enables High‐Performance Flexible Perovskite LEDs. ADVANCED FUNCTIONAL MATERIALS 2024; 34. [DOI: 10.1002/adfm.202404791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Indexed: 01/03/2025]
Abstract
AbstractFlexible perovskite light‐emitting diodes (f‐PeLEDs) have attracted increasing interest to realize true‐color, low‐cost, and light‐weight wearable optoelectronic and flexible display applications. However, their external quantum efficiency (EQE) and mechanical stability lag far behind because of the inherent surface and brittle issues of polycrystalline perovskite films. In this work, a multi‐functional polymeric‐termination surface of perovskite film is constructed for achieving efficient and mechanically stable f‐PeLEDs. It takes the roles to not only reduce defects through equipping coordination groups to improve emission properties, but also optimize film morphology and eliminate pinholes to solve the long‐standing issue of leakage current. Meanwhile, the polymeric‐termination surface with anchoring points and polymeric soft chains on perovskites demonstrates synergetic effects beyond the corresponding functional group‐only or polymer‐only strategies in reducing the Young's modulus and improving the mechanical flexibility. Ultimately, the record EQE of 22.1% and significantly enhanced mechanical stability of maintaining 82% of the initial performance after 2000 bending cycles with radius of 5 mm are achieved in pure‐green f‐PeLEDs. The work paves the way for the development of high‐performance flexible optoelectronic devices.
Collapse
Affiliation(s)
- Chunyu Liu
- Department of Electrical and Electronic Engineering the University of Hong Kong Hong Kong 000000 China
- State Key Laboratory of Integrated Optoelectronics College of Electronic Science and Engineering Jilin University Changchun 130012 China
| | - Dezhong Zhang
- Department of Electrical and Electronic Engineering the University of Hong Kong Hong Kong 000000 China
| | - Jiayun Sun
- Department of Electrical and Electronic Engineering the University of Hong Kong Hong Kong 000000 China
- Department of Electronic and Electrical Engineering Southern University of Science and Technology Shenzhen 518055 China
| | - Dongyu Li
- Department of Electrical and Electronic Engineering the University of Hong Kong Hong Kong 000000 China
| | - Qi Xiong
- Department of Electrical and Electronic Engineering the University of Hong Kong Hong Kong 000000 China
| | - Benzheng Lyu
- Department of Electrical and Electronic Engineering the University of Hong Kong Hong Kong 000000 China
| | - Wenbin Guo
- State Key Laboratory of Integrated Optoelectronics College of Electronic Science and Engineering Jilin University Changchun 130012 China
| | - Wallace C. H. Choy
- Department of Electrical and Electronic Engineering the University of Hong Kong Hong Kong 000000 China
| |
Collapse
|
14
|
Jeon MG, An GH, Kirakosyan A, Yun S, Kim J, Kim CY, Lee HS, Choi J. Suppressed Thermal Quenching via Tetrafluoroborate-Induced Surface Reconstruction of CsPbBr 3 Nanocrystals for Efficient Perovskite Light-Emitting Diodes. ACS NANO 2024; 18:29078-29088. [PMID: 39388594 DOI: 10.1021/acsnano.4c10320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Although metal-halide perovskite nanocrystals (NCs) have garnered significant attention for optoelectronic applications, the presence of electrically insulating organic ligands in CsPbBr3 NCs hinders efficient charge injection and transportation in light-emitting diodes (LEDs). A common approach to address this issue involves ligand exchange with shorter ligands and precise control of the surface ligand density through additional purification steps. Nevertheless, the practical application of these methods has been hindered by their poor structural integrity and high surface-defect density, which remain a challenge. Our investigation reveals that NOBF4 treatment effectively replaces native ligands with BF4- anions, in which BF4- anions are readily coordinated with the positively charged CsPbBr3 surface metal centers, thereby improving the photoluminescence quantum yield (PLQY) and thermal stability. In particular, the presence of BF4- anions coordinated at CsPbBr3 surfaces efficiently suppresses the pathway of excitons toward thermally activated nonradiative recombination, leading to minimal thermal quenching and superior device performance in green-emitting PeLEDs. Notably, PeLEDs based on CsPbBr3 NCs with the reconstructed surface via NOBF4 treatment exhibit an improved current efficiency of 31.12 cd/A and an external quantum efficiency of 11.24%, increased by 2.8 times compared to that of the pristine sample, indicating the enhanced hole-electron injection and transport into the CsPbBr3 NCs. Therefore, our results highlight the potential of NOBF4 as a versatile reagent for the ligand exchange and surface passivation of CsPbBr3 NCs, thereby offering promising prospects for the development of stable, high-performance PeLEDs.
Collapse
Affiliation(s)
- Min-Gi Jeon
- Department of Materials Science and Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Gwang Hwi An
- Department of Physics, Chungbuk National University Chungdae-ro, Seowon-gu, Cheongju-si, Chungcheongbuk-do 28644, Republic of Korea
| | - Artavazd Kirakosyan
- Department of Materials Science and Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Subin Yun
- Department of Materials Science and Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Joonseok Kim
- Department of Materials Science and Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Chang-Yeon Kim
- Department of Materials Science and Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
- Electron Microscopy Research Center, Korea Basic Science Institute, 169-14 Gwahak-ro, Yuseong-gu, Daejeon 34133, Republic of Korea
| | - Hyun Seok Lee
- Department of Physics, Chungbuk National University Chungdae-ro, Seowon-gu, Cheongju-si, Chungcheongbuk-do 28644, Republic of Korea
| | - Jihoon Choi
- Department of Materials Science and Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| |
Collapse
|
15
|
Liu Y, Ying Y, Xie Q, Gao Z, Shao X, Zhou M, Pei W, Tang X, Tu Y. Bifunctional Ligand Passivation Enables Stable Blue Mixed-Halide CsPb(Br/Cl) 3 Perovskite Quantum Dots toward Light-Emitting Diodes. Inorg Chem 2024; 63:16167-16176. [PMID: 39159335 DOI: 10.1021/acs.inorgchem.4c01671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Mixed-halide CsPb(Br/Cl)3 perovskite quantum dots (PeQDs) have attracted extensive attention in light-emitting diodes (LEDs), but their low photoluminescent efficiency and especially poor stability impede their practical applications. Here, we employ bifunctional didodecyldimethylammonium thiocyanide (DDASCN) with a pseudohalogen SCN- and branched DDA+ to obtain blue-emitting CsPbBr2Cl PeQDs. DDASCN significantly boosts the photoluminescence quantum yield to 92% by inhibiting nonradiative recombination. Importantly, DDASCN PeQDs show excellent stabilities against air, UV light, heat, and polar solvents. These improved performances were explained by density functional theory calculation, which shows that SCN- fills the Cl- vacancy by simultaneously binding with undercoordinated Pb2+ and Cs+, while DDA+ connects undercoordinated Br- and lies parallel to the PeQD core, leading to efficient passivation and a strong binding capacity. Finally, we achieved high-performance white LEDs by integrating our PeQDs, resulting in a color-rendering index of 92.9, a color gamut of 119.61%, and chromaticity coordinates of (0.33, 0.33). This provides an effective method to obtain efficient and stable CsPb(Br/Cl)3 PeQDs for practical applications.
Collapse
Affiliation(s)
- Yongfeng Liu
- College of Physical Science and Technology & Microelectronics Industry Research Institute, Yangzhou University, Yangzhou 225002, P. R. China
| | - Yupeng Ying
- College of Physical Science and Technology & Microelectronics Industry Research Institute, Yangzhou University, Yangzhou 225002, P. R. China
| | - Qingyu Xie
- College of Physical Science and Technology & Microelectronics Industry Research Institute, Yangzhou University, Yangzhou 225002, P. R. China
| | - Zhaoju Gao
- College of Physical Science and Technology & Microelectronics Industry Research Institute, Yangzhou University, Yangzhou 225002, P. R. China
| | - Xiuwen Shao
- College of Physical Science and Technology & Microelectronics Industry Research Institute, Yangzhou University, Yangzhou 225002, P. R. China
| | - Min Zhou
- College of Physical Science and Technology & Microelectronics Industry Research Institute, Yangzhou University, Yangzhou 225002, P. R. China
| | - Wei Pei
- College of Physical Science and Technology & Microelectronics Industry Research Institute, Yangzhou University, Yangzhou 225002, P. R. China
| | - Xiaosheng Tang
- College of Optoelectronic Engineering, Chongqing University of Post and Telecommunications, Chongqing 400065, People's Republic of China
| | - Yusong Tu
- College of Physical Science and Technology & Microelectronics Industry Research Institute, Yangzhou University, Yangzhou 225002, P. R. China
| |
Collapse
|
16
|
Wei S, Hu J, Bi C, Ren K, Wang X, de de Leeuw NH, Lu Y, Sui M, Wang W. Strongly-Confined CsPbBr 3 Perovskite Quantum Dots with Ultralow Trap Density and Narrow Size Distribution for Efficient Pure-Blue Light-Emitting Diodes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400885. [PMID: 38616736 DOI: 10.1002/smll.202400885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/26/2024] [Indexed: 04/16/2024]
Abstract
The development of pure-blue perovskite light-emitting diodes (PeLEDs) faces challenges of spectral stability and low external quantum efficiency (EQE) due to phase separation in mixed halide compositions. Perovskite quantum dots (QDs) with strong confinement effects are promising alternatives to achieve high-quality pure-blue PeLEDs, yet their performance is often hindered by the poor size distribution and high trap density. A strategy combining thermodynamic control with a polishing-driven ligand exchange process to produce high-quality QDs is developed. The strongly-confined pure-blue (≈470 nm) CsPbBr3 QDs exhibit narrow size distribution (12% dispersion) and are achieved in Br-rich ion environment based on growth thermodynamic control. Subsequent polishing-driven ligand exchange process removes imperfect surface sites and replaces initial long-chain organic ligands with short-chain benzene ligands. The resulting QDs exhibit high photoluminescence quantum yield (PLQY) to near-unity. The resulting PeLEDs exhibit a pure-blue electroluminescence (EL) emission at 472 nm with narrow full-width at half-maximum (FWHM) of 25 nm, achieving a maximum EQE of 10.7% and a bright maximum luminance of 7697 cd m-2. The pure-blue PeLEDs show ultrahigh spectral stability under high voltage, a low roll-off of EQE, and an operational half-lifetime (T50) of 127 min at an initial luminance of 103 cd m-2 under continuous operation.
Collapse
Affiliation(s)
- Shibo Wei
- Qingdao Innovation and Development Base, Harbin Engineering University, Qingdao, 266000, China
- College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin, 150001, China
| | - Jingcong Hu
- Beijing Key Lab of Microstructure and Property of Advanced Materials, College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Chenghao Bi
- Qingdao Innovation and Development Base, Harbin Engineering University, Qingdao, 266000, China
- College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin, 150001, China
- Yantai Research Institute, Harbin Engineering University, Yantai, 264000, China
| | - Ke Ren
- Qingdao Innovation and Development Base, Harbin Engineering University, Qingdao, 266000, China
- College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin, 150001, China
| | - Xingyu Wang
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK
- Department of Earth Sciences, Utrecht University, Utrecht, 3584 CB, The Netherlands
| | - Nora H de de Leeuw
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK
- Department of Earth Sciences, Utrecht University, Utrecht, 3584 CB, The Netherlands
| | - Yue Lu
- Beijing Key Lab of Microstructure and Property of Advanced Materials, College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Manling Sui
- Beijing Key Lab of Microstructure and Property of Advanced Materials, College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Wenxin Wang
- Qingdao Innovation and Development Base, Harbin Engineering University, Qingdao, 266000, China
- College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin, 150001, China
| |
Collapse
|
17
|
Zhang X, Cui Y, Ye S, Lin Z, Li Y. Highly efficient deep-blue emitting CsPbBr 3 nanoplatelets synthesized via surface ligand-mediated strategy. J Colloid Interface Sci 2024; 668:68-76. [PMID: 38669997 DOI: 10.1016/j.jcis.2024.03.202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/20/2024] [Accepted: 03/30/2024] [Indexed: 04/28/2024]
Abstract
Two-dimensional (2D) CsPbBr3 nanoplatelets (NPLs) have attracted great attention as one of promising semiconductor nanomaterials due to their large exciton binding energy and narrow emission spectra. However, the labile ionic and weakly bound surfaces of deep-blue emitting CsPbBr3 NPLs with wide bandgap result in their colloidal instability, thus degrading their optical properties. It is challenging to obtain deep-blue emitting CsPbBr3 NPLs with excellent optical properties. In this study, high-quality blue-emitting CsPbBr3 NPLs with tunable thickness were prepared adopting the DBSA-mediated confinement effect based on the hot-injection method. Thanks to the coordination interaction of - SO3- of DBSA ligand and the Pb2+ on the surface of the CsPbBr3 NPLs, as well as the effective passivation of Br vacancy defects on the surface of NPLs by OAm-Br, the obtained pure-blue CsPbBr3 NPLs and deep-blue CsPbBr3 NPLs show high photoluminescence quantum yield (PLQY) of 92 % and 81.2 %, respectively. To the best of our knowledge, this is the highest PLQY recorded for deep-blue emitting CsPbBr3 NPLs with two monolayers [PbBr6]4- octahedra. Furthermore, the agglomeration of CsPbBr3 NPLs due to ligand loss induced by moisture, oxygen, and irradiation was also suppressed by the dual passivation effect of DBSA and OAm-Br. Our work provided a new approach to developing high-performance and stable deep-blue emitting CsPbBr3 perovskite nanoplatelets.
Collapse
Affiliation(s)
- Xue Zhang
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yanyu Cui
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Siyuan Ye
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhuohan Lin
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yan Li
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
18
|
Li H, Zhu X, Zhang D, Gao Y, Feng Y, Ma Z, Huang J, He H, Ye Z, Dai X. Thermal management towards ultra-bright and stable perovskite nanocrystal-based pure red light-emitting diodes. Nat Commun 2024; 15:6561. [PMID: 39095426 PMCID: PMC11297279 DOI: 10.1038/s41467-024-50634-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 07/18/2024] [Indexed: 08/04/2024] Open
Abstract
Despite the promising candidacy of perovskite nanocrystals for light-emitting diodes, their pure red electroluminescence is hindered by low saturated luminance, severe external quantum efficiency roll-off, and inferior operational stability. Here, we report ultra-bright and stable pure red light-emitting diodes by manipulating Joule heat generation in the nanocrystal emissive layer and thermal management within the device. Diphenylphosphoryl azide-mediated regulation of the nanocrystal surface synergistically enhances the optical properties and carrier transport of the emissive layer, enabling reduced Joule heat generation and thus lowering the working temperature. These merits inhibit ion migration of the CsPb(Br/I)3 nanocrystal film, promising excellent spectra stability. Combined with the highly thermal-conductive sapphire substrates and implementation of pulse-driving mode, the pure red light-emitting diodes exhibit an ultra-bright luminance of 390,000 cd m-2, a peak external quantum efficiency of 25%, suppressed efficiency roll-off, an operational half-life of 20 hours, and superior spectral stability within 15 A cm-2.
Collapse
Affiliation(s)
- Hongjin Li
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310027, P. R. China
- Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials and Engineering Research Centre of Zhejiang Province, Institute of Wenzhou, Zhejiang University, Wenzhou, 325006, P. R. China
| | - Xiaofang Zhu
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310027, P. R. China
- Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials and Engineering Research Centre of Zhejiang Province, Institute of Wenzhou, Zhejiang University, Wenzhou, 325006, P. R. China
| | - Dingshuo Zhang
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310027, P. R. China
- Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials and Engineering Research Centre of Zhejiang Province, Institute of Wenzhou, Zhejiang University, Wenzhou, 325006, P. R. China
| | - Yun Gao
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310027, P. R. China
- Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials and Engineering Research Centre of Zhejiang Province, Institute of Wenzhou, Zhejiang University, Wenzhou, 325006, P. R. China
| | - Yifeng Feng
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310027, P. R. China
- Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials and Engineering Research Centre of Zhejiang Province, Institute of Wenzhou, Zhejiang University, Wenzhou, 325006, P. R. China
| | - Zichao Ma
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310027, P. R. China
- Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials and Engineering Research Centre of Zhejiang Province, Institute of Wenzhou, Zhejiang University, Wenzhou, 325006, P. R. China
| | - Jingyun Huang
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310027, P. R. China
- Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials and Engineering Research Centre of Zhejiang Province, Institute of Wenzhou, Zhejiang University, Wenzhou, 325006, P. R. China
| | - Haiping He
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310027, P. R. China
- Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials and Engineering Research Centre of Zhejiang Province, Institute of Wenzhou, Zhejiang University, Wenzhou, 325006, P. R. China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, 030002, P. R. China
| | - Zhizhen Ye
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310027, P. R. China.
- Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials and Engineering Research Centre of Zhejiang Province, Institute of Wenzhou, Zhejiang University, Wenzhou, 325006, P. R. China.
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, 030002, P. R. China.
| | - Xingliang Dai
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310027, P. R. China.
- Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials and Engineering Research Centre of Zhejiang Province, Institute of Wenzhou, Zhejiang University, Wenzhou, 325006, P. R. China.
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, 030002, P. R. China.
| |
Collapse
|
19
|
Yang W, Jo SH, Lee TW. Perovskite Colloidal Nanocrystal Solar Cells: Current Advances, Challenges, and Future Perspectives. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401788. [PMID: 38708900 DOI: 10.1002/adma.202401788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/06/2024] [Indexed: 05/07/2024]
Abstract
The power conversion efficiencies (PCEs) of polycrystalline perovskite (PVK) solar cells (SCs) (PC-PeSCs) have rapidly increased. However, PC-PeSCs are intrinsically unstable without encapsulation, and their efficiency drops during large-scale production; these problems hinder the commercial viability of PeSCs. Stability can be increased by using colloidal PVK nanocrystals (c-PeNCs), which have high surface strains, low defect density, and exceptional crystal quality. The use of c-PeNCs separates the crystallization process from the film formation process, which is preponderant in large-scale fabrication. Consequently, the use of c-PeNCs has substantial potential to overcome challenges encountered when fabricating PC-PeSCs. Research on colloidal nanocrystal-based PVK SCs (NC-PeSCs) has increased their PCEs to a level greater than those of other quantum-dot SCs, but has not reached the PCEs of PC-PeSCs; this inferiority significantly impedes widespread application of NC-PeSCs. This review first introduces the distinctive properties of c-PeNCs, then the strategies that have been used to achieve high-efficiency NC-PeSCs. Then it discusses in detail the persisting challenges in this domain. Specifically, the major challenges and solutions for NC-PeSCs related to low short-circuit current density Jsc are covered. Last, the article presents a perspective on future research directions and potential applications in the realm of NC-PeSCs.
Collapse
Affiliation(s)
- Wenqiang Yang
- Institute of Atomic Manufacturing, International Research Institute for Multidisciplinary Science, Beihang University, Beijing, 100191, China
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Seung-Hyeon Jo
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Tae-Woo Lee
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- Research Institute of Advanced Materials, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- Interdisciplinary program in Bioengineering, Institute of Engineering Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- Soft Foundry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| |
Collapse
|
20
|
Qin X, Li M, Zhao Y, Luo J, Zhang Q, Hou E, Lu J, Li J, Tian C, Lin K, Li Z, Wei Z. Surface Treatment with Tailored π-Conjugated Fluorene Derivatives Significantly Enhances the Performance of Perovskite Light-Emitting Diodes. ACS NANO 2024; 18:14696-14707. [PMID: 38780914 DOI: 10.1021/acsnano.4c03419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Surface defect passivation and carrier injection regulation have emerged as effective strategies for enhancing the performance of perovskite light-emitting diodes (Pero-LEDs). It usually requires two functional molecules to realize defect passivation and carrier injection regulation separately. In other words, developing one single molecule possessing these capabilities remains challenging. Herein, we utilized π-conjugated fluorene derivatives as surface treatment materials, 9,9-Spirobi[fluorene] (SBF), 9,9-Spirobifluoren-2-yl-diphenylphosphine oxide (SPPO1), and 2,7-bis(diphenylphosphoryl)-9,9'-spirobifluorene (SPPO13), to investigate the influence of their chemical structure on device optoelectronic performance, especially for defect passivation and carrier injection regulation. Consequently, the passivation capability of double-bonded SPPO13 surpassed single-bonded SPPO1 and nonbonded SBF, which all showed excellent electron transport properties, enhancing electron injection. The maximum external quantum efficiencies (EQE) for Pero-LEDs treated with SBF, SPPO1, and SPPO13 were 8.13, 17.48, and 22.10%, respectively, exceeding that of the derivative-free device (6.55%). Notably, SPPO13-treated devices exhibited exceptional reproducibility, yielding an average EQE of 20.00 ± 1.10% based on 30 devices. This result emphasizes the potential of tailored fluorene derivatives for enhancing the device performance of Pero-LEDs.
Collapse
Affiliation(s)
- Xiangqian Qin
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, People's Republic of China
- National and Local Joint Engineering Research Center of Semiconductor Display and Optical Communication Devices, South China University of Technology, Guangzhou 510641, People's Republic of China
| | - Mingliang Li
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, People's Republic of China
| | - Yaping Zhao
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, People's Republic of China
| | - Jiefeng Luo
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, People's Republic of China
| | - Qin Zhang
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, People's Republic of China
| | - Enlong Hou
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, People's Republic of China
| | - Jianxun Lu
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, People's Republic of China
| | - Jiasheng Li
- National and Local Joint Engineering Research Center of Semiconductor Display and Optical Communication Devices, South China University of Technology, Guangzhou 510641, People's Republic of China
| | - Chengbo Tian
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, People's Republic of China
| | - Kebin Lin
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, People's Republic of China
| | - Zongtao Li
- National and Local Joint Engineering Research Center of Semiconductor Display and Optical Communication Devices, South China University of Technology, Guangzhou 510641, People's Republic of China
| | - Zhanhua Wei
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, People's Republic of China
| |
Collapse
|
21
|
Sun SQ, Tai JW, He W, Yu YJ, Feng ZQ, Sun Q, Tong KN, Shi K, Liu BC, Zhu M, Wei G, Fan J, Xie YM, Liao LS, Fung MK. Enhancing Light Outcoupling Efficiency via Anisotropic Low Refractive Index Electron Transporting Materials for Efficient Perovskite Light-Emitting Diodes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400421. [PMID: 38430204 DOI: 10.1002/adma.202400421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/25/2024] [Indexed: 03/03/2024]
Abstract
Thanks to the extensive efforts toward optimizing perovskite crystallization properties, high-quality perovskite films with near-unity photoluminescence quantum yield are successfully achieved. However, the light outcoupling efficiency of perovskite light-emitting diodes (PeLEDs) is impeded by insufficient light extraction, which poses a challenge to the further advancement of PeLEDs. Here, an anisotropic multifunctional electron transporting material, 9,10-bis(4-(2-phenyl-1H-benzo[d]imidazole-1-yl)phenyl) anthracene (BPBiPA), with a low extraordinary refractive index (ne) and high electron mobility is developed for fabricating high-efficiency PeLEDs. The anisotropic molecular orientations of BPBiPA can result in a low ne of 1.59 along the z-axis direction. Optical simulations show that the low ne of BPBiPA can effectively mitigate the surface plasmon polariton loss and enhance the photon extraction efficiency in waveguide mode, thereby improving the light outcoupling efficiency of PeLEDs. In addition, the high electron mobility of BPBiPA can facilitate balanced carrier injection in PeLEDs. As a result, high-efficiency green PeLEDs with a record external quantum efficiency of 32.1% and a current efficiency of 111.7 cd A-1 are obtained, which provides new inspirations for the design of electron transporting materials for high-performance PeLEDs.
Collapse
Affiliation(s)
- Shuang-Qiao Sun
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Jing-Wen Tai
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Wei He
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - You-Jun Yu
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Zi-Qi Feng
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Qi Sun
- Macau Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Zhuhai MUST Science and Technology Research Institute, Macau University of Science and Technology, Taipa, Macau, 999078, P. R. China
| | - Kai-Ning Tong
- Institute of Materials Science, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, P. R. China
| | - Kefei Shi
- Institute of Materials Science, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, P. R. China
| | - Bo-Chen Liu
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Min Zhu
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Guodan Wei
- Institute of Materials Science, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, P. R. China
| | - Jian Fan
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Yue-Min Xie
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, 215123, P.R. China
| | - Liang-Sheng Liao
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- Macau Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Zhuhai MUST Science and Technology Research Institute, Macau University of Science and Technology, Taipa, Macau, 999078, P. R. China
| | - Man-Keung Fung
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- Macau Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Zhuhai MUST Science and Technology Research Institute, Macau University of Science and Technology, Taipa, Macau, 999078, P. R. China
| |
Collapse
|
22
|
Guo J, Xie M, Li H, Zhang L, Zhang L, Zhang X, Zheng W, Tian J. High Efficiency and Low Roll-Off Pure-Red Perovskite LED Enabled by Simultaneously Inhibiting Auger and Trap Recombination of Quantum Dots. NANO LETTERS 2024; 24:6410-6416. [PMID: 38767286 DOI: 10.1021/acs.nanolett.4c01441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
CsPbI3 perovskite quantum dots (QDs) could achieve pure-red emission by reducing their size, but the increased exciton binding energy (EB) and surface defects for the small-sized QDs (SQDs) cause severe Auger and trap recombinations, thus worsening their electroluminescence (EL) performance. Herein, we utilize the dangling bonds of the SQDs as a driving force to accelerate KI dissolution to solve its low solubility in nonpolar solvents, thereby allowing K+ and I- to bond to the surface of SQDs. The EB of the SQDs was decreased from 305 to 51 meV because of the attraction of K+ to electrons, meanwhile surface vacancies were passivated by K+ and I-. The Auger and trap recombinations were simultaneously suppressed by this difunctional ligand. The SQD-based light-emitting diode showed a stable pure-red EL peak of 639 nm, an external quantum efficiency of 25.1% with low roll-off, and a brightness of 5934 cd m-2.
Collapse
Affiliation(s)
- Jie Guo
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
- Key Laboratory of Automobile Materials Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun 130012, China
| | - Mingyuan Xie
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu 610054, China
| | - Hangren Li
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Lin Zhang
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Linxing Zhang
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiaoyu Zhang
- Key Laboratory of Automobile Materials Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun 130012, China
| | - Weitao Zheng
- Key Laboratory of Automobile Materials Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun 130012, China
| | - Jianjun Tian
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
23
|
Jiang J, Shi M, Xia Z, Cheng Y, Chu Z, Zhang W, Li J, Yin Z, You J, Zhang X. Efficient pure-red perovskite light-emitting diodes with strong passivation via ultrasmall-sized molecules. SCIENCE ADVANCES 2024; 10:eadn5683. [PMID: 38701203 PMCID: PMC11067999 DOI: 10.1126/sciadv.adn5683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/02/2024] [Indexed: 05/05/2024]
Abstract
Perovskite light-emitting diodes (PeLEDs) have attracted great attention in recent years; however, the halogen vacancy defects in perovskite notably hamper the development of high-efficiency devices. Previously, large-sized passivation agents have been usually used, while the effect of defect passivation is limited due to the weak bonding or the large space steric hindrance. Here, we predict that the ultrasmall-sized formate (Fa) and acetate (Ac) have more efficient passivation ability because of the stronger binding with the perovskite, as demonstrated by density functional theory calculation. We introduce ultrasmall-sized cesium salts (CsFa/CsAc) into buried interface, which can also diffuse into the bulk, resulting in both buried interface and bulk passivation. In addition, the improved perovskite growth has been found due to the enhanced hydrophily after introducing CsFa/CsAc as additive. According to these advantages, a pure-red PeLED with 24.2% efficiency at 639 nm has been achieved.
Collapse
Affiliation(s)
- Ji Jiang
- Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Mingming Shi
- Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhengchang Xia
- Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yong Cheng
- Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zema Chu
- Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Wei Zhang
- Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, P. R. China
| | - Jingzhen Li
- Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhigang Yin
- Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jingbi You
- Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xingwang Zhang
- Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
24
|
Yan M, Zhou L, Wang L, Luo G, Xu L, Yang D, Fang Y. Dielectric Regulation for Efficient Top-Emission Perovskite Light-Emitting Diodes with Suppressed Efficiency Roll-off. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309233. [PMID: 38050935 DOI: 10.1002/smll.202309233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/17/2023] [Indexed: 12/07/2023]
Abstract
Perovskite light-emitting diodes (PeLEDs) have shown incalculable application potential in the fields of next-generation displays and light communication owing to the rapidly increased external quantum efficiencies (EQEs). However, most PeLEDs obtain a maximum EQE at small current density (J) region and suffer from severe efficiency roll-off in different extents. Herein, it is demonstrated that the dopant with large dipole moment like KBF4 facilitates the effective dielectric regulation of perovskite emissive layer. The increased dielectric constant lowers the exciton binding energy and suppresses the Auger recombination of the 2D/3D segregated perovskite structure, which improves the photoluminescence quantum yield remarkably at an excitation intensity up to 103 mW cm-2. Accordingly, the top-emission PeLED that delivers a high maximum EQE above 20% is fabricated and can retain EQE > 10% at an extremely high J of 708 mA cm-2. These results represent one of the most efficient top-emission PeLEDs with ultra-low efficiency roll-off, which provide a viable methodology for tuning the dielectric response of perovskite films for improved high radiance performance of perovskite electroluminescence devices.
Collapse
Affiliation(s)
- Minxing Yan
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Lingfeng Zhou
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Lixiang Wang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Guangjie Luo
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Li Xu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Deren Yang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Yanjun Fang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| |
Collapse
|
25
|
Li H, Feng Y, Zhu M, Gao Y, Fan C, Cui Q, Cai Q, Yang K, He H, Dai X, Huang J, Ye Z. Nanosurface-reconstructed perovskite for highly efficient and stable active-matrix light-emitting diode display. NATURE NANOTECHNOLOGY 2024; 19:638-645. [PMID: 38649747 DOI: 10.1038/s41565-024-01652-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 03/13/2024] [Indexed: 04/25/2024]
Abstract
Perovskite quantum dots (QDs) are promising for various photonic applications due to their high colour purity, tunable optoelectronic properties and excellent solution processability. Surface features impact their optoelectronic properties, and surface defects remain a major obstacle to progress. Here we develop a strategy utilizing diisooctylphosphinic acid-mediated synthesis combined with hydriodic acid-etching-driven nanosurface reconstruction to stabilize CsPbI3 QDs. Diisooctylphosphinic acid strongly adsorbs to the QDs and increases the formation energy of halide vacancies, enabling nanosurface reconstruction. The QD film with nanosurface reconstruction shows enhanced phase stability, improved photoluminescence endurance under thermal stress and electric field conditions, and a higher activation energy for ion migration. Consequently, we demonstrate perovskite light-emitting diodes (LEDs) that feature an electroluminescence peak at 644 nm. These LEDs achieve an external quantum efficiency of 28.5% and an operational half-lifetime surpassing 30 h at an initial luminance of 100 cd m-2, marking a tenfold improvement over previously published studies. The integration of these high-performance LEDs with specifically designed thin-film transistor circuits enables the demonstration of solution-processed active-matrix perovskite displays that show a peak external quantum efficiency of 23.6% at a display brightness of 300 cd m-2. This work showcases nanosurface reconstruction as a pivotal pathway towards high-performance QD-based optoelectronic devices.
Collapse
Affiliation(s)
- Hongjin Li
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, People's Republic of China
| | - Yifeng Feng
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, People's Republic of China
| | - Meiyi Zhu
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, People's Republic of China
- Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials and Engineering Research Centre of Zhejiang Province, Institute of Wenzhou, Zhejiang University, Wenzhou, People's Republic of China
| | - Yun Gao
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, People's Republic of China
| | - Chao Fan
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, People's Republic of China
- Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials and Engineering Research Centre of Zhejiang Province, Institute of Wenzhou, Zhejiang University, Wenzhou, People's Republic of China
| | - Qiaopeng Cui
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, People's Republic of China
| | - Qiuting Cai
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, People's Republic of China
| | - Ke Yang
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, People's Republic of China
| | - Haiping He
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, People's Republic of China
- Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials and Engineering Research Centre of Zhejiang Province, Institute of Wenzhou, Zhejiang University, Wenzhou, People's Republic of China
| | - Xingliang Dai
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, People's Republic of China.
- Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials and Engineering Research Centre of Zhejiang Province, Institute of Wenzhou, Zhejiang University, Wenzhou, People's Republic of China.
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, People's Republic of China.
| | - Jingyun Huang
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, People's Republic of China.
- Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials and Engineering Research Centre of Zhejiang Province, Institute of Wenzhou, Zhejiang University, Wenzhou, People's Republic of China.
| | - Zhizhen Ye
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, People's Republic of China.
- Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials and Engineering Research Centre of Zhejiang Province, Institute of Wenzhou, Zhejiang University, Wenzhou, People's Republic of China.
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, People's Republic of China.
| |
Collapse
|
26
|
Wang YK, Wan H, Teale S, Grater L, Zhao F, Zhang Z, Duan HW, Imran M, Wang SD, Hoogland S, Liao LS. Long-range order enabled stability in quantum dot light-emitting diodes. Nature 2024; 629:586-591. [PMID: 38720080 DOI: 10.1038/s41586-024-07363-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/27/2024] [Indexed: 05/18/2024]
Abstract
Light-emitting diodes (LEDs) based on perovskite quantum dots (QDs) have produced external quantum efficiencies (EQEs) of more than 25% with narrowband emission1,2, but these LEDs have limited operating lifetimes. We posit that poor long-range ordering in perovskite QD films-variations in dot size, surface ligand density and dot-to-dot stacking-inhibits carrier injection, resulting in inferior operating stability because of the large bias required to produce emission in these LEDs. Here we report a chemical treatment to improve the long-range order of perovskite QD films: the diffraction intensity from the repeating QD units increases three-fold compared with that of controls. We achieve this using a synergistic dual-ligand approach: an iodide-rich agent (aniline hydroiodide) for anion exchange and a chemically reactive agent (bromotrimethylsilane) that produces a strong acid that in situ dissolves smaller QDs to regulate size and more effectively removes less conductive ligands to enable compact, uniform and defect-free films. These films exhibit high conductivity (4 × 10-4 S m-1), which is 2.5-fold higher than that of the control, and represents the highest conductivity recorded so far among perovskite QDs. The high conductivity ensures efficient charge transportation, enabling red perovskite QD-LEDs that generate a luminance of 1,000 cd m-2 at a record-low voltage of 2.8 V. The EQE at this luminance is more than 20%. Furthermore, the stability of the operating device is 100 times better than previous red perovskite LEDs at EQEs of more than 20%.
Collapse
Affiliation(s)
- Ya-Kun Wang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, People's Republic of China
| | - Haoyue Wan
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Sam Teale
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada
- Clarendon Laboratory, University of Oxford, Oxford, United Kingdom
| | - Luke Grater
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Feng Zhao
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, People's Republic of China
| | - Zhongda Zhang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, People's Republic of China
| | - Hong-Wei Duan
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, People's Republic of China
| | - Muhammad Imran
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Sui-Dong Wang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, People's Republic of China
| | - Sjoerd Hoogland
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Liang-Sheng Liao
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, People's Republic of China.
| |
Collapse
|
27
|
Kshirsagar AS, Koch KA, Srimath Kandada AR, Gangishetty MK. Unraveling the Luminescence Quenching Mechanism in Strong and Weak Quantum-Confined CsPbBr 3 Triggered by Triarylamine-Based Hole Transport Layers. JACS AU 2024; 4:1229-1242. [PMID: 38559743 PMCID: PMC10976578 DOI: 10.1021/jacsau.4c00083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 04/04/2024]
Abstract
Luminescence quenching by hole transport layers (HTLs) is one of the major issues in developing efficient perovskite light-emitting diodes (PeLEDs), which is particularly prominent in blue-emitting devices. While a variety of material systems have been used as interfacial layers, the origin of such quenching and the type of interactions between perovskites and HTLs are still ambiguous. Here, we present a systematic investigation of the luminescence quenching of CsPbBr3 by a commonly employed hole transport polymer, poly[(9,9-dioctylfluorenyl-2,7diyl)-co-(4,4'-(N-(4-sec-butylphenyl) diphenylamine)] (TFB), in LEDs. Strong and weak quantum-confined CsPbBr3 (nanoplatelets (NPLs)/nanocrystals (NCs)) are rationally selected to study the quenching mechanism by considering the differences in their morphology, energy level alignments, and quantum confinement. The steady-state and time-resolved Stern-Volmer plots unravel the dominance of dynamic and static quenching at lower and higher concentrations of TFB, respectively, with a maximum quenching efficiency of 98%. The quenching rate in NCs is faster than that in NPLs owing to their longer PL lifetimes and weak quantum confinement. The ultrafast transient absorption results support these dynamics and rule out the involvement of Forster or Dexter energy transfer. Finally, the 1D 1H and 2D nuclear overhauser effect spectroscopy nuclear magnetic resonance (NOESY NMR) study confirms the exchange of native ligands at the NCs surface with TFB, leading to dark CsPbBr3-TFB ensemble formation accountable for luminescence quenching. This highlights the critical role of the triarylamine functional group on TFB (also the backbone of many HTLs) in the quenching process. These results shed light on the underlying reasons for the luminescence quenching in PeLEDs and will help to rationally choose the interfacial layers for developing efficient LEDs.
Collapse
Affiliation(s)
- Anuraj S. Kshirsagar
- Department
of Chemistry, Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Katherine A. Koch
- Department
of Physics and Center for Functional Materials, Wake Forest University, 2090 Eure Drive, Winston Salem, North Carolina 27109, United
States
| | - Ajay Ram Srimath Kandada
- Department
of Physics and Center for Functional Materials, Wake Forest University, 2090 Eure Drive, Winston Salem, North Carolina 27109, United
States
| | - Mahesh K. Gangishetty
- Department
of Chemistry, Mississippi State University, Mississippi State, Mississippi 39762, United States
- Department
of Physics and Astronomy, Mississippi State
University, Mississippi State, Mississippi 39762, United States
| |
Collapse
|
28
|
Feng Y, Li H, Zhu M, Gao Y, Cai Q, Lu G, Dai X, Ye Z, He H. Nucleophilic Reaction-Enabled Chloride Modification on CsPbI 3 Quantum Dots for Pure Red Light-Emitting Diodes with Efficiency Exceeding 26 . Angew Chem Int Ed Engl 2024; 63:e202318777. [PMID: 38258990 DOI: 10.1002/anie.202318777] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Indexed: 01/24/2024]
Abstract
High-performance pure red perovskite light-emitting diodes (PeLEDs) with an emission wavelength shorter than 650 nm are ideal for wide-color-gamut displays, yet remain an unprecedented challenge to progress. Mixed-halide CsPb(Br/I)3 emitter-based PeLEDs suffer spectral stability induced by halide phase segregation and CsPbI3 quantum dots (QDs) suffer from a compromise between emission wavelength and electroluminescence efficiency. Here, we demonstrate efficient pure red PeLEDs with an emission centered at 638 nm based on PbClx -modified CsPbI3 QDs. A nucleophilic reaction that releases chloride ions and manipulates the ligand equilibrium of the colloidal system is developed to synthesize the pure red emission QDs. The comprehensive structural and spectroscopic characterizations evidence the formation of PbClx outside the CsPbI3 QDs, which regulates exciton recombination and prevents the exciton from dissociation induced by surface defects. In consequence, PeLEDs based on PbClx -modified CsPbI3 QDs with superior optoelectronic properties demonstrate stable electroluminescence spectra at high driving voltages, a record external quantum efficiency of 26.1 %, optimal efficiency roll-off of 16.0 % at 1000 cd m-2 , and a half lifetime of 7.5 hours at 100 cd m-2 , representing the state-of-the-art pure red PeLEDs. This work provides new insight into constructing the carrier-confined structure on perovskite QDs for high-performance PeLEDs.
Collapse
Affiliation(s)
- Yifeng Feng
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310027, China
| | - Hongjin Li
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310027, China
| | - Meiyi Zhu
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310027, China
- Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials and Engineering Research Centre of Zhejiang Province, Institute of Wenzhou, Zhejiang University, Wenzhou, 325006, China
| | - Yun Gao
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310027, China
| | - Qiuting Cai
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310027, China
| | - Guochao Lu
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310027, China
| | - Xingliang Dai
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310027, China
- Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials and Engineering Research Centre of Zhejiang Province, Institute of Wenzhou, Zhejiang University, Wenzhou, 325006, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Shanxi, 030000, China
| | - Zhizhen Ye
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310027, China
- Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials and Engineering Research Centre of Zhejiang Province, Institute of Wenzhou, Zhejiang University, Wenzhou, 325006, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Shanxi, 030000, China
| | - Haiping He
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310027, China
- Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials and Engineering Research Centre of Zhejiang Province, Institute of Wenzhou, Zhejiang University, Wenzhou, 325006, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Shanxi, 030000, China
| |
Collapse
|
29
|
Bujalance C, Caliò L, Dirin DN, Tiede DO, Galisteo-López JF, Feist J, García-Vidal FJ, Kovalenko MV, Míguez H. Strong Light-Matter Coupling in Lead Halide Perovskite Quantum Dot Solids. ACS NANO 2024; 18:4922-4931. [PMID: 38301147 PMCID: PMC10867889 DOI: 10.1021/acsnano.3c10358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 02/03/2024]
Abstract
Strong coupling between lead halide perovskite materials and optical resonators enables both polaritonic control of the photophysical properties of these emerging semiconductors and the observation of fundamental physical phenomena. However, the difficulty in achieving optical-quality perovskite quantum dot (PQD) films showing well-defined excitonic transitions has prevented the study of strong light-matter coupling in these materials, central to the field of optoelectronics. Herein we demonstrate the formation at room temperature of multiple cavity exciton-polaritons in metallic resonators embedding highly transparent Cesium Lead Bromide quantum dot (CsPbBr3-QD) solids, revealed by a significant reconfiguration of the absorption and emission properties of the system. Our results indicate that the effects of biexciton interaction or large polaron formation, frequently invoked to explain the properties of PQDs, are seemingly absent or compensated by other more conspicuous effects in the CsPbBr3-QD optical cavity. We observe that strong coupling enables a significant reduction of the photoemission line width, as well as the ultrafast modulation of the optical absorption, controllable by means of the excitation fluence. We find that the interplay of the polariton states with the large dark state reservoir plays a decisive role in determining the dynamics of the emission and transient absorption properties of the hybridized light-quantum dot solid system. Our results should serve as the basis for future investigations of PQD solids as polaritonic materials.
Collapse
Affiliation(s)
- Clara Bujalance
- Multifunctional
Optical Materials Group, Institute of Materials
Science of Sevilla, Consejo Superior de Investigaciones Científicas
− Universidad de Sevilla (CSIC-US), Américo Vespucio 49, Sevilla 41092, Spain
| | - Laura Caliò
- Multifunctional
Optical Materials Group, Institute of Materials
Science of Sevilla, Consejo Superior de Investigaciones Científicas
− Universidad de Sevilla (CSIC-US), Américo Vespucio 49, Sevilla 41092, Spain
| | - Dmitry N. Dirin
- Laboratory
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich CH-8093, Switzerland
- EMPA
− Swiss Federal Laboratories for Materials Science and Technology, Dübendorf CH-8600, Switzerland
| | - David O. Tiede
- Multifunctional
Optical Materials Group, Institute of Materials
Science of Sevilla, Consejo Superior de Investigaciones Científicas
− Universidad de Sevilla (CSIC-US), Américo Vespucio 49, Sevilla 41092, Spain
| | - Juan F. Galisteo-López
- Multifunctional
Optical Materials Group, Institute of Materials
Science of Sevilla, Consejo Superior de Investigaciones Científicas
− Universidad de Sevilla (CSIC-US), Américo Vespucio 49, Sevilla 41092, Spain
| | - Johannes Feist
- Departamento
de Física Teórica de la Materia Condensada and Condensed
Matter Physics Center (IFIMAC), Universidad
Autónoma de Madrid, Madrid 28049, Spain
| | - Francisco J. García-Vidal
- Departamento
de Física Teórica de la Materia Condensada and Condensed
Matter Physics Center (IFIMAC), Universidad
Autónoma de Madrid, Madrid 28049, Spain
| | - Maksym V. Kovalenko
- Laboratory
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich CH-8093, Switzerland
- EMPA
− Swiss Federal Laboratories for Materials Science and Technology, Dübendorf CH-8600, Switzerland
| | - Hernán Míguez
- Multifunctional
Optical Materials Group, Institute of Materials
Science of Sevilla, Consejo Superior de Investigaciones Científicas
− Universidad de Sevilla (CSIC-US), Américo Vespucio 49, Sevilla 41092, Spain
| |
Collapse
|
30
|
Guo J, Fu Y, Zheng W, Xie M, Huang Y, Miao Z, Han C, Yin W, Zhang J, Yang X, Tian J, Zhang X. Entropy-Driven Strongly Confined Low-Toxicity Pure-Red Perovskite Quantum Dots for Spectrally Stable Light-Emitting Diodes. NANO LETTERS 2024; 24:417-423. [PMID: 38149580 DOI: 10.1021/acs.nanolett.3c04214] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Spectrally stable pure-red perovskite quantum dots (QDs) with low lead content are essential for high-definition displays but are difficult to synthesize due to QD self-purification. Here, we make use of entropy-driven quantum-confined pure-red perovskite QDs to fabricate light-emitting diodes (LEDs) that have low toxicity and are efficient and spectrum-stable. Based on experimental data and first-principles calculations, multiple element alloying results in a 60% reduction in lead content while improving QD entropy to promote crystal stability. Entropy-driven QDs exhibit photoluminescence with 100% quantum yields and single-exponential decay lifetimes without alteration of their morphology or crystal structure. The pure-red LEDs utilizing entropy-driven QDs have spectrally stable electroluminescence, achieving a brightness of 4932 cd/m2, a maximum external quantum efficiency of over 20%, and a 15-fold longer operational lifetime than the CsPbI3 QD-based LEDs. These achievements demonstrate that entropy-driven QDs can mitigate local compositional heterogeneity and ion migration.
Collapse
Affiliation(s)
- Jie Guo
- Key Laboratory of Automobile Materials, Ministry of Education, College of Materials Science and Engineering, Jilin University, Changchun 130012, P.R. China
| | - Yuhao Fu
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Weijia Zheng
- Department of Chemistry, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Mingyuan Xie
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Yuchao Huang
- Key Laboratory of Automobile Materials, Ministry of Education, College of Materials Science and Engineering, Jilin University, Changchun 130012, P.R. China
| | - Zeyu Miao
- Key Laboratory of Automobile Materials, Ministry of Education, College of Materials Science and Engineering, Jilin University, Changchun 130012, P.R. China
| | - Ce Han
- Key Laboratory of Automobile Materials, Ministry of Education, College of Materials Science and Engineering, Jilin University, Changchun 130012, P.R. China
| | - Wenxu Yin
- Key Laboratory of Automobile Materials, Ministry of Education, College of Materials Science and Engineering, Jilin University, Changchun 130012, P.R. China
| | - Jiaqi Zhang
- Key Laboratory of Automobile Materials, Ministry of Education, College of Materials Science and Engineering, Jilin University, Changchun 130012, P.R. China
| | - Xuyong Yang
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, Shanghai 200072, P.R. China
| | - Jianjun Tian
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiaoyu Zhang
- Key Laboratory of Automobile Materials, Ministry of Education, College of Materials Science and Engineering, Jilin University, Changchun 130012, P.R. China
| |
Collapse
|
31
|
Bai W, Liang M, Xuan T, Gong T, Bian L, Li H, Xie RJ. Ligand Engineering Enables Efficient Pure Red Tin-Based Perovskite Light-Emitting Diodes. Angew Chem Int Ed Engl 2023; 62:e202312728. [PMID: 37888877 DOI: 10.1002/anie.202312728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/19/2023] [Accepted: 10/27/2023] [Indexed: 10/28/2023]
Abstract
With increasing ecological and environmental concerns, tin (Sn)-based perovskite light-emitting diodes (PeLEDs) are competitive candidates for future displays because of their environmental friendliness, excellent photoelectric properties, and low-cost solution-processed fabrication. Nonetheless, their electroluminescence (EL) performance still lags behind that of lead (Pb)-based PeLEDs due to the fast crystallization rate of Sn-based perovskite films and undesired oxidation from Sn2+ to Sn4+ , leading to poor film morphology and coverage, as well as high density defects. Here, we propose a ligand engineering strategy to construct high-quality phenethylammonium tin iodide (PEA2 SnI4 ) perovskite films by using L-glutathione reduced (GSH) as surface ligands toward efficient pure red PEA2 SnI4 -based PeLEDs. We show that the hydrogen-bond and coordinate interactions between GSH and PEA2 SnI4 effectively reduce the crystallization rate of the perovskites and suppress the oxidation of Sn2+ and formation of defects. The improved pure red perovskite films not only show excellent uniformity, density, and coverage but also exhibit enhanced optical properties and stability. Finally, state-of-the-art pure red PeLEDs achieve a record external quantum efficiency of 9.32 % in the field of PEA2 SnI4 -based devices. This work demonstrates that ligand engineering represents a feasible route to enhance the EL performance of Sn-based PeLEDs.
Collapse
Affiliation(s)
- Wenhao Bai
- Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Mingming Liang
- Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Tongtong Xuan
- Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, College of Materials, Xiamen University, Xiamen, 361005, P. R. China
- Shenzhen Research Institute of Xiamen University, Shenzhen, 518000, P. R. China
| | - Ting Gong
- Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Liang Bian
- State Key Laboratory of Environment-friendly Energy Materials, Southwest University of Science and Technology, Sichuan, 621010, P. R. China
| | - Huili Li
- Engineering Research Center for Nanophotonics and Advanced Instrument, Ministry of Education, School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, P. R. China
| | - Rong-Jun Xie
- Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, College of Materials, Xiamen University, Xiamen, 361005, P. R. China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen, 361005, P. R. China
- Shenzhen Research Institute of Xiamen University, Shenzhen, 518000, P. R. China
| |
Collapse
|
32
|
Zhang J, Cai B, Zhou X, Yuan F, Yin C, Wang H, Chen H, Ji X, Liang X, Shen C, Wang Y, Ma Z, Qing J, Shi Z, Hu Z, Hou L, Zeng H, Bai S, Gao F. Ligand-Induced Cation-π Interactions Enable High-Efficiency, Bright, and Spectrally Stable Rec. 2020 Pure-Red Perovskite Light-Emitting Diodes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303938. [PMID: 37464982 DOI: 10.1002/adma.202303938] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 07/20/2023]
Abstract
Achieving high-performance perovskite light-emitting diodes (PeLEDs) with pure-red electroluminescence for practical applications remains a critical challenge because of the problematic luminescence property and spectral instability of existing emitters. Herein, high-efficiency Rec. 2020 pure-red PeLEDs, simultaneously exhibiting exceptional brightness and spectral stability, based on CsPb(Br/I)3 perovskite nanocrystals (NCs) capping with aromatic amino acid ligands featuring cation-π interactions, are reported. It is proven that strong cation-π interactions between the PbI6 -octahedra of perovskite units and the electron-rich indole ring of tryptophan (TRP) molecules not only chemically polish the imperfect surface sites, but also markedly increase the binding affinity of the ligand molecules, leading to high photoluminescence quantum yields and greatly enhanced spectral stability of the CsPb(Br/I)3 NCs. Moreover, the incorporation of small-size aromatic TRP ligands ensures superior charge-transport properties of the assembled emissive layers. The resultant devices emitting at around 635 nm demonstrate a champion external quantum efficiency of 22.8%, a max luminance of 12 910 cd m-2 , and outstanding spectral stability, representing one of the best-performing Rec. 2020 pure-red PeLEDs achieved so far.
Collapse
Affiliation(s)
- Jibin Zhang
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Daxue Road 75, Zhengzhou, 450052, China
- Department of Physics, Chemistry, and Biology (IFM), Linköping University, Linköping, SE-58183, Sweden
| | - Bo Cai
- MIIT Key Laboratory of Advanced Display Materials and Devices, Institute of Optoelectronics & Nanomaterials, School of Materials Science and Engineering, Nanjing University of Science and Technology, 210094, Nanjing, China
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NUPT), Nanjing, 210023, China
| | - Xin Zhou
- Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Siyuan Laboratory, Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Department of Physics, Jinan University, Guangzhou, 510632, China
| | - Fanglong Yuan
- Department of Physics, Chemistry, and Biology (IFM), Linköping University, Linköping, SE-58183, Sweden
| | - Chunyang Yin
- Department of Physics, Chemistry, and Biology (IFM), Linköping University, Linköping, SE-58183, Sweden
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Heyong Wang
- Department of Physics, Chemistry, and Biology (IFM), Linköping University, Linköping, SE-58183, Sweden
| | - Hongting Chen
- Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Siyuan Laboratory, Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Department of Physics, Jinan University, Guangzhou, 510632, China
- MIIT Key Laboratory of Advanced Display Materials and Devices, Institute of Optoelectronics & Nanomaterials, School of Materials Science and Engineering, Nanjing University of Science and Technology, 210094, Nanjing, China
| | - Xinzhen Ji
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Daxue Road 75, Zhengzhou, 450052, China
| | - Xiangfei Liang
- Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Siyuan Laboratory, Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Department of Physics, Jinan University, Guangzhou, 510632, China
| | - Chao Shen
- Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Siyuan Laboratory, Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Department of Physics, Jinan University, Guangzhou, 510632, China
| | - Yu Wang
- Department of Physics, Chemistry, and Biology (IFM), Linköping University, Linköping, SE-58183, Sweden
| | - Zhuangzhuang Ma
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Daxue Road 75, Zhengzhou, 450052, China
| | - Jian Qing
- Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Siyuan Laboratory, Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Department of Physics, Jinan University, Guangzhou, 510632, China
| | - Zhifeng Shi
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Daxue Road 75, Zhengzhou, 450052, China
| | - Zhangjun Hu
- Department of Physics, Chemistry, and Biology (IFM), Linköping University, Linköping, SE-58183, Sweden
| | - Lintao Hou
- Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Siyuan Laboratory, Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Department of Physics, Jinan University, Guangzhou, 510632, China
| | - Haibo Zeng
- MIIT Key Laboratory of Advanced Display Materials and Devices, Institute of Optoelectronics & Nanomaterials, School of Materials Science and Engineering, Nanjing University of Science and Technology, 210094, Nanjing, China
| | - Sai Bai
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Feng Gao
- Department of Physics, Chemistry, and Biology (IFM), Linköping University, Linköping, SE-58183, Sweden
| |
Collapse
|
33
|
Zhao Y, Feng W, Li M, Lu J, Qin X, Lin K, Luo J, Zhang WH, Lim EL, Wei Z. Efficient Perovskite Light-Emitting Diodes with Chemically Bonded Contact and Regulated Charge Behavior. NANO LETTERS 2023; 23:8560-8567. [PMID: 37676859 DOI: 10.1021/acs.nanolett.3c02335] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Efficient charge injection and radiative recombination are essential to achieving high-performance perovskite light-emitting diodes (Pero-LEDs). However, the perovskite emission layer (EML) and the electron transport layer (ETL) form a poor physically interfacial contact and non-negligible charge injection barrier, limiting the device performance. Herein, we utilize a phosphine oxide, 2,4,6-tris[3-(diphenylphosphinyl)phenyl]-1,3,5-triazine (PO-T2T), to treat the perovskite/ETL interface and form a chemically bonded contact. Specifically, PO-T2T firmly bonds on the perovskite's surface and grain boundaries through a dative bond, effectively passivating the uncoordinated lead defects. Additionally, PO-T2T has high electron mobility and establishes an electron transport highway to bridge the ETL and EML. As a result, a maximum external quantum efficiency (EQEmax) of 22.06% (average EQEmax of 20.02 ± 1.00%) and maximum luminance (Lmax) of 103286 cd m-2 have been achieved for the champion device. Our results indicate that EML/ETL interface modifications are crucial for the fabrication of highly efficient Pero-LEDs.
Collapse
Affiliation(s)
- Yaping Zhao
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, People's Republic of China
| | - Wenjing Feng
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, People's Republic of China
| | - Mingliang Li
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, People's Republic of China
- Sichuan Research Center of New Materials, Institute of Chemical Materials, China Academy of Engineering Physics, Chengdu 610200, People's Republic of China
| | - Jianxun Lu
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, People's Republic of China
| | - Xiangqian Qin
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, People's Republic of China
| | - Kebin Lin
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, People's Republic of China
| | - Jiefeng Luo
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, People's Republic of China
| | - Wen-Hua Zhang
- Sichuan Research Center of New Materials, Institute of Chemical Materials, China Academy of Engineering Physics, Chengdu 610200, People's Republic of China
| | - Eng Liang Lim
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, People's Republic of China
| | - Zhanhua Wei
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, People's Republic of China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, People's Republic of China
| |
Collapse
|
34
|
Zhao C, Zhu C, Yu Y, Xue W, Liu X, Yuan F, Dai J, Wang S, Jiao B, Wu Z. Multifunctional Short-Chain 2-Thiophenealkylammonium Bromide Ligand-Assisted Perovskite Quantum Dots for Efficient Light-Emitting Diodes. ACS APPLIED MATERIALS & INTERFACES 2023; 15:40080-40087. [PMID: 37578891 DOI: 10.1021/acsami.3c08008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Lead halide perovskite quantum dots (QDs) have attracted great interest for application in light-emitting diodes (LEDs) due to their high photoluminescence quantum yield (PLQY), solution processability, and high color purity, showing great potential for next-generation full-color display and lighting technologies. Conventional long-chain insulating oleic acid (OA)/oleamine (OAm) ligands exhibit dynamic binding to the surface of QDs, resulting in a plethora of extra surface defects and inferior optoelectronic properties. Herein, a sole multifunctional ligand with optimized carbon chain length, that is, 2-thiophenepropylamine bromide (ThPABr), was creatively designed and introduced into CsPbBr3 QDs, which not only replaces OAm and provides a bromine source but also coordinates with the uncoordinated surface Pb2+ of QDs through the thiophene, passivating surface defects and increasing the PLQY of the film to 83%. More importantly, the interaction between the electron donor-thiophene ring and QDs can enhance electron injection and improve carrier balance. The resulting green LED exhibited significant performance improvement, showing ultrahigh spectral stability under high operating voltage, achieving a maximum external quantum efficiency of 10.5%, and extending the operating lifetime to 5-fold that of the reference. Designing a single multifunctional ligand presents a promising and convenient strategy for selecting surface ligands that can enhance the performance of LEDs or other optoelectronic devices.
Collapse
Affiliation(s)
- Chenjing Zhao
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Chunrong Zhu
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Yue Yu
- School of Optoelectronic Engineering, Xidian University, Xi'an 710071, Shaanxi China
| | - Wenhao Xue
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Xiaoyun Liu
- Instrumental Analysis Center of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Fang Yuan
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Jinfei Dai
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Shuangpeng Wang
- Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macao SAR 999078, China
| | - Bo Jiao
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Zhaoxin Wu
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| |
Collapse
|
35
|
Yang JN, Wang JJ, Yin YC, Yao HB. Mitigating halide ion migration by resurfacing lead halide perovskite nanocrystals for stable light-emitting diodes. Chem Soc Rev 2023; 52:5516-5540. [PMID: 37482807 DOI: 10.1039/d3cs00179b] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Lead halide perovskite nanocrystals are promising for next-generation high-definition displays, especially in light of their tunable bandgaps, high color purities, and high carrier mobility. Within the past few years, the external quantum efficiency of perovskite nanocrystal-based light-emitting diodes has progressed rapidly, reaching the standard for commercial applications. However, the low operational stability of these perovskite nanocrystal-based light-emitting diodes remains a crucial issue for their industrial development. Recent experimental evidence indicates that the migration of ionic species is the primary factor giving rise to the performance degradation of perovskite nanocrystal-based light-emitting diodes, and ion migration is closely related to the defects on the surface of perovskite nanocrystals and at the grain boundaries of their thin films. In this review, we focus on the central idea of surface reconstruction of perovskite nanocrystals, discuss the influence of surface defects on halide ion migration, and summarize recent advances in resurfacing perovskite nanocrystal strategies toward mitigating halide ion migration to improve the stability of the as-fabricated light-emitting diode devices. From the perspective of perovskite nanocrystal resurfacing, we set out a promising research direction for improving both the spectral and operational stability of perovskite nanocrystal-based light-emitting diodes.
Collapse
Affiliation(s)
- Jun-Nan Yang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230088, China.
- Department of Applied Chemistry, Hefei Science Center of Chinese Academy of Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jing-Jing Wang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230088, China.
- Department of Applied Chemistry, Hefei Science Center of Chinese Academy of Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yi-Chen Yin
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230088, China.
- Department of Applied Chemistry, Hefei Science Center of Chinese Academy of Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Hong-Bin Yao
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230088, China.
- Department of Applied Chemistry, Hefei Science Center of Chinese Academy of Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
36
|
Jing YY, Li N, Cao X, Wu H, Miao J, Chen Z, Huang M, Wang X, Hu Y, Zou Y, Yang C. Precise modulation of multiple resonance emitters toward efficient electroluminescence with pure-red gamut for high-definition displays. SCIENCE ADVANCES 2023; 9:eadh8296. [PMID: 37506207 PMCID: PMC10381944 DOI: 10.1126/sciadv.adh8296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023]
Abstract
Multiple resonance (MR) compounds have garnered substantial attention for their prospective utility in wide color gamut displays. Nevertheless, developing red MR emitters with both high efficiency and saturated emission color remains demanding. We herein introduce a comprehensive strategy for spectral tuning in the red region by simultaneously regulating the π-conjugation and electron-donating strengths of a double boron-embedded MR skeleton while preserving narrowband characteristics. The proof-of-concept materials manifested emissions from orange-red to deep red, with bandwidths below 0.12 eV. The pure-red device based on CzIDBNO displayed superior color purity with CIE coordinates of (0.701, 0.298), approaching the Broadcast Television 2020 standard. In concert with high photoluminescence quantum yield and strong horizontal dipole orientation, CzIDBNO also achieved a maximum external quantum efficiency of 32.5% and a current efficiency of 20.2 cd A-1, outstripping prior reported organic light-emitting diodes (OLEDs) with CIEx exceeding 0.68. These findings offer a roadmap for designing high-performance emitters with exceptional color purity for future OLED material research advancements.
Collapse
Affiliation(s)
- Yan-Yun Jing
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
- College of Physics and Optoeletronic Engineering, Shenzhen University, Shenzhen, China
- Information Technology Research Institute, Shenzhen Institute of Information Technology, Shenzhen 518172, China
| | - Nengquan Li
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xiaosong Cao
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Han Wu
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jingsheng Miao
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Zhanxiang Chen
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Manli Huang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xinzhong Wang
- Information Technology Research Institute, Shenzhen Institute of Information Technology, Shenzhen 518172, China
| | - Yuxuan Hu
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yang Zou
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Chuluo Yang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
37
|
Liu A, Bi C, Li J, Zhang M, Cheng C, Binks D, Tian J. High Color-Purity and Efficient Pure-Blue Perovskite Light-Emitting Diodes Based on Strongly Confined Monodispersed Quantum Dots. NANO LETTERS 2023; 23:2405-2411. [PMID: 36881120 DOI: 10.1021/acs.nanolett.3c00548] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Here, we develop an in situ photoluminescence (PL) system to monitor the nucleation and growth of perovskite nanocrystals and control the monomer supply rate to achieve strongly confined and monodispersed quantum dots (QDs) with average size of 3.4 nm. Pure-blue (460 nm wavelength) CsPbBr3 QDs with near unity PL quantum yield and narrow size distribution (small size dispersion of 9.6%) were thus produced. Light-emitting diodes (LEDs) based on these QDs were prepared by using an all-solution processing route, which showed narrow electroluminescence with full width at half-maximum of 20 nm and a high color purity of 97.3%. The device also had a high external quantum efficiency of 10.1%, maximum luminance of 11 610 cd m-2, and continuous operation lifetime of 21 h at the initial luminance of 102 cd m-2, corresponding to the state-of-art for pure-blue perovskite LEDs.
Collapse
Affiliation(s)
- Aqiang Liu
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, P. R. China
- Shunde Innovation School, University of Science and Technology Beijing, Foshan 528399, Guangdong, P. R. China
| | - Chenghao Bi
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Jing Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Mengqi Zhang
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Chunyan Cheng
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - David Binks
- Department of Physics and Astronomy and Photon Science Institute, University of Manchester, Manchester M13 9PL, U.K
| | - Jianjun Tian
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, P. R. China
- Shunde Innovation School, University of Science and Technology Beijing, Foshan 528399, Guangdong, P. R. China
| |
Collapse
|
38
|
Zhao Q, Chen F, Li C, Shang C, Huang Q, Yan B, Zhu H, Wang K, Zhang W, Zhou T, Ding J. Challenges and developments for the blue perovskite nanocrystal light-emitting diodes. Dalton Trans 2023; 52:3921-3941. [PMID: 36939177 DOI: 10.1039/d3dt00122a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Perovskite nanomaterials have been highly thought as next-generation light emitters after recent development owing to their benefits of simple synthesis, low-cost, large-area, and wide color gamut. Encouragingly, the external quantum efficiencies (EQEs) of green, red, and near-infrared perovskite light-emitting diodes (PeLEDs) have exceeded more than 20%. However, the performance of the blue PeLEDs is still lower than other analogs, which severely limits the applications of PeLEDs in future full-color displays. Herein, we have reviewed the advances in blue perovskite NCs and their applications in blue PeLEDs. Promising blue perovskite emitters and strategies for fabricating highly efficient blue PeLEDs based on perovskite NCs are investigated and highlighted. Moreover, we point out the main challenges in blue perovskite NC LEDs including low electroluminescence efficiency (EL), spectral instability, the difficulty of charge injection, and device optimization. The perspectives for the further development of blue PeLEDs are also presented.
Collapse
Affiliation(s)
- Qiqi Zhao
- College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Feitong Chen
- College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Changqian Li
- College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Chenyu Shang
- College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Qi Huang
- College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Bin Yan
- College of Energy Storage Technology, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Huiling Zhu
- College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Kunhua Wang
- College of Energy Storage Technology, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Weiwei Zhang
- College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Tianliang Zhou
- College of Materials, Xiamen University, Xiamen 361005, China.
| | - Jianxu Ding
- College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China.
| |
Collapse
|
39
|
Zhang M, Bi C, Xia Y, Sun X, Wang X, Liu A, Tian S, Liu X, de Leeuw NH, Tian J. Water-Driven Synthesis of Deep-Blue Perovskite Colloidal Quantum Wells for Electroluminescent Devices. Angew Chem Int Ed Engl 2023; 62:e202300149. [PMID: 36692366 DOI: 10.1002/anie.202300149] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 01/25/2023]
Abstract
Perovskite colloidal quantum wells (QWs) are promising to realize narrow deep-blue emission, but the poor optical performance and stability suppress their practical application. Here, we creatively propose a water-driven synthesis strategy to obtain size-homogenized and strongly confined deep-blue CsPbBr3 QWs, corresponding to three monolayers, which emit at the deep-blue wavelength of 456 nm. The water controls the orientation and distribution of the ligands on the surface of the nanocrystals, thus inducing orientated growth through the Ostwald ripening process by phagocytizing unstable nanocrystals to form well-crystallized QWs. These QWs present remarkable stability and high photoluminescence quantum yield of 94 %. Furthermore, we have prepared light-emitting diodes based on the QWs via the all-solution fabrication strategy, achieving an external quantum efficiency of 1 % and luminance of 2946 cd m-2 , demonstrating state-of-the-art brightness for perovskite QW-based LEDs.
Collapse
Affiliation(s)
- Mengqi Zhang
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, China.,Shunde Innovation School, University of Science and Technology Beijing, Foshan, Guangdong, 528399, China
| | - Chenghao Bi
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, China.,Shunde Innovation School, University of Science and Technology Beijing, Foshan, Guangdong, 528399, China
| | - Yuexing Xia
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, Beijing National Center for Nanoscience and Technology, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuejiao Sun
- Institute of Semiconductors Chinese Academy of Sciences, Beijing, 100083, China
| | - Xingyu Wang
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK
| | - Aqiang Liu
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, China.,Shunde Innovation School, University of Science and Technology Beijing, Foshan, Guangdong, 528399, China
| | - Shuyu Tian
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, China.,Shunde Innovation School, University of Science and Technology Beijing, Foshan, Guangdong, 528399, China
| | - Xinfeng Liu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, Beijing National Center for Nanoscience and Technology, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Nora H de Leeuw
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK
| | - Jianjun Tian
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, China.,Shunde Innovation School, University of Science and Technology Beijing, Foshan, Guangdong, 528399, China
| |
Collapse
|
40
|
Wang C, Meng W, Li Y, Xu G, Peng M, Nie S, Deng Z. Ultra-small α-CsPbI 3 perovskite quantum dots with stable, bright and pure red emission for Rec. 2020 display backlights. NANOSCALE 2023; 15:1661-1668. [PMID: 36598774 DOI: 10.1039/d2nr05456f] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The synthesis of α-CsPbI3 perovskite quantum dots (QDs) with pure red emission around 630 nm is in high demand for display backlight application. However, the phase transition of α-CsPbI3 to yellow non-emitting δ-CsPbI3 has been proven to be a great challenge for the classic colloidal synthesis route for perovskite QDs in octadecene (ODE). Herein, we report a novel colloidal synthesis route by replacing ODE with lauryl methacrylate (LMA) as the reaction solvent to improve the solubility of precursors, resulting in small sized α-CsPbI3 QDs with a diameter of only 4.2 nm, which are the smallest red PQDs reported so far. The corresponding CsPbI3 QD films exhibit a tunable photoluminescence (PL) emission peak in the bright pure red region of 627 to 638 nm. The CsPbI3 QD polymer composite films with PL emission at 630 nm exhibit a superior photoluminescence quantum yield (PLQY) and photostability to mixed halide CsPbBrI2 films under intense illumination. Perovskite light emitting diodes (LED) with the color gamut reaching 96% of the Rec. 2020 standard are achieved using these films. This study provides a high-performance pure red fluorescent material with a robust, low-cost, and reproducible colloidal chemistry that will pave the way for the adoption of perovskite QDs in display backlight application.
Collapse
Affiliation(s)
- Chuying Wang
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, National Laboratory of Microstructures, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China.
| | - Wen Meng
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, National Laboratory of Microstructures, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China.
| | - Yacong Li
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, National Laboratory of Microstructures, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China.
| | - Guangyong Xu
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, National Laboratory of Microstructures, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China.
| | - Min Peng
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, National Laboratory of Microstructures, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China.
| | - Shuming Nie
- Departments of Bioengineering, Chemistry, Electrical and Computer Engineering, and Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Zhengtao Deng
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, National Laboratory of Microstructures, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China.
| |
Collapse
|