1
|
Li Q, Aklile EB, Tsui A, Hersam MC. Progress and future directions in borophene research. Nat Chem 2025; 17:642-652. [PMID: 40195433 DOI: 10.1038/s41557-025-01773-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 02/05/2025] [Indexed: 04/09/2025]
Abstract
Borophene-an atomically thin, two-dimensional (2D) boron analogue of graphene-has attracted significant attention as a 2D synthetic platform. Since its initial experimental realization, borophene has proven to be a versatile 2D material due to its high polymorphism and amenability to heterostructure integration. Nevertheless, several synthetic challenges have hindered the practical utilization of borophene, primarily due to its high chemical reactivity and interlayer charge transfer with growth substrates. Here we discuss emerging synthesis strategies for borophene, ranging from on-surface synthesis using elemental and molecular boron sources to substrate segregation growth techniques and solution-based reactions. We also focus on the surface and interface engineering of borophene with the aim of tailoring chemical reactivity and electronic properties. Finally, we highlight the remaining unresolved synthetic challenges for borophene and suggest future directions for accelerating fundamental science and applied technology for boron in the 2D limit.
Collapse
Affiliation(s)
- Qiucheng Li
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
- School of Engineering, Westlake University, Hangzhou, China
| | - Eden B Aklile
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
| | - Albert Tsui
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
| | - Mark C Hersam
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA.
- Department of Chemistry, Northwestern University, Evanston, IL, USA.
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
2
|
Zhao J, Bespalov I, Wu R, Božović I. Combining an in situ device fabrication and six-probe electrical transport measurement system with low-energy electron microscopy. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2025; 96:023907. [PMID: 40013905 DOI: 10.1063/5.0251787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 01/31/2025] [Indexed: 02/28/2025]
Abstract
Two-dimensional (2D) quantum materials, including several analogs of graphene ("X-enes"), are of great current research interest. However, some of the potentially most exciting ones are reactive and sensitive to exposure to the atmosphere, which hampered the experimental study of their key physical properties. Here, we introduce an experimental setup that integrates sub-atomic-layer-resolved molecular beam epitaxy (MBE) synthesis, real-time low-energy electron microscopy (LEEM) and low-energy electron diffraction (LEED), and in situ six-probe electrical transport measurements. The six-probe apparatus is equipped with a dry cryocooler for reaching cryogenic temperatures, a piezoelectric XYZ nano-positioning stage for high-precision motion of the six probes, and an in situ device fabrication system for the deposition of custom-shaped gold electrodes. This design enables the six-probe system to perform both AC and DC resistance measurements on 2D quantum materials along multiple orientations within the temperature range of 5K < T < 400 K. The modules are interconnected under ultrahigh vacuum (UHV), and the samples can be synthesized by MBE, imaged by LEEM, and R(T) dependence measured without any surface contamination. We present the first experimental results that test and validate the performance of the six-probe system by transport measurements on several materials, including semiconductors and superconductors. This new instrument is proven to be a versatile platform for studying atmosphere-sensitive quantum materials.
Collapse
Affiliation(s)
- Jin Zhao
- Energy Sciences Institute, Yale University, West Haven, Connecticut 06516, USA
- Department of Chemistry, Yale University, New Haven, Connecticut 06511, USA
| | - Ivan Bespalov
- Energy Sciences Institute, Yale University, West Haven, Connecticut 06516, USA
- Department of Chemistry, Yale University, New Haven, Connecticut 06511, USA
| | - Rongting Wu
- Department of Applied Physics, Yale University, New Haven, Connecticut 06511, USA
- State Key Laboratory of Semiconductor Physics and Chip Technologies, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ivan Božović
- Energy Sciences Institute, Yale University, West Haven, Connecticut 06516, USA
- Department of Chemistry, Yale University, New Haven, Connecticut 06511, USA
- Shanghai Advanced Research in Physical Sciences (SHARPS), Pudong, Shanghai 201203, China
- Brookhaven National Laboratory, Upton NY 11973, USA
| |
Collapse
|
3
|
Casanova-Chafer J. Roadmap for Borophene Gas Sensors. ACS Sens 2025; 10:76-99. [PMID: 39754599 DOI: 10.1021/acssensors.4c03164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Borophene, a two-dimensional allotrope of boron, has emerged as a promising material for gas sensing because of its exceptional electronic properties and high surface reactivity. This review comprehensively overviews borophene synthesis methods, properties, and sensing applications. However, it is crucial to acknowledge the substantial gap between the abundance of theoretical literature and the limited experimental studies. While theoretical investigations have elucidated the stability and remarkable sensing capabilities of various borophene polymorphs across different gases, significant experimental challenges have hindered the translation of these theoretical predictions into practical devices. Consequently, this review carefully studies these challenges and shortcomings that are jeopardizing the practical implementation of borophene in real-world settings. Specifically, four key issues are thoroughly studied, such as superficial borophene oxidation upon exposure to the air, interference from relative humidity on gas molecule detection, lack of selectivity, and synthesis scalability. Finally, novel strategies are proposed to overcome these bottlenecks. By adopting these approaches, borophene can pave the way to drive the advancement of the next generation of sensing devices.
Collapse
Affiliation(s)
- Juan Casanova-Chafer
- Chimie des Interactions Plasma Surface group, Chemistry Department, Université de Mons, 7000 Mons, Belgium
| |
Collapse
|
4
|
Maity G, Mishra PK, Patel G, Dubey S. Advances in borophene based photodetectors for a sustainable tomorrow: a comprehensive review. NANOSCALE 2024; 16:18295-18318. [PMID: 39279467 DOI: 10.1039/d4nr02638a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
Borophene, with its unique properties such as excellent conductivity, high thermal stability, and tunable electronic band structure, holds immense promise for advancing photodetector technology. These qualities make it an attractive material for enhancing the efficiency and performance of photodetectors across various wavelengths. Research so far has highlighted borophene's potential in improving sensitivity, response time, and overall functionality in optoelectronic devices. However, to fully realize the potential of borophene-based photodetectors, several challenges must be addressed. A major hurdle is the reproducibility and scalability of borophene synthesis, which is essential for its widespread use in practical applications. Furthermore, understanding the underlying physics of borophene and optimizing the device architecture are critical for achieving consistent performance under different operating conditions. These challenges must be overcome to enable the effective integration of borophene into commercial photodetector devices. A thorough evaluation of borophene-based photodetectors is necessary to guide future research and development in this field. This review will provide a detailed account of the current synthesis methods, discuss the experimental results, and identify the challenges that need to be addressed. Additionally, the review will explore potential strategies to overcome these obstacles, paving the way for significant advancements in solar cells, light-based sensors, and environmental monitoring systems. By addressing these issues, the development of borophene-based photodetectors could lead to substantial improvements in optoelectronic technology, benefiting various applications and industries.
Collapse
Affiliation(s)
- Gurupada Maity
- Department of Physics, School of Basic and Applied Sciences, Galgotias University, Gautam Buddha Nagar-203201, India.
| | - Prashant Kumar Mishra
- Department of Physics, School of Basic and Applied Sciences, Galgotias University, Gautam Buddha Nagar-203201, India.
| | - Geetika Patel
- Department of Chemistry, Shiv Nadar Institution of Eminence, Greater Noida 201314, India
| | - Santosh Dubey
- Department of Physics, School of Engineering, University of Petroleum and Energy Studies, Dehradun, India.
| |
Collapse
|
5
|
Šoškić BN, Bekaert J, Sevik C, Milošević MV. Enhanced Superconductivity of Hydrogenated β 12 Borophene. NANO LETTERS 2024; 24:12650-12657. [PMID: 39316522 DOI: 10.1021/acs.nanolett.4c03845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Borophene stands out among elemental two-dimensional materials due to its extraordinary physical properties, including structural polymorphism, strong anisotropy, metallicity, and the potential for phonon-mediated superconductivity. However, confirming superconductivity in borophene experimentally has been evasive to date, mainly due to the detrimental effects of metallic substrates and its susceptibility to oxidation. In this study, we present an ab initio analysis of superconductivity in the experimentally synthesized hydrogenated β12 borophene, which has been proven to be less prone to oxidation. Our findings demonstrate that hydrogenation significantly enhances both the stability and superconducting properties of β12 borophene. Furthermore, we reveal that tensile strain and hole doping, achievable through various experimental methods, significantly enhance the critical temperature, reaching up to 29 K. These findings not only promote further fundamental research on superconducting borophene and its heterostructures, but also position hydrogenated borophene as a versatile platform for low-dimensional superconducting electronics.
Collapse
Affiliation(s)
- Božidar N Šoškić
- Faculty of Natural Sciences and Mathematics, University of Montenegro, Džordža Vašingtona bb, 81000 Podgorica, Montenegro
- Department of Physics and NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| | - Jonas Bekaert
- Department of Physics and NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| | - Cem Sevik
- Department of Physics and NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| | - Milorad V Milošević
- Department of Physics and NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| |
Collapse
|
6
|
Wang K, Choyal S, Schultz JF, McKenzie J, Li L, Liu X, Jiang N. Borophene: Synthesis, Chemistry, and Electronic Properties. Chempluschem 2024; 89:e202400333. [PMID: 39031807 DOI: 10.1002/cplu.202400333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/22/2024]
Abstract
As a neighbor of carbon in the periodic table, boron exhibits versatile structural and electronic configurations, with its allotropes predicted to possess intriguing structures and properties. Since the experimental realization of two-dimensional (2D) boron sheets (borophene) on Ag(111) substrates in 2015, the experimental study of the realization and characteristics of borophene has drawn increasing interest. In this review, we summarize the synthesis and properties of borophene, which are mainly based on experimental results. First, the synthesis of borophene on different substrates, as well as borophane and bilayer borophene, featuring unique phases and properties, are discussed. Next, the chemistry of borophene, such as oxidation, hydrogenation, and its integration into heterostructures with other materials, is summarized. We also mention a few works focused on the physical properties of borophene, specifically its electronic properties. Lastly, the brief outlook addresses challenges toward practical applications of borophene and possible solutions.
Collapse
Affiliation(s)
- Kai Wang
- Department of Chemistry, University of Illinois Chicago, Chicago, IL 60607, USA
| | - Shilpa Choyal
- Department of Chemistry, University of Illinois Chicago, Chicago, IL 60607, USA
| | - Jeremy F Schultz
- Nanoscale Device Characterization Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - James McKenzie
- Department of Physics & Astronomy, University of Notre Dame, Notre Dame, IN 46556, USA
- Stavropoulos Center for Complex Quantum Matter, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Linfei Li
- Department of Chemistry, University of Illinois Chicago, Chicago, IL 60607, USA
| | - Xiaolong Liu
- Department of Physics & Astronomy, University of Notre Dame, Notre Dame, IN 46556, USA
- Stavropoulos Center for Complex Quantum Matter, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Nan Jiang
- Department of Chemistry, University of Illinois Chicago, Chicago, IL 60607, USA
- Department of Physics, University of Illinois Chicago, Chicago, IL 60607, USA
| |
Collapse
|
7
|
Adekoya GJ, Adekoya OC, Muloiwa M, Sadiku ER, Kupolati WK, Hamam Y. Advances In Borophene: Synthesis, Tunable Properties, and Energy Storage Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403656. [PMID: 38818675 DOI: 10.1002/smll.202403656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/23/2024] [Indexed: 06/01/2024]
Abstract
Monolayer boron nanosheet, commonly known as borophene, has garnered significant attention in recent years due to its unique structural, electronic, mechanical, and thermal properties. This review paper provides a comprehensive overview of the advancements in the synthetic strategies, tunable properties, and prospective applications of borophene, specifically focusing on its potential in energy storage devices. The review begins by discussing the various synthesis techniques for borophene, including molecular beam epitaxy (MBE), chemical vapor deposition (CVD), and chemical methods, such as ultrasonic exfoliation and thermal decomposition of boron-containing precursors. The tunable properties of borophene, including its electronic, mechanical, and thermal characteristics, are extensively reviewed, with discussions on its bandgap engineering, plasmonic behavior, and thermal conductivity. Moreover, the potential applications of borophene in energy storage devices, particularly as anode materials in metal-ion batteries and supercapacitors, along with its prospects in other energy storage systems, such as sodium-oxygen batteries, are succinctly, discussed. Hence, this review provides valuable insights into the synthesis, properties, and applications of borophene, offering much-desired guidance for further research and development in this promising area of nanomaterials science.
Collapse
Affiliation(s)
- Gbolahan Joseph Adekoya
- Institute of NanoEngineering Research (INER) & Department of Chemical, Metallurgical and Materials Engineering, Faculty of Engineering and the Built Environment, Tshwane University of Technology, Pretoria, 0183, South Africa
| | - Oluwasegun Chijioke Adekoya
- Institute of NanoEngineering Research (INER) & Department of Chemical, Metallurgical and Materials Engineering, Faculty of Engineering and the Built Environment, Tshwane University of Technology, Pretoria, 0183, South Africa
| | - Mpho Muloiwa
- Department of Civil Engineering, Faculty of Engineering and the Built Environment, Tshwane University of Technology, Pretoria, 0183, South Africa
| | - Emmanuel Rotimi Sadiku
- Institute of NanoEngineering Research (INER) & Department of Chemical, Metallurgical and Materials Engineering, Faculty of Engineering and the Built Environment, Tshwane University of Technology, Pretoria, 0183, South Africa
| | - Williams Kehinde Kupolati
- Department of Civil Engineering, Faculty of Engineering and the Built Environment, Tshwane University of Technology, Pretoria, 0183, South Africa
| | - Yskandar Hamam
- Department of Electrical Engineering, Faculty of Engineering and the Built Environment, Tshwane University of Technology, Pretoria, 0183, South Africa
- École Supérieure d'Ingénieurs en Électrotechnique et Électronique, Cité Descartes, 2 Boulevard Blaise Pascal, Noisy-le-Grand, Paris, 93160, France
| |
Collapse
|
8
|
Sun D, Song X, Liu L, Song C, Liu H, Li Q, Butler K, Xie C, Zhang Z, Xie Y. Ab Initio Kinetic Pathway of Diborane Decomposition on Transition Metal Surfaces in Borophene Chemical Vapor Deposition Growth. J Phys Chem Lett 2024; 15:9668-9676. [PMID: 39283293 DOI: 10.1021/acs.jpclett.4c01770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
The chemical vapor deposition (CVD) method holds promise for the scalable and controlled synthesis of high-quality borophene. However, the current lack of an atomistic understanding of intricate kinetic pathways from precursors to borophene impedes process optimization. Here, we employ first-principles simulations to systematically explore the pyrolytic decomposition pathways of the most used precursor diborane (B2H6) to borophene on various transition metal surfaces. Our results reveal that B2H6 on various metal substrates exhibits different dissociation behaviors. Meanwhile, the activity of the examined metal substrates is quite anisotropic and surface direction-dependent, where the estimated overall catalytic activity order of these metals is found to be Pd ≈ Pt ≈ Rh > Ir ≈ Ru ≈ Cu > Au ≈ Ag. Our study provides atomistic insights into the dissociation kinetics of diborane precursors on various transition metal surfaces, serving as a guide for experimental growth of borophene.
Collapse
Affiliation(s)
- Dan Sun
- Key Laboratory of Material Simulation Methods and Software of Ministry of Education, College of Physics, Jilin University, Changchun 130012, China
- Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, School of Materials Science and Engineering, Jilin University, Changchun 130012, China
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Xianqi Song
- Key Laboratory of Material Simulation Methods and Software of Ministry of Education, College of Physics, Jilin University, Changchun 130012, China
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Linlin Liu
- Key Laboratory of Material Simulation Methods and Software of Ministry of Education, College of Physics, Jilin University, Changchun 130012, China
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Chennan Song
- Key Laboratory of Material Simulation Methods and Software of Ministry of Education, College of Physics, Jilin University, Changchun 130012, China
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Hanyu Liu
- Key Laboratory of Material Simulation Methods and Software of Ministry of Education, College of Physics, Jilin University, Changchun 130012, China
- International Center of Future Science, Jilin University, Changchun 130012, China
| | - Quan Li
- Key Laboratory of Material Simulation Methods and Software of Ministry of Education, College of Physics, Jilin University, Changchun 130012, China
- Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, School of Materials Science and Engineering, Jilin University, Changchun 130012, China
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
- International Center of Future Science, Jilin University, Changchun 130012, China
| | - Keith Butler
- Department of Chemistry, University College London, Gordon Street, London WC1H 0AJ, U.K
| | - Congwei Xie
- Research Center for Crystal Materials; State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions; Xinjiang Key Laboratory of Functional Crystal Materials; Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 40-1 South Beijing Road, Urumqi 830011, China
| | - Zhuhua Zhang
- State Key Laboratory of Mechanics and Control for Aerospace Structures, Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, and Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Yu Xie
- Key Laboratory of Material Simulation Methods and Software of Ministry of Education, College of Physics, Jilin University, Changchun 130012, China
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), Jilin University, Changchun 130012, China
| |
Collapse
|
9
|
Wang H, Ding P, Xia GJ, Zhao X, E W, Yu M, Ma Z, Wang YG, Wang LS, Li J, Yang X. Formation of Supernarrow Borophene Nanoribbons. Angew Chem Int Ed Engl 2024; 63:e202406535. [PMID: 38652809 DOI: 10.1002/anie.202406535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 04/25/2024]
Abstract
Borophenes have sparked considerable interest owing to their fascinating physical characteristics and diverse polymorphism. However, borophene nanoribbons (BNRs) with widths less than 2 nm have not been achieved. Herein, we report the experimental realization of supernarrow BNRs. Combining scanning tunneling microscopy imaging with density functional theory modeling and ab initio molecular dynamics simulations, we demonstrate that, under the applied growth conditions, boron atoms can penetrate the outermost layer of Au(111) and form BNRs composed of a pair of zigzag (2,2) boron rows. The BNRs have a width self-contained to ∼1 nm and dipoles at the edges to keep them separated. They are embedded in the outermost Au layer and shielded on top by the evacuated Au atoms, free of the need for post-passivation. Scanning tunneling spectroscopy reveals distinct edge states, primarily attributed to the localized spin at the BNRs' zigzag edges. This work adds a new member to the boron material family and introduces a new physical feature to borophenes.
Collapse
Affiliation(s)
- Haochen Wang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
| | - Pengcheng Ding
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 150001, Harbin, China
| | - Guang-Jie Xia
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Xiangyun Zhao
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
| | - Wenlong E
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
| | - Miao Yu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 150001, Harbin, China
- School of Materials and Energy, University of Electronic Science and Technology, 610000, Chengdu, China
| | - Zhibo Ma
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
| | - Yang-Gang Wang
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Lai-Sheng Wang
- Department of Chemistry, Brown University, 02912, Providence, Rhode Island, USA
| | - Jun Li
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, 518055, Shenzhen, China
- Theoretical Chemistry Center, Department of Chemistry, Tsinghua University, 100084, Beijing, China
| | - Xueming Yang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, 518055, Shenzhen, China
| |
Collapse
|
10
|
Sharma A, Rangra VS. Hydrogenation driven ultra-low lattice thermal conductivity in β12borophene. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:205704. [PMID: 38335552 DOI: 10.1088/1361-648x/ad2800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 02/09/2024] [Indexed: 02/12/2024]
Abstract
Borophene gathered large interest owing to its polymorphism and intriguing properties such as Dirac point, inherent metallicity, etc but oxidation limits its capabilities. Hydrogenated borophene was recently synthesised experimentally to harness its applications. Motivated by experimental work, in this paper, using first-principles calculations and Boltzmann transport theory, we study the freestandingβ12borophene nanosheet doped and functionalised with hydrogen (H), lithium (Li), beryllium (Be), and carbon (C) atoms at differentβ12lattice sites. Among all possible configurations, we screen two stable candidates, pristine and hydrogenatedβ12borophene nanosheets. Both nanosheets possess dynamic and mechanical stability while the hydrogenated sheet has different anisotropic metallicity compared to pristine sheet leading to enhancement in brittle behaviour. Electronic structure calculations reveal that both nanosheets host Dirac cones (DCs), while hydrogenation leads to shift and enhancement in tilt of the DCs. Further hydrogenation leads to the appearance of additional Fermi pockets in the Fermi surface. Transport calculations reveals that the lattice thermal conductivity changes from 12.51 to 0.22 W m-1 K-1(along armchair direction) and from 4.42 to 0.07 W m-1 K-1(along zigzag direction) upon hydrogenation at room temperature (300 K), demonstrating a large reduction by two orders of magnitude. Such reduction is mainly attributed to decreased phonon mean free path and relaxation time along with the enhanced phonon scattering rates stemming from high frequency phonon flat modes in hydrogenated nanosheet. Comparatively larger weighted phase space leads to increased anharmonic scattering in hydrogenated nanosheet contributing to ultra-low lattice thermal conductivity. Consequently, hydrogenatedβ12nanosheet exhibits a comparatively higher thermoelectric figure of merit (∼0.75) at room temperature along armchair direction. Our study demonstrates the effects of functionalisation on transport properties of freestandingβ12borophene nanosheets which can be utilised to enhance the thermoelectric performance in two-dimensional (2D) systems and expand the applications of boron-based 2D materials.
Collapse
Affiliation(s)
- Ashish Sharma
- Department of Physics, Himachal Pradesh University, Summer Hill, Shimla, Himachal Pradesh 171005, India
| | - Vir Singh Rangra
- Department of Physics, Himachal Pradesh University, Summer Hill, Shimla, Himachal Pradesh 171005, India
| |
Collapse
|
11
|
Mignon P, Allouche AR, Innis NR, Bousige C. Neural Network Approach for a Rapid Prediction of Metal-Supported Borophene Properties. J Am Chem Soc 2023; 145:27857-27866. [PMID: 38063165 DOI: 10.1021/jacs.3c11549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
We developed a high-dimensional neural network potential (NNP) to describe the structural and energetic properties of borophene deposited on silver. This NNP has the accuracy of density functional theory (DFT) calculations while achieving computational speedups of several orders of magnitude, allowing the study of extensive structures that may reveal intriguing moiré patterns or surface corrugations. We describe an efficient approach to constructing the training data set using an iterative technique known as the "adaptive learning approach". The developed NNP is able to produce, with excellent agreement, the structure, energy, and forces obtained at the DFT level. Finally, the calculated stability of various borophene polymorphs, including those not initially included in the training data set, shows better stabilization for ν ∼ 0.1 hole density, and in particular for the allotrope α ( ν = 1 / 9 ) . The stability of borophene on the metal surface is shown to depend on its orientation, implying structural corrugation patterns that can be observed only from long-time simulations on extended systems. The NNP also demonstrates its ability to simulate vibrational densities of states and produce realistic structures with simulated STM images closely matching the experimental ones.
Collapse
Affiliation(s)
- Pierre Mignon
- Institut Lumière Matière, UMR CNRS 5306, Univ Lyon, Université Claude Bernard Lyon 1, F-69622 Villeurbanne, France
| | - Abdul-Rahman Allouche
- Institut Lumière Matière, UMR CNRS 5306, Univ Lyon, Université Claude Bernard Lyon 1, F-69622 Villeurbanne, France
| | - Neil Richard Innis
- Laboratoire des Multimatériaux et Interfaces, UMR CNRS 5615, Univ. Lyon, Université Claude Bernard Lyon 1, F-69622 Villeurbanne, France
| | - Colin Bousige
- Laboratoire des Multimatériaux et Interfaces, UMR CNRS 5615, Univ. Lyon, Université Claude Bernard Lyon 1, F-69622 Villeurbanne, France
| |
Collapse
|
12
|
Ye P, Xiao J, Fan J, Chen J, Gao N, Yang X. Structural Characterization of Boron Sheets beyond the Monolayer and Implication for Experimental Synthesis and Identification. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:16191-16198. [PMID: 37930136 DOI: 10.1021/acs.langmuir.3c02573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
The successful synthesis of quasi-freestanding bilayer borophene has aroused much attention for its superior physical properties and holds great promise for future electronic devices. Herein, we comprehensively explore six boron sheets beyond the monolayer and structurally characterize them via various methods using first-principles calculations for experimental references. On the basis of atomic models of borophenes, simulated scanning tunneling microscope (STM) images show different morphologies at different bias voltages and are explained by the partial densities of states and the height differences in the vertical direction. Simulated transmission electron microscope images further probe the internal atomic arrangement of boron sheets and compensate for the shortcomings of STM images to better distinguish different phases of boron sheets. The interlayer coupling strength is stronger in bilayer borophenes than in the three-layer system via the electron localization function and Mulliken bond population. In addition, simulated X-ray diffraction and infrared spectra show different characteristic peaks and corresponding vibrational modes to further characterize these boron sheets. These theoretical results can decrease the prime cost and provide vital guidance for the experimental synthesis and identification of boron sheets beyond the monolayer.
Collapse
Affiliation(s)
- Panbin Ye
- School of Materials Science and Engineering, Taizhou University, Taizhou 318000, China
| | - Jingyi Xiao
- Instrumental Analysis Center, Dalian University of Technology, Dalian 116024, China
| | - Junyu Fan
- Department of Physics, Taiyuan Normal University, Jinzhong 030619, People's Republic of China
| | - Jinghuang Chen
- School of Materials Science and Engineering, Taizhou University, Taizhou 318000, China
| | - Nan Gao
- School of Materials Science and Engineering, Taizhou University, Taizhou 318000, China
| | - Xiaowei Yang
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024, China
| |
Collapse
|
13
|
Hu PJ, Ding JT, Liang ZR, Fang TF, Guo AM, Sun QF. Enhanced electron transport and self-similarity in quasiperiodic borophene nanoribbons with line defects. NANOSCALE 2023. [PMID: 37323016 DOI: 10.1039/d3nr01658g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Recent experiments have revealed multiple borophene phases of distinct lattice structures, suggesting that the unit cells of ν1/6 and ν1/5 boron sheets, namely α and β chains, serve as building blocks to assemble into novel borophene phases. Motivated by these experiments, we present a theoretical study of electron transport along two-terminal quasiperiodic borophene nanoribbons (BNRs), with the arrangement of the α and β chains following the generalized Fibonacci sequence. Our results indicate that the energy spectrum of these quasiperiodic BNRs is multifractal and characterized by numerous transmission peaks. In contrast to the Fibonacci model that all the electronic states should be critical, both delocalized and critical states appear in the quasiperiodic BNRs, where the averaged resistance saturates at the inverse of one conductance quantum for the delocalized states in the large length limit and contrarily exhibits a power-law dependence on the nanoribbon length for the critical states. Besides, the self-similarity is observed from the transmission spectrum, where the conductance curves overlap at different energy regions of two quasiperiodic BNRs of different Fibonacci indices and the resistance curves are analogous to each other at different energy scales of a single quasiperiodic BNR. These results complement previous studies on quasiperiodic systems where the multifractal energy spectrum and the self-similarity are observed by generating quasiperiodic potential energies, suggesting that borophene may provide an intriguing platform for understanding the structure-property relationships and exploring the physical properties of quasiperiodic systems.
Collapse
Affiliation(s)
- Pei-Jia Hu
- Hunan Key Laboratory for Super-microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha 410083, China.
| | - Jin-Ting Ding
- Hunan Key Laboratory for Super-microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha 410083, China.
| | - Zeng-Ren Liang
- Hunan Key Laboratory for Super-microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha 410083, China.
| | - Tie-Feng Fang
- School of Sciences, Nantong University, Nantong 226019, China
- Research Center for Quantum Physics and Materials, Nantong University, Nantong 226019, China
| | - Ai-Min Guo
- Hunan Key Laboratory for Super-microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha 410083, China.
| | - Qing-Feng Sun
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
- CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
14
|
Zhong C, Li X, Feng C, Yu P. A two-dimensional borophene monolayer with ideal Dirac nodal-line fermions. Phys Chem Chem Phys 2023; 25:13587-13592. [PMID: 37144284 DOI: 10.1039/d3cp00006k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
As a relatively new member of two-dimensional materials, borophene has gained huge interest over the past years, especially in the field of discovering new topological materials, such as Dirac nodal line semimetals. Here, based on first-principles calculations, for the first time, we find a completely flat borophene monolayer (named χ2/9) with ideal Dirac nodal line states around the Fermi level. A tight-binding model using the Slater-Koster approach is proposed to demonstrate that the unique electronic feature of χ2/9 that mainly originated from the first-nearest neighbor interactions of the pz orbitals of boron. According to our symmetry analysis, the Dirac nodal line in χ2/9 is guaranteed by the out-of-plane mirror or C2 rotational symmetry and the negligible pz orbital coupling. The chemical bonding analysis reveals the rare electronic properties of this material, which can be attributed to the multicentered π bonds.
Collapse
Affiliation(s)
- Chengyong Zhong
- College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing 401331, China.
| | - Xuelian Li
- College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing 401331, China.
| | - Chunbao Feng
- School of Science, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Peng Yu
- College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing 401331, China.
| |
Collapse
|
15
|
Kharwar S, Singh S, Jaiswal NK, Mohammed MKA. Nanointerconnect design based on edge fluorinated/hydrogenated zigzag borophene nanoribbons: an ab initio analysis. Phys Chem Chem Phys 2023; 25:5122-5129. [PMID: 36722994 DOI: 10.1039/d2cp03428j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Using an ab initio framework and non-equilibrium Green's function technique, the effect of hydrogen and fluorine atom passivation on the electronic and transport properties of borophene nanoribbons (BNRs) are explored. For zigzag edge states, we have explored all potentially stable combinations of hydrogen and fluorine passivation. Fluorine passivation leads to thermodynamically stable structures with improved stability for the increased concentration of F atoms, according to our binding energy (Eb) calculations. Furthermore, density-of-states and dispersion relation (E-k structures) computations indicate that fluorine-passivated BNRs are primarily metallic in nature. We proposed these nanostructures for their use in metal interconnects because of their increased metallicity. We have used the typical two-probe setup to calculate the critical parameters like quantum resistance (RQ), kinetic inductance (LK), and quantum capacitance (CQ) to evaluate their performance as metal interconnects. Because they have the lowest estimated values of LK = 26.1 nH μm-1, and CQ = 399 pF cm-1, the zigzag BNRs (ZBNRs) with two edge fluorinated (F-BNR-F) nanostructures may be considered as a promising candidate for nanoscale interconnect applications.
Collapse
Affiliation(s)
- Saurabh Kharwar
- Microelectronics & VLSI lab, National Institute of Technology, Patna-800005, India.
| | - Sangeeta Singh
- Microelectronics & VLSI lab, National Institute of Technology, Patna-800005, India.
| | - Neeraj K Jaiswal
- 2-D Materials Research Laboratory, Discipline of Physics, Indian Institute of Information Technology, Design & Manufacturing, Jabalpur-482005, India.
| | - Mustafa K A Mohammed
- Radiological Techniques Department, Al-Mustaqbal University College, 51001 Hillah, Babylon, Iraq.
| |
Collapse
|
16
|
Xie Z, Duo Y, Fan T, Zhu Y, Feng S, Li C, Guo H, Ge Y, Ahmed S, Huang W, Liu H, Qi L, Guo R, Li D, Prasad PN, Zhang H. Light-induced tumor theranostics based on chemical-exfoliated borophene. LIGHT, SCIENCE & APPLICATIONS 2022; 11:324. [PMID: 36369148 PMCID: PMC9652458 DOI: 10.1038/s41377-022-00980-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 08/23/2022] [Accepted: 09/09/2022] [Indexed: 06/03/2023]
Abstract
Among 2D materials (Xenes) which are at the forefront of research activities, borophene, is an exciting new entry due to its uniquely varied optical, electronic, and chemical properties in many polymorphic forms with widely varying band gaps including the lightest 2D metallic phase. In this paper, we used a simple selective chemical etching to prepare borophene with a strong near IR light-induced photothermal effect. The photothermal efficiency is similar to plasmonic Au nanoparticles, with the added benefit of borophene being degradable due to electron deficiency of boron. We introduce this selective chemical etching process to obtain ultrathin and large borophene nanosheets (thickness of ~4 nm and lateral size up to ~600 nm) from the precursor of AlB2. We also report first-time observation of a selective Acid etching behavior showing HCl etching of Al to form a residual B lattice, while HF selectively etches B to yield an Al lattice. We demonstrate that through surface modification with polydopamine (PDA), a biocompatible smart delivery nanoplatform of B@PDA can respond to a tumor environment, exhibiting an enhanced cellular uptake efficiency. We demonstrate that borophene can be more suitable for safe photothermal theranostic of thick tumor using deep penetrating near IR light compared to gold nanoparticles which are not degradable, thus posing long-term toxicity concerns. With about 40 kinds of borides, we hope that our work will open door to more discoveries of this top-down selective etching approach for generating borophene structures with rich unexplored thermal, electronic, and optical properties for many other technological applications.
Collapse
Affiliation(s)
- Zhongjian Xie
- Institute of Pediatrics, Shenzhen Children's Hospital, Shenzhen, Guangdong, China
- Shenzhen Engineering Laboratory of phosphorene and Optoelectronics; International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Shenzhen Institute of Translational Medicine, Department of Otolaryngology, Shenzhen Second People's Hospital, the First Affiliated Hospital, Institute of Microscale Optoelectronics, Shenzhen University, 518060, Shenzhen, China
| | - Yanhong Duo
- Shenzhen Engineering Laboratory of phosphorene and Optoelectronics; International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Shenzhen Institute of Translational Medicine, Department of Otolaryngology, Shenzhen Second People's Hospital, the First Affiliated Hospital, Institute of Microscale Optoelectronics, Shenzhen University, 518060, Shenzhen, China
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institute, Stockholm, Sweden
| | - Taojian Fan
- Shenzhen Engineering Laboratory of phosphorene and Optoelectronics; International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Shenzhen Institute of Translational Medicine, Department of Otolaryngology, Shenzhen Second People's Hospital, the First Affiliated Hospital, Institute of Microscale Optoelectronics, Shenzhen University, 518060, Shenzhen, China
| | - Yao Zhu
- Shenzhen Medical Ultrasound Engineering Center, Department of Ultrasonography, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, First Clinical Medical College of Southern University of Science and Technology, 518020, Shenzhen, China
| | - Shuai Feng
- Optoelectronics Research Center, School of Science, Minzu University of China, 100081, Beijing, PR China
| | - Chuanbo Li
- Optoelectronics Research Center, School of Science, Minzu University of China, 100081, Beijing, PR China
| | - Honglian Guo
- Optoelectronics Research Center, School of Science, Minzu University of China, 100081, Beijing, PR China
| | - Yanqi Ge
- Shenzhen Engineering Laboratory of phosphorene and Optoelectronics; International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Shenzhen Institute of Translational Medicine, Department of Otolaryngology, Shenzhen Second People's Hospital, the First Affiliated Hospital, Institute of Microscale Optoelectronics, Shenzhen University, 518060, Shenzhen, China
| | - Shakeel Ahmed
- Shenzhen Engineering Laboratory of phosphorene and Optoelectronics; International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Shenzhen Institute of Translational Medicine, Department of Otolaryngology, Shenzhen Second People's Hospital, the First Affiliated Hospital, Institute of Microscale Optoelectronics, Shenzhen University, 518060, Shenzhen, China
| | - Weichun Huang
- Nantong Key Lab of Intelligent and New Energy Materials, College of Chemistry and Chemical Engineering, Nantong University, 226019, Nantong, Jiangsu, China
| | - Huiling Liu
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Centre for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, 510632, Guangzhou, China
| | - Ling Qi
- Department of Core Medical Laboratory, the Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guang Dong Province, China
| | - Rui Guo
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Centre for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, 510632, Guangzhou, China
| | - Defa Li
- Department of Laboratory Medicine, Shenzhen Children's Hospital, Shenzhen, Guangdong, China.
| | - Paras N Prasad
- Institute for Lasers, Photonics, and Biophotonics and Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY, USA.
| | - Han Zhang
- Shenzhen Engineering Laboratory of phosphorene and Optoelectronics; International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Shenzhen Institute of Translational Medicine, Department of Otolaryngology, Shenzhen Second People's Hospital, the First Affiliated Hospital, Institute of Microscale Optoelectronics, Shenzhen University, 518060, Shenzhen, China.
| |
Collapse
|
17
|
Yang R, Sun M. Electronic structures and optical properties of monolayer borophenes. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 272:121014. [PMID: 35182919 DOI: 10.1016/j.saa.2022.121014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/28/2022] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
In this paper, we theoretically investigated the electronic and optical properties of monolayer borophene, including the electronic energy band, density of states (DOS), dielectric function, and absorption spectra and the charge distribution. The calculated phonon spectra and phononic DOS confirm that the four kinds of monolayer borophene structures can stably exist. Two-dimensional (2D) borophene exhibits apparent optical anisotropy in visible and near infrared (NIR) regions. Our results provide a reliable theoretical base for the application of monolayer borophene in optoelectronic devices.
Collapse
Affiliation(s)
- Rui Yang
- School of Mathematics and Physics, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Mengtao Sun
- School of Mathematics and Physics, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
18
|
Yadav S, Sadique MA, Kaushik A, Ranjan P, Khan R, Srivastava AK. Borophene as an emerging 2D flatland for biomedical applications: current challenges and future prospects. J Mater Chem B 2022; 10:1146-1175. [PMID: 35107476 DOI: 10.1039/d1tb02277f] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Recently, two-dimensional (2D)-borophene has emerged as a remarkable translational nanomaterial substituting its predecessors in the field of biomedical sensors, diagnostic tools, high-performance healthcare devices, super-capacitors, and energy storage devices. Borophene justifies its demand due to high-performance and controlled optical, electrical, mechanical, thermal, and magnetic properties as compared with other 2D-nanomaterials. However, continuous efforts are being made to translate theoretical and experimental knowledge into pragmatic platforms. To cover the associated knowledge gap, this review explores the computational and experimental chemistry needed to optimize borophene with desired properties. High electrical conductivity due to destabilization of the highest occupied molecular orbital (HOMO), nano-engineering at the monolayer level, chemistry-oriented biocompatibility, and photo-induced features project borophene for biosensing, bioimaging, cancer treatment, and theragnostic applications. Besides, the polymorphs of borophene have been useful to develop specific bonding for DNA sequencing and high-performance medical equipment. In this review, an overall critical and careful discussion of systematic advancements in borophene-based futuristic biomedical applications including artificial intelligence (AI), Internet-of-Things (IoT), and Internet-of-Medical Things (IoMT) assisted smart devices in healthcare to develop high-performance biomedical systems along with challenges and prospects is extensively addressed. Consequently, this review will serve as a key supportive platform as it explores borophene for next-generation biomedical applications. Finally, we have proposed the potential use of borophene in healthcare management strategies.
Collapse
Affiliation(s)
- Shalu Yadav
- CSIR - Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal - 462026, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Mohd Abubakar Sadique
- CSIR - Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal - 462026, India.
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Health Systems Engineering, Department of Environmental Engineering, Florida Polytechnic University, Lakeland, Florida 33805, USA
| | - Pushpesh Ranjan
- CSIR - Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal - 462026, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Raju Khan
- CSIR - Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal - 462026, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Avanish K Srivastava
- CSIR - Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal - 462026, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
19
|
Tsai HS, Wang Y, Liu C, Wang T, Huo M. The elemental 2D materials beyond graphene potentially used as hazardous gas sensors for environmental protection. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127148. [PMID: 34537634 DOI: 10.1016/j.jhazmat.2021.127148] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/23/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
The intrinsic and electronic properties of elemental two-dimensional (2D) materials beyond graphene are first introduced in this review. Then the studies concerning the application of gas sensing using these 2D materials are comprehensively reviewed. On the whole, the carbon-, nitrogen-, and sulfur-based gases could be effectively detected by using most of them. For the sensing of organic vapors, the borophene, phosphorene, and arsenene may perform it well. Moreover, the G-series nerve agents might be efficiently monitored by the bismuthene. So far, there is still challenge on the material preparation due to the instability of these 2D materials under atmosphere. The synthesis or growth of materials integrated with the technique of surface protection should be associated with the device fabrication to establish a complete process for particular application. This review provides a complete and methodical guideline for scientists to further research and develop the hazardous gas sensors of these 2D materials in order to achieve the purpose of environmental protection.
Collapse
Affiliation(s)
- Hsu-Sheng Tsai
- Laboratory for Space Environment and Physical Sciences, Harbin Institute of Technology, 150001 Harbin, China; School of Physics, Harbin Institute of Technology, 150001 Harbin, China.
| | - You Wang
- School of Materials Science and Engineering, Harbin Institute of Technology, 150001 Harbin, China
| | - Chaoming Liu
- Laboratory for Space Environment and Physical Sciences, Harbin Institute of Technology, 150001 Harbin, China; School of Materials Science and Engineering, Harbin Institute of Technology, 150001 Harbin, China
| | - Tianqi Wang
- Laboratory for Space Environment and Physical Sciences, Harbin Institute of Technology, 150001 Harbin, China
| | - Mingxue Huo
- Laboratory for Space Environment and Physical Sciences, Harbin Institute of Technology, 150001 Harbin, China
| |
Collapse
|
20
|
Xie Z, Zhang B, Ge Y, Zhu Y, Nie G, Song Y, Lim CK, Zhang H, Prasad PN. Chemistry, Functionalization, and Applications of Recent Monoelemental Two-Dimensional Materials and Their Heterostructures. Chem Rev 2021; 122:1127-1207. [PMID: 34780169 DOI: 10.1021/acs.chemrev.1c00165] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The past decades have witnessed a rapid expansion in investigations of two-dimensional (2D) monoelemental materials (Xenes), which are promising materials in various fields, including applications in optoelectronic devices, biomedicine, catalysis, and energy storage. Apart from graphene and phosphorene, recently emerging 2D Xenes, specifically graphdiyne, borophene, arsenene, antimonene, bismuthene, and tellurene, have attracted considerable interest due to their unique optical, electrical, and catalytic properties, endowing them a broader range of intriguing applications. In this review, the structures and properties of these emerging Xenes are summarized based on theoretical and experimental results. The synthetic approaches for their fabrication, mainly bottom-up and top-down, are presented. Surface modification strategies are also shown. The wide applications of these emerging Xenes in nonlinear optical devices, optoelectronics, catalysis, biomedicine, and energy application are further discussed. Finally, this review concludes with an assessment of the current status, a description of existing scientific and application challenges, and a discussion of possible directions to advance this fertile field.
Collapse
Affiliation(s)
- Zhongjian Xie
- Institute of Pediatrics, Shenzhen Children's Hospital, Shenzhen 518038, Guangdong, P.R. China.,Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Institute of Microscale Optoelectronics, and Otolaryngology Department of the First Affiliated Hospital, Shenzhen Second People's Hospital, Health Science Center, Shenzhen University, Shenzhen 518060, P.R. China
| | - Bin Zhang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Institute of Microscale Optoelectronics, and Otolaryngology Department of the First Affiliated Hospital, Shenzhen Second People's Hospital, Health Science Center, Shenzhen University, Shenzhen 518060, P.R. China
| | - Yanqi Ge
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Institute of Microscale Optoelectronics, and Otolaryngology Department of the First Affiliated Hospital, Shenzhen Second People's Hospital, Health Science Center, Shenzhen University, Shenzhen 518060, P.R. China
| | - Yao Zhu
- Shenzhen Medical Ultrasound Engineering Center, Department of Ultrasonography, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, First Clinical Medical College of Southern University of Science and Technology, Shenzhen 518020, China
| | - Guohui Nie
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Institute of Microscale Optoelectronics, and Otolaryngology Department of the First Affiliated Hospital, Shenzhen Second People's Hospital, Health Science Center, Shenzhen University, Shenzhen 518060, P.R. China
| | - YuFeng Song
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Institute of Microscale Optoelectronics, and Otolaryngology Department of the First Affiliated Hospital, Shenzhen Second People's Hospital, Health Science Center, Shenzhen University, Shenzhen 518060, P.R. China
| | - Chang-Keun Lim
- Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan City 010000, Kazakhstan
| | - Han Zhang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Institute of Microscale Optoelectronics, and Otolaryngology Department of the First Affiliated Hospital, Shenzhen Second People's Hospital, Health Science Center, Shenzhen University, Shenzhen 518060, P.R. China
| | - Paras N Prasad
- Institute for Lasers, Photonics, and Biophotonics and Department of Chemistry, University at Buffalo, State University of New York, Buffalo 14260-3000, United States
| |
Collapse
|
21
|
Kaneti YV, Benu DP, Xu X, Yuliarto B, Yamauchi Y, Golberg D. Borophene: Two-dimensional Boron Monolayer: Synthesis, Properties, and Potential Applications. Chem Rev 2021; 122:1000-1051. [PMID: 34730341 DOI: 10.1021/acs.chemrev.1c00233] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Borophene, a monolayer of boron, has risen as a new exciting two-dimensional (2D) material having extraordinary properties, including anisotropic metallic behavior and flexible (orientation-dependent) mechanical and optical properties. This review summarizes the current progress in the synthesis of borophene on various metal substrates, including Ag(110), Ag(100), Au(111), Ir(111), Al(111), and Cu(111), as well as heterostructuring of borophene. In addition, it discusses the mechanical, thermal, magnetic, electronic, optical, and superconducting properties of borophene and the effects of elemental doping, defects, and applied mechanical strains on these properties. Furthermore, the promising potential applications of borophene for gas sensing, energy storage and conversion, gas capture and storage applications, and possible tuning of the material performance in these applications through doping, formation of defects, and heterostructures are illustrated based on available theoretical studies. Finally, research and application challenges and the outlook of the whole borophene's field are given.
Collapse
Affiliation(s)
- Yusuf Valentino Kaneti
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Didi Prasetyo Benu
- Division of Inorganic and Physical Chemistry, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung 40132, Indonesia.,Department of Chemistry, Universitas Timor, Kefamenanu 85613, Indonesia
| | - Xingtao Xu
- JST-ERATO Yamauchi Materials Space-Tectonics Project, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.,International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Brian Yuliarto
- Research Center for Nanosciences and Nanotechnology (RCNN), Institute of Technology Bandung (ITB), Bandung 40132, Indonesia
| | - Yusuke Yamauchi
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia.,JST-ERATO Yamauchi Materials Space-Tectonics Project, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.,International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Dmitri Golberg
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.,Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, Queensland 4000, Australia.,School of Chemistry and Physics, Faculty of Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, Queensland 4000, Australia
| |
Collapse
|
22
|
Li L, Schultz JF, Mahapatra S, Liu X, Shaw C, Zhang X, Hersam MC, Jiang N. Angstrom-Scale Spectroscopic Visualization of Interfacial Interactions in an Organic/Borophene Vertical Heterostructure. J Am Chem Soc 2021; 143:15624-15634. [PMID: 34369773 DOI: 10.1021/jacs.1c04380] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Two-dimensional boron monolayers (i.e., borophene) hold promise for a variety of energy, catalytic, and nanoelectronic device technologies due to the unique nature of boron-boron bonds. To realize its full potential, borophene needs to be seamlessly interfaced with other materials, thus motivating the atomic-scale characterization of borophene-based heterostructures. Here, we report the vertical integration of borophene with tetraphenyldibenzoperiflanthene (DBP) and measure the angstrom-scale interfacial interactions with ultrahigh-vacuum tip-enhanced Raman spectroscopy (UHV-TERS). In addition to identifying the vibrational signatures of adsorbed DBP, TERS reveals subtle ripples and compressive strains of the borophene lattice underneath the molecular layer. The induced interfacial strain is demonstrated to extend in borophene by ∼1 nm beyond the molecular region by virtue of 5 Å chemical spatial resolution. Molecular manipulation experiments prove the molecular origins of interfacial strain in addition to allowing atomic control of local strain with magnitudes as small as ∼0.6%. In addition to being the first realization of an organic/borophene vertical heterostructure, this study demonstrates that UHV-TERS is a powerful analytical tool to spectroscopically investigate buried and highly localized interfacial characteristics at the atomic scale, which can be applied to additional classes of heterostructured materials.
Collapse
Affiliation(s)
- Linfei Li
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Jeremy F Schultz
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Sayantan Mahapatra
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Xiaolong Liu
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Chasen Shaw
- Department of Physics and Astronomy, California State University, Northridge, Northridge, California 91330, United States
| | - Xu Zhang
- Department of Physics and Astronomy, California State University, Northridge, Northridge, California 91330, United States
| | - Mark C Hersam
- Applied Physics Graduate Program, Northwestern University, Evanston, Illinois 60208, United States.,Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States.,Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States.,Department of Electrical and Computer Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Nan Jiang
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| |
Collapse
|
23
|
Ta LT, Hamada I, Morikawa Y, Dinh VA. Adsorption of toxic gases on borophene: surface deformation links to chemisorptions. RSC Adv 2021; 11:18279-18287. [PMID: 35480898 PMCID: PMC9033448 DOI: 10.1039/d1ra02738g] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 05/14/2021] [Indexed: 11/25/2022] Open
Abstract
β12 borophene has received great attention because of its intriguing mechanical and electronic properties. One of the possible applications of borophene is gas sensing. However, the interaction between common gases and β12 borophene remains to be clarified. In this work, we study the interactions of β12 borophene towards five hazardous gases, namely, CO, NO, NH3, NO2, and CO2 using various non-empirical van der Waals density functionals and provide an insight into the adsorption behavior of borophene. The adsorption mechanism and molecular vibrations are discussed in great detail. Among the gases considered, CO2 is physisorbed while other gases are chemically bonded to β12 borophene. We also demonstrate that the deformation at the ridge of borophene enables its active p z orbital to strongly hybridize with frontier orbitals of the studied polar gases. Consequently, borophene is predicted to interact strongly with CO, NO, NH3, and especially NO2, making it a sensitive sensing material for toxic gases.
Collapse
Affiliation(s)
- Luong Thi Ta
- Department of Precision Engineering, Graduate School of Engineering, Osaka University 2-1, Yamadaoka Suita Osaka 565-0871 Japan
- Nanotechnology Program, VNU Vietnam Japan University Luu Huu Phuoc Str., My Dinh I, Nam Tu Liem Hanoi, 100000 Vietnam
- Department of Chemistry, Institute of Environment, Vietnam Maritime University Le Chan Haiphong, 18000 Vietnam
| | - Ikutaro Hamada
- Department of Precision Engineering, Graduate School of Engineering, Osaka University 2-1, Yamadaoka Suita Osaka 565-0871 Japan
- Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University Goryo-Ohara, Nishikyo-ku Kyoto 615-8245 Japan
| | - Yoshitada Morikawa
- Department of Precision Engineering, Graduate School of Engineering, Osaka University 2-1, Yamadaoka Suita Osaka 565-0871 Japan
- Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University Goryo-Ohara, Nishikyo-ku Kyoto 615-8245 Japan
- Research Center for Precision Engineering, Graduate School of Engineering, Osaka University 2-1 Yamadaoka Suita Osaka 565-0871 Japan
| | - Van An Dinh
- Nanotechnology Program, VNU Vietnam Japan University Luu Huu Phuoc Str., My Dinh I, Nam Tu Liem Hanoi, 100000 Vietnam
- Center for Atomic and Molecular Technologies, Graduate School of Engineering, Osaka University 2-1 Yamadaoka Suita Osaka 565-0871 Japan
| |
Collapse
|
24
|
Mozvashi SM, Mohebpour MA, Vishkayi SI, Tagani MB. Mechanical strength and flexibility in [Formula: see text]-4H borophene. Sci Rep 2021; 11:7547. [PMID: 33824388 PMCID: PMC8024380 DOI: 10.1038/s41598-021-87246-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 03/22/2021] [Indexed: 02/01/2023] Open
Abstract
Very recently, a novel phase of hydrogenated borophene, namely [Formula: see text]-4H, has been synthesized in a free-standing form. Unlike pure borophenes, this phase shows very good stability in the air environment and possesses semiconducting characteristics. Because of the interesting stiffness and flexibility of borophenes, herein, we systematically studied the mechanical properties of this novel hydrogenated phase. Our results show that the monolayer is stiffer (Y[Formula: see text] = [Formula: see text]195 N/m) than group IV and V 2D materials and even than MoS[Formula: see text], while it is softer than graphene. Moreover, similar to other phases of borophene, the inherent anisotropy of the pure monolayer increases with hydrogenation. The monolayer can bear biaxial, armchair, and zigzag strains up to 16, 10, and 14% with ideal strengths of approximately 14, 9, and 12 N/m, respectively. More interestingly, it can remain semiconductor under this range of tension. These outstanding results suggest that the [Formula: see text]-4H is a promising candidate for flexible nanoelectronics.
Collapse
Affiliation(s)
- Shobair Mohammadi Mozvashi
- Computational Nanophysics Laboratory (CNL), Department of Physics, University of Guilan, P. O. Box 41335-1914, Rasht, Iran
| | - Mohammad Ali Mohebpour
- Computational Nanophysics Laboratory (CNL), Department of Physics, University of Guilan, P. O. Box 41335-1914, Rasht, Iran
| | - Sahar Izadi Vishkayi
- School of Physics, Institute for Research in Fundamental Sciences (IPM), P. O. Box 19395-5531, Tehran, Iran
| | - Meysam Bagheri Tagani
- Computational Nanophysics Laboratory (CNL), Department of Physics, University of Guilan, P. O. Box 41335-1914, Rasht, Iran
| |
Collapse
|
25
|
Li Q, Kolluru VSC, Rahn MS, Schwenker E, Li S, Hennig RG, Darancet P, Chan MKY, Hersam MC. Synthesis of borophane polymorphs through hydrogenation of borophene. Science 2021; 371:1143-1148. [DOI: 10.1126/science.abg1874] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 01/29/2021] [Indexed: 12/15/2022]
Affiliation(s)
- Qiucheng Li
- Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, IL 60208, USA
| | - Venkata Surya Chaitanya Kolluru
- Center for Nanoscale Materials, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA
- Department of Materials Science and Engineering, University of Florida, 1885 Stadium Road, Gainesville, FL 32611, USA
- Quantum Theory Project, University of Florida, 1885 Stadium Road, Gainesville, FL 32611, USA
| | - Matthew S. Rahn
- Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, IL 60208, USA
| | - Eric Schwenker
- Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, IL 60208, USA
- Center for Nanoscale Materials, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA
| | - Shaowei Li
- Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, IL 60208, USA
| | - Richard G. Hennig
- Department of Materials Science and Engineering, University of Florida, 1885 Stadium Road, Gainesville, FL 32611, USA
- Quantum Theory Project, University of Florida, 1885 Stadium Road, Gainesville, FL 32611, USA
| | - Pierre Darancet
- Center for Nanoscale Materials, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA
- Northwestern-Argonne Institute of Science and Engineering, 2205 Tech Drive, Evanston, IL 60208, USA
| | - Maria K. Y. Chan
- Center for Nanoscale Materials, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA
- Northwestern-Argonne Institute of Science and Engineering, 2205 Tech Drive, Evanston, IL 60208, USA
| | - Mark C. Hersam
- Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, IL 60208, USA
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
- Department of Electrical and Computer Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| |
Collapse
|
26
|
Xiong Z, Zhong L, Wang H, Li X. Structural Defects, Mechanical Behaviors, and Properties of Two-Dimensional Materials. MATERIALS (BASEL, SWITZERLAND) 2021; 14:1192. [PMID: 33802523 PMCID: PMC7961825 DOI: 10.3390/ma14051192] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 01/18/2023]
Abstract
Since the success of monolayer graphene exfoliation, two-dimensional (2D) materials have been extensively studied due to their unique structures and unprecedented properties. Among these fascinating studies, the most predominant focus has been on their atomic structures, defects, and mechanical behaviors and properties, which serve as the basis for the practical applications of 2D materials. In this review, we first highlight the atomic structures of various 2D materials and the structural and energy features of some common defects. We then summarize the recent advances made in experimental, computational, and theoretical studies on the mechanical properties and behaviors of 2D materials. We mainly emphasized the underlying deformation and fracture mechanisms and the influences of various defects on mechanical behaviors and properties, which boost the emergence and development of topological design and defect engineering. We also further introduce the piezoelectric and flexoelectric behaviors of specific 2D materials to address the coupling between mechanical and electronic properties in 2D materials and the interactions between 2D crystals and substrates or between different 2D monolayers in heterostructures. Finally, we provide a perspective and outlook for future studies on the mechanical behaviors and properties of 2D materials.
Collapse
Affiliation(s)
- Zixin Xiong
- Center for Advanced Mechanics and Materials, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China; (Z.X.); (L.Z.); (H.W.)
| | - Lei Zhong
- Center for Advanced Mechanics and Materials, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China; (Z.X.); (L.Z.); (H.W.)
- Midea Group, Foshan 528311, China
| | - Haotian Wang
- Center for Advanced Mechanics and Materials, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China; (Z.X.); (L.Z.); (H.W.)
| | - Xiaoyan Li
- Center for Advanced Mechanics and Materials, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China; (Z.X.); (L.Z.); (H.W.)
| |
Collapse
|
27
|
Arefi V, Horri A, Tavakoli MB. Transport properties of Na-decorated borophene under CO/CO2 adsorption. COMPUT THEOR CHEM 2021. [DOI: 10.1016/j.comptc.2021.113159] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
28
|
|
29
|
Khan K, Tareen AK, Aslam M, Khan MF, Shi Z, Ma C, Shams SS, Khatoon R, mahmood N, Zhang H, Guo Z. Synthesis, properties and novel electrocatalytic applications of the 2D-borophene Xenes. PROG SOLID STATE CH 2020. [DOI: 10.1016/j.progsolidstchem.2020.100283] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
30
|
Dereshgi SA, Liu Z, Aydin K. Anisotropic localized surface plasmons in borophene. OPTICS EXPRESS 2020; 28:16725-16739. [PMID: 32549488 DOI: 10.1364/oe.392011] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/10/2020] [Indexed: 06/11/2023]
Abstract
We present a theoretical study on the plasmonic response of borophene, a monolayer 2D material that is predicted to exhibit metallic response and anisotropic plasmonic behavior in visible wavelengths. We investigate plasmonic properties of borophene thin films as well as borophene nanoribbons and nanopatches where polarization-sensitive absorption values in the order of 50% is obtained with monolayer borophene. It is demonstrated that by adding a metal layer, this absorption can be enhanced to 100%. We also examine giant dichroism in monolayer borophene which can be tuned passively (patterning) and actively (electrostatic gating) and our simulations yield 20% reflected light with significant polarization rotation. These findings reveal the potential of borophene in the manipulation of phase, amplitude and polarization of light at the extreme subwavelength scales.
Collapse
|
31
|
Jha RK, Nanda A, Bhat N. Boron nanostructures obtained via ultrasonic irradiation for high performance chemiresistive methane sensors. NANOSCALE ADVANCES 2020; 2:1837-1842. [PMID: 36132512 PMCID: PMC9417492 DOI: 10.1039/c9na00749k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 03/09/2020] [Indexed: 05/05/2023]
Abstract
We report on a chemiresistive gas sensor using boron nanostructures as the sensing layer, to detect methane gas down to 50 ppm. The sensor showed an excellent response of 43.5-153.1% for a methane concentration of 50 ppm to 105 ppm, with linear behaviour and good response and recovery time. The stability, repeatability, reproducibility, and shelf life of the sensor are promising for next generation methane gas detection.
Collapse
Affiliation(s)
- Ravindra Kumar Jha
- Nano-Devices and Sensors Laboratory, Centre for Nano Science and Engineering, Indian Institute of Science Bangalore India-560012
| | - Aman Nanda
- Nano-Devices and Sensors Laboratory, Centre for Nano Science and Engineering, Indian Institute of Science Bangalore India-560012
| | - Navakanta Bhat
- Nano-Devices and Sensors Laboratory, Centre for Nano Science and Engineering, Indian Institute of Science Bangalore India-560012
| |
Collapse
|
32
|
Li R, Tao Y. A first-principles study of nitrogene with monovacancy and light-atom substituted doping. NANOTECHNOLOGY 2020; 31:205202. [PMID: 31999258 DOI: 10.1088/1361-6528/ab718b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Recent studies have shown that group V monolayer, called nitrogene, remain stable in a free-standing buckled honeycomb structure with a two-dimensional hexagonal lattice. It is predicted to be a nonmagnetic, wide band gap semiconductor. In this paper, three allotropes of nitrogen single layers are firstly investigated and it is determined that the buckled honeycomb structure of nitrogene (denoted as b-N) is the lowest energetically. Then taking b-N as an example, the geometrical structures and the electronic properties of it with monovacancy and substituted doping with heterogeneous atoms, such as B, C, O, Al, Si, and P, are studied. It is found that the single vacancy in b-N is in P3m symmetry and it is polarized stable with a local magnetic moment of 3.0 μ B for each monovacancy. The substituted heterogeneous atom has little impact on the geometrical structures, while for Al, Si, and P, they move upward of the nitrogene plane due to the larger atomic radius compared to N. It is also found that C-, Si-, and O-doped nitrogene are spin-polarized stable, bringing a magnetic moment of about 1.0 μ B for each doped atom. Doping of multiple carbon atoms in one hexagonal ring of nitrogene, which prefers forming the polymer and the nitrogene with the doping of an odd number of carbon atoms, is magnetic stable, arising about 1.0 μ B magnetic moment in each supercell.
Collapse
Affiliation(s)
- Rui Li
- College of Physics and Electronic Information, Luoyang Normal University, Luoyang, 471022, People's Republic of China
| | | |
Collapse
|
33
|
Bandyopadhyay A, Jana D. A review on role of tetra-rings in graphene systems and their possible applications. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2020; 83:056501. [PMID: 32235067 DOI: 10.1088/1361-6633/ab85ba] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Inspired by the success of graphene, various two-dimensional (2D) non-hexagonal graphene allotropes having sp2-bonded tetragonal rings in free-standing (hypothetical) form and on different substrates have been proposed recently. These systems have also been fabricated after modifying the topology of graphene by chemical processes. In this review, we would like to indicate the role of tetra-rings and the local symmetry breaking on the structural, electronic and optical properties of the graphene system. First-principles computations have demonstrated that the tetragonal graphene (TG) allotrope exhibits appreciable thermodynamic stability. The band structure of the TG nanoribbons (TGNRs) strongly depends on the size and edge geometry. This fact has been supported by the transport properties of TGNRs. The optical properties and Raman modes of this graphene allotrope have been well explored for characterisation purposes. Recently, a tight-binding model was used to unravel the metal-to-semiconductor transition under the influence of external magnetic fluxes. Even the introduction of transition metal atoms into this non-hexagonal network can control the magnetic response of the TG sheet. Furthermore, the collective effect of B-N doping and confinement effect on the structural and electronic properties of TG systems has been investigated. We also suggest future directions to be explored to make the synthesis of T graphene and its various derivatives/allotropes viable for the verification of theoretical predictions. It is observed that these doped systems act as a potential candidate for carbon monoxide gas sensing and current rectification devices. Therefore, all these experimental, numerical and analytical studies related to non-hexagonal TG systems are extremely important from a basic science point of view as well as for applications in sensing, optoelectronic and photonic devices.
Collapse
Affiliation(s)
- Arka Bandyopadhyay
- Department of Physics, University of Calcutta, 92 A P C Road, Kolkata 700009, India
| | | |
Collapse
|
34
|
Zheng B, Xie Y, Deng Y, Wang Z, Lou Y, Qian Y, He J, Yu H. Highly Effective Work Function Reduction of α‐Borophene via Caesium Decoration: A First‐Principles Investigation. ADVANCED THEORY AND SIMULATIONS 2020. [DOI: 10.1002/adts.201900249] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Bing Zheng
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education) and School of Chemistry and Materials Science Heilongjiang University Harbin 150080 P. R. China
| | - Ying Xie
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education) and School of Chemistry and Materials Science Heilongjiang University Harbin 150080 P. R. China
| | - Ying‐yi Deng
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education) and School of Chemistry and Materials Science Heilongjiang University Harbin 150080 P. R. China
| | - Zhao‐qi Wang
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education) and School of Chemistry and Materials Science Heilongjiang University Harbin 150080 P. R. China
- College of Physics Sichuan University Chengdu 610065 P. R. China
| | - Yuan‐qing Lou
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education) and School of Chemistry and Materials Science Heilongjiang University Harbin 150080 P. R. China
| | - Yin‐yin Qian
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education) and School of Chemistry and Materials Science Heilongjiang University Harbin 150080 P. R. China
| | - Jing He
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education) and School of Chemistry and Materials Science Heilongjiang University Harbin 150080 P. R. China
| | - Hai‐tao Yu
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education) and School of Chemistry and Materials Science Heilongjiang University Harbin 150080 P. R. China
| |
Collapse
|
35
|
Xie Z, Duo Y, Lin Z, Fan T, Xing C, Yu L, Wang R, Qiu M, Zhang Y, Zhao Y, Yan X, Zhang H. The Rise of 2D Photothermal Materials beyond Graphene for Clean Water Production. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1902236. [PMID: 32154070 PMCID: PMC7055570 DOI: 10.1002/advs.201902236] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 11/22/2019] [Indexed: 05/18/2023]
Abstract
Water shortage is one of the most concerning global challenges in the 21st century. Solar-inspired vaporization employing photothermal nanomaterials is considered to be a feasible and green technology for addressing the water challenge by virtue of abundant and clean solar energy. 2D nanomaterials aroused considerable attention in photothermal evaporation-induced water production owing to their large absorption surface, strong absorption in broadband solar spectrum, and efficient photothermal conversion. Herein, the recent progress of 2D nanomaterials-based photothermal evaporation, mainly including emerging Xenes (phosphorene, antimonene, tellurene, and borophene) and binary-enes (MXenes and transition metal dichalcogenides), is reviewed. Then, the optimization strategies for higher evaporation performance are summarized in terms of modulation of the intrinsic photothermal performance of 2D nanomaterials and design of the complete evaporation system. Finally, the challenges and prospective of various kinds of 2D photothermal nanomaterials are discussed in terms of the photothermal performance, stability, environmental influence, and cost. One important principle is that solutions for water challenges should not introduce new environmental and social problems. This Review aims to highlight the role of 2D photothermal nanomaterials in solving water challenges and provides a viable scheme toward the practical use in photothermal materials selection, design, and evaporation systems building.
Collapse
Affiliation(s)
- Zhongjian Xie
- Shenzhen Engineering Laboratory of Phosphorene and OptoelectronicsSZU‐NUS Collaborative Innovation Center for Optoelectronic Science & TechnologyInternational Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of EducationCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060China
| | - Yanhong Duo
- Shenzhen Engineering Laboratory of Phosphorene and OptoelectronicsSZU‐NUS Collaborative Innovation Center for Optoelectronic Science & TechnologyInternational Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of EducationCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060China
| | - Zhitao Lin
- Faculty of Information TechnologyMacau University of Science and TechnologyMacao519020P. R. China
| | - Taojian Fan
- Shenzhen Engineering Laboratory of Phosphorene and OptoelectronicsSZU‐NUS Collaborative Innovation Center for Optoelectronic Science & TechnologyInternational Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of EducationCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060China
| | - Chenyang Xing
- Shenzhen Engineering Laboratory of Phosphorene and OptoelectronicsSZU‐NUS Collaborative Innovation Center for Optoelectronic Science & TechnologyInternational Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of EducationCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060China
- Center for Stretchable Electronics and Nanoscale SystemsKey Laboratory of Optoelectronic Devices and Systems of Ministry of EducationCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060P. R. China
| | - Li Yu
- College of Health Science and Environmental EngineeringShenzhen Technology UniversityShenzhen518118China
| | - Renheng Wang
- College of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060China
| | - Meng Qiu
- Shenzhen Engineering Laboratory of Phosphorene and OptoelectronicsSZU‐NUS Collaborative Innovation Center for Optoelectronic Science & TechnologyInternational Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of EducationCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060China
| | - Yupeng Zhang
- Shenzhen Engineering Laboratory of Phosphorene and OptoelectronicsSZU‐NUS Collaborative Innovation Center for Optoelectronic Science & TechnologyInternational Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of EducationCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060China
| | - Yonghua Zhao
- State Key Laboratory of Quality Research in Chinese MedicineInstitute of Chinese Medical SciencesUniversity of MacauMacao519020P. R. China
| | - Xiaobing Yan
- College of Electron and Information EngineeringHebei UniversityBaoding071002P. R. China
| | - Han Zhang
- Shenzhen Engineering Laboratory of Phosphorene and OptoelectronicsSZU‐NUS Collaborative Innovation Center for Optoelectronic Science & TechnologyInternational Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of EducationCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060China
| |
Collapse
|
36
|
Liu L, Zhang Z, Liu X, Xuan X, Yakobson BI, Hersam MC, Guo W. Borophene Concentric Superlattices via Self-Assembly of Twin Boundaries. NANO LETTERS 2020; 20:1315-1321. [PMID: 31951420 DOI: 10.1021/acs.nanolett.9b04798] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Due to its in-plane structural anisotropy and highly polymorphic nature, borophene has been shown to form a diverse set of linear superlattice structures that are not observed in other two-dimensional materials. Here, we show both theoretically and experimentally that concentric superlattice structures can also be realized in borophene via the energetically preferred self-assembly of coherent twin boundaries. Since borophene twin boundaries do not require the creation of additional lattice defects, they are exceptionally low in energy and thus easier to nucleate and even migrate than grain boundaries in other two-dimensional materials. Due to their high mobility, borophene twin boundaries naturally self-assemble to form novel phases consisting of periodic concentric loops of filled boron hexagons that are further preferred energetically by the rotational registry of borophene on the Ag(111) surface. Compared to defect-free borophene, concentric superlattice borophene phases are predicted to possess enhanced mechanical strength and localized electronic states. Overall, these results establish defect-mediated self-assembly as a pathway to unique borophene structures and properties.
Collapse
Affiliation(s)
- Liren Liu
- Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures, and Institute of Nanoscience , Nanjing University of Aeronautics and Astronautics , Nanjing 210016 , China
| | - Zhuhua Zhang
- Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures, and Institute of Nanoscience , Nanjing University of Aeronautics and Astronautics , Nanjing 210016 , China
| | - Xiaolong Liu
- Applied Physics Graduate Program , Northwestern University , 2220 Campus Drive , Evanston , Illinois 60208 , United States
| | - Xiaoyu Xuan
- Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures, and Institute of Nanoscience , Nanjing University of Aeronautics and Astronautics , Nanjing 210016 , China
| | - Boris I Yakobson
- Department of Materials Science and NanoEngineering and Department of Chemistry , Rice University , Houston , Texas 77005 , United States
| | - Mark C Hersam
- Applied Physics Graduate Program , Northwestern University , 2220 Campus Drive , Evanston , Illinois 60208 , United States
- Department of Chemistry , Northwestern University , 2220 Campus Drive , Evanston , Illinois 60208 , United States
- Department of Materials Science and Engineering , Northwestern University , 2220 Campus Drive , Evanston , Illinois 60208 , United States
| | - Wanlin Guo
- Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures, and Institute of Nanoscience , Nanjing University of Aeronautics and Astronautics , Nanjing 210016 , China
| |
Collapse
|
37
|
Bai H, Chen TT, Chen Q, Zhao XY, Zhang YY, Chen WJ, Li WL, Cheung LF, Bai B, Cavanagh J, Huang W, Li SD, Li J, Wang LS. Planar B 41- and B 42- clusters with double-hexagonal vacancies. NANOSCALE 2019; 11:23286-23295. [PMID: 31782482 DOI: 10.1039/c9nr09522e] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Since the discovery of the B40 borospherene, research interests have been directed to the structural evolution of even larger boron clusters. An interesting question concerns if the borospherene cages persist in larger boron clusters like the fullerenes. Here we report a photoelectron spectroscopy (PES) and computational study on the structures and bonding of B41- and B42-, the largest boron clusters characterized experimentally thus far. The PE spectra of both clusters display broad and complicated features, suggesting the existence of multiple low-lying isomers. Global minimum searches for B41- reveal three low-lying isomers (I-III), which are all related to the planar B40- structure. Isomer II (Cs, 1A') possessing a double hexagonal vacancy is found to agree well with the experiment, while isomers I (Cs, 3A'') and III (Cs, 1A') both with a single hexagonal vacancy are also present as minor isomers in the experiment. The potential landscape of B42- is found to be much more complicated with numerous low-lying isomers (VII-XII). The quasi-planar structure VIII (C1, 2A) containing a double hexagonal vacancy is found to make major contributions to the observed PE spectrum of B42-, while the other low-lying isomers may also be present to give rise to a complicated spectral pattern. Chemical bonding analyses show isomer II of B41- (Cs, 1A') and isomer VIII of B42- (C1, 2A) are π aromatic, analogous to that in the polycyclic aromatic hydrocarbon C27H13+ (C2v, 1A1). Borospherene cage isomers are also found for both B41- and B42- in the global minimum searches, but they are much higher energy isomers.
Collapse
Affiliation(s)
- Hui Bai
- Key Laboratory of Coal Science and Technology of Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China and Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA.
| | - Teng-Teng Chen
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA.
| | - Qiang Chen
- Nanocluster Laboratory, Institute of Molecular Science, Shanxi University, Taiyuan 030006, Shanxi, China.
| | - Xiao-Yun Zhao
- Nanocluster Laboratory, Institute of Molecular Science, Shanxi University, Taiyuan 030006, Shanxi, China.
| | - Yang-Yang Zhang
- Department of Chemistry & Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China.
| | - Wei-Jia Chen
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA.
| | - Wan-Lu Li
- Department of Chemistry & Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China.
| | - Ling Fung Cheung
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA.
| | - Bing Bai
- Key Laboratory of Coal Science and Technology of Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China and Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA.
| | - Joseph Cavanagh
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA.
| | - Wei Huang
- Key Laboratory of Coal Science and Technology of Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
| | - Si-Dian Li
- Nanocluster Laboratory, Institute of Molecular Science, Shanxi University, Taiyuan 030006, Shanxi, China.
| | - Jun Li
- Department of Chemistry & Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China. and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Lai-Sheng Wang
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA.
| |
Collapse
|
38
|
Vinogradov NA, Lyalin A, Taketsugu T, Vinogradov AS, Preobrajenski A. Single-Phase Borophene on Ir(111): Formation, Structure, and Decoupling from the Support. ACS NANO 2019; 13:14511-14518. [PMID: 31790188 DOI: 10.1021/acsnano.9b08296] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Artificial two-dimensional (2D) materials, which host electronic or spatial structure and properties not typical for their bulk allotropes, can be grown epitaxially on atomically flat surfaces; the design and investigation of these materials are thus at the forefront of current research. Here we report the formation of borophene, a planar boron allotrope, on the surface of Ir(111) by exposing it to the flux of elemental boron and consequent annealing. By means of scanning tunneling microscopy and density functional theory calculations, we reveal the complex structure of this borophene, different from all planar boron allotropes reported earlier. This structure forms as a single phase on iridium substrate in a wide range of experimental conditions and may be then decoupled from the substrate via intercalation. These findings allow for production of large, defect-free borophene sheets and advance theoretical understanding of polymorphism in borophene.
Collapse
Affiliation(s)
| | - Andrey Lyalin
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD) , Hokkaido University , Kita 21 Nishi 10 , Sapporo 001-0021 , Japan
- Center for Green Research on Energy and Environmental Materials (GREEN) , National Institute for Materials Science , Namiki 1-1 , Tsukuba 305-0044 , Japan
| | - Tetsuya Taketsugu
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD) , Hokkaido University , Kita 21 Nishi 10 , Sapporo 001-0021 , Japan
- Department of Chemistry, Faculty of Science , Hokkaido University , Kita 10 Nishi 8 , Sapporo 060-0810 , Japan
| | | | | |
Collapse
|
39
|
Zan WY, Li HR, Mu YW, Lu HG, Li SD. Low-dimensional functional networks of cage-like B 40 with effective transition-metal intercalations. Phys Chem Chem Phys 2019; 21:22611-22617. [PMID: 31589225 DOI: 10.1039/c9cp03252e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
As the first all-boron fullerene observed in experiments, cage-like borospherene B40 has attracted considerable attention in recent years. However, B40 has been proved to be chemically reactive and tends to coalesce with one another via the formation of covalent bonds. We explore herein the possibility of low-dimensional functional networks of B40 with effective transition-metal intercalations. We find that the four equivalent B7 heptagons on the waist of each B40 can serve as effective ligands to coordinate various transition metal centers in exohedral motifs. The intercalated metal atoms entail these networks with a variety of intriguing properties. The two-dimensional (2D) Cr2B40 network is a ferromagnetic metal while the 2D Zn2B40 network becomes semiconducting. In contrast, other 2D M2B40 (M = Sc, Ti, V, Mn, Fe, Co, Ni and Cu) networks and 1D CrB40 belong to nonmagnetic metals. The 3D Cr3B40 network is a magnetic metal. This work presents the viable possibility of assembling Mn&B40 metalloborospherenes into stable functional nanomaterials via effective transition-metal intercalations with potential applications in electronic and spintronic devices.
Collapse
Affiliation(s)
- Wen-Yan Zan
- Institute of Molecular Science, Shanxi University, Taiyuan, 034000, China.
| | | | | | | | | |
Collapse
|
40
|
Zhang Z, Mannix AJ, Liu X, Hu Z, Guisinger NP, Hersam MC, Yakobson BI. Near-equilibrium growth from borophene edges on silver. SCIENCE ADVANCES 2019; 5:eaax0246. [PMID: 31598552 PMCID: PMC6764835 DOI: 10.1126/sciadv.aax0246] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 08/29/2019] [Indexed: 05/22/2023]
Abstract
Two-dimensional boron, borophene, was realized in recent experiments but still lacks an adequate growth theory for guiding its controlled synthesis. Combining ab initio calculations and experimental characterization, we study edges and growth kinetics of borophene on Ag(111). In equilibrium, the borophene edges are distinctly reconstructed with exceptionally low energies, in contrast to those of other two-dimensional materials. Away from equilibrium, sequential docking of boron feeding species to the reconstructed edges tends to extend the given lattice out of numerous polymorphic structures. Furthermore, each edge can grow via multiple energy pathways of atomic row assembly due to variable boron-boron coordination. These pathways reveal different degrees of anisotropic growth kinetics, shaping borophene into diverse elongated hexagonal islands in agreement with experimental observations in terms of morphology as well as edge orientation and periodicity. These results further suggest that ultrathin borophene ribbons can be grown at low temperature and low boron chemical potential.
Collapse
Affiliation(s)
- Zhuhua Zhang
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, and Institute of Nano Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
- Department of Materials Science and NanoEngineering and Department of Chemistry, Rice University, Houston, TX 77005, USA
| | - Andrew J. Mannix
- Center for Nanoscale Materials, Argonne National Laboratory, 9700 South Cass Avenue, Building 440, Argonne, IL 60439, USA
- Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, IL 60208, USA
| | - Xiaolong Liu
- Applied Physics Graduate Program, Northwestern University, 2220 Campus Drive, Evanston, IL 60208, USA
| | - Zhili Hu
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, and Institute of Nano Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
- Department of Materials Science and NanoEngineering and Department of Chemistry, Rice University, Houston, TX 77005, USA
| | - Nathan P. Guisinger
- Center for Nanoscale Materials, Argonne National Laboratory, 9700 South Cass Avenue, Building 440, Argonne, IL 60439, USA
| | - Mark C. Hersam
- Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, IL 60208, USA
- Applied Physics Graduate Program, Northwestern University, 2220 Campus Drive, Evanston, IL 60208, USA
- Department of Chemistry, Northwestern University, 2220 Campus Drive, Evanston, IL 60208, USA
| | - Boris I. Yakobson
- Department of Materials Science and NanoEngineering and Department of Chemistry, Rice University, Houston, TX 77005, USA
| |
Collapse
|
41
|
Kiraly B, Liu X, Wang L, Zhang Z, Mannix AJ, Fisher BL, Yakobson BI, Hersam MC, Guisinger NP. Borophene Synthesis on Au(111). ACS NANO 2019; 13:3816-3822. [PMID: 30844248 DOI: 10.1021/acsnano.8b09339] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Borophene (the first two-dimensional (2D) allotrope of boron) is emerging as a groundbreaking system for boron-based chemistry and, more broadly, the field of low-dimensional materials. Exploration of the phase space for growth is critical because borophene is a synthetic 2D material that does not have a bulk layered counterpart and thus cannot be isolated via exfoliation methods. Herein, we report synthesis of borophene on Au(111) substrates. Unlike previously studied growth on Ag substrates, boron diffuses into Au at elevated temperatures and segregates to the surface to form borophene islands as the substrate cools. These observations are supported by ab initio modeling of interstitial boron diffusion into the Au lattice. Borophene synthesis also modifies the surface reconstruction of the Au(111) substrate, resulting in a trigonal network that templates growth at low coverage. This initial growth is composed of discrete borophene nanoclusters, whose shape and size are consistent with theoretical predictions. As the concentration of boron increases, nanotemplating breaks down and larger borophene islands are observed. Spectroscopic measurements reveal that borophene grown on Au(111) possesses a metallic electronic structure, suggesting potential applications in 2D plasmonics, superconductivity, interconnects, electrodes, and transparent conductors.
Collapse
Affiliation(s)
- Brian Kiraly
- Center for Nanoscale Materials, Argonne National Laboratory , 9700 South Cass Avenue, Building 440 , Argonne , Illinois 60439 , United States
- Department of Materials Science and Engineering , Northwestern University , 2220 Campus Drive , Evanston , Illinois 60208 , United States
| | - Xiaolong Liu
- Applied Physics Graduate Program , Northwestern University , 2220 Campus Drive , Evanston , Illinois 60208 , United States
| | - Luqing Wang
- Department of Materials Science and NanoEngineering and Department of Chemistry , Rice University , Houston , Texas 77005 , United States
| | - Zhuhua Zhang
- State Key Laboratory of Mechanics and Control of Mechanical Structures and Institute of Nano Science , Nanjing University of Aeronautics and Astronautics , Nanjing 210016 , China
| | - Andrew J Mannix
- Center for Nanoscale Materials, Argonne National Laboratory , 9700 South Cass Avenue, Building 440 , Argonne , Illinois 60439 , United States
- Department of Materials Science and Engineering , Northwestern University , 2220 Campus Drive , Evanston , Illinois 60208 , United States
| | - Brandon L Fisher
- Center for Nanoscale Materials, Argonne National Laboratory , 9700 South Cass Avenue, Building 440 , Argonne , Illinois 60439 , United States
| | - Boris I Yakobson
- Department of Materials Science and NanoEngineering and Department of Chemistry , Rice University , Houston , Texas 77005 , United States
| | - Mark C Hersam
- Department of Materials Science and Engineering , Northwestern University , 2220 Campus Drive , Evanston , Illinois 60208 , United States
- Applied Physics Graduate Program , Northwestern University , 2220 Campus Drive , Evanston , Illinois 60208 , United States
- Department of Chemistry , Northwestern University , 2220 Campus Drive , Evanston , Illinois 60208 , United States
| | - Nathan P Guisinger
- Center for Nanoscale Materials, Argonne National Laboratory , 9700 South Cass Avenue, Building 440 , Argonne , Illinois 60439 , United States
| |
Collapse
|
42
|
Liu X, Wang L, Li S, Rahn MS, Yakobson BI, Hersam MC. Geometric imaging of borophene polymorphs with functionalized probes. Nat Commun 2019; 10:1642. [PMID: 30967559 PMCID: PMC6456592 DOI: 10.1038/s41467-019-09686-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 03/22/2019] [Indexed: 11/16/2022] Open
Abstract
A common characteristic of borophene polymorphs is the presence of hollow hexagons (HHs) in an otherwise triangular lattice. The vast number of possible HH arrangements underlies the polymorphic nature of borophene, and necessitates direct HH imaging to definitively identify its atomic structure. While borophene has been imaged with scanning tunneling microscopy using conventional metal probes, the convolution of topographic and electronic features hinders unambiguous identification of the atomic lattice. Here, we overcome these limitations by employing CO-functionalized atomic force microscopy to visualize structures corresponding to boron-boron covalent bonds. Additionally, we show that CO-functionalized scanning tunneling microscopy is an equivalent and more accessible technique for HH imaging, confirming the v1/5 and v1/6 borophene models as unifying structures for all observed phases. Using this methodology, a borophene phase diagram is assembled, including a transition from rotationally commensurate to incommensurate phases at high growth temperatures, thus corroborating the chemically discrete nature of borophene. Borophene, or 2D boron, is highly polymorphic with many predicted lattice arrangements, complicating the identification of its atomic structure. Here, the authors use functionalized-tip scanning probe microscopy to directly resolve the atomic lattice structures of several borophene polymorphs.
Collapse
Affiliation(s)
- Xiaolong Liu
- Applied Physics Graduate Program, Northwestern University, Evanston, IL, 60208, USA
| | - Luqing Wang
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, 77005, USA
| | - Shaowei Li
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Matthew S Rahn
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Boris I Yakobson
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, 77005, USA.,Department of Chemistry, Rice University, Houston, TX, 77005, USA
| | - Mark C Hersam
- Applied Physics Graduate Program, Northwestern University, Evanston, IL, 60208, USA. .,Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA. .,Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA. .,Department of Electrical Engineering and Computer Science, Northwestern University, Evanston, IL, 60208, USA.
| |
Collapse
|
43
|
Abstract
The electronic band structure, namely energy band surfaces and densities-of-states (DoS), of a hypothetical flat and ideally perfect, i.e., without any type of holes, boron sheet with a triangular network is calculated within a quasi-classical approach. It is shown to have metallic properties as is expected for most of the possible structural modifications of boron sheets. The Fermi curve of the boron flat sheet is found to be consisted of 6 parts of 3 closed curves, which can be approximated by ellipses representing the quadric energy-dispersion of the conduction electrons. The effective mass of electrons at the Fermi level in a boron flat sheet is found to be too small compared with the free electron mass m 0 and to be highly anisotropic. Its values distinctly differ in directions Γ–K and Γ–M: m Γ – K / m 0 ≈ 0.480 and m Γ – M / m 0 ≈ 0.052 , respectively. The low effective mass of conduction electrons, m σ / m 0 ≈ 0.094 , indicates their high mobility and, hence, high conductivity of the boron sheet. The effects of buckling/puckering and the presence of hexagonal or other type of holes expected in real boron sheets can be considered as perturbations of the obtained electronic structure and theoretically taken into account as effects of higher order.
Collapse
|
44
|
An Y, Jiao J, Hou Y, Wang H, Wu R, Liu C, Chen X, Wang T, Wang K. Negative differential conductance effect and electrical anisotropy of 2D ZrB 2 monolayers. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2019; 31:065301. [PMID: 30524100 DOI: 10.1088/1361-648x/aaf5b2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Two-dimensional (2D) metal-diboride ZrB2 monolayers was predicted theoretically as a stable new electronic material (Lopez-Bezanilla 2018 Phys. Rev. Mater. 2 011002). Here, we investigate its electronic transport properties along the zigzag (z-ZrB2) and armchair (a-ZrB2) directions, using the density functional theory and non-equilibrium Green's function methods. Under low biases, the 2D ZrB2 shows a similar electrical transport along zigzag and armchair directions as electric current propagates mostly via the metallic Zr-Zr bonds. However, it shows an electrical anistropy under high biases, and its I-V curves along zigzag and armchair directions diverge as the bias voltage is higher than 1.4 V, as more directional B-B transmission channels are opened. Importantly, both z-ZrB2 and a-ZrB2 show a pronounced negative differential conductance (NDC) effect and hence they can be promising for the use in NDC-based nanodevices.
Collapse
Affiliation(s)
- Yipeng An
- College of Physics and Materials Science & International United Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Henan Normal University, Xinxiang 453007, People's Republic of China. Department of Physics and Astronomy, University of California, Irvine, CA 92697, United States of America
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Song B, Zhou Y, Yang HM, Liao JH, Yang LM, Yang XB, Ganz E. Two-Dimensional Anti-Van’t Hoff/Le Bel Array AlB6 with High Stability, Unique Motif, Triple Dirac Cones, and Superconductivity. J Am Chem Soc 2019; 141:3630-3640. [DOI: 10.1021/jacs.8b13075] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Bingyi Song
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica; Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education; Hubei Key Laboratory of Materials Chemistry and Service Failure; School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yuan Zhou
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica; Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education; Hubei Key Laboratory of Materials Chemistry and Service Failure; School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hui-Min Yang
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica; Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education; Hubei Key Laboratory of Materials Chemistry and Service Failure; School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ji-Hai Liao
- Department of Physics, South China University of Technology, Guangzhou 510640, China
| | - Li-Ming Yang
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica; Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education; Hubei Key Laboratory of Materials Chemistry and Service Failure; School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiao-Bao Yang
- Department of Physics, South China University of Technology, Guangzhou 510640, China
| | - Eric Ganz
- School of Physics and Astronomy, University of Minnesota, 116 Church Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
46
|
Wu R, Drozdov IK, Eltinge S, Zahl P, Ismail-Beigi S, Božović I, Gozar A. Large-area single-crystal sheets of borophene on Cu(111) surfaces. NATURE NANOTECHNOLOGY 2019; 14:44-49. [PMID: 30510278 DOI: 10.1038/s41565-018-0317-6] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 10/24/2018] [Indexed: 06/09/2023]
Abstract
Borophene, a theoretically proposed two-dimensional (2D) boron allotrope1-3, has attracted much attention4,5 as a candidate material platform for high-speed, transparent and flexible electronics6-9. It was recently synthesized, on Ag(111) substrates10,11, and studied by tunnelling and electron spectroscopy12. However, the exact crystal structure is still controversial, the nanometre-size single-crystal domains produced so far are too small for device fabrication and the structural tunability via substrate-dependent epitaxy is yet to be proven. We report on the synthesis of borophene monitored in situ by low-energy electron microscopy, diffraction and scanning tunnelling microscopy (STM) and modelled by ab initio theory. We resolved the crystal structure and phase diagram of borophene on Ag(111), but found that the domains remain nanoscale for all growth conditions. However, by growing borophene on Cu(111) surfaces, we obtained large single-crystal domains, up to 100 μm2 in size. The crystal structure is a novel triangular network with a concentration of hexagonal vacancies of η = 1/5. Our experimental data, together with first principles calculations, indicate charge-transfer coupling to the substrate without significant covalent bonding. Our work sets the stage for fabricating borophene-based devices and substantiates the idea of borophene as a model for development of artificial 2D materials.
Collapse
Affiliation(s)
- Rongting Wu
- Department of Applied Physics, Yale University, New Haven, CT, USA
- Energy Sciences Institute, Yale University, West Haven, CT, USA
| | | | | | - Percy Zahl
- Brookhaven National Laboratory, Upton, NY, USA
| | - Sohrab Ismail-Beigi
- Department of Applied Physics, Yale University, New Haven, CT, USA
- Department of Physics, Yale University, New Haven, CT, USA
- Department of Mechanical Engineering & Materials Science, Yale University, New Haven, CT, USA
| | - Ivan Božović
- Department of Applied Physics, Yale University, New Haven, CT, USA
- Energy Sciences Institute, Yale University, West Haven, CT, USA
- Brookhaven National Laboratory, Upton, NY, USA
| | - Adrian Gozar
- Department of Applied Physics, Yale University, New Haven, CT, USA.
- Energy Sciences Institute, Yale University, West Haven, CT, USA.
| |
Collapse
|
47
|
Liu X, Hersam MC. Interface Characterization and Control of 2D Materials and Heterostructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1801586. [PMID: 30039558 DOI: 10.1002/adma.201801586] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 04/09/2018] [Indexed: 05/28/2023]
Abstract
2D materials and heterostructures have attracted significant attention for a variety of nanoelectronic and optoelectronic applications. At the atomically thin limit, the material characteristics and functionalities are dominated by surface chemistry and interface coupling. Therefore, methods for comprehensively characterizing and precisely controlling surfaces and interfaces are required to realize the full technological potential of 2D materials. Here, the surface and interface properties that govern the performance of 2D materials are introduced. Then the experimental approaches that resolve surface and interface phenomena down to the atomic scale, as well as strategies that allow tuning and optimization of interfacial interactions in van der Waals heterostructures, are systematically reviewed. Finally, a future outlook that delineates the remaining challenges and opportunities for 2D material interface characterization and control is presented.
Collapse
Affiliation(s)
- Xiaolong Liu
- Applied Physics Graduate Program, Northwestern University, 2220 Campus Drive, Evanston, IL, 60208-3108, USA
| | - Mark C Hersam
- Applied Physics Graduate Program, Northwestern University, 2220 Campus Drive, Evanston, IL, 60208-3108, USA
- Department of Materials Science and Engineering, Department of Chemistry, Department of Medicine, Department of Electrical Engineering and Computer Science, Northwestern University, 2220 Campus Drive, Evanston, IL, 60208-3108, USA
| |
Collapse
|
48
|
Liu X, Zhang Z, Wang L, Yakobson BI, Hersam MC. Intermixing and periodic self-assembly of borophene line defects. NATURE MATERIALS 2018; 17:783-788. [PMID: 30013053 DOI: 10.1038/s41563-018-0134-1] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 06/15/2018] [Indexed: 06/08/2023]
Abstract
Two-dimensional (2D) boron (that is, borophene) was recently synthesized following theoretical predictions1-5. Its metallic nature and high in-plane anisotropy combine many of the desirable attributes of graphene6 and monolayer black phosphorus7. As a synthetic 2D material, its structural properties cannot be deduced from bulk boron, which implies that the intrinsic defects of borophene remain unexplored. Here we investigate borophene line defects at the atomic scale with ultrahigh vacuum (UHV) scanning tunnelling microscopy/spectroscopy (STM/STS) and density functional theory (DFT). Under suitable growth conditions, borophene phases that correspond to the v1/6 and v1/5 models are found to intermix and accommodate line defects in each other with structures that match the constituent units of the other phase. These line defects energetically favour spatially periodic self-assembly that gives rise to new borophene phases, which ultimately blurs the distinction between borophene crystals and defects. This phenomenon is unique to borophene as a result of its high in-plane anisotropy and energetically and structurally similar polymorphs. Low-temperature measurements further reveal subtle electronic features that are consistent with a charge density wave (CDW), which are modulated by line defects. This atomic-level understanding is likely to inform ongoing efforts to devise and realize applications based on borophene.
Collapse
Affiliation(s)
- Xiaolong Liu
- Applied Physics Graduate Program, Northwestern University, Evanston, IL, USA
| | - Zhuhua Zhang
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, USA
- State Key Laboratory of Mechanics and Control of Mechanical Structures and Institute of Nano Science, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Luqing Wang
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, USA
| | - Boris I Yakobson
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, USA
- Department of Chemistry, Rice University, Houston, TX, USA
| | - Mark C Hersam
- Applied Physics Graduate Program, Northwestern University, Evanston, IL, USA.
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA.
- Department of Chemistry, Northwestern University, Evanston, IL, USA.
- Department of Electrical Engineering and Computer Science, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
49
|
Qin G, Cui Q, Wang W, Li P, Du A, Sun Q. First-Principles Study of Electrocatalytically Reversible CO2
Capture on Graphene-like C3
N. Chemphyschem 2018; 19:2788-2795. [DOI: 10.1002/cphc.201800385] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Gangqiang Qin
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, School for Radiological and Interdisciplinary Sciences; Soochow University; Suzhou 215123 China
| | - Qianyi Cui
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, School for Radiological and Interdisciplinary Sciences; Soochow University; Suzhou 215123 China
| | - Weihua Wang
- School of Chemistry and Chemical Engineering; Qufu Normal University, Qufu; Shandong 273165 China
| | - Ping Li
- School of Chemistry and Chemical Engineering; Qufu Normal University, Qufu; Shandong 273165 China
| | - Aijun Du
- School of Chemistry, Physics and Mechanical Engineering; Queensland University of Technology; Brisbane QLD 4001 Australia
| | - Qiao Sun
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, School for Radiological and Interdisciplinary Sciences; Soochow University; Suzhou 215123 China
| |
Collapse
|
50
|
Xu SG, Li XT, Zhao YJ, Liao JH, Xu H, Yang XB. An electron compensation mechanism for the polymorphism of boron monolayers. NANOSCALE 2018; 10:13410-13416. [PMID: 29971280 DOI: 10.1039/c8nr01230j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Boron monolayers have been increasingly attractive, while it is still a challenge to understand their structural stabilities, due to electron deficiency and multi-center bonds. In this work, we propose the average electron compensation (AEC) mechanism for boron monolayers based on high-throughput first-principles calculations. It is found that the AEC parameter (λ) tends to be zero for the stable free-standing boron monolayers. In addition, this mechanism can quantitatively describe the stability of boron monolayers on various metal substrates, providing direct suggestions for experimentalists to synthesize various boron monolayers for practical applications.
Collapse
Affiliation(s)
- Shao-Gang Xu
- Department of Physics, Southern University of Science and Technology, Shenzhen 518055, P. R. China.
| | | | | | | | | | | |
Collapse
|