1
|
Dragoman M, Dragoman D, Modreanu M, Vulpe S, Romanitan C, Aldrigo M, Dinescu A. Electric-Field-Induced Metal-Insulator Transition for Low-Power and Ultrafast Nanoelectronics. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:589. [PMID: 40278455 PMCID: PMC12029378 DOI: 10.3390/nano15080589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/01/2025] [Accepted: 04/10/2025] [Indexed: 04/26/2025]
Abstract
We present here a comprehensive review of various classes of electric-field-induced reversible Mott metal-insulator materials, which have many applications in ultrafast switches, reconfigurable high-frequency devices up to THz, and photonics. Various types of Mott transistors are analyzed, and their applications are discussed. This paper introduces new materials that demonstrate the Mott transition at very low DC voltage levels, induced by an external electric field. The final section of the paper examines ferroelectric Mott transistors and these innovative ferroelectric Mott materials.
Collapse
Affiliation(s)
- Mircea Dragoman
- National Institute for Research and Development in Microtechnologies, Str. Erou Iancu Nicolae 126A, 077190 Voluntari, Romania; (S.V.); (C.R.); (M.A.); (A.D.)
| | - Daniela Dragoman
- Physics Faculty, University of Bucharest, PO Box MG-11, 077125 Bucharest, Romania;
- Academy of Romanian Scientists, Str. Ilfov 3, 050044 Bucharest, Romania
| | - Mircea Modreanu
- Tyndall National Institute, University College Cork, Lee Maltings, Dyke Parade, T12 R5CP Cork, Ireland;
| | - Silviu Vulpe
- National Institute for Research and Development in Microtechnologies, Str. Erou Iancu Nicolae 126A, 077190 Voluntari, Romania; (S.V.); (C.R.); (M.A.); (A.D.)
| | - Cosmin Romanitan
- National Institute for Research and Development in Microtechnologies, Str. Erou Iancu Nicolae 126A, 077190 Voluntari, Romania; (S.V.); (C.R.); (M.A.); (A.D.)
| | - Martino Aldrigo
- National Institute for Research and Development in Microtechnologies, Str. Erou Iancu Nicolae 126A, 077190 Voluntari, Romania; (S.V.); (C.R.); (M.A.); (A.D.)
| | - Adrian Dinescu
- National Institute for Research and Development in Microtechnologies, Str. Erou Iancu Nicolae 126A, 077190 Voluntari, Romania; (S.V.); (C.R.); (M.A.); (A.D.)
| |
Collapse
|
2
|
Hui S, Chen Q, Tao K, Zhang L, Fan X, Che R, Wu H. Highly Mixed Index Facet Engineering Induces Defect Formation and Converts the Wave-Transmissive Mott Insulator NiO into Electromagnetic Wave Absorbent. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2415844. [PMID: 39593259 DOI: 10.1002/adma.202415844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/09/2024] [Indexed: 11/28/2024]
Abstract
Mott insulator possesses the property of converting into semiconductor under supernormal conditions and achieving the Mott insulator-semiconductor transition (IST) holds great scientific value. Nevertheless, current IST methodologies possess certain limitations because they are not capable of being implemented under conventional conditions, thereby limiting their practical applications. Herein, a highly mixed index facets (HMIF) strategy is proposed to construct homogeneous interfaces with gradient work function (WF) in Mott insulator NiO, accompanied by numerous oxygen vacancies. These vacancies provide additional defect energy levels and inhomogeneous charge distributions, resulting in a 180 fold enhancement of conductivity, realizing the IST process, and inducing the defect polarization. In addition, HMIF configuration induces electron transport along the index facets with gradient WF, ultimately leading to accumulation on the specific facet. This accumulation allows this facet can be considered as a dipole with its adjacent facets and makes NiO to attenuate electromagnetic waves (EMW) through dipole polarization. Therefore, NiO with exposed HMIF possesses improved EMW absorption properties (80-fold higher than that of commercial NiO), realizing the transition from EMW-transmissive to EMW-absorbing materials. This research presents an approach for the IST process, discovers the polarization behavior that occurred on specific index facet, and extends its potential application in EMW absorption.
Collapse
Affiliation(s)
- Shengchong Hui
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Qiang Chen
- Science and Technology on Thermostructural Composite Materials Laboratory, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Kai Tao
- The Ministry of Education Key Laboratory of Micro and Nano Systems for Aerospace, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Limin Zhang
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Xiaomeng Fan
- Science and Technology on Thermostructural Composite Materials Laboratory, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Renchao Che
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Academy for Engineering & Technology, Advanced Coatings Research Center of Ministry of Education of China, Fudan University, Shanghai, 200438, P. R. China
| | - Hongjing Wu
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| |
Collapse
|
3
|
Lee YJ, Kim Y, Gim H, Hong K, Jang HW. Nanoelectronics Using Metal-Insulator Transition. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305353. [PMID: 37594405 DOI: 10.1002/adma.202305353] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/02/2023] [Indexed: 08/19/2023]
Abstract
Metal-insulator transition (MIT) coupled with an ultrafast, significant, and reversible resistive change in Mott insulators has attracted tremendous interest for investigation into next-generation electronic and optoelectronic devices, as well as a fundamental understanding of condensed matter systems. Although the mechanism of MIT in Mott insulators is still controversial, great efforts have been made to understand and modulate MIT behavior for various electronic and optoelectronic applications. In this review, recent progress in the field of nanoelectronics utilizing MIT is highlighted. A brief introduction to the physics of MIT and its underlying mechanisms is begun. After discussing the MIT behaviors of various Mott insulators, recent advances in the design and fabrication of nanoelectronics devices based on MIT, including memories, gas sensors, photodetectors, logic circuits, and artificial neural networks are described. Finally, an outlook on the development and future applications of nanoelectronics utilizing MIT is provided. This review can serve as an overview and a comprehensive understanding of the design of MIT-based nanoelectronics for future electronic and optoelectronic devices.
Collapse
Affiliation(s)
- Yoon Jung Lee
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Youngmin Kim
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyeongyu Gim
- Department of Materials Science and Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Kootak Hong
- Department of Materials Science and Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Ho Won Jang
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
- Advanced Institute of Convergence Technology, Seoul National University, Suwon, 16229, Republic of Korea
| |
Collapse
|
4
|
Neuromorphic learning with Mott insulator NiO. Proc Natl Acad Sci U S A 2021; 118:2017239118. [PMID: 34531299 DOI: 10.1073/pnas.2017239118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2021] [Indexed: 11/18/2022] Open
Abstract
Habituation and sensitization (nonassociative learning) are among the most fundamental forms of learning and memory behavior present in organisms that enable adaptation and learning in dynamic environments. Emulating such features of intelligence found in nature in the solid state can serve as inspiration for algorithmic simulations in artificial neural networks and potential use in neuromorphic computing. Here, we demonstrate nonassociative learning with a prototypical Mott insulator, nickel oxide (NiO), under a variety of external stimuli at and above room temperature. Similar to biological species such as Aplysia, habituation and sensitization of NiO possess time-dependent plasticity relying on both strength and time interval between stimuli. A combination of experimental approaches and first-principles calculations reveals that such learning behavior of NiO results from dynamic modulation of its defect and electronic structure. An artificial neural network model inspired by such nonassociative learning is simulated to show advantages for an unsupervised clustering task in accuracy and reducing catastrophic interference, which could help mitigate the stability-plasticity dilemma. Mott insulators can therefore serve as building blocks to examine learning behavior noted in biology and inspire new learning algorithms for artificial intelligence.
Collapse
|
5
|
Martinez EY, Zhu K, Li CW. Influence of the Defect Stability on n-Type Conductivity in Electron-Doped α- and β-Co(OH) 2 Nanosheets. Inorg Chem 2021; 60:6950-6956. [PMID: 33835781 DOI: 10.1021/acs.inorgchem.1c00455] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Electronic doping of transition-metal oxides (TMOs) is typically accomplished through the synthesis of nonstoichiometric oxide compositions and the subsequent ionization of intrinsic lattice defects. As a result, ambipolar doping of wide-band-gap TMOs is difficult to achieve because the formation energies and stabilities of vacancy and interstitial defects vary widely as a function of the oxide composition and crystal structure. The facile formation of lattice defects for one carrier type is frequently paired with the high-energy and unstable generation of defects required for the opposite carrier polarity. Previous work from our group showed that the brucite (β-phase) layered metal hydroxides of Co and Ni, intrinsically p-type materials in their anhydrous three-dimensional forms, could be n-doped using a strong chemical reductant. In this work, we extend the electron-doping study to the α polymorph of Co(OH)2 and elucidate the defects responsible for n-type doping in these two-dimensional materials. Through structural and electronic comparisons between the α, β, and rock-salt structures within the cobalt (hydr)oxide family of materials, we show that both layered structures exhibit facile formation of anion vacancies, the necessary defect for n-type doping, that are not accessible in the cubic CoO structure. However, the brucite polymorph is much more stable to reductive decomposition in the presence of doped electrons because of its tighter layer-to-layer stacking and octahedral coordination geometry, which results in a maximum conductivity of 10-4 S/cm, 2 orders of magnitude higher than the maximum value attainable on the α-Co(OH)2 structure.
Collapse
Affiliation(s)
- Eve Y Martinez
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Kuixin Zhu
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Christina W Li
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
6
|
Hu M, Zhu J, Zhou W. Synthesis of oxygen vacancy-enriched N/P co-doped CoFe 2O 4 for high-efficient degradation of organic pollutant: Mechanistic insight into radical and nonradical evolution. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 270:116092. [PMID: 33333407 DOI: 10.1016/j.envpol.2020.116092] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/20/2020] [Accepted: 11/13/2020] [Indexed: 06/12/2023]
Abstract
Oxygen vacancy-enriched N/P co-doped cobalt ferrite (NPCFO) was synthesized using ionic liquid as N and P sources, and then the catalytic performance and mechanism of NPCFO upon peroxymonosulfate (PMS) activation for the degradation of organic pollutants were investigated. The as-synthesized NPCFO-700 exhibited excellent catalytic performance in activating PMS, and the degradation rate constant of 4-chlorophenol (4-CP) increased with the increase of OV concentration in NPCFO-x. EPR analysis confirmed the existence of ·OH, SO4·-, and 1O2 in the NPCFO-700/PMS system, in which OV could induce the generation of 1O2 by PMS adsorption and successive capture, and also served as electronic transfer medium to accelerate the redox cycle of M2+/M3+ (M denotes Co or Fe) for the generation of radical to synergistically degrade organic pollutants. In addition, the contribution of free radical and nonradical to 4-CP degradation was observed to be strongly dependent on solution pH, and SO4·- was the major ROS in 4-CP degradation under acid and alkaline condition, while 1O2 was involved in the degradation of 4-CP under neutral condition due its selective oxidation capacity, as evidenced by the fact that such organic pollutants with ionization potential (IP) below 9.0 eV were more easily attacked by 1O2. The present study provided a novel insight into the development of transition metal-based heterogeneous catalyst containing massive OV for high-efficient PMS activation and degradation of organic pollutants.
Collapse
Affiliation(s)
- Mingzhu Hu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jinyi Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Wenjun Zhou
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; The Key Laboratory of Organic Pollution Process and Control, Zhejiang Province, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
7
|
Martinez EY, Zhu K, Li CW. Reversible Electron Doping of Layered Metal Hydroxide Nanoplates (M = Co, Ni) Using n-Butyllithium. NANO LETTERS 2020; 20:7580-7587. [PMID: 32877192 DOI: 10.1021/acs.nanolett.0c03092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Ambipolar doping of metal oxides is critical toward broadening the functionality of semiconducting oxides in electronic devices. Most metal oxides, however, show a strong preference for a single doping polarity due to the intrinsic stability of particular defects in an oxide lattice. In this work, we demonstrate that layered metal hydroxide nanomaterials of Co and Ni, which are intrinsically p-doped in their anhydrous rock salt form, can be n-doped using n-BuLi as a strong electron donor. A combination of X-ray characterization techniques reveal that hydroxide vacancy formation, Li+ adsorption, and varying degrees of electron delocalization are responsible for the stability of injected electrons. The doped electrons induce conductivity increases of 4-6 orders of magnitude relative to the undoped M(OH)2. We anticipate that chemical electron doping of layered metal hydroxides may be a general strategy to increase carrier concentration and stability for n-doping of intrinsically p-type metal oxides.
Collapse
Affiliation(s)
- Eve Y Martinez
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Kuixin Zhu
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Christina W Li
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
8
|
Chen Q, Chen M, Zhu L, Miao N, Zhou J, Ackland GJ, Sun Z. Composition-Gradient-Mediated Semiconductor-Metal Transition in Ternary Transition-Metal-Dichalcogenide Bilayers. ACS APPLIED MATERIALS & INTERFACES 2020; 12:45184-45191. [PMID: 32914966 DOI: 10.1021/acsami.0c13104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The semiconductor-metal transition (SMT) enables multiple applications of one single material, especially in modern devices. How to control it remains one of the most intriguing questions in material physics/chemistry, especially in two-dimensional layered materials. In this work, we report realization of SMT in MoS2-xOx bilayers, driven by the concentration gradient of the chalcogen atom across the van der Waals (vdW) gap of the disordered bilayers. Using the cluster expansion method, we determined that either semiconducting (stable) or metallic states (metastable) can be realized in MoS2-xOx bilayers with the same composition. Machine learning analysis revealed that the concentration gradient of the chalcogen atom across the vdW gap is the leading fingerprint of SMT, with structural distortion induced by atom mixing being a significant secondary factor. The electronic origin of the SMT is the broadening of the Mo dz2 and O pz bands, accompanied by the redistribution of the d electrons. This in-vdW-gap composition-gradient-driven SMT phenomenon also applies to MoSe2-xOx and MoTe2-xOx bilayers. The present work provides an alternative mechanism of SMT and demonstrates that the composition gradient across the vdW gap in the bilayer materials can be another degree of freedom to tune the band gaps without introducing extrinsic elements. Our findings will benefit the material design for small-scale and energy-efficient electronic devices.
Collapse
Affiliation(s)
- Qifan Chen
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Mingwei Chen
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Linggang Zhu
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Naihua Miao
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
- Center for Integrated Computational Materials Engineering, International Research Institute for Multidisciplinary Science, Beihang University, Beijing 100191, China
| | - Jian Zhou
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Graeme J Ackland
- School of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom
| | - Zhimei Sun
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
- Center for Integrated Computational Materials Engineering, International Research Institute for Multidisciplinary Science, Beihang University, Beijing 100191, China
| |
Collapse
|
9
|
Susman MD, Pham HN, Zhao X, West DH, Chinta S, Bollini P, Datye AK, Rimer JD. Synthesis of NiO Crystals Exposing Stable High‐Index Facets. Angew Chem Int Ed Engl 2020; 59:15119-15123. [DOI: 10.1002/anie.202003390] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Indexed: 11/10/2022]
Affiliation(s)
- Mariano D. Susman
- Department of Chemical and Biomolecular Engineering University of Houston 4726 Calhoun Road Houston TX 77204-4004 USA
| | - Hien N. Pham
- Department of Chemical and Biological Engineering and Center for Microengineered Materials University of New Mexico Albuquerque NM 87131-0001 USA
| | - Xiaohui Zhao
- Department of Chemical and Biomolecular Engineering University of Houston 4726 Calhoun Road Houston TX 77204-4004 USA
| | - David H. West
- SABIC Technology Center 1600 Industrial Blvd. Sugar Land Houston TX 77478 USA
| | | | - Praveen Bollini
- Department of Chemical and Biomolecular Engineering University of Houston 4726 Calhoun Road Houston TX 77204-4004 USA
| | - Abhaya K. Datye
- Department of Chemical and Biological Engineering and Center for Microengineered Materials University of New Mexico Albuquerque NM 87131-0001 USA
| | - Jeffrey D. Rimer
- Department of Chemical and Biomolecular Engineering University of Houston 4726 Calhoun Road Houston TX 77204-4004 USA
| |
Collapse
|
10
|
Susman MD, Pham HN, Zhao X, West DH, Chinta S, Bollini P, Datye AK, Rimer JD. Synthesis of NiO Crystals Exposing Stable High‐Index Facets. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003390] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mariano D. Susman
- Department of Chemical and Biomolecular Engineering University of Houston 4726 Calhoun Road Houston TX 77204-4004 USA
| | - Hien N. Pham
- Department of Chemical and Biological Engineering and Center for Microengineered Materials University of New Mexico Albuquerque NM 87131-0001 USA
| | - Xiaohui Zhao
- Department of Chemical and Biomolecular Engineering University of Houston 4726 Calhoun Road Houston TX 77204-4004 USA
| | - David H. West
- SABIC Technology Center 1600 Industrial Blvd. Sugar Land Houston TX 77478 USA
| | | | - Praveen Bollini
- Department of Chemical and Biomolecular Engineering University of Houston 4726 Calhoun Road Houston TX 77204-4004 USA
| | - Abhaya K. Datye
- Department of Chemical and Biological Engineering and Center for Microengineered Materials University of New Mexico Albuquerque NM 87131-0001 USA
| | - Jeffrey D. Rimer
- Department of Chemical and Biomolecular Engineering University of Houston 4726 Calhoun Road Houston TX 77204-4004 USA
| |
Collapse
|
11
|
Chakrapani V. Probing Active Sites and Reaction Intermediates of Electrocatalysis Through Confocal Near-Infrared Photoluminescence Spectroscopy: A Perspective. Front Chem 2020; 8:327. [PMID: 32411668 PMCID: PMC7199742 DOI: 10.3389/fchem.2020.00327] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 03/31/2020] [Indexed: 12/19/2022] Open
Abstract
Electrocatalytic reactions such as oxygen evolution (OER) and oxygen reduction reactions (ORR) are one of the most complex heterogeneous charge transfer processes because of the involvement of multiple proton-coupled-electron transfer steps over a narrow potential range and the formation/breaking of oxygen-oxygen bonds. Obtaining a clear mechanistic picture of these reactions on some highly active strongly-correlated oxides such as MnOx, NiOx, and IrOx has been challenging due to the inherent limitations of the common spectroscopic tools used for probing the reactive intermediates and active sites. This perspective article briefly summarizes some of the key challenges encountered in such probes and describes some of unique advantages of confocal near-infrared photoluminescence (NIR-PL) technique for probing surface and bulk metal cation states under in-situ and ex-situ electrochemical polarization studies. Use of this technique opens up a new avenue for studying changes in the electronic structure of metal oxides occurring as a result of perturbation of defect equilibria, which is crucial in a broad range of heterogeneous systems such as catalysis, photocatalysis, mineral redox chemistry, and batteries.
Collapse
Affiliation(s)
- Vidhya Chakrapani
- Howard P. Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States.,Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, Troy, NY, United States
| |
Collapse
|
12
|
Hopmann E, Elezzabi AY. Plasmochromic Nanocavity Dynamic Light Color Switching. NANO LETTERS 2020; 20:1876-1882. [PMID: 32049542 DOI: 10.1021/acs.nanolett.9b05088] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Static plasmonic metal-insulator-nanohole (MIN) cavities have been shown to create high chromaticity spectral colors for display applications. While on-off switching of said devices has been demonstrated, introducing active control over the spectral color of a single cavity is an ongoing challenge. Electrochromic oxides such as tungsten oxide (WO3) offer the possibility to tune their refractive index (2.1-1.8) and extinction (0-0.5) upon ion insertion, allowing active control over resonance conditions for MIN based devices. In combination with the dynamic change in the WO3 layer, the utilization of a plasmonic superstructure allows creation of well-defined spectral reflection of the nanocavity. Here, we employ inorganic, electrochromic WO3 as the tunable dielectric in a MIN nanocavity, resulting in a theoretically achievable resonance wavelength modulation from 601 to 505 nm, while maintaining 35% of reflectance intensity. Experimental values for the spectral modulation result in a 64 nm shift of peak wavelength with high reproducibility and fast switching speed. Remarkably, the introduced device shows electrochemical stability over 100 switching cycles while most of the intercalated charge can be regained (91.1%), leading to low power consumption (5.6 mW/cm-2).
Collapse
Affiliation(s)
- Eric Hopmann
- Ultrafast Optics and Nanophotonics Laboratory, Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta, T6G 2V4, Canada
| | - Abdulhakem Y Elezzabi
- Ultrafast Optics and Nanophotonics Laboratory, Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta, T6G 2V4, Canada
| |
Collapse
|
13
|
Liang H, Xi H, Liu S, Zhang X, Liu H. Modulation of oxygen vacancy in tungsten oxide nanosheets for Vis-NIR light-enhanced electrocatalytic hydrogen production and anticancer photothermal therapy. NANOSCALE 2019; 11:18183-18190. [PMID: 31556902 DOI: 10.1039/c9nr06222j] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Oxygen vacancy (OV) tuning was introduced into oxygen-deficient WO3 nanosheets to optimize the chemical and electronic properties. Enhanced electronic conduction, extended light absorption, enhanced HER reaction kinetics and benign photothermal performance were verified by density functional theory (DFT) calculations and experimental studies. Vis-NIR light-enhanced electrocatalytic HER was accomplished with a small overpotential of 52 mV (at 10 mA cm-2) and a low Tafel slope of 37 mV dec-1 and performed much more efficiently than that in darkness, comparable to the noble-metal catalysts (Pt, Pt/C). Moreover, the resultant WO3-OVs possess good photothermal conversion efficiency. The promising potential of the WO3-OVs for anticancer photothermal therapy has been demonstrated with a high photothermal conversion efficiency (∼41.6%) upon single wavelength near-infrared irradiation and an efficient tumor inhibition rate (∼96.8%). This design of photoelectronic/thermal materials paves an exciting new avenue for the conversion of well-developed metal oxides to be high-performance and multifunctional materials for energy and oncology applications.
Collapse
Affiliation(s)
- Haiyan Liang
- Department of basic Medicine, Shandong First Medical University (Shandong Academy of Medical Sciences), Taian, Shangdong 271000, P. R. China.
| | | | | | | | | |
Collapse
|
14
|
Zhou C, Sun L, Zhang F, Gu C, Zeng S, Jiang T, Shen X, Ang DS, Zhou J. Electrical Tuning of the SERS Enhancement by Precise Defect Density Control. ACS APPLIED MATERIALS & INTERFACES 2019; 11:34091-34099. [PMID: 31433618 DOI: 10.1021/acsami.9b10856] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Surface-enhanced Raman scattering (SERS) has been widely established as a powerful analytical technique in molecular fingerprint recognition. Although conventional noble metal-based SERS substrates show admirable enhancement of the Raman signals, challenges on reproducibility, biocompatibility, and costs limit their implementations as the preferred analysis platforms. Recently, researches on SERS substrates have found that some innovatively prepared metal oxides/chalcogenides could produce noble metal comparable SERS enhancement, which profoundly expanded the material selection. Nevertheless, to tune the SERS enhancement of these materials, careful experimental designs and sophisticated processes were needed. Here, an electrically tunable SERS substrate based on tungsten oxides (WO3-x) is demonstrated. An electric field is used to introduce the defects in the oxide on an individual substrate, readily invoking the SERS detection capability, and further tuning the enhancement factor is achieved through electrical programming of the oxide leakage level. Additionally, by virtue of in situ tuning the defect density and enhancement factor, the substrate can adapt to different molecular concentrations, potentially improving the detection range. These results not only help build a better understanding of the chemical mechanism but also open an avenue for engaging non-noble metal materials as multifunctional SERS substrates.
Collapse
Affiliation(s)
- Canliang Zhou
- Institute of Photonics , Ningbo University , 818 Feng Hua Road , 315211 , Ningbo , China
| | - Linfeng Sun
- Department of Energy Science , Sungkyunkwan University , Suwon 16419 , Korea
| | - Fengquan Zhang
- Institute of Photonics , Ningbo University , 818 Feng Hua Road , 315211 , Ningbo , China
| | - Chenjie Gu
- Institute of Photonics , Ningbo University , 818 Feng Hua Road , 315211 , Ningbo , China
| | - Shuwen Zeng
- XLIM Research Institute, UMR 7252 CNRS/University of Limoges , Avenue Albert Thomas , 87060 , Limoges , France
| | - Tao Jiang
- Institute of Photonics , Ningbo University , 818 Feng Hua Road , 315211 , Ningbo , China
| | - Xiang Shen
- Research Institute of Advanced Technologies , Ningbo University , 818 Feng Hua Road , 315211 , Ningbo , China
| | - Diing Shenp Ang
- School of Electrical and Electronic Engineering , Nanyang Technological University , 50 Nanyang Avenue , 639798 , Singapore
| | - Jun Zhou
- Institute of Photonics , Ningbo University , 818 Feng Hua Road , 315211 , Ningbo , China
| |
Collapse
|
15
|
Photocapacitive CdS/WO x nanostructures for solar energy storage. Sci Rep 2019; 9:11573. [PMID: 31399632 PMCID: PMC6688992 DOI: 10.1038/s41598-019-48069-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 07/30/2019] [Indexed: 12/20/2022] Open
Abstract
Through a facile solvothermal procedure, a CdS/WOx nanocomposite has been synthesised which exhibits photocapacitive behaviour under white light illumination at a radiant flux density of 99.3 mW cm−2. Photoelectrochemical experiments were undertaken to examine the self-charging properties of the material and to develop an understanding of the underlying electronic band structure responsible for the phenomenon. By employing XPS, UPS and UV-Vis diffuse reflectance spectroscopy for further characterisation, the ability of the composite to generate current following the removal of incident light was related to the trapping of photoexcited electrons by the WOx component. The presence of WOx yielded an order of magnitude increase in the transient photocurrent response relative to CdS alone, an effect attributed to the suppression of electron-hole recombination in CdS due to hole transfer across the CdS/WOx interface. Moreover, current discharge from the material persisted for more than twenty minutes after final illumination, an order of magnitude improvement over many existing binary composites. As a seminal investigation into the photocapacitive characteristics of CdS/WOx composites, the work offers insight into how the constituent materials might be utilised as part of a future self-charging solar device.
Collapse
|
16
|
Bibin J, Kunjomana AG. Facile synthesis of novel antimony selenide nanocrystals with hierarchical architecture by physical vapor deposition technique. J Appl Crystallogr 2019. [DOI: 10.1107/s1600576719001006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Stoichiometric antimony selenide (Sb2Se3) nanocrystals have been successfully engineered by a facile physical vapor deposition method, employing a single precursor of polycrystalline Sb2Se3 charge in a closed quartz ampoule under high vacuum without any foreign seed or extraneous chemical elements. This work underscores the efficacy of the vapor deposition process and provides synthetic strategies to scale down bulk Sb2Se3 into novel nanostructures. The morphological evolution of the tailored architecture was examined on micro and nano size scales by scanning electron microscopy and high-resolution transmission electron microscopy. The intrinsic mechanism governing the nanostructure formation is revealed as layer-by-layer growth, related to the unique layered structure of Sb2Se3. The optical properties of the grown crystals were probed by UV–vis–NIR and photoluminescence tools. The band-gap values of the microfibers, nanorods, nanooctahedra and nanospheres estimated from UV–vis–NIR analysis are found to be 1.25, 1.47, 1.51 and 1.75 eV, respectively. Powder X-ray diffraction, energy-dispersive analysis by X-rays, X-ray photoelectron spectroscopy, Raman spectroscopy and photoluminescence studies confirmed the quality, phase purity and homogeneity of the as-grown nanostructures. The adopted physical vapor deposition method is thus shown to be a simple and elegant route which resulted in the enhancement of the band gap for the Sb2Se3 samples compared with their counterparts grown by chemical methods. This approach has great potential for further applications in optoelectronics.
Collapse
|
17
|
Sarkar A, Khan GG. The formation and detection techniques of oxygen vacancies in titanium oxide-based nanostructures. NANOSCALE 2019; 11:3414-3444. [PMID: 30734804 DOI: 10.1039/c8nr09666j] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
TiO2 and other titanium oxide-based nanomaterials have drawn immense attention from researchers in different scientific domains due to their fascinating multifunctional properties, relative abundance, environmental friendliness, and bio-compatibility. However, the physical and chemical properties of titanium oxide-based nanomaterials are found to be explicitly dependent on the presence of various crystal defects. Oxygen vacancies are the most common among them and have always been the subject of both theoretical and experimental research as they play a crucial role in tuning the inherent properties of titanium oxides. This review highlights different strategies for effectively introducing oxygen vacancies in titanium oxide-based nanomaterials, as well as a discussion on the positions of oxygen vacancies inside the TiO2 band gap based on theoretical calculations. Additionally, a detailed review of different experimental techniques that are extensively used for identifying oxygen vacancies in TiO2 nanostructures is also presented.
Collapse
Affiliation(s)
- Ayan Sarkar
- Centre for Research in Nanoscience and Nanotechnology, University of Calcutta, Block-JD2, Sector-III, Salt Lake, Kolkata 700106, West Bengal, India.
| | | |
Collapse
|
18
|
Electrochromic semiconductors as colorimetric SERS substrates with high reproducibility and renewability. Nat Commun 2019; 10:678. [PMID: 30737396 PMCID: PMC6368540 DOI: 10.1038/s41467-019-08656-6] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 01/21/2019] [Indexed: 11/24/2022] Open
Abstract
Electrochromic technology has been actively researched for displays, adjustable mirrors, smart windows, and other cutting-edge applications. However, it has never been proposed to overcome the critical problems in the field of surface-enhanced Raman scattering (SERS). Herein, we demonstrate a generic electrochromic strategy for ensuring the reproducibility and renewability of SERS substrates, which are both scientifically and technically important due to the great need for quantitative analysis, standardized production and low cost in SERS. This color-changing strategy is based on a unique quantitative relationship between the SERS signal amplification and the coloration degree within a certain range, in which the SERS activity of the substrate can be effectively inferred by judging the degree of color change. Our results may provide a first step toward the rational design of electrochromic SERS substrates with a high sensitivity, reproducibility, and renewability. Electrochromic technology has diverse cutting-edge applications, but it has never been used to overcome the critical problems in the field of surface-enhanced Raman scattering (SERS). Here, the authors demonstrate a generic electrochromic strategy for ensuring the reproducibility and renewability of SERS substrates.
Collapse
|
19
|
Jiang YF, Yuan CZ, Cheang TY, Xu AW. Highly active and durable Pd nanocatalyst promoted by an oxygen-deficient terbium oxide (Tb 4O 7−x) support for hydrogenation and cross-coupling reactions. NEW J CHEM 2019. [DOI: 10.1039/c9nj01966a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Oxygen-deficient Tb4O7−x as an effective promoter and support for Pd nanocatalysts holds great potential in hydrogenation and cross-coupling reactions.
Collapse
Affiliation(s)
- Yi-Fan Jiang
- Division of Nanomaterials and Chemistry
- Hefei National Laboratory for Physical Sciences at Microscale
- Deparment of Chemistry
- University of Science and Technology of China
- Hefei 230026
| | - Cheng-Zong Yuan
- Division of Nanomaterials and Chemistry
- Hefei National Laboratory for Physical Sciences at Microscale
- Deparment of Chemistry
- University of Science and Technology of China
- Hefei 230026
| | - Tuck-Yun Cheang
- Department of Vascular Surgery
- Department of Neurological Intensive Care Unit
- The First Affiliated Hospital of Sun Yat-Sen University
- Guangzhou
- P. R. China
| | - An-Wu Xu
- Division of Nanomaterials and Chemistry
- Hefei National Laboratory for Physical Sciences at Microscale
- Deparment of Chemistry
- University of Science and Technology of China
- Hefei 230026
| |
Collapse
|
20
|
Lu L, Xu X, Yan J, Shi FN, Huo Y. Oxygen vacancy rich Cu 2O based composite material with nitrogen doped carbon as matrix for photocatalytic H 2 production and organic pollutant removal. Dalton Trans 2018; 47:2031-2038. [PMID: 29349461 DOI: 10.1039/c7dt03835f] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A nitrogen doped carbon matrix supported Cu2O composite material (Cu/Cu2O@NC) was fabricated successfully with a coordination polymer as precursor through calcination. In this composite material, Cu2O particles with a size of about 6-10 nm were dispersed evenly in the nitrogen doped carbon matrix. After calcination, some coordinated nitrogen atoms were doped in the lattice of Cu2O and replace oxygen atoms, thus generating a large number of oxygen vacancies. In Cu/Cu2O@NC, the existence of oxygen vacancies has been confirmed by electron spin resonance (ESR) and X-ray photoelectron spectroscopy (XPS). Under visible light irradiation, Cu/Cu2O@NC exhibits excellent H2 production with the rate of 379.6 μmol h-1 g-1. Its photocatalytic activity affects organic dyes, such as Rhodamine B (RhB) and methyl orange (MO). In addition to photocatalysis, Cu/Cu2O@NC also exhibits striking catalytic activity in reductive conversion of 4-nitrophenol to 4-aminophenol with in presence of sodium borohydride (NaBH4). The conversion efficiency reaches almost 100% in 250 s with the quantity of Cu/Cu2O@NC as low as 5 mg. The outstanding H2 production and organic pollutants removal are attributed to the oxygen vacancy. We expect that Cu/Cu2O@NC will find its way as a new resource for hydrogen energy as well as a promising material in water purification.
Collapse
Affiliation(s)
- Lele Lu
- Department of Chemistry, College of Science, Northeast University, Shenyang, 110819, P.R. China.
| | | | | | | | | |
Collapse
|
21
|
Ou W, Zou Y, Wang K, Gong W, Pei R, Chen L, Pan Z, Fu D, Huang X, Zhao Y, Lu W, Jiang J. Active Manipulation of NIR Plasmonics: the Case of Cu 2-xSe through Electrochemistry. J Phys Chem Lett 2018; 9:274-280. [PMID: 29293337 DOI: 10.1021/acs.jpclett.7b03305] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Active control of nanocrystal optical and electrical properties is crucial for many of their applications. By electrochemical (de)lithiation of Cu2-xSe, a highly doped semiconductor, dynamic and reversible manipulation of its NIR plasmonics has been achieved. Spectroelectrochemistry results show that NIR plasmon red-shifted and reduced in intensity during lithiation, which can be reversed with perfect on-off switching over 100 cycles. Electrochemical impedance spectroscopy reveals that a Faradaic redox process during Cu2-xSe (de)lithiation is responsible for the optical modulation, rather than simple capacitive charging. XPS analysis identifies a reversible change in the redox state of selenide anion but not copper cation, consistent with DFT calculations. Our findings open up new possibilities for dynamical manipulation of vacancy-induced surface plasmon resonances and have important implications for their use in NIR optical switching and functional circuits.
Collapse
Affiliation(s)
- Weihui Ou
- i-Lab and Division of Nanobiomedicine, CAS Key Laboratory of Nano-Bio Interface, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences , Suzhou 215123, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Yu Zou
- i-Lab and Division of Nanobiomedicine, CAS Key Laboratory of Nano-Bio Interface, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences , Suzhou 215123, China
| | - Kewei Wang
- Nano-Devices and Materials Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences , Suzhou 215123, China
| | - Wenbin Gong
- Division of Advanced Nanomaterials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences , Suzhou 215123, China
| | - Renjun Pei
- i-Lab and Division of Nanobiomedicine, CAS Key Laboratory of Nano-Bio Interface, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences , Suzhou 215123, China
| | - Liwei Chen
- i-Lab and Division of Nanobiomedicine, CAS Key Laboratory of Nano-Bio Interface, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences , Suzhou 215123, China
| | - Zhenghui Pan
- i-Lab and Division of Nanobiomedicine, CAS Key Laboratory of Nano-Bio Interface, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences , Suzhou 215123, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Dongdong Fu
- i-Lab and Division of Nanobiomedicine, CAS Key Laboratory of Nano-Bio Interface, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences , Suzhou 215123, China
| | - Xin Huang
- i-Lab and Division of Nanobiomedicine, CAS Key Laboratory of Nano-Bio Interface, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences , Suzhou 215123, China
| | - Yanfei Zhao
- Vacuum Interconnected Nanotech Workstation, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences , Suzhou 215123, China
| | - Weibang Lu
- Division of Advanced Nanomaterials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences , Suzhou 215123, China
| | - Jiang Jiang
- i-Lab and Division of Nanobiomedicine, CAS Key Laboratory of Nano-Bio Interface, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences , Suzhou 215123, China
| |
Collapse
|
22
|
Zhang J, Ji WJ, Xu J, Geng XY, Zhou J, Gu ZB, Yao SH, Zhang ST. Giant positive magnetoresistance in half-metallic double-perovskite Sr 2CrWO 6 thin films. SCIENCE ADVANCES 2017; 3:e1701473. [PMID: 29119138 PMCID: PMC5669608 DOI: 10.1126/sciadv.1701473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 10/16/2017] [Indexed: 06/07/2023]
Abstract
Magnetoresistance (MR) is the magnetic field-induced change of electrical resistance. The MR effect not only has wide applications in hard drivers and sensors but also is a long-standing scientific issue for complex interactions. Ferromagnetic/ferrimagnetic oxides generally show negative MR due to the magnetic field-induced spin order. We report the unusually giant positive MR up to 17,200% (at 2 K and 7 T) in 12-nm Sr2CrWO6 thin films, which show metallic behavior with high carrier density of up to 2.26 × 1028 m-3 and high mobility of 5.66 × 104 cm2 V-1 s-1. The possible mechanism is that the external magnetic field suppresses the long-range antiferromagnetic order to form short-range antiferromagnetic fluctuations, which enhance electronic scattering and lead to the giant positive MR. The high mobility may also have contributions to the positive MR. These results not only experimentally confirm that the giant positive MR can be realized in oxides but also open up new opportunities for developing and understanding the giant positive MR in oxides.
Collapse
Affiliation(s)
| | | | | | | | - Jian Zhou
- Corresponding author. (J.Z.); (S.-T.Z.)
| | | | | | | |
Collapse
|
23
|
Lu N, Zhang P, Zhang Q, Qiao R, He Q, Li HB, Wang Y, Guo J, Zhang D, Duan Z, Li Z, Wang M, Yang S, Yan M, Arenholz E, Zhou S, Yang W, Gu L, Nan CW, Wu J, Tokura Y, Yu P. Electric-field control of tri-state phase transformation with a selective dual-ion switch. Nature 2017; 546:124-128. [PMID: 28569818 DOI: 10.1038/nature22389] [Citation(s) in RCA: 249] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 04/12/2017] [Indexed: 12/13/2022]
Abstract
Materials can be transformed from one crystalline phase to another by using an electric field to control ion transfer, in a process that can be harnessed in applications such as batteries, smart windows and fuel cells. Increasing the number of transferrable ion species and of accessible crystalline phases could in principle greatly enrich material functionality. However, studies have so far focused mainly on the evolution and control of single ionic species (for example, oxygen, hydrogen or lithium ions). Here we describe the reversible and non-volatile electric-field control of dual-ion (oxygen and hydrogen) phase transformations, with associated electrochromic and magnetoelectric effects. We show that controlling the insertion and extraction of oxygen and hydrogen ions independently of each other can direct reversible phase transformations among three different material phases: the perovskite SrCoO3-δ (ref. 12), the brownmillerite SrCoO2.5 (ref. 13), and a hitherto-unexplored phase, HSrCoO2.5. By analysing the distinct optical absorption properties of these phases, we demonstrate selective manipulation of spectral transparency in the visible-light and infrared regions, revealing a dual-band electrochromic effect that could see application in smart windows. Moreover, the starkly different magnetic and electric properties of the three phases-HSrCoO2.5 is a weakly ferromagnetic insulator, SrCoO3-δ is a ferromagnetic metal, and SrCoO2.5 is an antiferromagnetic insulator-enable an unusual form of magnetoelectric coupling, allowing electric-field control of three different magnetic ground states. These findings open up opportunities for the electric-field control of multistate phase transformations with rich functionalities.
Collapse
Affiliation(s)
- Nianpeng Lu
- State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China
| | - Pengfei Zhang
- State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China
| | - Qinghua Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Science, Beijing 100190, China.,State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Ruimin Qiao
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Qing He
- Department of Physics, Durham University, Durham DH1 3LE, UK
| | - Hao-Bo Li
- State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China
| | - Yujia Wang
- State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China
| | - Jingwen Guo
- State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China
| | - Ding Zhang
- State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China
| | - Zheng Duan
- State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China
| | - Zhuolu Li
- State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China
| | - Meng Wang
- State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China
| | - Shuzhen Yang
- State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China
| | - Mingzhe Yan
- State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China
| | - Elke Arenholz
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Shuyun Zhou
- State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China.,Collaborative Innovation Center of Quantum Matter, Beijing 100084, China
| | - Wanli Yang
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Lin Gu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Science, Beijing 100190, China.,Collaborative Innovation Center of Quantum Matter, Beijing 100084, China
| | - Ce-Wen Nan
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Jian Wu
- State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China.,Collaborative Innovation Center of Quantum Matter, Beijing 100084, China
| | - Yoshinori Tokura
- RIKEN Center for Emergent Matter Science (CEMS), Wako 351-198, Japan
| | - Pu Yu
- State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China.,Collaborative Innovation Center of Quantum Matter, Beijing 100084, China.,RIKEN Center for Emergent Matter Science (CEMS), Wako 351-198, Japan
| |
Collapse
|
24
|
Verma R, Gangwar J, Srivastava AK. Multiphase TiO2nanostructures: a review of efficient synthesis, growth mechanism, probing capabilities, and applications in bio-safety and health. RSC Adv 2017. [DOI: 10.1039/c7ra06925a] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
This review article provides an exhaustive overview of efficient synthesis, growth mechanism and research activities of multiphase TiO2nanostructures to provide their structural, morphological, optical and biological properties co-relations.
Collapse
Affiliation(s)
- Rajni Verma
- Academy of Scientific and Innovative Research
- CSIR – National Physical Laboratory
- New Delhi – 110 012
- India
- Sophisticated and Analytical Equipments Division
| | - Jitendra Gangwar
- Sophisticated and Analytical Equipments Division
- CSIR – National Physical Laboratory
- New Delhi – 110 012
- India
- Department of Physics
| | - Avanish K. Srivastava
- Academy of Scientific and Innovative Research
- CSIR – National Physical Laboratory
- New Delhi – 110 012
- India
- Sophisticated and Analytical Equipments Division
| |
Collapse
|
25
|
Puntambekar A, Wang Q, Miller L, Smieszek N, Chakrapani V. Electrochemical Charging of CdSe Quantum Dots: Effects of Adsorption versus Intercalation. ACS NANO 2016; 10:10988-10999. [PMID: 27943668 DOI: 10.1021/acsnano.6b05779] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Effects of electrochemical charging of quantum dots (QDs) have been reported previously, wherein optical and electrical properties could be modulated through cation adsorption and electron injection into the quantum-confined 1Se states. In this work, we report two different modes of electrochemical double-layer charging in CdSe QDs and their effects on the electronic and optical properties. We show that the charging mechanism at the interface involves cation intercalation for smaller ions, such as Li+, Na+, or K+, and cation adsorption for larger bulky ions, such as tetrabutylammonium ions, where steric hindrance precludes intercalation. As a result, while cation adsorption leads to an increase in the absorbance in the mid-infrared spectral range, cation intercalation into the CdSe core results in an absorbance increase from the visible to infrared spectral range, an enhancement in radiative lifetime of e-, an increase of 158% in the intensity of band-edge photoluminescence, and strong emission in the near-infrared spectral range as a result of the formation of Se vacancies. The nature of charging mechanisms is discussed using the results of combined photoluminescence, radiative lifetime, and X-ray photoemission studies. The cation-coupled electronic and optical modulation reported here in CdSe QDs have important implications for electrochromic smart windows, photovoltaics, and other devices.
Collapse
Affiliation(s)
- Ajinkya Puntambekar
- Howard P. Isermann Department of Chemical and Biological Engineering and ‡Department of Physics, Applied Physics & Astronomy, Rensselaer Polytechnic Institute , Troy, New York 12180, United States
| | - Qi Wang
- Howard P. Isermann Department of Chemical and Biological Engineering and ‡Department of Physics, Applied Physics & Astronomy, Rensselaer Polytechnic Institute , Troy, New York 12180, United States
| | - Lauren Miller
- Howard P. Isermann Department of Chemical and Biological Engineering and ‡Department of Physics, Applied Physics & Astronomy, Rensselaer Polytechnic Institute , Troy, New York 12180, United States
| | - Nicholas Smieszek
- Howard P. Isermann Department of Chemical and Biological Engineering and ‡Department of Physics, Applied Physics & Astronomy, Rensselaer Polytechnic Institute , Troy, New York 12180, United States
| | - Vidhya Chakrapani
- Howard P. Isermann Department of Chemical and Biological Engineering and ‡Department of Physics, Applied Physics & Astronomy, Rensselaer Polytechnic Institute , Troy, New York 12180, United States
| |
Collapse
|