1
|
Zou Y, Sun Z, Wang Q, Ju Y, Sun N, Yue Q, Deng Y, Liu S, Yang S, Wang Z, Li F, Hou Y, Deng C, Ling D, Deng Y. Core-Shell Magnetic Particles: Tailored Synthesis and Applications. Chem Rev 2025; 125:972-1048. [PMID: 39729245 DOI: 10.1021/acs.chemrev.4c00710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Core-shell magnetic particles consisting of magnetic core and functional shells have aroused widespread attention in multidisciplinary fields spanning chemistry, materials science, physics, biomedicine, and bioengineering due to their distinctive magnetic properties, tunable interface features, and elaborately designed compositions. In recent decades, various surface engineering strategies have been developed to endow them desired properties (e.g., surface hydrophilicity, roughness, acidity, target recognition) for efficient applications in catalysis, optical modulation, environmental remediation, biomedicine, etc. Moreover, precise control over the shell structure features like thickness, porosity, crystallinity and compositions including metal oxides, carbon, silica, polymers, and metal-organic frameworks (MOFs) has been developed as the major method to exploit new functional materials. In this review, we highlight the synthesis methods, regulating strategies, interface engineering, and applications of core-shell magnetic particles over the past half-century. The fundamental methodologies for controllable synthesis of core-shell magnetic materials with diverse organic, inorganic, or hybrid compositions, surface morphology, and interface property are thoroughly elucidated and summarized. In addition, the influences of the synthesis conditions on the physicochemical properties (e.g., dispersibility, stability, stimulus-responsiveness, and surface functionality) are also discussed to provide constructive insight and guidelines for designing core-shell magnetic particles in specific applications. The brand-new concept of "core-shell assembly chemistry" holds great application potential in bioimaging, diagnosis, micro/nanorobots, and smart catalysis. Finally, the remaining challenges, future research directions and new applications for the core-shell magnetic particles are predicted and proposed.
Collapse
Affiliation(s)
- Yidong Zou
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and State Key Laboratory of Molecular Engineering of Polymers, iChEM, Fudan University, Shanghai 200433, P. R. China
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai 201804, P. R. China
| | - Zhenkun Sun
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and State Key Laboratory of Molecular Engineering of Polymers, iChEM, Fudan University, Shanghai 200433, P. R. China
| | - Qiyue Wang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, School of Biomedical Engineering, National Center for Translational Medicine,, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
- Department of Clinical Laboratory, Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Songjiang Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201600, P. R. China
| | - Yanmin Ju
- Beijing Key Laboratory for Magnetoelectric Materials and Devices, School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China
| | - Nianrong Sun
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and State Key Laboratory of Molecular Engineering of Polymers, iChEM, Fudan University, Shanghai 200433, P. R. China
| | - Qin Yue
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and State Key Laboratory of Molecular Engineering of Polymers, iChEM, Fudan University, Shanghai 200433, P. R. China
| | - Yu Deng
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and State Key Laboratory of Molecular Engineering of Polymers, iChEM, Fudan University, Shanghai 200433, P. R. China
| | - Shanbiao Liu
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Shengfei Yang
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Zhiyi Wang
- Beijing Key Laboratory for Magnetoelectric Materials and Devices, School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China
- School of Materials, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
| | - Fangyuan Li
- Department of Clinical Laboratory, Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Songjiang Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201600, P. R. China
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Yanglong Hou
- Beijing Key Laboratory for Magnetoelectric Materials and Devices, School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China
- School of Materials, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
| | - Chunhui Deng
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and State Key Laboratory of Molecular Engineering of Polymers, iChEM, Fudan University, Shanghai 200433, P. R. China
| | - Daishun Ling
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, School of Biomedical Engineering, National Center for Translational Medicine,, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yonghui Deng
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and State Key Laboratory of Molecular Engineering of Polymers, iChEM, Fudan University, Shanghai 200433, P. R. China
| |
Collapse
|
2
|
Duan X, Wang P, He L, He Z, Wang S, Yang F, Gao C, Ren W, Lin J, Chen T, Xu C, Li J, Wu A. Peptide-Functionalized Inorganic Oxide Nanomaterials for Solid Cancer Imaging and Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311548. [PMID: 38333964 DOI: 10.1002/adma.202311548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/15/2024] [Indexed: 02/10/2024]
Abstract
The diagnosis and treatment of solid tumors have undergone significant advancements marked by a trend toward increased specificity and integration of imaging and therapeutic functions. The multifaceted nature of inorganic oxide nanomaterials (IONs), which boast optical, magnetic, ultrasonic, and biochemical modulatory properties, makes them ideal building blocks for developing multifunctional nanoplatforms. A promising class of materials that have emerged in this context are peptide-functionalized inorganic oxide nanomaterials (PFIONs), which have demonstrated excellent performance in multifunctional imaging and therapy, making them potential candidates for advancing solid tumor diagnosis and treatment. Owing to the functionalities of peptides in tumor targeting, penetration, responsiveness, and therapy, well-designed PFIONs can specifically accumulate and release therapeutic or imaging agents at the solid tumor sites, enabling precise imaging and effective treatment. This review provides an overview of the recent advances in the use of PFIONs for the imaging and treatment of solid tumors, highlighting the superiority of imaging and therapeutic integration as well as synergistic treatment. Moreover, the review discusses the challenges and prospects of PFIONs in depth, aiming to promote the intersection of the interdisciplinary to facilitate their clinical translation and the development of personalized diagnostic and therapeutic systems by optimizing the material systems.
Collapse
Affiliation(s)
- Xiaolin Duan
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Pin Wang
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lulu He
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
| | - Zhen He
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shiwei Wang
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fang Yang
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
| | - Changyong Gao
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
| | - Wenzhi Ren
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
| | - Jie Lin
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
| | - Tianxiang Chen
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
| | - Chen Xu
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
| | - Juan Li
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
| | - Aiguo Wu
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
| |
Collapse
|
3
|
Wu M, Xiao Y, Wu R, Lei J, Li T, Zheng Y. Aggregable gold nanoparticles for cancer photothermal therapy. J Mater Chem B 2024; 12:8048-8061. [PMID: 39046068 DOI: 10.1039/d4tb00403e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Photothermal therapy (PTT) is an important non-invasive cancer treatment method. Enhancing the photothermal conversion efficiency (PCE) of photothermal agents (PTAs) and prolonging their tumor accumulation and retention are effective strategies to enhance the efficiency of cancer PTT. Recently, tremendous progress has been made in developing stimuli-responsive aggregable gold nanoparticles as effective PTAs for PTT. In this review, we discuss the chemical principles underlying gold nanoparticle aggregation and highlight the progress in gold nanoparticle aggregation triggered by different stimuli, especially tumor microenvironment-related factors, for cancer PTT. Covalent condensation reactions, click cycloaddition reactions, chelation reactions, and Au-S bonding, as well as non-covalent electrostatic interactions, hydrophobic interactions, hydrogen bonding, and van der Waals forces play key roles in the aggregation of gold nanoparticles. Enzymes, pH, reactive oxygen species, small molecules, salts, and light drive the occurrence of gold nanoparticle aggregation. Targeted aggregation of gold nanoparticles prolongs tumor accumulation and retention of PTAs and improves PCE, resulting in enhanced tumor PTT. Moreover, the major challenges of aggregable gold nanoparticles as PTAs are pointed out and the promising applications are also prospected at the end. With the deepening of research, we expect aggregable gold nanoparticles to become essential PTAs for tumor therapy.
Collapse
Affiliation(s)
- Mingyu Wu
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou 646000, China.
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
| | - Yao Xiao
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou 646000, China.
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
| | - Rongkun Wu
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou 646000, China.
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
| | - Jiaojiao Lei
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou 646000, China.
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
| | - Tian Li
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou 646000, China.
| | - Youkun Zheng
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou 646000, China.
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
4
|
Wang J, Liu M, Zhang X, Wang X, Xiong M, Luo D. Stimuli-responsive linkers and their application in molecular imaging. EXPLORATION (BEIJING, CHINA) 2024; 4:20230027. [PMID: 39175888 PMCID: PMC11335469 DOI: 10.1002/exp.20230027] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/16/2023] [Indexed: 08/24/2024]
Abstract
Molecular imaging is a non-invasive imaging method that is widely used for visualization and detection of biological events at cellular or molecular levels. Stimuli-responsive linkers that can be selectively cleaved by specific biomarkers at desired sites to release or activate imaging agents are appealing tools to improve the specificity, sensitivity, and efficacy of molecular imaging. This review summarizes the recent advances of stimuli-responsive linkers and their application in molecular imaging, highlighting the potential of these linkers in the design of activatable molecular imaging probes. It is hoped that this review could inspire more research interests in the development of responsive linkers and associated imaging applications.
Collapse
Affiliation(s)
- Jing Wang
- School of Biomedical Sciences and EngineeringSouth China University of TechnologyGuangzhouP. R. China
| | - Meng Liu
- School of Biomedical Sciences and EngineeringSouth China University of TechnologyGuangzhouP. R. China
| | - Xinyue Zhang
- School of Biomedical Sciences and EngineeringSouth China University of TechnologyGuangzhouP. R. China
| | - Xinning Wang
- Department of Biomedical EngineeringCase Western Reserve UniversityClevelandOhioUSA
| | - Menghua Xiong
- School of Biomedical Sciences and EngineeringSouth China University of TechnologyGuangzhouP. R. China
- National Engineering Research Centre for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhouP. R. China
| | - Dong Luo
- School of Biomedical Sciences and EngineeringSouth China University of TechnologyGuangzhouP. R. China
| |
Collapse
|
5
|
Liu Y, Li C, Yang X, Yang B, Fu Q. Stimuli-responsive polymer-based nanosystems for cardiovascular disease theranostics. Biomater Sci 2024; 12:3805-3825. [PMID: 38967109 DOI: 10.1039/d4bm00415a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Stimulus-responsive polymers have found widespread use in biomedicine due to their ability to alter their own structure in response to various stimuli, including internal factors such as pH, reactive oxygen species (ROS), and enzymes, as well as external factors like light. In the context of atherosclerotic cardiovascular diseases (CVDs), stimulus-response polymers have been extensively employed for the preparation of smart nanocarriers that can deliver therapeutic and diagnostic drugs specifically to inflammatory lesions. Compared with traditional drug delivery systems, stimulus-responsive nanosystems offer higher sensitivity, greater versatility, wider applicability, and enhanced biosafety. Recent research has made significant contributions towards designing stimulus-responsive polymer nanosystems for CVDs diagnosis and treatment. This review summarizes recent advances in this field by classifying stimulus-responsive polymer nanocarriers according to different responsiveness types and describing numerous stimuli relevant to these materials. Additionally, we discuss various applications of stimulus-responsive polymer nanomaterials in CVDs theranostics. We hope that this review will provide valuable insights into optimizing the design of stimulus-response polymers for accelerating their clinical application in diagnosing and treating CVDs.
Collapse
Affiliation(s)
- Yuying Liu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China.
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China.
| | - Congcong Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China.
| | - Xiao Yang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China.
| | - Bin Yang
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China.
| | - Qinrui Fu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China.
| |
Collapse
|
6
|
Zhu X, Xie L, Tian J, Jiang Y, Song E, Song Y. A multi-mode Rhein-based nano-platform synergizing ferrotherapy/chemotherapy-induced immunotherapy for enhanced tumor therapy. Acta Biomater 2024; 180:383-393. [PMID: 38570106 DOI: 10.1016/j.actbio.2024.03.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/22/2024] [Accepted: 03/27/2024] [Indexed: 04/05/2024]
Abstract
Ferroptosis has emerged as a promising strategy for treating triple-negative breast cancer (TNBC) due to bypassing apoptosis and triggering immunogenic cell death (ICD) of tumor cells. However, the antitumor efficacy has been limited by the insufficient intracellular ferrous iron concentration required for ferroptosis and inadequate antitumor immune response. To address these limitations, we designed a multi-mode nano-platform (MP-FA@R-F NPs), which exhibited a synergistic effect of ferroptosis, apoptosis and induced immune response for enhanced antitumor therapy. MP-FA@R-F NPs target folate receptors, which are over-expressed on the tumor cell's surface to promote intracellular uptake. The cargoes, including Rhein and Fe3O4, would be released in intracellular acid, accelerating by NIR laser irradiation. The released Rhein induced apoptosis of tumor cells mediated by the caspase 3 signal pathway, while the released Fe3O4 triggered ferroptosis through the Fenton reaction and endowed the nanoplatform with magnetic resonance imaging (MRI) capabilities. In addition, ferroptosis-dying tumor cells could release damage-associated molecular patterns (DAMPs) to promote T cell activation and infiltration for immune response and induce immunogenic cell death (ICD) for tumor immunotherapy. Together, MP-FA@R-F NPs represent a potential synergistic ferro-/chemo-/immuno-therapy strategy with MRI guidance for enhanced antitumor therapy. STATEMENT OF SIGNIFICANCE: The massive strategies of cancer therapy based on ferroptosis have been emerging in recent years, which provided new insights into designing materials for cancer therapy. However, the antitumor efficacy of ferroptosis is still unsatisfactory, mainly due to insufficient intracellular pro-ferroptotic stimuli. In the current study, we designed a multi-mode nano-platform (MP-FA@R-F NPs), which represented a potential synergistic ferro-/chemo-/immuno-therapy strategy with MRI guidance for enhanced antitumor therapy.
Collapse
Affiliation(s)
- Xiaokang Zhu
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Rd, Beibei District, Chongqing, 400715, China.
| | - Li Xie
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Rd, Beibei District, Chongqing, 400715, China
| | - Jinming Tian
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Rd, Beibei District, Chongqing, 400715, China
| | - Yang Jiang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Rd, Beibei District, Chongqing, 400715, China
| | - Erqun Song
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Rd, Beibei District, Chongqing, 400715, China
| | - Yang Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Rd, Haidian District, Beijing, 100085, China.
| |
Collapse
|
7
|
Xia M, Wang Q, Liu Y, Fang C, Zhang B, Yang S, Zhou F, Lin P, Gu M, Huang C, Zhang X, Li F, Liu H, Wang G, Ling D. Self-propelled assembly of nanoparticles with self-catalytic regulation for tumour-specific imaging and therapy. Nat Commun 2024; 15:460. [PMID: 38212655 PMCID: PMC10784296 DOI: 10.1038/s41467-024-44736-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/02/2024] [Indexed: 01/13/2024] Open
Abstract
Targeted assembly of nanoparticles in biological systems holds great promise for disease-specific imaging and therapy. However, the current manipulation of nanoparticle dynamics is primarily limited to organic pericyclic reactions, which necessitate the introduction of synthetic functional groups as bioorthogonal handles on the nanoparticles, leading to complex and laborious design processes. Here, we report the synthesis of tyrosine (Tyr)-modified peptides-capped iodine (I) doped CuS nanoparticles (CuS-I@P1 NPs) as self-catalytic building blocks that undergo self-propelled assembly inside tumour cells via Tyr-Tyr condensation reactions catalyzed by the nanoparticles themselves. Upon cellular internalization, the CuS-I@P1 NPs undergo furin-guided condensation reactions, leading to the formation of CuS-I nanoparticle assemblies through dityrosine bond. The tumour-specific furin-instructed intracellular assembly of CuS-I NPs exhibits activatable dual-modal imaging capability and enhanced photothermal effect, enabling highly efficient imaging and therapy of tumours. The robust nanoparticle self-catalysis-regulated in situ assembly, facilitated by natural handles, offers the advantages of convenient fabrication, high reaction specificity, and biocompatibility, representing a generalizable strategy for target-specific activatable biomedical imaging and therapy.
Collapse
Grants
- 21936001, 21675001, 21976004, 32071374 National Natural Science Foundation of China (National Science Foundation of China)
- National Key Research and Development Program of China (2022YFB3203801, 2022YFB3203804, 2022YFB3203800), Natural Science Foundation of Anhui Province (KJ2017A315), Leading Talent of “Ten Thousand Plan”-National High-Level Talents Special Support Plan, Program of Shanghai Academic Research Leader under the Science and Technology Innovation Action Plan (21XD1422100), Explorer Program of Science and Technology Commission of Shanghai Municipality (22TS1400700), start-up funds from Shanghai Jiao Tong University (22X010201631), Natural Science Foundation of Zhejiang Province (LR22C100001), Innovative Research Team of High-level Local Universities in Shanghai (SHSMU-ZDCX20210900), CAS Interdisciplinary lnnovation Team (JCTD-2020-08), Postdoctoral Innovative Talent Support Program (BX20230220), Postdoctoral Foundation of China (2023M732244), Outstanding Innovative Research Team for Molecular Enzymology and Detection in Anhui Provincial Universities (2022AH010012), Anhui Province Outstanding Youth Fund (2008085J10), Anhui Provincial Education Department Natural Sciences Key Fund (KJ2021A0113), and Shanghai Municipal Science and Technology Commission (21dz2210100).
Collapse
Affiliation(s)
- Mengmeng Xia
- School of Chemistry and Materials Science, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, Center for Nano Science and Technology, Anhui Normal University, 241000, Wuhu, China
| | - Qiyue Wang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, School of Biomedical Engineering, National Center for Translational Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Yamin Liu
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, School of Biomedical Engineering, National Center for Translational Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Chunyan Fang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, School of Biomedical Engineering, National Center for Translational Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Bo Zhang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, School of Biomedical Engineering, National Center for Translational Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, 200240, Shanghai, China
- World Laureates Association (WLA) Laboratories, 201203, Shanghai, China
| | - Shengfei Yang
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Fu Zhou
- School of Chemistry and Materials Science, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, Center for Nano Science and Technology, Anhui Normal University, 241000, Wuhu, China
| | - Peihua Lin
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, School of Biomedical Engineering, National Center for Translational Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Mingzheng Gu
- School of Chemistry and Materials Science, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, Center for Nano Science and Technology, Anhui Normal University, 241000, Wuhu, China
| | - Canyu Huang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, School of Biomedical Engineering, National Center for Translational Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Xiaojun Zhang
- School of Chemistry and Materials Science, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, Center for Nano Science and Technology, Anhui Normal University, 241000, Wuhu, China
| | - Fangyuan Li
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China.
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, 310009, Hangzhou, China.
- Songjiang Institute and Songjiang Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Hongying Liu
- College of Automation, Hangzhou Dianzi University, 310018, Hangzhou, China.
| | - Guangfeng Wang
- School of Chemistry and Materials Science, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, Center for Nano Science and Technology, Anhui Normal University, 241000, Wuhu, China.
| | - Daishun Ling
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, School of Biomedical Engineering, National Center for Translational Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, 200240, Shanghai, China.
- World Laureates Association (WLA) Laboratories, 201203, Shanghai, China.
| |
Collapse
|
8
|
Dong Y, Liu Y, Tu Y, Yuan Y, Wang J. AIEgens Cross-linked Iron Oxide Nanoparticles Synchronously Amplify Bimodal Imaging Signals in Situ by Tumor Acidity-Mediated Click Reaction. Angew Chem Int Ed Engl 2023; 62:e202310975. [PMID: 37950819 DOI: 10.1002/anie.202310975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/18/2023] [Accepted: 11/09/2023] [Indexed: 11/13/2023]
Abstract
Activatable dual-modal molecular imaging probes present a promising tool for the diagnosis of malignant tumors. However, synchronously enhancing dual-modal imaging signals under a single stimulus is challenging. Herein, we propose an activatable bimodal probe that integrates aggregation-induced emission luminogens (AIEgens) and iron oxide nanoparticles (IOs) to synergistically enhance near-infrared fluorescence (NIRF) intensity and magnetic resonance (MR) contrast through a tumor acidity-mediated click reaction. Tumor acidity-responsive IOs containing dibenzocyclooctyne groups (termed cDIOs) and AIEgens containing azide groups (termed AATs) can be covalently cross-linked in response to tumor acidity, which leads to a simultaneous enhancement in NIRF intensity (≈12.4-fold) and r2 relaxivity (≈2.8-fold). cDIOs and AATs were effectively activated in mice orthotropic breast tumor, and the cross-linking prolonged their retention in tumor, further augmenting the bimodal signals and expanding imaging time frame. This facile strategy leverages the inherent properties of probes themselves and demonstrates promise in future translational studies.
Collapse
Affiliation(s)
- Yansong Dong
- School of Medicine, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Ye Liu
- School of Medicine, South China University of Technology, Guangzhou, 510006, P. R. China
- Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Yalan Tu
- School of Medicine, South China University of Technology, Guangzhou, 510006, P. R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Youyong Yuan
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Jun Wang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
| |
Collapse
|
9
|
Zhang P, Li W, Liu C, Qin F, Lu Y, Qin M, Hou Y. Molecular imaging of tumour-associated pathological biomarkers with smart nanoprobe: From "Seeing" to "Measuring". EXPLORATION (BEIJING, CHINA) 2023; 3:20230070. [PMID: 38264683 PMCID: PMC10742208 DOI: 10.1002/exp.20230070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/18/2023] [Indexed: 01/25/2024]
Abstract
Although the extraordinary progress has been made in molecular biology, the prevention of cancer remains arduous. Most solid tumours exhibit both spatial and temporal heterogeneity, which is difficult to be mimicked in vitro. Additionally, the complex biochemical and immune features of tumour microenvironment significantly affect the tumour development. Molecular imaging aims at the exploitation of tumour-associated molecules as specific targets of customized molecular probe, thereby generating image contrast of tumour markers, and offering opportunities to non-invasively evaluate the pathological characteristics of tumours in vivo. Particularly, there are no "standard markers" as control in clinical imaging diagnosis of individuals, so the tumour pathological characteristics-responsive nanoprobe-based quantitative molecular imaging, which is able to visualize and determine the accurate content values of heterogeneous distribution of pathological molecules in solid tumours, can provide criteria for cancer diagnosis. In this context, a variety of "smart" quantitative molecular imaging nanoprobes have been designed, in order to provide feasible approaches to quantitatively visualize the tumour-associated pathological molecules in vivo. This review summarizes the recent achievements in the designs of these nanoprobes, and highlights the state-of-the-art technologies in quantitative imaging of tumour-associated pathological molecules.
Collapse
Affiliation(s)
- Peisen Zhang
- College of Life Science and TechnologyBeijing University of Chemical TechnologyBeijingChina
- Department of ChemistryUniversity of TorontoTorontoOntarioCanada
| | - Wenyue Li
- College of Life Science and TechnologyBeijing University of Chemical TechnologyBeijingChina
| | - Chuang Liu
- College of Life Science and TechnologyBeijing University of Chemical TechnologyBeijingChina
| | - Feng Qin
- Department of Neurosurgery and National Chengdu Center for Safety Evaluation of DrugsState Key Laboratory of Biotherapy/Collaborative Innovation Center for BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Yijie Lu
- Department of ChemistryUniversity of TorontoTorontoOntarioCanada
| | - Meng Qin
- Department of Neurosurgery and National Chengdu Center for Safety Evaluation of DrugsState Key Laboratory of Biotherapy/Collaborative Innovation Center for BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Yi Hou
- College of Life Science and TechnologyBeijing University of Chemical TechnologyBeijingChina
| |
Collapse
|
10
|
Tanwar S, Ghaemi B, Raj P, Singh A, Wu L, Yuan Y, Arifin DR, McMahon MT, Bulte JWM, Barman I. A Smart Intracellular Self-Assembling Bioorthogonal Raman Active Nanoprobe for Targeted Tumor Imaging. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304164. [PMID: 37715297 PMCID: PMC10700673 DOI: 10.1002/advs.202304164] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/21/2023] [Indexed: 09/17/2023]
Abstract
Inspired by the principle of in situ self-assembly, the development of enzyme-activated molecular nanoprobes can have a profound impact on targeted tumor detection. However, despite their intrinsic promise, obtaining an optical readout of enzyme activity with high specificity in native milieu has proven to be challenging. Here, a fundamentally new class of Raman-active self-assembling bioorthogonal enzyme recognition (nanoSABER) probes for targeted tumor imaging is reported. This class of Raman probes presents narrow spectral bands reflecting their vibrational fingerprints and offers an attractive solution for optical imaging at different bio-organization levels. The optical beacon harnesses an enzyme-responsive peptide sequence, unique tumor-penetrating properties, and vibrational tags with stretching frequencies in the cell-silent Raman window. The design of nanoSABER is tailored and engineered to transform into a supramolecular structure exhibiting distinct vibrational signatures in presence of target enzyme, creating a direct causality between enzyme activity and Raman signal. Through the integration of substrate-specific for tumor-associated enzyme legumain, unique capabilities of nanoSABER for imaging enzyme activity at molecular, cellular, and tissue levels in combination with machine learning models are shown. These results demonstrate that the nanoSABER probe may serve as a versatile platform for Raman-based recognition of tumor aggressiveness, drug accumulation, and therapeutic response.
Collapse
Affiliation(s)
- Swati Tanwar
- Department of Mechanical EngineeringJohns Hopkins UniversityBaltimoreMD21218USA
| | - Behnaz Ghaemi
- The Russell H. Morgan Department of Radiology and Radiological ScienceThe Johns Hopkins University School of MedicineBaltimoreMD21205USA
- Cellular Imaging Section and Vascular Biology ProgramInstitute for Cell EngineeringThe Johns Hopkins University School of MedicineBaltimoreMD21205USA
| | - Piyush Raj
- Department of Mechanical EngineeringJohns Hopkins UniversityBaltimoreMD21218USA
| | - Aruna Singh
- The Russell H. Morgan Department of Radiology and Radiological ScienceThe Johns Hopkins University School of MedicineBaltimoreMD21205USA
- F.M. Kirby Research Center for Functional Brain ImagingKennedy Krieger Inc.BaltimoreMD21205USA
| | - Lintong Wu
- Department of Mechanical EngineeringJohns Hopkins UniversityBaltimoreMD21218USA
| | - Yue Yuan
- Department of ChemistryUniversity of Science and Technology of China96 Jinzhai RoadHefeiAnhui230026China
| | - Dian R. Arifin
- The Russell H. Morgan Department of Radiology and Radiological ScienceThe Johns Hopkins University School of MedicineBaltimoreMD21205USA
- Cellular Imaging Section and Vascular Biology ProgramInstitute for Cell EngineeringThe Johns Hopkins University School of MedicineBaltimoreMD21205USA
| | - Michael T. McMahon
- The Russell H. Morgan Department of Radiology and Radiological ScienceThe Johns Hopkins University School of MedicineBaltimoreMD21205USA
- F.M. Kirby Research Center for Functional Brain ImagingKennedy Krieger Inc.BaltimoreMD21205USA
| | - Jeff W. M. Bulte
- The Russell H. Morgan Department of Radiology and Radiological ScienceThe Johns Hopkins University School of MedicineBaltimoreMD21205USA
- Cellular Imaging Section and Vascular Biology ProgramInstitute for Cell EngineeringThe Johns Hopkins University School of MedicineBaltimoreMD21205USA
- F.M. Kirby Research Center for Functional Brain ImagingKennedy Krieger Inc.BaltimoreMD21205USA
- Department of Biomedical EngineeringJohns Hopkins UniversityBaltimoreMD21218USA
- Department of Chemical & Biomolecular EngineeringJohns Hopkins UniversityBaltimoreMD21218USA
- Department of OncologyJohns Hopkins UniversityBaltimoreMD21231USA
| | - Ishan Barman
- Department of Mechanical EngineeringJohns Hopkins UniversityBaltimoreMD21218USA
- The Russell H. Morgan Department of Radiology and Radiological ScienceThe Johns Hopkins University School of MedicineBaltimoreMD21205USA
- Department of OncologyJohns Hopkins UniversityBaltimoreMD21231USA
| |
Collapse
|
11
|
Lu Z, Yan J, Zu G, Xu M, Liu J, Zhang Y, Shi L, Fei X, Cao Y, Pei R. Hypoxia-Responsive T 2-to-T 1 Dynamically Switchable Extremely Small Iron Oxide Nanoparticles for Sensitive Tumor Imaging In Vivo. Bioconjug Chem 2023; 34:1622-1632. [PMID: 37584604 DOI: 10.1021/acs.bioconjchem.3c00285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
To realize the accurate diagnosis of tumors by magnetic resonance imaging (MRI), switchable magnetic resonance contrast agents (CAs) between T1 and T2 contrast enhancement that are constructed based on extremely small iron oxide nanoparticles (ESIONPs) have been developed in recent years. We herein report, for the first time, a novel ESIONP-based nanocluster (named EAmP), which exhibited hypoxia responsiveness to the tumor microenvironment and offered a T2-to-T1-switchable contrast enhancement function, effectively distinguishing between the normal tissue and tumor tissue. In detail, active perfluorophenyl ester-modified ESIONPs with a diameter of approximately 3.6 nm were initially synthesized, and then 4,4'-azodianiline was used as a cross-linker to facilitate the formation of nanoclusters from ESIONPs through the reaction between the active ester and amine. Finally, poly(ethylene glycol) was further modified onto nanoclusters by utilizing the remaining active ester residues. The resulting EAmP demonstrated satisfactory colloidal stability and favorable biosafety and exhibited a desired T2-to-T1-switchable function, as evidenced by conversion from nanocluster to the dispersed state and a significant decrease in the r2/r1 ratio from 14.86 to 1.61 when exposed to a mimical hypoxic environment in the solution. Moreover, EAmP could decompose into dispersed ESIONPs at the tumor region, resulting in a switch from T2 to T1 contrast enhancement. This T2-to-T1-switchable contrast agent offers high sensitivity and signal-to-noise ratio to realize the accurate diagnosis of tumors. In conclusion, hypoxia-responsive EAmP is a potential MRI nanoprobe for improving the diagnostic accuracy of solid tumors.
Collapse
Affiliation(s)
- Zhongzhong Lu
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Jincong Yan
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Guangyue Zu
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Mingsheng Xu
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Jihuan Liu
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Ye Zhang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Lei Shi
- Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan 215300, China
| | - Xifeng Fei
- Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou 215028, China
| | - Yi Cao
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
- Jiangxi Institute of Nanotechnology, Nanchang 330200, China
| | - Renjun Pei
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| |
Collapse
|
12
|
Ma X, Mao M, He J, Liang C, Xie HY. Nanoprobe-based molecular imaging for tumor stratification. Chem Soc Rev 2023; 52:6447-6496. [PMID: 37615588 DOI: 10.1039/d3cs00063j] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
The responses of patients to tumor therapies vary due to tumor heterogeneity. Tumor stratification has been attracting increasing attention for accurately distinguishing between responders to treatment and non-responders. Nanoprobes with unique physical and chemical properties have great potential for patient stratification. This review begins by describing the features and design principles of nanoprobes that can visualize specific cell types and biomarkers and release inflammatory factors during or before tumor treatment. Then, we focus on the recent advancements in using nanoprobes to stratify various therapeutic modalities, including chemotherapy, radiotherapy (RT), photothermal therapy (PTT), photodynamic therapy (PDT), chemodynamic therapy (CDT), ferroptosis, and immunotherapy. The main challenges and perspectives of nanoprobes in cancer stratification are also discussed to facilitate probe development and clinical applications.
Collapse
Affiliation(s)
- Xianbin Ma
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Mingchuan Mao
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Jiaqi He
- School of Life Science, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Chao Liang
- School of Life Science, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Hai-Yan Xie
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Chemical Biology Center, Peking University, Beijing, 100191, P. R. China.
| |
Collapse
|
13
|
Li M, Tang J, Lin C, Shen A, Ma X, Wu J, Gao X, Wang P. A Smart Responsive Fluorescence-MR Nanoprobe for Monitoring Tumor Response to Immunotherapy. Adv Healthc Mater 2023; 12:e2300602. [PMID: 37184883 DOI: 10.1002/adhm.202300602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/18/2023] [Indexed: 05/16/2023]
Abstract
Accurately evaluating tumor responses to immunotherapy is clinically relevant. However, non-invasive, real-time visualization techniques to evaluate tumor immunotherapy are still lacking. Herein, a smart responsive fluorescence-MR dual-modal nanoprobe, QM(GP)-MZF(CP), is reported that can be targeted for cleavage by the cytotoxic T cell activation marker granzyme B and the apoptosis-related marker cysteine-aspartic acid-specific protease 3 (Caspase-3). The probe uses quinoline-malononitrile (QM), an aggregation-induced emission luminogen, and Mn-Zn ferrite magnetic nanoparticles (MZF-MNPs), a T2-weighted imaging (T2WI) contrast agent, as imaging molecules that are linked with the substrate peptides specific to granzyme B and Caspase-3. Therefore, both granzyme B and Caspase-3 can target and cleave the substrate peptides in QM(GP)-MZF(CP). Via aggregation-induced fluorescence imaging of QM and the aggregation-induced T2WI-enhanced imaging effect of MZF-MNPs, the status of T cells after tumor immunotherapy and the subsequent triggering of tumor cell apoptosis can be determined to identify tumor responsiveness to immunotherapy and thereby evaluate the effectiveness of this therapy in the early stages of treatment.
Collapse
Affiliation(s)
- Minghua Li
- Department of Radiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, P. R. China
| | - Junjun Tang
- Department of Radiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, P. R. China
| | - Chao Lin
- Institute for Translational Medicine, Shanghai East Hospital, Institute for biomedical Engineering and Nanoscience, School of Medicine, Tongji University, Shanghai, 200092, P. R. China
| | - Aijun Shen
- Department of Radiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, P. R. China
| | - Xiaolong Ma
- Department of Radiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, P. R. China
| | - Jiaqi Wu
- Department of Radiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, P. R. China
| | - Xiaolong Gao
- Department of Radiology, Luodian Hospital, Shanghai University, Shanghai, 201908, P. R. China
- Department of Radiology, Baoshan District, Luodian Hospital, Shanghai, 201908, P. R. China
| | - Peijun Wang
- Department of Radiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, P. R. China
| |
Collapse
|
14
|
Yan Z, Liu Y, Zhao L, Hu J, Du Y, Peng X, Liu Z. In situ stimulus-responsive self-assembled nanomaterials for drug delivery and disease treatment. MATERIALS HORIZONS 2023; 10:3197-3217. [PMID: 37376926 DOI: 10.1039/d3mh00592e] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
The individual motifs that respond to specific stimuli for the self-assembly of nanomaterials play important roles. In situ constructed nanomaterials are formed spontaneously without human intervention and have promising applications in bioscience. However, due to the complex physiological environment of the human body, designing stimulus-responsive self-assembled nanomaterials in vivo is a challenging problem for researchers. In this article, we discuss the self-assembly principles of various nanomaterials in response to the tissue microenvironment, cell membrane, and intracellular stimuli. We propose the applications and advantages of in situ self-assembly in drug delivery and disease diagnosis and treatment, with a focus on in situ self-assembly at the lesion site, especially in cancer. Additionally, we introduce the significance of introducing exogenous stimulation to construct self-assembly in vivo. Based on this foundation, we put forward the prospects and possible challenges in the field of in situ self-assembly. This review uncovers the relationship between the structure and properties of in situ self-assembled nanomaterials and provides new ideas for innovative drug molecular design and development to solve the problems in the targeted delivery and precision medicine.
Collapse
Affiliation(s)
- Ziling Yan
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan Province, P. R. China
| | - Yanfei Liu
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan Province, P. R. China
| | - Licheng Zhao
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan Province, P. R. China
| | - Jiaxin Hu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan Province, P. R. China.
| | - Yimin Du
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan Province, P. R. China.
| | - Xingxing Peng
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan Province, P. R. China.
| | - Zhenbao Liu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan Province, P. R. China.
- Molecular Imaging Research Center of Central South University, Changsha 410008, Hunan Province, P. R. China
| |
Collapse
|
15
|
Li Z, Bai R, Yi J, Zhou H, Xian J, Chen C. Designing Smart Iron Oxide Nanoparticles for MR Imaging of Tumors. CHEMICAL & BIOMEDICAL IMAGING 2023; 1:315-339. [PMID: 37501794 PMCID: PMC10369497 DOI: 10.1021/cbmi.3c00026] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/14/2023] [Accepted: 04/21/2023] [Indexed: 07/29/2023]
Abstract
Iron oxide nanoparticles (IONPs) possess unique magnetism and good biocompatibility, and they have been widely applied as contrast agents (CAs) for magnetic resonance imaging (MRI). Traditional CAs typically show a fixed enhanced signal, thus exhibiting the limitations of low sensitivity and a lack of specificity. Nowadays, the progress of stimulus-responsive IONPs allows alteration of the relaxation signal in response to internal stimuli of the tumor, or external stimuli, thus providing an opportunity to overcome those limitations. This review summarizes the current status of smart IONPs as tumor imaging MRI CAs that exhibit responsiveness to endogenous stimuli, such as pH, hypoxia, glutathione, and enzymes, or exogenous stimuli, such as magnets, light, and so on. We discuss the challenges and future opportunities for IONPs as MRI CAs and comprehensively illustrate the applications of these stimuli-responsive IONPs. This review will help provide guidance for designing IONPs as MRI CAs and further promote the reasonable design of magnetic nanoparticles and achieve early and accurate tumor detection.
Collapse
Affiliation(s)
- Zhenzhen Li
- CAS
Key Laboratory for Biomedical Effects of Nanoparticles and Nanosafety
& CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- Department
of Radiology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Ru Bai
- CAS
Key Laboratory for Biomedical Effects of Nanoparticles and Nanosafety
& CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
- Research
Unit of Nanoscience and Technology, Chinese
Academy of Medical Sciences, Beijing 100021, China
| | - Jia Yi
- Guangdong
Provincial Development and Reform Commission, Guangzhou 510031, China
| | - Huige Zhou
- CAS
Key Laboratory for Biomedical Effects of Nanoparticles and Nanosafety
& CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
- Research
Unit of Nanoscience and Technology, Chinese
Academy of Medical Sciences, Beijing 100021, China
| | - Junfang Xian
- Department
of Radiology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Chunying Chen
- CAS
Key Laboratory for Biomedical Effects of Nanoparticles and Nanosafety
& CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
- Research
Unit of Nanoscience and Technology, Chinese
Academy of Medical Sciences, Beijing 100021, China
- The
GBA National Institute for Nanotechnology Innovation, Guangzhou 510700, China
| |
Collapse
|
16
|
Xu HD, Cheng X, Sun X, Chen P, Zhan W, Liu X, Wang X, Hu B, Liang G. Caspase-3-Triggered Intracellular Gadolinium Nanoparticle Formation for T 1-Weighted Magnetic Resonance Imaging of Apoptosis In Vivo. NANO LETTERS 2023. [PMID: 37363812 DOI: 10.1021/acs.nanolett.3c01787] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Apoptosis, with a hallmark of upregulated protease Caspase-3, has been frequently imaged with various probes to reveal the therapeutic efficiencies of different drugs. However, activatable molecular probes with programmable self-assembling behaviors that enable enhanced T1-weighted magnetic resonance imaging (MRI) of apoptosis remain scarce. Herein, taking advantage of a CBT-Cys click reaction, we rationally designed a Caspase-3-activatable self-assembling probe Ac-Asp-Glu-Val-Asp-Cys(StBu)-Lys(DOTA(Gd))-CBT (DEVDCS-Gd-CBT) for apoptosis imaging in vivo. After Caspase-3 cleavage in apoptotic cells, DEVDCS-Gd-CBT underwent CBT-Cys click reaction to form a cyclic dimer, which self-assembled into Gd nanoparticles. With this probe, enhanced T1-weighted MR images of apoptosis were achieved at low magnetic fields in vitro, in cis-dichlorodiamineplatinum-induced apoptotic cells and in tail-amputation-simulated apoptotic zebrafish. We anticipate that the smart probe DEVDCS-Gd-CBT could be applied for T1-weighted MRI of apoptosis-related diseases in the clinic in the future.
Collapse
Affiliation(s)
- Hai-Dong Xu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou, Nanjing 210096, China
| | - Xiaotong Cheng
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou, Nanjing 210096, China
| | - Xianbao Sun
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou, Nanjing 210096, China
| | - Peiyao Chen
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Wenjun Zhan
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou, Nanjing 210096, China
| | - Xiaoyang Liu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou, Nanjing 210096, China
| | - Xinliang Wang
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Bing Hu
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Gaolin Liang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou, Nanjing 210096, China
| |
Collapse
|
17
|
Tanwar S, Wu L, Zahn N, Raj P, Ghaemi B, Chatterjee A, Bulte JWM, Barman I. Targeted Enzyme Activity Imaging with Quantitative Phase Microscopy. NANO LETTERS 2023; 23:4602-4608. [PMID: 37154678 PMCID: PMC10798004 DOI: 10.1021/acs.nanolett.3c01090] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Quantitative phase imaging (QPI) is a powerful optical imaging modality for label-free, rapid, and three-dimensional (3D) monitoring of cells and tissues. However, molecular imaging of important intracellular biomolecules such as enzymes remains a largely unexplored area for QPI. Herein, we introduce a fundamentally new approach by designing QPI contrast agents that allow sensitive detection of intracellular biomolecules. We report a new class of bio-orthogonal QPI-nanoprobes for in situ high-contrast refractive index (RI) imaging of enzyme activity. The nanoprobes feature silica nanoparticles (SiO2 NPs) having higher RI than endogenous cellular components and surface-anchored cyanobenzothiazole-cysteine (CBT-Cys) conjugated enzyme-responsive peptide sequences. The nanoprobes specifically aggregated in cells with target enzyme activity, increasing intracellular RI and enabling precise visualization of intracellular enzyme activity. We envision that this general design of QPI-nanoprobes could open doors for spatial-temporal mapping of enzyme activity with direct implications for disease diagnosis and evaluating the therapeutic efficacy.
Collapse
Affiliation(s)
- Swati Tanwar
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Lintong Wu
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Noah Zahn
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Piyush Raj
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Behnaz Ghaemi
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University, School of Medicine, Baltimore, Maryland 21205, USA
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Arnab Chatterjee
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Jeff W M Bulte
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University, School of Medicine, Baltimore, Maryland 21205, USA
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Inc., Baltimore, Maryland 21205, USA
- Department of Oncology, Johns Hopkins University, Baltimore, Maryland 21287, USA
| | - Ishan Barman
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University, School of Medicine, Baltimore, Maryland 21205, USA
- Department of Oncology, Johns Hopkins University, Baltimore, Maryland 21287, USA
| |
Collapse
|
18
|
Zhao M, Zhuang H, Li B, Chen M, Chen X. In Situ Transformable Nanoplatforms with Supramolecular Cross-Linking Triggered Complementary Function for Enhanced Cancer Photodynamic Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209944. [PMID: 36856448 DOI: 10.1002/adma.202209944] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/29/2023] [Indexed: 05/19/2023]
Abstract
In vivo cross-linking of nanoparticles is widely used to increase accumulation of therapeutic agents at tumor site for enhanced therapy. However, the components in nanoplatforms usually only play for one role and are independent of each other, unable to amplify their biofunctions. Herein, a complementary functioning tumor microenvironment triggered, supramolecular coordination-induced nanoparticle cross-linking strategy is constructed for enhanced photodynamic therapy. Manganese oxide (MnOx ) and polyhydroxy photosensitizer hypericin (Hyp) are coated and loaded onto lanthanide-doped upconversion nanoparticles (UCNPs) to form transformable UCNP@MnOx -Hyp. In CT26 mouse colon cancer cells and xenograft tumors, UCNP@MnOx -Hyp is reduced by glutathione and H2 O2 , releasing Mn2+ and Hyp for in situ cross-linking to transform to UCNP@Mn2+ -Hyp. Compared to the simple photosensitizer-loaded UCNP@PEI-Hyp, the Mn2+ -Hyp coordination redshifts absorbance of Hyp and improves the energy transfer efficiency from UCNPs to Hyp (5.6-fold). In turn, the supramolecular coordination-induced UCNPs cross-linking exhibits enhanced luminescence recovery and increased intracellular accumulation of both UCNPs and Hyp, thus enhancing the photodynamic therapy efficacy both at cellular level (2.1-fold) and in vivo, realizing the function amplification of each component after responsive transformation and offering a new avenue for enhanced cancer therapy.
Collapse
Affiliation(s)
- Mengyao Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
| | - Hongjun Zhuang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Material, Fudan University, Shanghai, 200433, China
| | - Benhao Li
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
| | - Meiwan Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| |
Collapse
|
19
|
Liang M, Zhou W, Zhang H, Zheng J, Lin J, An L, Yang S. Tumor microenvironment responsive T1- T2 dual-mode contrast agent Fe 3O 4@ZIF-8-Zn-Mn NPs for in vivo magnetic resonance imaging. J Mater Chem B 2023; 11:4203-4210. [PMID: 37114335 DOI: 10.1039/d3tb00068k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Activated T1-T2 contrast agents can effectively improve the sensitivity and diagnosis accuracy of magnetic resonance imaging (MRI), but the construction of such contrast agents still remains a great challenge. In this work, a pH- and glutathione (GSH)-responsive T1-T2 dual-mode contrast agent, Fe3O4@ZIF-8-Zn-Mn nanoparticles (NPs), with simple components was constructed via simply assembly of paramagnetic Mn2+ ions (as T1 contrast agent) and Fe3O4 NPs (as T2 contrast agent) into a pH- and GSH-sensitive Zn-zeolitic imidazole framework (ZIF-8) matrix. Under neutral conditions, Fe3O4@ZIF-8-Zn-Mn NPs show good stability and weak T1-T2 dual-mode MRI contrast effect (r1 = 0.82 mM-1 s-1, r2 = 21.28 mM-1 s-1) due to the magnetic interference between Fe3O4 NPs and paramagnetic Mn2+ ions. In contrast, under acidic environment (pH = 6.5-5.5) and in the present GSH (0-4 mM), Fe3O4@ZIF-8-Zn-Mn NPs can be disassembled and release Fe3O4 NPs and paramagnetic Mn2+ ions, which causes simultaneous recovery of T1 and T2 imaging performances with enhanced r1 and r2 relaxation values up to 6.9 and 9.9 times, respectively. Moreover, in vivo MRI experiments showed that after the intravenous injection of Fe3O4@ZIF-8-Zn-Mn NPs for about one hour, the T1-weighted imaging of the tumor site becomes brighter with T1 signal enhanced by about 31%, while the T2-weighted imaging of the tumor site becomes darker with T2 signal enhanced by nearly 30%, suggesting the great potential of Fe3O4@ZIF-8-Zn-Mn NPs to be used as a tumor microenvironment-responsive T1-T2 dual-mode contrast agent for sensitive tumor imaging.
Collapse
Affiliation(s)
- Minmin Liang
- The Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, 200234, China.
| | - Weixiu Zhou
- The Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, 200234, China.
| | - Haifeng Zhang
- The Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, 200234, China.
| | - Jutian Zheng
- The Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, 200234, China.
| | - Jiaomin Lin
- The Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, 200234, China.
- School of Chemistry, South China Normal University, Guangzhou 510006, P. R. China
| | - Lu An
- The Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, 200234, China.
| | - Shiping Yang
- The Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, 200234, China.
| |
Collapse
|
20
|
Zhou T, Zhang S, Zhang L, Jiang T, Wang H, Huang L, Wu H, Fan Z, Jing S. Redox ferrocenylseleno compounds modulate longitudinal and transverse relaxation times of FNPs-Gd MRI contrast agents for multimodal imaging and photo-Fenton therapy. Acta Biomater 2023; 164:496-510. [PMID: 37054962 DOI: 10.1016/j.actbio.2023.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 04/15/2023]
Abstract
Developing a feasible way to feature longitudinal (T1) and transverse (T2) relaxation performance of contrast agents for magnetic resonance imaging (MRI) is important in cancer diagnosis and therapy. Improved accessibility to water molecule is essential for accelerating the relaxation rate of water protons around the contrast agents. Ferrocenyl compounds have reversible redox property for modulating the hydrophobicity/hydrophilicity of assemblies. Thus, they could be the candidates that can change water accessibility to the contrast agent surface. Herein, we incorporated ferrocenylseleno compound (FcSe) with Gd3+-based paramagnetic UCNPs, to obtain FNPs-Gd nanocomposites using T1-T2 MR/UCL trimodal imaging and simultaneous photo-Fenton therapy. When the surface of NaGdF4:Yb,Tm UNCPs was ligated by FcSe, the hydrogen bonding between hydrophilic selenium and surrounding water molecules accelerated their proton exchange to initially endow FNPs-Gd with high r1 relaxivity. Then, hydrogen nuclei from FcSe disrupted the homogeneity of the magnetic field around the water molecules. This facilitated T2 relaxation and resulted in enhanced r2 relaxivity. Notably, upon the near-infrared light-promoted Fenton-like reaction in the tumor microenvironment, hydrophobic ferrocene(II) of FcSe was oxidized into hydrophilic ferrocenium(III), which further increased the relaxation rate of water protons to obtain r1 = 1.90±0.12 mM-1 s-1 and r2 = 12.80±0.60 mM-1 s-1. With an ideal relaxivity ratio (r2/r1) of 6.74, FNPs-Gd exhibited high contrast potential of T1-T2 dual-mode MRI in vitro and in vivo. This work confirms that ferrocene and selenium are effective boosters that enhance the T1-T2 relaxivities of MRI contrast agents, which could provide a new strategy for multimodal imaging-guided photo-Fenton therapy of tumors. STATEMENT OF SIGNIFICANCE: T1-T2 dual-mode MRI nanoplatform with tumor-microenvironment-responsive features has been an attractive prospect. Herein, we designed redox ferrocenylseleno compound (FcSe) modified paramagnetic Gd3+-based UCNPs, to modulate T1-T2 relaxation time for multimodal imaging and H2O2-responsive photo-Fenton therapy. Selenium-hydrogen bond of FcSe with surrounding water molecules facilitated water accessibility for fast T1 relaxation. Hydrogen nucleus in FcSe perturbed the phase coherence of water molecules in an inhomogeneous magnetic field and thus accelerated T2 relaxation. In tumor microenvironment, FcSe was oxidized into hydrophilic ferrocenium via NIR light-promoted Fenton-like reaction which further increased both T1 and T2 relaxation rates; Meanwhile, the released toxic •OH performed on-demand cancer therapy. This work confirms that FcSe is an effective redox mediate for multimodal imaging-guided cancer therapy.
Collapse
Affiliation(s)
- Tong Zhou
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Shuyan Zhang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Lei Zhang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Tianyue Jiang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Haiyang Wang
- Digestive Endoscopy Department, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, China
| | - Ling Huang
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Hongshuai Wu
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Zhining Fan
- Digestive Endoscopy Department, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, China
| | - Su Jing
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
21
|
Wei M, Wang L, Wang Y, Zhang T, Wang C, Wu C, Tian C, Liang G, Yuan Y. Intracellular Construction of Cathepsin B-Guided Gadolinium Nanoparticles for Enhanced T 2 -Weighted MR Tumor Imaging. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2300015. [PMID: 37029574 DOI: 10.1002/smll.202300015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/10/2023] [Indexed: 06/19/2023]
Abstract
Magnetic resonance imaging (MRI) is a superior and noninvasive imaging technique with unlimited tissue penetration depth and superb spatiotemporal resolution, however, using intracellular self-assembly of Gd-containing nanoparticles to enhance the T2 -weighted MR contrast of cancer cells in vivo for precise tumor MRI is rarely reported. The lysosomal cysteine protease cathepsin B (CTSB) is regarded as an attractive biomarker for the early diagnosis of cancers and metastasis. Herein, taking advantage of a biocompatible condensation reaction, a "smart" Gd-based CTSB-responsive small molecular contrast agent VC-Gd-CBT is developed, which can self-assemble into large intracellular Gd-containing nanoparticles by glutathione reduction and CTSB cleavage to enhance the T2 -weighted MR contrast of CTSB-overexpressing MDA-MB-231 cells at 9.4 T. In vivo T2 -weighted MRI studies using MDA-MB-231 murine xenografts show that the T2 -weighted MR contrast change of tumors in VC-Gd-CBT-injected mice is distinctly larger than the mice injected with the commercial agent gadopentetate dimeglumine, or co-injected with CTSB inhibitor and VC-Gd-CBT, indicating that the accumulation of self-assembled Gd-containing nanoparticles at tumor sites effectively enhances the T2 -weighted MR tumor imaging. Hence, this CTSB-targeted small molecule VC-Gd-CBT has the potential to be employed as a T2 contrast agent for the clinical diagnosis of cancers at an early stage.
Collapse
Affiliation(s)
- Mengxing Wei
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Lulu Wang
- Anhui Provincial Key Laboratory of High Magnetic Resonance Image, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
| | - Yanfang Wang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Tong Zhang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Chenchen Wang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Chengfan Wu
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Changlin Tian
- Anhui Provincial Key Laboratory of High Magnetic Resonance Image, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
- Division of Life Sciences and Medicine, Joint Center for Biological Analytical Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Gaolin Liang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
- State Key Laboratory of Bioelectronics, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Yue Yuan
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
22
|
Jing X, Zhang Y, Li M, Zuo X, Fan C, Zheng J. Surface engineering of colloidal nanoparticles. MATERIALS HORIZONS 2023; 10:1185-1209. [PMID: 36748345 DOI: 10.1039/d2mh01512a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Synthesis of engineered colloidal nanoparticles (NPs) with delicate surface characteristics leads to well-defined physicochemical properties and contributes to multifunctional applications. Surface engineering of colloidal NPs can improve their stability in diverse solvents by inhibiting the interparticle attractive forces, thus providing a prerequisite for further particle manipulation, fabrication of the following materials and biological applications. During the last decades, surface engineering methods for colloidal NPs have been well-developed by numerous researchers. However, accurate control of surface properties is still an important topic. The emerging DNA/protein nanotechnology offers additional possibility of surface modification of NPs and programmable particle self-assembly. Here, we first briefly review the recent progress in surface engineering of colloidal NPs, focusing on the improved stability by grafting suitable small molecules, polymers or biological macromolecules. We then present the practical strategies for nucleic acid surface encoding of NPs and subsequent programmable assembly. Various exciting applications of these unique materials are summarized with a specific focus on the cellular uptake, bio-toxicity, imaging and diagnosis of colloidal NPs in vivo. With the growing interest in colloidal NPs in nano-biological research, we expect that this review can play an instructive role in engineering the surface properties for desired applications.
Collapse
Affiliation(s)
- Xinxin Jing
- Department of Urology, Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Yueyue Zhang
- Department of Urology, Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Min Li
- Department of Urology, Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Xiaolei Zuo
- Department of Urology, Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
- School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Junhua Zheng
- Department of Urology, Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| |
Collapse
|
23
|
Xie W, Gan Y, Zhang Y, Wang P, Zhang J, Qian J, Zhang G, Wu Z. Transition-metal-doped hydrophilic ultrasmall iron oxide modulates MRI contrast performance for accurate diagnosis of orthotopic prostate cancer. J Mater Chem B 2022; 10:9613-9621. [PMID: 36331033 DOI: 10.1039/d2tb01860h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The FDA-approved iron oxide nanocrystals (IONs), as negative magnetic resonance imaging contrast agents (MRICAs), face challenges because of their low relaxation rate and coherent ferromagnetism. Although research has found that metal doping is an efficient approach to improve the magnetic property and MRI contrast performance of IONs, their systemic mechanism has not been fully explained. Herein, we fabricated a series of transition-metal-doped IONs and systemically explored their sizes, structures, and variation in magnetic properties, revealing the oxygen vacancy-mediated MRI contrast enhancement mechanism of transition-metal-doped IONs. Based on these, we found that Zn-doped IONs possess optimal T2 MRI contrast performance and further investigated their potential to diagnose in vivo orthotopic tumor as a T2 contrast agent. The results indicate that the use of Zn-doped IONs significantly enhances T2-weighted MRI signal intensity of orthotopic prostate tumor with low toxicity, which is beneficial for the accurate diagnosis of orthotopic tumor. Collectively, this work clearly illustrates the mechanism of contrast enhancement of transition-metal-doped IONs and provides a novel paradigm for developing a highly efficient T2 contrast agent.
Collapse
Affiliation(s)
- Wenteng Xie
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China. .,University of Science and Technology of China, Hefei 230026, P. R. China
| | - Yuehao Gan
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China. .,University of Science and Technology of China, Hefei 230026, P. R. China
| | - Ya'nan Zhang
- School of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai 264003, P. R. China. .,Institute of Biomedical Imaging Probe, Binzhou Medical University, Yantai 264003, P. R. China
| | - Peng Wang
- School of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai 264003, P. R. China. .,Institute of Biomedical Imaging Probe, Binzhou Medical University, Yantai 264003, P. R. China
| | - Jia Zhang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China.
| | - Junchao Qian
- Hefei Cancer Hospital, Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China.
| | - Guilong Zhang
- School of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai 264003, P. R. China. .,Institute of Biomedical Imaging Probe, Binzhou Medical University, Yantai 264003, P. R. China
| | - Zhengyan Wu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China.
| |
Collapse
|
24
|
Lin F, Jia C, Wu FG. Intracellular Enzyme-Instructed Self-Assembly of Peptides (IEISAP) for Biomedical Applications. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196557. [PMID: 36235094 PMCID: PMC9571778 DOI: 10.3390/molecules27196557] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 11/13/2022]
Abstract
Despite the remarkable significance and encouraging breakthroughs of intracellular enzyme-instructed self-assembly of peptides (IEISAP) in disease diagnosis and treatment, a comprehensive review that focuses on this topic is still desirable. In this article, we carefully review the advances in the applications of IEISAP, including the development of various bioimaging techniques, such as fluorescence imaging, photoacoustic imaging, magnetic resonance imaging, positron-emission tomography imaging, radiation imaging, and multimodal imaging, which are successfully leveraged in visualizing cancer tissues and cells, bacteria, and enzyme activity. We also summarize the utilization of IEISAP in disease treatments, including anticancer, antibacterial, and antiinflammation applications, among others. We present the design, action modes, structures, properties, functions, and performance of IEISAP materials, such as nanofibers, nanoparticles, nanoaggregates, and hydrogels. Finally, we conclude with an outlook towards future developments of IEISAP materials for biomedical applications. It is believed that this review may foster the future development of IEISAP with better performance in the biomedical field.
Collapse
|
25
|
Wu C, Shen Z, Lu Y, Sun F, Shi H. p53 Promotes Ferroptosis in Macrophages Treated with Fe 3O 4 Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2022; 14:42791-42803. [PMID: 36112832 DOI: 10.1021/acsami.2c00707] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Fe3O4 nanoparticles are the most widely used magnetic nanoparticles in the biomedicine field. The biodistribution of most nanoparticles in vivo is determined by the capture of macrophages; however, the effects of nanoparticles on macrophages remain poorly understood. Here, we demonstrated that Fe3O4 nanoparticles could reduce macrophage viability after 48 h of treatment and induce a shift in macrophage polarization toward the M1 phenotype; RNA sequencing revealed the activation of the ferroptosis pathway and p53 upregulation compared to the control group. The expression in p53, xCT, glutathione peroxidase 4 (GPX4), and transferrin receptor (TFR) in macrophages was similar to that in erastin-induced ferroptosis in macrophages, and the ultrastructural morphology of mitochondria was consistent with that of erastin-treated cells. We used DCFH-DA to estimate the intracellular reactive oxygen species content in Fe3O4 nanoparticles treated with Ana-1 and JC-1 fluorescent probes to detect the mitochondrial membrane potential change; both showed to be time-dependent. Fer-1 inhibited the reduction of the glutathione/oxidized glutathione (GSH/GSSG) ratio and inhibited intracellular oxidative stress states; therefore, Fe3O4 nanoparticles induced ferroptosis in macrophages. Finally, we used pifithrin-α hydrobromide (PFT) as a p53 inhibitor to verify whether the high expression of p53 is involved in mediating this process. After PFT treatment, the live/dead cell rate, TFR, p53 expression, and GPX4 consumption were inhibited and mitigated the GSH/GSSG ratio reduction as well. This indicates that p53 may contribute to Fe3O4 nanoparticle-induced ferroptosis of macrophages. We provide a theoretical basis for the molecular mechanisms of ferroptosis in macrophages and the biotoxicity in vivo induced by Fe3O4 nanoparticles.
Collapse
Affiliation(s)
- Cong Wu
- Clinical Medical College, Yangzhou University, Yangzhou 225000, China
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225000, China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225000, China
| | - Zhiming Shen
- Clinical Medical College, Yangzhou University, Yangzhou 225000, China
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225000, China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225000, China
| | - Yi Lu
- Clinical Medical College, Yangzhou University, Yangzhou 225000, China
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225000, China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225000, China
| | - Fei Sun
- Clinical Medical College, Yangzhou University, Yangzhou 225000, China
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225000, China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225000, China
| | - Hongcan Shi
- Clinical Medical College, Yangzhou University, Yangzhou 225000, China
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225000, China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225000, China
| |
Collapse
|
26
|
Stimuli-responsive nanoassemblies for targeted delivery against tumor and its microenvironment. Biochim Biophys Acta Rev Cancer 2022; 1877:188779. [PMID: 35977690 DOI: 10.1016/j.bbcan.2022.188779] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/08/2022] [Accepted: 08/08/2022] [Indexed: 02/06/2023]
Abstract
Despite the emergence of various cancer treatments, such as surgery, chemotherapy, radiotherapy, and immunotherapy, their use remains restricted owing to their limited tumor elimination efficacy and side effects. The use of nanoassemblies as delivery systems in nanomedicine for tumor diagnosis and therapy is flourishing. These nanoassemblies can be designed to have various shapes, sizes, and surface charges to meet the requirements of different applications. It is crucial for nanoassemblies to have enhanced delivery of payloads while inducing minimal to no toxicity to healthy tissues. In this review, stimuli-responsive nanoassemblies capable of combating the tumor microenvironment (TME) are discussed. First, various TME characteristics, such as hypoxia, oxidoreduction, adenosine triphosphate (ATP) elevation, and acidic TME, are described. Subsequently, the unique characteristics of the vascular and stromal TME are differentiated, and multiple barriers that have to be overcome are discussed. Furthermore, strategies to overcome these barriers for successful drug delivery to the targeted site are reviewed and summarized. In conclusion, the possible challenges and prospects of using these nanoassemblies for tumor-targeted delivery are discussed. This review aims at inspiring researchers to develop stimuli-responsive nanoassemblies for tumor-targeted delivery for clinical applications.
Collapse
|
27
|
Nano-bio interactions: A major principle in the dynamic biological processes of nano-assemblies. Adv Drug Deliv Rev 2022; 186:114318. [PMID: 35533787 DOI: 10.1016/j.addr.2022.114318] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 04/12/2022] [Accepted: 04/30/2022] [Indexed: 12/18/2022]
Abstract
Controllable nano-assembly with stimuli-responsive groups is emerging as a powerful strategy to generate theranostic nanosystems that meet unique requirements in modern medicine. However, this prospective field is still in a proof-of-concept stage due to the gaps in our understanding of complex-(nano-assemblies)-complex-(biosystems) interactions. Indeed, stimuli-responsive assembly-disassembly is, in and of itself, a process of nano-bio interactions, the key steps for biological fate and functional activity of nano-assemblies. To provide a comprehensive understanding of these interactions in this review, we first propose a 4W1H principle (Where, When, What, Which and How) to delineate the relevant dynamic biological processes, behaviour and fate of nano-assemblies. We further summarize several key parameters that govern effective nano-bio interactions. The effects of these kinetic parameters on ADMET processes (absorption, distribution, metabolism, excretion and transformation) are then discussed. Furthermore, we provide an overview of the challenges facing the evaluation of nano-bio interactions of assembled nanodrugs. We finally conclude with future perspectives on safe-by-design and application-driven-design of nano-assemblies. This review will highlight the dynamic biological and physicochemical parameters of nano-bio interactions and bridge discrete concepts to build a full spectrum understanding of the biological outcomes of nano-assemblies. These principles are expected to pave the way for future development and clinical translation of precise, safe and effective nanomedicines with intelligent theranostic features.
Collapse
|
28
|
Yuan Y, Bulte JWM. Enzyme-mediated intratumoral self-assembly of nanotheranostics for enhanced imaging and tumor therapy. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1786. [PMID: 35229485 PMCID: PMC9437863 DOI: 10.1002/wnan.1786] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/26/2021] [Accepted: 02/07/2022] [Indexed: 05/09/2023]
Abstract
Enzyme-mediated intratumoral self-assembled (EMISA) nanotheranostics represent a new class of smart agents for combined imaging and therapy of cancer. Cancer cells overexpress various enzymes that are essential for high metabolism, fast proliferation, and tissue invasion and metastasis. By conjugating small molecules that contain an enzyme-specific cleavage site to appropriate chemical linkers, it is possible to induce self-assembly of nanostructures in tumor cells having the target enzyme. This approach of injecting small theranostic molecules that eventually become larger nanotheranostics in situ avoids some of the major limitations that are encountered when injecting larger, pre-assembled nanotheranostics. The advantage of EMISA nanotheranostics include the avoidance of nonspecific uptake and rapid clearance by phagocytic cells, increased cellular accumulation, reduced drug efflux and prolonged cellular exposure time, all of which lead to an amplified imaging signal and therapeutic efficacy. We review here the different approaches that can be used for preparing EMISA-based organic, inorganic, or organic/inorganic hybrid nanotheranostics based on noncovalent interactions and/or covalent bonding. Imaging examples are shown for fluorescence imaging, nuclear imaging, photoacoustic imaging, Raman imaging, computed tomography imaging, bioluminescent imaging, and magnetic resonance imaging. This article is categorized under: Diagnostic Tools > In Vivo Nanodiagnostics and Imaging Biology-Inspired Nanomaterials > Peptide-Based Structures.
Collapse
Affiliation(s)
- Yue Yuan
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, China
| | - Jeff W. M. Bulte
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
29
|
Abstract
Supramolecular assemblies are essential components of living organisms. Cellular scaffolds, such as the cytoskeleton or the cell membrane, are formed via secondary interactions between proteins or lipids and direct biological processes such as metabolism, proliferation and transport. Inspired by nature’s evolution of function through structure formation, a range of synthetic nanomaterials has been developed in the past decade, with the goal of creating non-natural supramolecular assemblies inside living mammalian cells. Given the intricacy of biological pathways and the compartmentalization of the cell, different strategies can be employed to control the assembly formation within the highly crowded, dynamic cellular environment. In this Review, we highlight emerging molecular design concepts aimed at creating precursors that respond to endogenous stimuli to build nanostructures within the cell. We describe the underlying reaction mechanisms that can provide spatial and temporal control over the subcellular formation of synthetic nanostructures. Showcasing recent advances in the development of bioresponsive nanomaterials for intracellular self-assembly, we also discuss their impact on cellular function and the challenges associated with establishing structure–bioactivity relationships, as well as their relevance for the discovery of novel drugs and imaging agents, to address the shortfall of current solutions to pressing health issues. ![]()
Creating artificial nanostructures inside living cells requires the careful design of molecules that can transform into active monomers within a complex cellular environment. This Review explores the recent development of bioresponsive precursors for the controlled formation of intracellular supramolecular assemblies.
Collapse
|
30
|
Zhou Y, Liu R, Shevtsov M, Gao H. When imaging meets size-transformable nanosystems. Adv Drug Deliv Rev 2022; 183:114176. [PMID: 35227872 DOI: 10.1016/j.addr.2022.114176] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/28/2022] [Accepted: 02/22/2022] [Indexed: 02/07/2023]
Abstract
Imaging techniques, including magnetic, optical, acoustic and nuclear imaging, are gaining popularity as a research tool and clinical diagnostics. The advent of imaging agents-incorporated nanosystems (NSs), with sufficient contrast and high resolution, facilitates better monitoring of disease progression, targeted delivery and therapeutic process. Of note, the size of NSs remarkably affects imaging performance, while both large and small NSs enjoy respective features and superiority for imaging aspect, including penetration depth, signal-to-background ratio and spatiotemporal resolution. In this review, after a systematic summary of the basic knowledge of imaging techniques and its relation with size-tunable strategies, we further provide insights into the opportunities and challenges facing size-transformable NSs of the future for bio-imaging application and clinical translation.
Collapse
Affiliation(s)
- Yang Zhou
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610064, PR China
| | - Rui Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610064, PR China
| | - Maxim Shevtsov
- Institute of Cytology of the Russian Academy of Sciences (RAS), St. Petersburg 194064, Russia
| | - Huile Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610064, PR China.
| |
Collapse
|
31
|
Stimuli-controllable iron oxide nanoparticle assemblies: Design, manipulation and bio-applications. J Control Release 2022; 345:231-274. [DOI: 10.1016/j.jconrel.2022.03.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/11/2022] [Accepted: 03/12/2022] [Indexed: 02/07/2023]
|
32
|
Dual key co-activated nanoplatform for switchable MRI monitoring accurate ferroptosis-based synergistic therapy. Chem 2022. [DOI: 10.1016/j.chempr.2022.03.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
33
|
Fu Q, Feng H, Su L, Zhang X, Liu L, Fu F, Yang H, Song J. An Activatable Hybrid Organic–Inorganic Nanocomposite as Early Evaluation System of Therapy Effect. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Qinrui Fu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Hongjuan Feng
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Lichao Su
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Xuan Zhang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Luntao Liu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Fengfu Fu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Jibin Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 China
| |
Collapse
|
34
|
Wang Y, Zhen W, Jiang X, Li J. Driving Forces Sorted In Situ Size‐Increasing Strategy for Enhanced Tumor Imaging and Therapy. SMALL SCIENCE 2022. [DOI: 10.1002/smsc.202100117] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Yue Wang
- State Key Laboratory of Electroanalytical Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 China
| | - Wenyao Zhen
- State Key Laboratory of Electroanalytical Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 China
- University of Science and Technology of China Hefei Anhui 230026 China
| | - Xiue Jiang
- State Key Laboratory of Electroanalytical Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 China
- University of Science and Technology of China Hefei Anhui 230026 China
| | - Jinghong Li
- Department of Chemistry Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology Tsinghua University Beijing 100084 China
| |
Collapse
|
35
|
Liu W, Yin SY, Hu Y, Deng T, Li J. Microemulsion-Confined Assembly of Magnetic Nanoclusters for pH/H 2O 2 Dual-Responsive T 2-T 1 Switchable MRI. ACS APPLIED MATERIALS & INTERFACES 2022; 14:2629-2637. [PMID: 35000378 DOI: 10.1021/acsami.1c22747] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In this work, a T2-T1 switchable superparamagnetic iron oxide nanoprobe with a pH/H2O2 dual response was obtained using a microemulsion method. This novel method for the controllable assembly of small iron clusters followed by their independent modification was reported, which could not be prepared by common synthetic methods. The size of the assembled nanoprobe was uniform and controllable, with a stable T2 magnetic resonance imaging (MRI) signal under a single condition. When the nanoprobe was exposed to the tumor environment, the higher H+ and H2O2 concentrations at the tumor site could dissociate the nanoprobe and redisperse into small iron clusters. When this occurred, the T2 MRI signal was converted into a T1 MRI signal, achieving specific detection of tumors by a pH/H2O2 dual-response T2-T1 MRI.
Collapse
Affiliation(s)
- Wei Liu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Sheng-Yan Yin
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yingcai Hu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Ting Deng
- Institute of Applied Chemistry, School of Science, Central South University of Forestry and Technology, Changsha 410004, P. R. China
| | - Jishan Li
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
36
|
Wang S, Xu J, Li W, Sun S, Gao S, Hou Y. Magnetic Nanostructures: Rational Design and Fabrication Strategies toward Diverse Applications. Chem Rev 2022; 122:5411-5475. [PMID: 35014799 DOI: 10.1021/acs.chemrev.1c00370] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In recent years, the continuous development of magnetic nanostructures (MNSs) has tremendously promoted both fundamental scientific research and technological applications. Different from the bulk magnet, the systematic engineering on MNSs has brought a great breakthrough in some emerging fields such as the construction of MNSs, the magnetism exploration of multidimensional MNSs, and their potential translational applications. In this review, we give a detailed description of the synthetic strategies of MNSs based on the fundamental features and application potential of MNSs and discuss the recent progress of MNSs in the fields of nanomedicines, advanced nanobiotechnology, catalysis, and electromagnetic wave adsorption (EMWA), aiming to provide guidance for fabrication strategies of MNSs toward diverse applications.
Collapse
Affiliation(s)
- Shuren Wang
- Beijing Key Laboratory of Magnetoelectric Materials and Devices, School of Materials Science and Engineering, Beijing Innovation Centre for Engineering Science and Advanced Technology, Peking University, Beijing 100871, China
| | - Junjie Xu
- Beijing Key Laboratory of Magnetoelectric Materials and Devices, School of Materials Science and Engineering, Beijing Innovation Centre for Engineering Science and Advanced Technology, Peking University, Beijing 100871, China
| | - Wei Li
- Beijing Key Laboratory of Magnetoelectric Materials and Devices, School of Materials Science and Engineering, Beijing Innovation Centre for Engineering Science and Advanced Technology, Peking University, Beijing 100871, China
| | - Shengnan Sun
- Beijing Key Laboratory of Magnetoelectric Materials and Devices, School of Materials Science and Engineering, Beijing Innovation Centre for Engineering Science and Advanced Technology, Peking University, Beijing 100871, China
| | - Song Gao
- Beijing Key Laboratory of Magnetoelectric Materials and Devices, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.,Institute of Spin-X Science and Technology, South China University of Technology, Guangzhou 511442, China
| | - Yanglong Hou
- Beijing Key Laboratory of Magnetoelectric Materials and Devices, School of Materials Science and Engineering, Beijing Innovation Centre for Engineering Science and Advanced Technology, Peking University, Beijing 100871, China
| |
Collapse
|
37
|
Zhang P, Jing L. Nanoprobes for Visualization of Cancer Pathology in Vivo※. ACTA CHIMICA SINICA 2022. [DOI: 10.6023/a21120609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
38
|
Kumar P, Tomar V, Kumar D, Joshi RK, Nemiwal M. Magnetically active iron oxide nanoparticles for catalysis of organic transformations: A review. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
39
|
Li H, Hai Z, Zou L, Zhang L, Wang L, Wang L, Liang G. Simultaneous enhancement of T 1 and T 2 magnetic resonance imaging of liver tumor at respective low and high magnetic fields. Theranostics 2022; 12:410-417. [PMID: 34987653 PMCID: PMC8690926 DOI: 10.7150/thno.67155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/27/2021] [Indexed: 12/15/2022] Open
Abstract
Background: Nowadays, magnetic resonance imaging (MRI) is routinely applied in clinical diagnosis. However, using one contrast agent (CA) to simultaneously enhance the T1 and T2 MR contrast at low and high magnetic fields respectively has not been reported. Methods: Herein, we investigated the MR property of a γ-glutamyl transpeptidase (GGT)-instructed, intracellular formed gadolinium nanoparticle (DOTA-Gd-CBT-NP) at low and high magnetic fields. Results: Experimental results showed that DOTA-Gd-CBT-NP possesses a low r2/r1 ratio 0.91 which enables it to enhance T1 MR imaging of liver tumor at 1.0 T, and a high r2/r1 ratio 11.8 which renders the nanoparticle to largely enhance T2 MR imaging of liver tumor at 9.4 T. Conclusion: We expect that our GGT-responsive Gd-nanoparticle could be applied for simultaneous T1 and T2 MRI diagnosis of early liver cancer in clinic at respective low and high magnetic fields when the 9.4 T MR machine is clinically available in the future.
Collapse
Affiliation(s)
- Huan Li
- Department of Radiology, the Second Hospital of Anhui Medical University, Hefei, Anhui 230601, China
| | - Zijuan Hai
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
| | - Liwei Zou
- Department of Radiology, the Second Hospital of Anhui Medical University, Hefei, Anhui 230601, China
| | - Lele Zhang
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
| | - Lulu Wang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Longsheng Wang
- Department of Radiology, the Second Hospital of Anhui Medical University, Hefei, Anhui 230601, China
| | - Gaolin Liang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| |
Collapse
|
40
|
Huang Q, Li J, Mo L, Zhao Y. A Novel Risk Signature with Seven Pyroptosis-Related Genes for Prognosis Prediction in Glioma. World Neurosurg 2021; 159:e285-e302. [PMID: 34929369 DOI: 10.1016/j.wneu.2021.12.042] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 12/12/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Increasing evidence indicates that pyroptosis is closely linked to the occurrence and progression of cancer. However, the expression and prognostic role of most pyroptosis-related genes in glioma have not been fully elucidated. METHODS Herein, we explored the expression profiles and prognostic value of 33 pyroptosis-related genes in glioma. LASSO regression analysis was then used to construct a risk signature to predict glioma outcomes in The Cancer Genome Atlas (TCGA) cohort. Furthermore, we constructed a nomogram based on independent prognostic factors and performed external validation. Finally, functional enrichment analysis was performed to explore the potential biological role of the pyroptosis-related signature in glioma. RESULTS The expression of most pyroptosis-related genes (31/33) was significantly different between normal brain and glioma tissue. By univariate Cox regression analysis, 24 genes were found to be significantly correlated with glioma overall survival (OS). Subsequently, we constructed a 7-gene risk signature in the TCGA training cohort, which demonstrated good performance in predicting glioma survival through multidatabase validation. Moreover, a nomogram was established based on independent prognostic factors (age, WHO grade, IDH status and signature) and confirmed to be more effective and accurate through internal evaluation and external validation. Finally, functional enrichment analyses suggested that the signature might be related to invasion ability and immune function. CONCLUSIONS The risk signature based on seven pyroptosis-related genes can effectively predict the clinical outcomes of glioma patients. Our study provides novel insights for further understanding the association between pyroptosis-related genes and glioma prognosis.
Collapse
Affiliation(s)
- Qianrong Huang
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, P.R. China
| | - Jianwen Li
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, P.R. China
| | - Ligen Mo
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, P.R. China
| | - Yinnong Zhao
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, P.R. China.
| |
Collapse
|
41
|
Fu Q, Feng H, Su L, Zhang X, Liu L, Fu F, Yang H, Song J. An Activatable Hybrid Organic-Inorganic Nanocomposite as Early Evaluation System of Therapy Effect. Angew Chem Int Ed Engl 2021; 61:e202112237. [PMID: 34882312 DOI: 10.1002/anie.202112237] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Indexed: 11/07/2022]
Abstract
Delays in evaluating cancer response to radiotherapy (RT) usually reduce therapy effect or miss the right time for treatment optimization. Hence, exploring timely and accurate methods enabling one to gain insights of RT response are highly desirable. In this study, we have developed an apoptosis enzyme (caspase-3) activated nanoprobe for early evaluation of RT efficacy. The nanoprobe bridged the nanogapped gold nanoparticles (AuNNPs) and the second near-infrared window (NIR-II) fluorescent (FL) molecules (IR-1048) through a caspase-3 specific peptide sequence (DEVD) (AuNNP@DEVD-IR1048). After X-ray irradiation, caspase-3 was activated to cut DEVD, turning on both NIR-II FL and PA imaging signals. The increased NIR-II FL/PA signals exhibited a positive correlation with the content of caspase-3. Moreover, the amount of the activated caspase-3 was negatively correlated with the tumor size. The results underscore the role of the caspase-3 activated by X-ray irradiation in bridging the imaging signals variation and tumor inhibition rate. Overall, activatable NIR-II FL/PA imaging was successfully used to timely predict and evaluate the RT efficacy. The evaluation system based on biomarker-triggered living imaging has the capacity to guide treatment decisions for numerous cancer types.
Collapse
Affiliation(s)
- Qinrui Fu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Hongjuan Feng
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Lichao Su
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Xuan Zhang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Luntao Liu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Fengfu Fu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Jibin Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| |
Collapse
|
42
|
Yang Y, Wu H, Liu B, Liu Z. Tumor microenvironment-responsive dynamic inorganic nanoassemblies for cancer imaging and treatment. Adv Drug Deliv Rev 2021; 179:114004. [PMID: 34662672 DOI: 10.1016/j.addr.2021.114004] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 09/08/2021] [Accepted: 10/11/2021] [Indexed: 02/07/2023]
Abstract
Dynamic inorganic nanoassemblies (DINAs) have emerged as smart nanomedicine platforms with promising potential for bioimaging and targeted drug delivery. In this review, we keep abreast of the advances in development of tumor microenvironment (TME)-responsive DINAs to meet the challenges associated with precise cancer therapy. TME-responsive DINAs are designed to achieve precise switches of structures/functions in response to TME-specific stimuli including reactive oxygen species (ROS), reduced pH and hypoxia, so as to enhance the tumor accumulation of nanoassemblies, overcome the biological barriers during intratumoral penentration of therapeutics, and achieve tumor-specific imaging and therapy. This progress report will summarize various types of recently reported smart DINAs for TME-responsive tumor imaging and therapy. Their future development towards potential clinical translation will also be discussed.
Collapse
|
43
|
Zhang N, Wu H, Liang Y, Ye J, Zhang H, Miao Y, Luo Y, Fan H, Yue T. Design and Preparation of "corn-like" SPIONs@DFK-SBP-M13 Assembly for Improvement of Effective Internalization. Int J Nanomedicine 2021; 16:7091-7102. [PMID: 34703229 PMCID: PMC8541766 DOI: 10.2147/ijn.s325282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/30/2021] [Indexed: 12/20/2022] Open
Abstract
Purpose Superparamagnetic iron oxide nanoparticles (SPIONs) have exhibited preeminent diagnosis and treatment performances, but their low internalization severely limits predesigned functions. The low cell internalization is now an urgent bottleneck problem for almost all nanomaterials. To achieve more internalization of SPIONS, recombinant M13 phage was designed for targeted delivery and smart release. Methods M13 phages were designed to co-express exogenous SPARC binding peptide (SBP) and cathepsin B cleavage peptide (DFK), formed recombinant DFK-SBP-M13. 3.37± 0.06 nm of SPIONs were modified by 3, 4-dihydroxyhydrocinnamic acid (DHCA) to gain 10.80 ± 0.21 nm of DHCA-coated SPIONs, i.e., DHCA@SPIONs. Upon adjusting the proportions of DHCA@SPIONs and DFK-SBP-M13, the multi-carboxyl SPIONs assembled onto recombinant M13 phages via covalent bonding. The assemblies were co-cultured with MDA-MB-231 cells to interpret their internalization and smart release. Results The “corn-like” SPIONs@DFK-SBP-M13 (261.47±3.30 nm) assemblies have not been reported previously. The assembly was stable, dispersible, superparamagnetic and biocompatible. After co-cultivation with MDA-MB-231 cells, the SPIONs@DFK-SBP-M13 assemblies quickly bond to the cell surface and are internalized. The enrichment rate of SPIONs@DFK-SBP-M13 assembly was 13.9 times higher than free SPIONs at 0.5 h, and intracellular Fe content was 3.6 times higher at 1 h. Furthermore, the DFK peptides favored cathepsin B to cleave SPIONs from the M13 templates resulting in release of SPIONs inside cells. Conclusion The novel SPIONs@DFK-SBP-M13 assembly can rapidly deliver SPIONs to the targeted sites and enabled smart release. The combination of genetic recombination and nanotechnology is beneficial for designing and optimizing some new nanomaterials with special functions to achieve wider applications.
Collapse
Affiliation(s)
- Na Zhang
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, 710069, People's Republic of China
| | - Hui Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Yingzhi Liang
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, 710069, People's Republic of China
| | - Jianming Ye
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, 710069, People's Republic of China
| | - Huan Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi, 710069, People's Republic of China
| | - Yuqing Miao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi, 710069, People's Republic of China
| | - Yane Luo
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, 710069, People's Republic of China
| | - Haiming Fan
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi, 710069, People's Republic of China
| | - Tianli Yue
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, 710069, People's Republic of China.,Laboratory of Quality and Safety Risk Assessment for Agro-Products (Yangling), Ministry of Agriculture, Beijing, People's Republic of China
| |
Collapse
|
44
|
Zhong Y, Bejjanki NK, Miao X, Weng H, Li Q, Zhang J, Liu T, Vannam R, Xie M. Synthesis and Photothermal Effects of Intracellular Aggregating Nanodrugs Targeting Nasopharyngeal Carcinoma. Front Bioeng Biotechnol 2021; 9:730925. [PMID: 34604188 PMCID: PMC8481884 DOI: 10.3389/fbioe.2021.730925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/02/2021] [Indexed: 12/25/2022] Open
Abstract
Chemotherapy for the treatment of nasopharyngeal carcinoma (NPC) is usually associated with many side effects; therefore, its treatment options have not yet been completely resolved. Improving distribution to the targeted tumor region and enhancing the cellular uptake of drugs can efficiently alleviate the above adverse medical effects. Near-infrared (NIR) laser light-mediated photothermal therapy (PTT) and photodynamic therapy (PDT) are promising strategies for cancer treatment. In the present study, we developed an efficient multifunctional nanocluster with enhanced targeting and aggregation efficiency for PTT and PDT that is composed of a biocompatible folic acid (FA), indocyanine green (ICG) and 2-cyanobenzothiazole (CBT)-functionalized peptide labeled with an aldehyde sodium alginate-modified magnetic iron oxide nanoparticle (ASA-MNP)-based nanocarrier. FA can bind to folate receptors on cancer cell membranes to enhance nanocluster uptake. CBT-modified peptide can react with glutathione (GSH), which is typically present at higher levels in cancer cells, to form intracellular aggregates and increase the local concentration of the nanodrug. In in vitro studies, these nanodrugs displayed the desired uptake capacity by NPC cells and the ability to suppress the growth of cancer cells under laser irradiation. Animal studies validated that these nanodrugs are safe and nontoxic, efficiently accumulate in NPC tumor sites following injection via the caudal vein, and shows superior inhibition of tumor growth in a tumor-bearing mouse model upon near-infrared laser irradiation. The results indicate the potential application of the multifunctional nanoparticles (NPs), which can be used as a new method for the treatment of folate receptor-positive NPC.
Collapse
Affiliation(s)
- Ying Zhong
- Department of Otolaryngology-Head and Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Department of Otolaryngology-Head and Neck Surgery, Zhuhai People's Hospital, Zhuhai, China
| | - Naveen Kumar Bejjanki
- Department of Otolaryngology-Head and Neck Surgery, Zhuhai People's Hospital, Zhuhai, China
| | - Xiangwan Miao
- Department of Otolaryngology-Head and Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Huanhuan Weng
- Department of Thyroid Surgery, Shantou Central Hospital, Shantou, China
| | - Quanming Li
- Department of Otolaryngology-Head and Neck Surgery, Zhuhai People's Hospital, Zhuhai, China
| | - Juan Zhang
- Department of Otolaryngology-Head and Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Tao Liu
- Department of Otolaryngology-Head and Neck Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Raghu Vannam
- Piramal Pharma Solutions, Riverview, MI, United States
| | - Minqiang Xie
- Department of Otolaryngology-Head and Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Department of Otolaryngology-Head and Neck Surgery, Zhuhai People's Hospital, Zhuhai, China
| |
Collapse
|
45
|
Jin X, Yang W, Xu Y, Bian K, Zhang B. Emerging strategies of activatable MR imaging probes and their advantages for biomedical applications. VIEW 2021. [DOI: 10.1002/viw.20200141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Xiao Jin
- Institute of Photomedicine Shanghai Skin Disease Hospital, Tongji University Cancer Center The Institute for Biomedical Engineering & Nano Science Tongji University School of Medicine Shanghai China
| | - Weitao Yang
- Institute of Photomedicine Shanghai Skin Disease Hospital, Tongji University Cancer Center The Institute for Biomedical Engineering & Nano Science Tongji University School of Medicine Shanghai China
| | - Yan Xu
- Institute of Photomedicine Shanghai Skin Disease Hospital, Tongji University Cancer Center The Institute for Biomedical Engineering & Nano Science Tongji University School of Medicine Shanghai China
| | - Kexin Bian
- Institute of Photomedicine Shanghai Skin Disease Hospital, Tongji University Cancer Center The Institute for Biomedical Engineering & Nano Science Tongji University School of Medicine Shanghai China
| | - Bingbo Zhang
- Institute of Photomedicine Shanghai Skin Disease Hospital, Tongji University Cancer Center The Institute for Biomedical Engineering & Nano Science Tongji University School of Medicine Shanghai China
| |
Collapse
|
46
|
Hu X, Li F, Xia F, Wang Q, Lin P, Wei M, Gong L, Low LE, Lee JY, Ling D. Dynamic nanoassembly-based drug delivery system (DNDDS): Learning from nature. Adv Drug Deliv Rev 2021; 175:113830. [PMID: 34139254 DOI: 10.1016/j.addr.2021.113830] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 05/19/2021] [Accepted: 06/10/2021] [Indexed: 12/18/2022]
Abstract
Dynamic nanoassembly-based drug delivery system (DNDDS) has evolved from being a mere curiosity to emerging as a promising strategy for high-performance diagnosis and/or therapy of various diseases. However, dynamic nano-bio interaction between DNDDS and biological systems remains poorly understood, which can be critical for precise spatiotemporal and functional control of DNDDS in vivo. To deepen the understanding for fine control over DNDDS, we aim to explore natural systems as the root of inspiration for researchers from various fields. This review highlights ingenious designs, nano-bio interactions, and controllable functionalities of state-of-the-art DNDDS under endogenous or exogenous stimuli, by learning from nature at the molecular, subcellular, and cellular levels. Furthermore, the assembly strategies and response mechanisms of tailor-made DNDDS based on the characteristics of various diseased microenvironments are intensively discussed. Finally, the current challenges and future perspectives of DNDDS are briefly commented.
Collapse
|
47
|
Wang X, Zhong X, Li J, Liu Z, Cheng L. Inorganic nanomaterials with rapid clearance for biomedical applications. Chem Soc Rev 2021; 50:8669-8742. [PMID: 34156040 DOI: 10.1039/d0cs00461h] [Citation(s) in RCA: 244] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Inorganic nanomaterials that have inherently exceptional physicochemical properties (e.g., catalytic, optical, thermal, electrical, or magnetic performance) that can provide desirable functionality (e.g., drug delivery, diagnostics, imaging, or therapy) have considerable potential for application in the field of biomedicine. However, toxicity can be caused by the long-term, non-specific accumulation of these inorganic nanomaterials in healthy tissues, preventing their large-scale clinical utilization. Over the past several decades, the emergence of biodegradable and clearable inorganic nanomaterials has offered the potential to prevent such long-term toxicity. In addition, a comprehensive understanding of the design of such nanomaterials and their metabolic pathways within the body is essential for enabling the expansion of theranostic applications for various diseases and advancing clinical trials. Thus, it is of critical importance to develop biodegradable and clearable inorganic nanomaterials for biomedical applications. This review systematically summarizes the recent progress of biodegradable and clearable inorganic nanomaterials, particularly for application in cancer theranostics and other disease therapies. The future prospects and opportunities in this rapidly growing biomedical field are also discussed. We believe that this timely and comprehensive review will stimulate and guide additional in-depth studies in the area of inorganic nanomedicine, as rapid in vivo clearance and degradation is likely to be a prerequisite for the future clinical translation of inorganic nanomaterials with unique properties and functionality.
Collapse
Affiliation(s)
- Xianwen Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu Province, China.
| | | | | | | | | |
Collapse
|
48
|
Affiliation(s)
- Qinrui Fu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry Fuzhou University Fuzhou China
| | - Xuan Zhang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry Fuzhou University Fuzhou China
| | - Jibin Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry Fuzhou University Fuzhou China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry Fuzhou University Fuzhou China
| |
Collapse
|
49
|
Cheng G, Zong W, Guo H, Li F, Zhang X, Yu P, Ren F, Zhang X, Shi X, Gao F, Chang J, Wang S. Programmed Size-Changeable Nanotheranostic Agents for Enhanced Imaging-Guided Chemo/Photodynamic Combination Therapy and Fast Elimination. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2100398. [PMID: 33876500 DOI: 10.1002/adma.202100398] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/27/2021] [Indexed: 06/12/2023]
Abstract
An ideal nanotheranostic agent should be able to achieve efficient tumor accumulation, retention, and fast elimination after its theranostic functions exhausts. However, there is an irreconcilable contradiction on optimum sizes for effective tumor retention and fast elimination. Herein, a programmed size-changeable nanotheranostic agent based on polyprodrug-modified iron oxide nanoparticles (IONPs) and aggregation-induced emission photosensitizer is developed for enhanced magnetic resonance imaging (MRI)-guided chemo/photodynamic combination therapy. The nano-sized theranostic agents with an initial diameter of about 90 nm can accumulate in tumor tissue through passive targeting. In the acidic tumor microenvironment, large aggregates of IONPs are formed, realizing enhanced tumor retention and MR signal enhancement. Under the guidance of MRI, light irradiation is applied to the tumor site for triggering the generation of reactive oxygen species and drug release. Moreover, after chemo/photodynamic combination therapy, the large-sized aggregates are re-dispersed into small-sized IONPs for fast elimination, reducing the risk of toxicity caused by long-term retention. Therefore, this study provides a promising size-changeable strategy for the development of nanotheranostic agents.
Collapse
Affiliation(s)
- Guohui Cheng
- School of Life Sciences, Tianjin University, Tianjin, 300072, P. R. China
| | - Wei Zong
- Shandong Medical Imaging Research Institute, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, P. R. China
- Shandong Medical Imaging Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, 250021, P. R. China
| | - Haizhen Guo
- School of Life Sciences, Tianjin University, Tianjin, 300072, P. R. China
| | - Fuyan Li
- Shandong Medical Imaging Research Institute, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, P. R. China
- Shandong Medical Imaging Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, 250021, P. R. China
| | - Xu Zhang
- School of Life Sciences, Tianjin University, Tianjin, 300072, P. R. China
| | - Peng Yu
- School of Life Sciences, Tianjin University, Tianjin, 300072, P. R. China
| | - Fuxin Ren
- Shandong Medical Imaging Research Institute, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, P. R. China
- Shandong Medical Imaging Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, 250021, P. R. China
| | - Xinlu Zhang
- School of Life Sciences, Tianjin University, Tianjin, 300072, P. R. China
| | - Xiaoen Shi
- School of Life Sciences, Tianjin University, Tianjin, 300072, P. R. China
| | - Fei Gao
- Shandong Medical Imaging Research Institute, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, P. R. China
- Shandong Medical Imaging Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, 250021, P. R. China
| | - Jin Chang
- School of Life Sciences, Tianjin University, Tianjin, 300072, P. R. China
| | - Sheng Wang
- School of Life Sciences, Tianjin University, Tianjin, 300072, P. R. China
| |
Collapse
|
50
|
Yang HY, Li Y, Lee DS. Functionalization of Magnetic Nanoparticles with Organic Ligands toward Biomedical Applications. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202000043] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Hong Yu Yang
- College of Materials Science and Engineering Jilin Institute of Chemical Technology Jilin Jilin Province 132022 P.R. China
| | - Yi Li
- College of Materials and Textile Engineering Jiaxing University Jiaxing Zhejiang Province 314001 P.R. China
| | - Doo Sung Lee
- Theranostic Macromolecules Research Center and School of Chemical Engineering Sungkyunkwan University Suwon Gyeonggi-do 16419 Republic of Korea
| |
Collapse
|