1
|
Kuang D, Tan Y, Han W, Yin Y, Wang C. Flexible microcolumn array-based silk fibroin for sweat glucose monitoring. Anal Chim Acta 2025; 1349:343857. [PMID: 40074457 DOI: 10.1016/j.aca.2025.343857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 02/13/2025] [Accepted: 02/21/2025] [Indexed: 03/14/2025]
Abstract
Flexible sweat sensors possess the special potential for continuous non-invasive monitoring of human blood glucose. We put forward a flexible microcolumn array sensor, which is designed for health monitoring by means of detecting glucose levels in sweat and capturing physiological signals related to human movement. With the combination of silk fibroin (SF), waterborne polyurethane (PU), and multi-walled carbon nanotubes (MWCNT), this microcolumn film electrode is able to effectively function as a strain sensor benefiting from the superior mechanical performance of PU. The obtained strain sensor exhibits a rapid response time of 0.3s and demonstrates robust stability over 500 cycles, efficiently capturing human pulse and hand movement signals. Prussian Blue (PB) is deposited on the surface of the microcolumn electrode and glucose oxidase (GOx) is sprayed to construct a glucose sensor that can accurately detect glucose in human sweat. The microcolumn array sensor shows and exhibits an excellent sensitivity of 35.28 μA/mM·cm2 within a dynamic range of 0.1-1 mM, and a limit of detection (LOD) of 0.004 mM, which reveals outstanding glucose sensing performance. This microcolumn array sensor demonstrates the potential of silk fibroin in crafting portable, high-performance electrochemical wearable medical devices.
Collapse
Affiliation(s)
- Dajiang Kuang
- College of Textile Science and Engineering, Jiangnan University, 1800Lihu Road, Wuxi, 214122, China
| | - Yongsong Tan
- College of Textile Science and Engineering, Jiangnan University, 1800Lihu Road, Wuxi, 214122, China
| | - Weiyi Han
- College of Textile Science and Engineering, Jiangnan University, 1800Lihu Road, Wuxi, 214122, China
| | - Yunjie Yin
- College of Textile Science and Engineering, Jiangnan University, 1800Lihu Road, Wuxi, 214122, China
| | - Chaoxia Wang
- College of Textile Science and Engineering, Jiangnan University, 1800Lihu Road, Wuxi, 214122, China.
| |
Collapse
|
2
|
Lu H, Jian M, Liang X, Wang Y, Niu J, Zhang Y. Strong Silkworm Silk Fibers through CNT-Feeding and Forced Reeling. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408385. [PMID: 39400397 DOI: 10.1002/adma.202408385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/31/2024] [Indexed: 10/15/2024]
Abstract
High-performance silk fibers, with their eco-friendly degradability and renewability, have long captivated researchers as an alternative to synthetic fibers. Spider dragline silk, renowned for its exceptional strength (>1 GPa), has an extremely low yield, hindering its widespread use. While domesticated silkworms (Bombyx mori) can produce silk fibers industrially, their moderate strength (≈0.5 GPa) pales in comparison to the formidable spider dragline silk. In this study, naturally produced strong silkworm silk fibers are reported with a tensile strength of ≈1.2 GPa achieved through combining feeding carbon nanotubes (CNTs) to silkworms and in situ forced reeling for alignment. Molecular dynamics simulations confirm the interaction between the CNTs and silk fibroin, while the forced reeling process aligns these reinforcing fillers and the silk fibroin β-sheet nanocrystals along the fiber axis. Structural analysis reveals a significant enhancement in the content and alignment of β-sheet nanocrystals within the silk fibers, accounting for their superior mechanical properties, including tensile strength of ≈1.2 GPa and Young's modulus of 24.4 GPa, surpassing various types of silkworm silk and spider silk. This advancement addresses the historical trade-off between the strength and scalability of silk, potentially paving the way for eco-friendly, biodegradable, and renewable alternatives to synthetic fibers in a variety of applications.
Collapse
Affiliation(s)
- Haojie Lu
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Muqiang Jian
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
- Beijing Graphene Institute, Beijing, 100095, China
| | - Xiaoping Liang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yida Wang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Jiali Niu
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Yingying Zhang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
3
|
Brough HA, Cheneler D, Hardy JG. Progress in Multiscale Modeling of Silk Materials. Biomacromolecules 2024; 25:6987-7014. [PMID: 39438248 PMCID: PMC11558682 DOI: 10.1021/acs.biomac.4c01122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/28/2024] [Accepted: 10/03/2024] [Indexed: 10/25/2024]
Abstract
As a result of their hierarchical structure and biological processing, silk fibers rank among nature's most remarkable materials. The biocompatibility of silk-based materials and the exceptional mechanical properties of certain fibers has inspired the use of silk in numerous technical and medical applications. In recent years, computational modeling has clarified the relationship between the molecular architecture and emergent properties of silk fibers and has demonstrated predictive power in studies on novel biomaterials. Here, we review advances in modeling the structure and properties of natural and synthetic silk-based materials, from early structural studies of silkworm cocoon fibers to cutting-edge atomistic simulations of spider silk nanofibrils and the recent use of machine learning models. We explore applications of modeling across length scales: from quantum mechanical studies on model peptides, to atomistic and coarse-grained molecular dynamics simulations of silk proteins, to finite element analysis of spider webs. As computational power and algorithmic efficiency continue to advance, we expect multiscale modeling to become an indispensable tool for understanding nature's most impressive fibers and developing bioinspired functional materials.
Collapse
Affiliation(s)
- Harry
D. A. Brough
- Department
of Chemistry, Lancaster University, Lancaster LA1 4YB, United Kingdom
| | - David Cheneler
- School
of Engineering, Lancaster University, Lancaster LA1 4YW, United Kingdom
- Materials
Science Lancaster, Lancaster University, Lancaster, LA1 4YW, United Kingdom
| | - John G. Hardy
- Department
of Chemistry, Lancaster University, Lancaster LA1 4YB, United Kingdom
- Materials
Science Lancaster, Lancaster University, Lancaster, LA1 4YW, United Kingdom
| |
Collapse
|
4
|
Zhang Y, Zhang M, Li W, Hu T, Liu Y, Huang H, Kang Z. Improving the mechanical property of silk by feeding silkworm with chiral carbon dots. Int J Biol Macromol 2024; 281:136644. [PMID: 39423973 DOI: 10.1016/j.ijbiomac.2024.136644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/09/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
The influence of chiral materials on organisms is crucial. However, there is little research on the impact of chiral carbon dots (CDs), a kind of typical chiral materials, on biology. Herein, chiral CDs (L-/D-CDs) were synthesized using the thermal polymerization method from citric acid and chiral cysteine. The effect of chiral CDs on silkworms was explored through feeding silkworms with chiral CDs. The breaking strength of silk fibers (667.9 MPa) in D-CDs group exhibit a 71.4 % increase compared with control-silk (389.5 MPa), while the breaking strength of silk fibers in L-CDs group increases by 51.6 %. In addition, Fourier transform infrared spectra display CDs can prevent the transformation from random coil/α-helix structures to β-sheet structures. Furthermore, D-CDs group exhibit the highest percentage of four primary amino acids (glycine, alanine, serine, and tyrosine) relative to the total amino acids in silkworm hemolymph. This percentage is elevated by 70.5 % compared to the control group, thereby furnishing an ample supply of raw materials for the synthesis of silk proteins. In contrast, L-CDs group exhibit increase by 39.3 %. Our work provides new ideas and approaches for studying the effects of chiral materials on living organisms.
Collapse
Affiliation(s)
- Yan Zhang
- Institute of Functional Nano and Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, China
| | - Mengling Zhang
- Institute of Functional Nano and Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, China; Macao Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Macau University of Science and Technology, Taipa 999078, Macao.
| | - Wenwen Li
- Institute of Functional Nano and Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, China
| | - Tao Hu
- Institute of Functional Nano and Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, China
| | - Yang Liu
- Institute of Functional Nano and Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, China.
| | - Hui Huang
- Institute of Functional Nano and Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, China.
| | - Zhenhui Kang
- Institute of Functional Nano and Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, China; Macao Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Macau University of Science and Technology, Taipa 999078, Macao.
| |
Collapse
|
5
|
Shirk BD, Heichel DL, Eccles LE, Rodgers LI, Lateef AH, Burke KA, Stoppel WL. Modifying Naturally Occurring, Nonmammalian-Sourced Biopolymers for Biomedical Applications. ACS Biomater Sci Eng 2024; 10:5915-5938. [PMID: 39259773 DOI: 10.1021/acsbiomaterials.4c00689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Natural biopolymers have a rich history, with many uses across the fields of healthcare and medicine, including formulations for wound dressings, surgical implants, tissue culture substrates, and drug delivery vehicles. Yet, synthetic-based materials have been more successful in translation due to precise control and regulation achievable during manufacturing. However, there is a renewed interest in natural biopolymers, which offer a diverse landscape of architecture, sustainable sourcing, functional groups, and properties that synthetic counterparts cannot fully replicate as processing and sourcing of these materials has improved. Proteins and polysaccharides derived from various sources (crustaceans, plants, insects, etc.) are highlighted in this review. We discuss the common types of polysaccharide and protein biopolymers used in healthcare and medicine, highlighting methods and strategies to alter structures and intra- and interchain interactions to engineer specific functions, products, or materials. We focus on biopolymers obtained from natural, nonmammalian sources, including silk fibroins, alginates, chitosans, chitins, mucins, keratins, and resilins, while discussing strategies to improve upon their innate properties and sourcing standardization to expand their clinical uses and relevance. Emphasis will be placed on methods that preserve the structural integrity and native biological functions of the biopolymers and their makers. We will conclude by discussing the untapped potential of new technologies to manipulate native biopolymers while controlling their secondary and tertiary structures, offering a perspective on advancing biopolymer utility in novel applications within biomedical engineering, advanced manufacturing, and tissue engineering.
Collapse
Affiliation(s)
- Bryce D Shirk
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Danielle L Heichel
- Department of Chemical Engineering, University of Connecticut, Storrs, Connecticut 06269-3222, United States
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269-3136, United States
| | - Lauren E Eccles
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Liam I Rodgers
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Ali H Lateef
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Kelly A Burke
- Department of Chemical Engineering, University of Connecticut, Storrs, Connecticut 06269-3222, United States
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269-3136, United States
| | - Whitney L Stoppel
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611, United States
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
6
|
Chen L, Gong R, Ge D, Yang L, Hu Z, Yu HY. Stiff gel-protected fiber-shaped supercapacitors based on CNFA/silk composite fiber with superhigh interference-resistant ability as self-powered temperature sensor. Int J Biol Macromol 2024; 278:134604. [PMID: 39137853 DOI: 10.1016/j.ijbiomac.2024.134604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024]
Abstract
The development of self-powered sensors with interference-resistant detection is a priority area of research for the next generation of wearable electronic devices. Nevertheless, the presence of multiple stimuli in the actual environment will result in crosstalk with the sensor, thereby hindering the ability to obtain an accurate response to a singular stimulus. Here, we present a self-powered sensor composed of silk-based conductive composite fibers (CNFA@ESF), which is capable of energy storage and sensing. The fabricated CNFA@ESF exhibits excellent mechanical performance, as well as flexibility that can withstand various deformations. The CNFA@ESF provides a good areal capacitance (44.44 mF cm-2), high-rate capability, and excellent cycle stability (91 % for 5000 cycles). In addition, CNFA@ESF also shows good sensing performance for multiple signals including strain, temperature, and humidity. It was observed that the assembly of the symmetrical device with a stiff hydrogel surface layer for protection enabled the real-time, interference-free monitoring of temperature signals. Also, the CNFA@ESF can be woven into fabrics and integrated with a solar cell to form a self-powered sensor system, which has been proven to convert and store solar energy to power electronic watches, indicating its huge potential for future wearable electronics.
Collapse
Affiliation(s)
- Lumin Chen
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China; School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China; Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
| | - Ruixin Gong
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Dan Ge
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Lu Yang
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zhongce Hu
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Hou-Yong Yu
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
7
|
Wu ZF, Wang BJ, Ni JW, Sun ZN, Zhang XR, Xiong HM. Green Fluorescent Carbon Dots with Critically Controlled Surface States: Make Silk Shine via Feeding Silkworms. NANO LETTERS 2024; 24:9675-9682. [PMID: 39058271 DOI: 10.1021/acs.nanolett.4c02426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Feeding silkworms with functional materials as additives to produce naturally modified silk is a facile, diverse, controllable, and environmentally friendly method with a low cost of time and investment. Among various additives, carbon dots (CDs) show unique advantages due to their excellent biocompatibility and fluorescence stability. Here, a new type of green fluorescent carbon dots (G-CDs) is synthesized with a high oil-water partition ratio of 147, a low isoelectric point of 5.16, an absolute quantum yield of 71%, and critically controlled surface states. After feeding with G-CDs, the silkworms weave light yellow cocoons whose green fluorescence is visible to the naked eye under UV light. The luminous silk is sewn onto the cloth to create striking patterns with beautiful fluorescence. Such G-CDs have no adverse effect on the survival rate and the life cycle of silkworms and enable their whole bodies to glow under UV light. Based on the strong fluorescence, chemical stability, and biological safety, G-CDs are found in the digestive tracts, silk glands, feces, cocoons, and even moth bodies. G-CDs accumulate in the posterior silk glands where fibroin protein is secreted, indicating its stronger combination with fibroin than sericin, which meets the requirements for practical applications.
Collapse
Affiliation(s)
- Zhao-Fan Wu
- Department of Chemistry and Shanghai Key Laboratory of Molecular and Catalysis and Innovative Materials, Fudan University, Shanghai 200438, P. R. China
| | - Bao-Juan Wang
- Department of Chemistry and Shanghai Key Laboratory of Molecular and Catalysis and Innovative Materials, Fudan University, Shanghai 200438, P. R. China
| | - Jia-Wen Ni
- Department of Chemistry and Shanghai Key Laboratory of Molecular and Catalysis and Innovative Materials, Fudan University, Shanghai 200438, P. R. China
| | - Zhao-Nan Sun
- Department of Chemistry and Shanghai Key Laboratory of Molecular and Catalysis and Innovative Materials, Fudan University, Shanghai 200438, P. R. China
| | - Xi-Rong Zhang
- Department of Chemistry and Shanghai Key Laboratory of Molecular and Catalysis and Innovative Materials, Fudan University, Shanghai 200438, P. R. China
| | - Huan-Ming Xiong
- Department of Chemistry and Shanghai Key Laboratory of Molecular and Catalysis and Innovative Materials, Fudan University, Shanghai 200438, P. R. China
| |
Collapse
|
8
|
Richard M, Kobayashi G, Wang Z, Kurita H, Narita F. Mechanical Properties of Twisted Cellulose Nanofiber-Reinforced Silk Yarns. ACS Biomater Sci Eng 2024; 10:4237-4244. [PMID: 38853637 DOI: 10.1021/acsbiomaterials.4c00071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Silk has recently attracted considerable interest owing to its versatile properties as a natural fiber, especially in the medical sector. However, the mechanical properties of silk limit its potential applications. In our earlier work, the mechanical performance of silk filaments was enhanced owing to the insertion of cellulose nanofibers (CNFs). Nevertheless, silk filaments must be assembled and twisted to form a continuous yarn. In this study, the mechanical properties of CNF-reinforced silk yarns were evaluated to determine the optimal yarn structure. The evolution of the Young's modulus, ultimate tensile strength, toughness, and elongation at break was assessed as a function of the twist level in comparison with regular silk. The results demonstrated that the most favorable compromise of the mechanical properties was obtained at 1000 twists per meter.
Collapse
Affiliation(s)
- Maëlle Richard
- Graduate School of Environmental Studies, Tohoku University, Sendai 980-8579, Japan
- Graduate School of Engineering, National Institute of Applied Sciences of Lyon (INSA Lyon), 69621 Villeurbanne Cedex, France
| | - Genki Kobayashi
- Graduate School of Environmental Studies, Tohoku University, Sendai 980-8579, Japan
| | - Zhenjin Wang
- Graduate School of Environmental Studies, Tohoku University, Sendai 980-8579, Japan
| | - Hiroki Kurita
- Graduate School of Environmental Studies, Tohoku University, Sendai 980-8579, Japan
| | - Fumio Narita
- Graduate School of Environmental Studies, Tohoku University, Sendai 980-8579, Japan
| |
Collapse
|
9
|
Xie X, Cui M, Wang T, Yang J, Li W, Wang K, Lin M. Constructing Stiff β-Sheet for Self-Reinforced Alginate Fibers. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3047. [PMID: 38998130 PMCID: PMC11242387 DOI: 10.3390/ma17133047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/12/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024]
Abstract
The application of alginate fibers is limited by relatively low mechanical properties. Herein, a self-reinforcing strategy inspired by nature is proposed to fabricate alginate fibers with minimal changes in the wet-spinning process. By adapting a coagulation bath composing of CaCl2 and ethanol, the secondary structure of sodium alginate (SA) was regulated during the fibrous formation. Ethanol mainly increased the content of β-sheet in SA. Rheological analysis revealed a reinforcing mechanism of stiff β-sheet for enhanced modulus and strength. In combination with Ca2+ crosslinking, the self-reinforced alginate fibers exhibited an increment of 39.0% in tensile strength and 71.9% in toughness. This work provides fundamental understanding for β-sheet structures in polysaccharides and a subsequent self-reinforcing mechanism. It is significant for synthesizing strong and tough materials. The self-reinforcing strategy involved no extra additives and preserved the degradability of the alginate. The reinforced alginate fibers exhibited promising potentials for biological applications.
Collapse
Affiliation(s)
- Xuelai Xie
- State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao 266071, China
| | - Min Cui
- State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao 266071, China
| | - Tianyuan Wang
- State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao 266071, China
| | - Jinhong Yang
- State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao 266071, China
| | - Wenli Li
- State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao 266071, China
| | - Kai Wang
- State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao 266071, China
- Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), Xi’an 710072, China
| | - Min Lin
- State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao 266071, China
| |
Collapse
|
10
|
Zhang Y, Cheng L, Zhang R, Ma W, Qin Z. Effect of rheological behaviors of polyacrylonitrile grafted sericin solution on film structure and mechanical properties. Int J Biol Macromol 2024; 266:131102. [PMID: 38580021 DOI: 10.1016/j.ijbiomac.2024.131102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/07/2024]
Abstract
Sericin protein possesses excellent biocompatibility, antioxidation, and processability. Nevertheless, manufacturing large quantities of strong and tough pure regenerated sericin materials remains a significant challenge. Herein, we design a lightweight structural sericin film with high ductility by combining radical chain polymerization reaction and liquid-solid phase inversion method. The resulting polyacrylonitrile grafted sericin films exhibit the ability to switch between high strength and high toughness effortlessly, the maximum tensile strength and Young's modulus values are 21.92 ± 1.51 MPa and 8.14 ± 0.09 MPa, respectively, while the elongation at break and toughness reaches up to 344.10 ± 35.40 % and 10.84 ± 1.02 MJ·m-3, respectively. Our findings suggest that incorporating sericin into regenerated films contributes to the transformation of their mechanical properties through influencing the entanglement of molecular chains within polymerized solutions. Structural analyses conducted using infrared spectroscopy and X-ray diffraction confirm that sericin modulates the mechanical properties by affecting the transition of condensed matter conformation. This work presents a convenient yet effective strategy for simultaneously addressing the recycling of sericin as well as producing regenerated protein-based films that hold potential applications in biomedical, wearable, or food packaging.
Collapse
Affiliation(s)
- Yimin Zhang
- Key Laboratory of Textile Science & Technology, Ministry of Education, Donghua University, China; Shanghai Collaborative Innovation Center of Donghua University, China
| | - Longdi Cheng
- Key Laboratory of Textile Science & Technology, Ministry of Education, Donghua University, China.
| | - Ruiyun Zhang
- Key Laboratory of Textile Science & Technology, Ministry of Education, Donghua University, China; Shanghai Collaborative Innovation Center of Donghua University, China; Shanghai Frontiers Science Center of Donghua University, China
| | - Wanwan Ma
- Key Laboratory of Textile Science & Technology, Ministry of Education, Donghua University, China; Shanghai Collaborative Innovation Center of Donghua University, China
| | - Zhihui Qin
- Key Laboratory of Textile Science & Technology, Ministry of Education, Donghua University, China; Shanghai Collaborative Innovation Center of Donghua University, China
| |
Collapse
|
11
|
Lu H, Zhang Y, Zhu M, Li S, Liang H, Bi P, Wang S, Wang H, Gan L, Wu XE, Zhang Y. Intelligent perceptual textiles based on ionic-conductive and strong silk fibers. Nat Commun 2024; 15:3289. [PMID: 38632231 PMCID: PMC11024123 DOI: 10.1038/s41467-024-47665-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 04/05/2024] [Indexed: 04/19/2024] Open
Abstract
Endowing textiles with perceptual function, similar to human skin, is crucial for the development of next-generation smart wearables. To date, the creation of perceptual textiles capable of sensing potential dangers and accurately pinpointing finger touch remains elusive. In this study, we present the design and fabrication of intelligent perceptual textiles capable of electrically responding to external dangers and precisely detecting human touch, based on conductive silk fibroin-based ionic hydrogel (SIH) fibers. These fibers possess excellent fracture strength (55 MPa), extensibility (530%), stable and good conductivity (0.45 S·m-1) due to oriented structures and ionic incorporation. We fabricated SIH fiber-based protective textiles that can respond to fire, water, and sharp objects, protecting robots from potential injuries. Additionally, we designed perceptual textiles that can specifically pinpoint finger touch, serving as convenient human-machine interfaces. Our work sheds new light on the design of next-generation smart wearables and the reshaping of human-machine interfaces.
Collapse
Affiliation(s)
- Haojie Lu
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, P. R. China
| | - Yong Zhang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, P. R. China
| | - Mengjia Zhu
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, P. R. China
| | - Shuo Li
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, P. R. China
| | - Huarun Liang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, P. R. China
| | - Peng Bi
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, P. R. China
| | - Shuai Wang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, P. R. China
| | - Haomin Wang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, P. R. China
| | - Linli Gan
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, P. R. China
| | - Xun-En Wu
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, P. R. China
| | - Yingying Zhang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, P. R. China.
| |
Collapse
|
12
|
Cao X, Chen Y, Zhang C, Mao Z, Zhang J, Ma T, Tian W, Kong X, Li H, Rao S, Yang K. Heterogeneous nucleation induced A. pernyi/B. mori silk fibroin coatings on AZ31 biometals with enhanced corrosion resistance, adhesion and biocompatibility. Int J Biol Macromol 2024; 264:130524. [PMID: 38442832 DOI: 10.1016/j.ijbiomac.2024.130524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/10/2024] [Accepted: 02/27/2024] [Indexed: 03/07/2024]
Abstract
Silk fibroin coatings on biomedical magnesium alloys have garnered significant attention due to their enhanced corrosion resistance and biocompatibility. However, the utilization of wild A. pernyi silk fibroin, known for its RGD sequence that facilitates tissue regeneration, presents a challenge for corrosion-resistant coatings on magnesium alloys due to its weak adhesion and high dissolution rate. In this study, we employed hexafluoroisopropanol as a solvent to blend A. pernyi silk fibroin with B. mori silk fibroin. The resulting blended fibroin coating at a 3:7 mass ratio exhibited a heterogeneous nucleation effect, enhancing β-sheet content (32.3 %) and crystallinity (28.6 %). This improved β-sheet promoted the "labyrinth effect" with an Icorr of 2.15 × 10-6 A cm-2, resulting in significantly improved corrosion resistance, which is two orders of magnitude lower than that of pure magnesium alloy. Meanwhile, the increased content of exposed serine in zigzag β-sheet contributes to a higher adhesion strength. Cell cytotoxicity evaluation confirmed the enhanced cell adhesion and bioactivity. This work provides a facile approach for wild A. pernyi silk fibroin coatings on magnesium alloys with enhanced corrosion resistance, adhesion and biocompatibility.
Collapse
Affiliation(s)
- Xinru Cao
- School of Materials Science and Engineering, Anhui University of Technology, Maanshan 243002, China
| | - Yanning Chen
- School of Materials Science and Engineering, Anhui University of Technology, Maanshan 243002, China.
| | - Chen Zhang
- School of Materials Science and Engineering, Anhui University of Technology, Maanshan 243002, China
| | - Zhinan Mao
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Jingwu Zhang
- School of Materials Science and Engineering, Anhui University of Technology, Maanshan 243002, China
| | - Tingji Ma
- School of Materials Science and Engineering, Anhui University of Technology, Maanshan 243002, China
| | - Wenhan Tian
- International Research Center for Advanced Structural and Biomaterials, School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Xiangsheng Kong
- School of Materials Science and Engineering, Anhui University of Technology, Maanshan 243002, China
| | - Haotong Li
- School of Materials Science and Engineering, Anhui University of Technology, Maanshan 243002, China
| | - Sixian Rao
- School of Mechanical Engineering, Anhui University of Technology, Maanshan 243002, China.
| | - Kang Yang
- School of Materials Science and Engineering, Anhui University of Technology, Maanshan 243002, China; School of Mechanical Engineering, Anhui University of Technology, Maanshan 243002, China.
| |
Collapse
|
13
|
Xu M, Liu Y, Yang K, Li S, Wang M, Wang J, Yang D, Shkunov M, Silva SRP, Castro FA, Zhao Y. Minimally invasive power sources for implantable electronics. EXPLORATION (BEIJING, CHINA) 2024; 4:20220106. [PMID: 38854488 PMCID: PMC10867386 DOI: 10.1002/exp.20220106] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/08/2023] [Indexed: 06/11/2024]
Abstract
As implantable medical electronics (IMEs) developed for healthcare monitoring and biomedical therapy are extensively explored and deployed clinically, the demand for non-invasive implantable biomedical electronics is rapidly surging. Current rigid and bulky implantable microelectronic power sources are prone to immune rejection and incision, or cannot provide enough energy for long-term use, which greatly limits the development of miniaturized implantable medical devices. Herein, a comprehensive review of the historical development of IMEs and the applicable miniaturized power sources along with their advantages and limitations is given. Despite recent advances in microfabrication techniques, biocompatible materials have facilitated the development of IMEs system toward non-invasive, ultra-flexible, bioresorbable, wireless and multifunctional, progress in the development of minimally invasive power sources in implantable systems has remained limited. Here three promising minimally invasive power sources summarized, including energy storage devices (biodegradable primary batteries, rechargeable batteries and supercapacitors), human body energy harvesters (nanogenerators and biofuel cells) and wireless power transfer (far-field radiofrequency radiation, near-field wireless power transfer, ultrasonic and photovoltaic power transfer). The energy storage and energy harvesting mechanism, configurational design, material selection, output power and in vivo applications are also discussed. It is expected to give a comprehensive understanding of the minimally invasive power sources driven IMEs system for painless health monitoring and biomedical therapy with long-term stable functions.
Collapse
Affiliation(s)
- Ming Xu
- Advanced Technology InstituteUniversity of SurreyGuildfordSurreyUK
| | - Yuheng Liu
- Department of Chemical and Process EngineeringUniversity of SurreyGuildfordSurreyUK
| | - Kai Yang
- Advanced Technology InstituteUniversity of SurreyGuildfordSurreyUK
| | - Shaoyin Li
- Advanced Technology InstituteUniversity of SurreyGuildfordSurreyUK
| | - Manman Wang
- Advanced Technology InstituteUniversity of SurreyGuildfordSurreyUK
| | - Jianan Wang
- Department of Environmental Science and EngineeringXi'an Jiaotong UniversityXi'anChina
| | - Dong Yang
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationSchool of Life Science and TechnologyXi'an Jiaotong UniversityXi'anChina
| | - Maxim Shkunov
- Advanced Technology InstituteUniversity of SurreyGuildfordSurreyUK
| | - S. Ravi P. Silva
- Advanced Technology InstituteUniversity of SurreyGuildfordSurreyUK
| | - Fernando A. Castro
- Advanced Technology InstituteUniversity of SurreyGuildfordSurreyUK
- National Physical LaboratoryTeddingtonMiddlesexUK
| | - Yunlong Zhao
- National Physical LaboratoryTeddingtonMiddlesexUK
- Dyson School of Design EngineeringImperial College LondonLondonUK
| |
Collapse
|
14
|
Lu H, Jian M, Gan L, Zhang Y, Li S, Liang X, Wang H, Zhu M, Zhang Y. Highly strong and tough silk by feeding silkworms with rare earth ion-modified diets. Sci Bull (Beijing) 2023; 68:2973-2981. [PMID: 37798179 DOI: 10.1016/j.scib.2023.09.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/15/2023] [Accepted: 09/13/2023] [Indexed: 10/07/2023]
Abstract
Nature-derived silk fibers possess excellent biocompatibility, sustainability, and mechanical properties, yet producing strong and tough silk fibers in a facile and large-scale manner remains a significant challenge. Herein, we report a simple method for preparing strong and tough silk fibers by feeding silkworms rare earth ion-modified diets. The resulting silk fibers exhibit significantly increased tensile strength and toughness, with average values of 0.85 ± 0.07 GPa and 156 ± 13 MJ m-3, respectively, and maximum values of 0.97 ± 0.04 GPa and 188 ± 19 MJ m-3, approaching those of spider dragline silk. Our findings suggest that the incorporation of rare earth ions (La3+ or Eu3+) into the silk fibers contributes to this enhancement. Structure analysis reveals a reduction in content and an improvement in orientation of β-sheet nanocrystals in silk fibers. X-ray photoelectron spectroscopy analysis confirms the chemical interaction between rare earth ions with β-sheet nanocrystals. The structural evolution and chemical interactions lead to the simultaneous enhancement in both strength and toughness. This work presents a simple, scalable, and effective strategy for producing ultra-strong and tough silk fibers with potential applications in areas requiring super structural materials, such as personal protection and aerospace.
Collapse
Affiliation(s)
- Haojie Lu
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Muqiang Jian
- Beijing Graphene Institute, Beijing 100095, China
| | - Linli Gan
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yong Zhang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Shuo Li
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xiaoping Liang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Haomin Wang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Mengjia Zhu
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yingying Zhang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
15
|
John VL, Nayana AR, Keerthi TR, K A AK, Sasidharan BCP, T P V. Mulberry Leaves (Morus Rubra)-Derived Blue-Emissive Carbon Dots Fed to Silkworms to Produce Augmented Silk Applicable for the Ratiometric Detection of Dopamine. Macromol Biosci 2023; 23:e2300081. [PMID: 37097218 DOI: 10.1002/mabi.202300081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/13/2023] [Indexed: 04/26/2023]
Abstract
Silk fibers (SF) reeled from silkworms are constituted by natural proteins, and their characteristic structural features render them applicable as materials for textiles and packaging. Modification of SF with functional materials can facilitate their applications in additional areas. In this work, the preparation of functional SF embedded with carbon dots (CD) is reported through the direct feeding of a CD-modified diet to silkworms. Fluorescent and mechanically robust SF are obtained from silkworms (Bombyx mori) that are fed on CDs synthesized from the Morus rubra variant of mulberry leaves (MB-CDs). MB-CDs are introduced to silkworms from the third instar by spraying them on the silkworm feed, the mulberry leaves. MB-CDs are synthesized hydrothermally without adding surface passivating agents and are observed to have a quantum yield of 22%. With sizes of ≈4 nm, MB-CDs exhibited blue fluorescence, and they can be used as efficient fluorophores to detect Dopamine (DA) up to the limit of 4.39 nM. The nanostructures and physical characteristics of SF weren't altered when the SF are infused with MB-CDs. Also, a novel DA sensing application based on fluorescence with the MB-CD incorporated SF is demonstrated.
Collapse
Affiliation(s)
- Varsha Lisa John
- Department of Chemistry, CHRIST (Deemed to be University), Bangalore, 560029, India
| | - A R Nayana
- School of Biosciences, Mahatma Gandhi University, P.D Hills (P.O), Kottayam, Kerala, 686560, India
| | - T R Keerthi
- School of Biosciences, Mahatma Gandhi University, P.D Hills (P.O), Kottayam, Kerala, 686560, India
| | - Athira Krishnan K A
- Centre for Neuroscience, Cochin University of Science and Technology, Kochi, Kerala, 682022, India
| | - B C P Sasidharan
- Centre for Neuroscience, Cochin University of Science and Technology, Kochi, Kerala, 682022, India
| | - Vinod T P
- Department of Chemistry, CHRIST (Deemed to be University), Bangalore, 560029, India
| |
Collapse
|
16
|
Luo J, Wen Y, Jia X, Lei X, Gao Z, Jian M, Xiao Z, Li L, Zhang J, Li T, Dong H, Wu X, Gao E, Jiao K, Zhang J. Fabricating strong and tough aramid fibers by small addition of carbon nanotubes. Nat Commun 2023; 14:3019. [PMID: 37230970 DOI: 10.1038/s41467-023-38701-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/12/2023] [Indexed: 05/27/2023] Open
Abstract
Synthetic high-performance fibers present excellent mechanical properties and promising applications in the impact protection field. However, fabricating fibers with high strength and high toughness is challenging due to their intrinsic conflicts. Herein, we report a simultaneous improvement in strength, toughness, and modulus of heterocyclic aramid fibers by 26%, 66%, and 13%, respectively, via polymerizing a small amount (0.05 wt%) of short aminated single-walled carbon nanotubes (SWNTs), achieving a tensile strength of 6.44 ± 0.11 GPa, a toughness of 184.0 ± 11.4 MJ m-3, and a Young's modulus of 141.7 ± 4.0 GPa. Mechanism analyses reveal that short aminated SWNTs improve the crystallinity and orientation degree by affecting the structures of heterocyclic aramid chains around SWNTs, and in situ polymerization increases the interfacial interaction therein to promote stress transfer and suppress strain localization. These two effects account for the simultaneous improvement in strength and toughness.
Collapse
Affiliation(s)
- Jiajun Luo
- Beijing National Laboratory for Molecular Sciences, School of Materials Science and Engineering, College of Chemistry and Molecular Engineering, Academy for Advanced Interdisciplinary Studies, Beijing Science and Engineering Center for Nanocarbons, Peking University, 100871, Beijing, China
- Beijing Graphene Institute (BGI), 100095, Beijing, China
| | - Yeye Wen
- Beijing National Laboratory for Molecular Sciences, School of Materials Science and Engineering, College of Chemistry and Molecular Engineering, Academy for Advanced Interdisciplinary Studies, Beijing Science and Engineering Center for Nanocarbons, Peking University, 100871, Beijing, China
- Beijing Graphene Institute (BGI), 100095, Beijing, China
| | - Xiangzheng Jia
- Department of Engineering Mechanics, School of Civil Engineering, Wuhan University, 430072, Wuhan, China
| | - Xudong Lei
- Institute of Mechanics, Chinese Academy of Sciences, 100190, Beijing, China
- School of Engineering Science, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Zhenfei Gao
- Beijing Graphene Institute (BGI), 100095, Beijing, China
| | - Muqiang Jian
- Beijing Graphene Institute (BGI), 100095, Beijing, China
| | - Zhihua Xiao
- Beijing National Laboratory for Molecular Sciences, School of Materials Science and Engineering, College of Chemistry and Molecular Engineering, Academy for Advanced Interdisciplinary Studies, Beijing Science and Engineering Center for Nanocarbons, Peking University, 100871, Beijing, China
- Beijing Graphene Institute (BGI), 100095, Beijing, China
| | - Lanying Li
- China Bluestar Chengrand Chemical Co., Ltd, 611430, Chengdu, China
| | - Jiangwei Zhang
- Science Center of Energy Material and Chemistry, College of Chemistry and Chemical Engineering, Inner Mongolia University, 010021, Hohhot, China
| | - Tao Li
- Beijing Graphene Institute (BGI), 100095, Beijing, China
| | - Hongliang Dong
- Center for High Pressure Science and Technology Advanced Research, 201203, Shanghai, China
| | - Xianqian Wu
- Institute of Mechanics, Chinese Academy of Sciences, 100190, Beijing, China.
- School of Engineering Science, University of Chinese Academy of Sciences, 100049, Beijing, China.
| | - Enlai Gao
- Department of Engineering Mechanics, School of Civil Engineering, Wuhan University, 430072, Wuhan, China.
| | - Kun Jiao
- Beijing National Laboratory for Molecular Sciences, School of Materials Science and Engineering, College of Chemistry and Molecular Engineering, Academy for Advanced Interdisciplinary Studies, Beijing Science and Engineering Center for Nanocarbons, Peking University, 100871, Beijing, China.
- Beijing Graphene Institute (BGI), 100095, Beijing, China.
| | - Jin Zhang
- Beijing National Laboratory for Molecular Sciences, School of Materials Science and Engineering, College of Chemistry and Molecular Engineering, Academy for Advanced Interdisciplinary Studies, Beijing Science and Engineering Center for Nanocarbons, Peking University, 100871, Beijing, China.
- Beijing Graphene Institute (BGI), 100095, Beijing, China.
| |
Collapse
|
17
|
Liu Q, Wang X, Zhou Y, Tan X, Xie X, Li Y, Dong H, Tang Z, Zhao P, Xia Q. Dynamic Changes and Characterization of the Metal Ions in the Silk Glands and Silk Fibers of Silkworm. Int J Mol Sci 2023; 24:ijms24076556. [PMID: 37047527 PMCID: PMC10094808 DOI: 10.3390/ijms24076556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 04/03/2023] Open
Abstract
Metal ions are involved in the conformational transition of silk fibroin and influence the structure and mechanical properties of silk fibers. However, the dynamic characteristics of metal ions during the formation of silk fibers remain unclear. In this study, we found that the silk glands of silkworms contain various metal elements, with varying levels of the metal elements in different zones of the glands and higher levels in the anterior silk glands. Additionally, the content of various metallic elements in the silk glands varied greatly before and after spinning, similar to their content in different cocoon layers, thus, indicating that the anterior silk glands maintain a certain metal ion environment for the transport and conformational transformation of the silk proteins. Most of the metallic elements located in fibroin were confirmed using degumming experiments. For the first time, a scanning electron microscope energy spectrometry system was used to characterize the metal elements in the cross-section of silk and cocoons. These findings have deepened our understanding of the relationship between the overall metal ion environment and silk fiber formation and help us further conceptualize the utilization of metal ions as targets to improve the mechanical properties of the silk fibers.
Collapse
|
18
|
Peng Z, Hu W, Li X, Zhao P, Xia Q. Bending–Spinning Produces Silkworm and Spider Silk with Enhanced Mechanical Properties. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c00868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Zhangchuan Peng
- Biological Science Research Center Southwest University, Chongqing400716, China
| | - Wenbo Hu
- Biological Science Research Center Southwest University, Chongqing400716, China
| | - Xinning Li
- Biological Science Research Center Southwest University, Chongqing400716, China
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology Southwest University, Chongqing400716, China
- Biological Science Research Center Southwest University, Chongqing400716, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology Southwest University, Chongqing400716, China
- Biological Science Research Center Southwest University, Chongqing400716, China
| |
Collapse
|
19
|
Banitaba SN, Ebadi SV, Salimi P, Bagheri A, Gupta A, Arifeen WU, Chaudhary V, Mishra YK, Kaushik A, Mostafavi E. Biopolymer-based electrospun fibers in electrochemical devices: versatile platform for energy, environment, and health monitoring. MATERIALS HORIZONS 2022; 9:2914-2948. [PMID: 36226580 DOI: 10.1039/d2mh00879c] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Electrochemical power tools are regarded as essential keys in a world that is becoming increasingly reliant on fossil fuels in order to meet the challenges of rapidly depleting fossil fuel supplies. Additionally, due to the industrialization of societies and the growth of diseases, the need for sensitive, reliable, inexpensive, and portable sensors and biosensors for noninvasive monitoring of human health and environmental pollution is felt more than ever before. In recent decades, electrospun fibers have emerged as promising candidates for the fabrication of highly efficient electrochemical devices, such as actuators, batteries, fuel cells, supercapacitors, and biosensors. Meanwhile, the use of synthetic polymers in the fabrication of versatile electrochemical devices has raised environmental concerns, leading to an increase in the quest for natural polymers. Natural polymers are primarily derived from microorganisms and plants. Despite the challenges of processing bio-based electrospun fibers, employing natural nanofibers in the fabrication of electrochemical devices has garnered tremendous attention in recent years. Here, various natural polymers and the strategies employed to fabricate various electrospun biopolymers are briefly covered. The recent advances and research strategies used to apply the bio-based electrospun membranes in different electrochemical devices are carefully summarized, along with the scopes in various advanced technologies. A comprehensive and critical discussion about the use of biopolymer-based electrospun fibers as the potential alternative to non-renewable ones in future technologies is briefly highlighted. This review will serve as a field opening platform for using different biopolymer-based electrospun fibers to advance the electrochemical device-based renewable and sustainable technologies, which will be of high interest to a large community. Accordingly, future studies should focus on feasible and cost-effective extraction of biopolymers from natural resources as well as fabrication of high-performance nanofibrous biopolymer-based components applicable in various electrochemical devices.
Collapse
Affiliation(s)
- Seyedeh Nooshin Banitaba
- Department of Textile Engineering, Amirkabir University of Technology, Tehran 159163-4311, Iran.
| | - Seyed Vahid Ebadi
- Department of Textile Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Pejman Salimi
- Istituto Italiano di Tecnologia, via Morego 30, Genova 16163, Italy
- Department of Chemistry and Industrial Chemistry, University of Genova, via Dodecaneso 31, I-16146 Genova, Italy
| | - Ahmad Bagheri
- Istituto Italiano di Tecnologia, via Morego 30, Genova 16163, Italy
- Faculty of Chemistry and Food Chemistry and Center for Advancing Electronics Dresden (cfaed), Technische Universitate Dresden, Dresden 01062, Germany
| | - Ashish Gupta
- Department of Physics, National Institute of Technology, Kurukshetra, Haryana, India
| | - Waqas Ul Arifeen
- School of Mechanical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan-si, Gyeongsangbuk-do, 38541, South Korea
| | - Vishal Chaudhary
- Research Cell & Department of Physics, Bhagini Nivedita College, University of Delhi, Delhi 110043, India
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, Smart Materials, University of Southern Denmark, Alsion 2, 6400, Sønderborg, Denmark
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Health Systems Engineering, Department of Natural Sciences, Florida Polytechnic University, Lakeland, Florida, USA
- School of Engineering, University of Petroleum and Energy Studies (UPES), Dehradun, Uttarakhand, India
| | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
20
|
Ru M, Hai AM, Wang L, Yan S, Zhang Q. Recent progress in silk-based biosensors. Int J Biol Macromol 2022; 224:422-436. [DOI: 10.1016/j.ijbiomac.2022.10.134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/05/2022] [Accepted: 10/15/2022] [Indexed: 11/05/2022]
|
21
|
Continuously processing waste lignin into high-value carbon nanotube fibers. Nat Commun 2022; 13:5755. [PMID: 36180457 PMCID: PMC9525656 DOI: 10.1038/s41467-022-33496-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 09/16/2022] [Indexed: 11/08/2022] Open
Abstract
High value utilization of renewable biomass materials is of great significance to the sustainable development of human beings. For example, because biomass contains large amounts of carbon, they are ideal candidates for the preparation of carbon nanotube fibers. However, continuous preparation of such fibers using biomass as carbon source remains a huge challenge due to the complex chemical structure of the precursors. Here, we realize continuous preparation of high-performance carbon nanotube fibers from lignin by solvent dispersion, high-temperature pyrolysis, catalytic synthesis, and assembly. The fibers exhibit a tensile strength of 1.33 GPa and an electrical conductivity of 1.19 × 105 S m-1, superior to that of most biomass-derived carbon materials to date. More importantly, we achieve continuous production rate of 120 m h-1. Our preparation method is extendable to other biomass materials and will greatly promote the high value application of biomass in a wide range of fields.
Collapse
|
22
|
Zou S, Yao X, Shao H, Reis RL, Kundu SC, Zhang Y. Nonmulberry silk fibroin-based biomaterials: Impact on cell behavior regulation and tissue regeneration. Acta Biomater 2022; 153:68-84. [PMID: 36113722 DOI: 10.1016/j.actbio.2022.09.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/28/2022] [Accepted: 09/08/2022] [Indexed: 11/01/2022]
Abstract
Silk fibroin (SF) is a promising biomaterial due to its good biocompatibility, easy availability, and high mechanical properties. Compared with mulberry silk fibroin (MSF), nonmulberry silk fibroin (NSF) isolated from typical nonmulberry silkworm silk exhibits unique arginine-glycine-aspartic acid (RGD) sequences with favorable cell adhesion enhancing effect. This inherent property probably makes the NSF more suitable for cell culture and tissue regeneration-related applications. Accordingly, various types of NSF-based biomaterials, such as particles, films, fiber mats, and 3D scaffolds, are constructed and their application potential in different biomedical fields is extensively investigated. Based on these promising NSF biomaterials, this review firstly makes a systematical comparison between the molecular structure and properties of MSF and typical NSF and highlights the unique properties of NSF. In addition, we summarize the effective fabrication strategies from degummed nonmulberry silk fibers to regenerated NSF-based biomaterials with controllable formats and their recent application progresses in cell behavior regulation and tissue regeneration. Finally, current challenges and future perspectives for the fabrication and application of NSF-based biomaterials are discussed. Related research and perspectives may provide valuable references for designing and modifying effective NSF-based and other natural biomaterials. STATEMENT OF SIGNIFICANCE: There exist many reviews about mulberry silk fibroin (MSF) biomaterials and their biomedical applications, while that about nonmulberry silk fibroin (NSF) biomaterials is scarce. Compared with MSF, NSF exhibits unique arginine-glycine-aspartic acid sequences with promising cell adhesion enhancing effect, which makes NSF more suitable for cell culture and tissue regeneration related applications. Focusing on these advanced NSF biomaterials, this review has systematically compared the structure and properties of MSF and NSF, and emphasized the unique properties of NSF. Following that, the effective construction strategies for NSF-based biomaterials are summarized, and their recent applications in cell behavior regulations and tissue regenerations are highlighted. Furthermore, current challenges and future perspectives for the fabrication and application of NSF-based biomaterials were discussed.
Collapse
Affiliation(s)
- Shengzhi Zou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China
| | - Xiang Yao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China
| | - Huili Shao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China
| | - Rui L Reis
- I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Barco, Guimarães 4805-017, Portugal
| | - Subhas C Kundu
- I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Barco, Guimarães 4805-017, Portugal
| | - Yaopeng Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China.
| |
Collapse
|
23
|
Review featuring the use of inorganic nano-structured material for anti-microbial properties in textile. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04418-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
24
|
Wen Y, Jian M, Huang J, Luo J, Qian L, Zhang J. Carbonene Fibers: Toward Next-Generation Fiber Materials. NANO LETTERS 2022; 22:6035-6047. [PMID: 35852935 DOI: 10.1021/acs.nanolett.1c04878] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The development of human society has set unprecedented demands for advanced fiber materials, such as lightweight and high-performance fibers for reinforcement of composite materials in frontier fields and functional and intelligent fibers in wearable electronics. Carbonene materials composed of sp2-hybridized carbon atoms have been demonstrated to be ideal building blocks for advanced fiber materials, which are referred to as carbonene fibers. Carbonene fibers that generally include pristine carbonene fibers, composite carbonene fibers, and carbonene-modified fibers hold great promise in transferring the extraordinary properties of nanoscale carbonene materials to macroscopic applications. Herein, we give a comprehensive discussion on the conception, classification, and design strategies of carbonene fibers and then summarize recent progress regarding the preparations and applications of carbonene fibers. Finally, we provide insights into developing lightweight, high-performance, functional, and intelligent carbonene fibers for next-generation fiber materials in the near future.
Collapse
Affiliation(s)
- Yeye Wen
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
- Beijing Graphene Institute (BGI), Beijing 100095, People's Republic of China
| | - Muqiang Jian
- Beijing Graphene Institute (BGI), Beijing 100095, People's Republic of China
| | - Jiankun Huang
- Beijing Graphene Institute (BGI), Beijing 100095, People's Republic of China
- School of Materials Science and Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Jiajun Luo
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
- Beijing Graphene Institute (BGI), Beijing 100095, People's Republic of China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, People's Republic of China
| | - Liu Qian
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Jin Zhang
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
- Beijing Graphene Institute (BGI), Beijing 100095, People's Republic of China
- School of Materials Science and Engineering, Peking University, Beijing 100871, People's Republic of China
| |
Collapse
|
25
|
Wang F, Chang L, Wang L, Gong Y, Guo Y, Shi Q, Quan F. In-situ compatibilized starch/polyacylonitrile composite fiber fabricated via dry-wet spinning technique. Int J Biol Macromol 2022; 212:412-419. [PMID: 35577192 DOI: 10.1016/j.ijbiomac.2022.05.091] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/26/2022] [Accepted: 05/10/2022] [Indexed: 11/19/2022]
Abstract
An in-situ compatibilized starch (St) and polyacrylonitrile (PAN) composite spinning solution was designed by preparing starch-graft-polyacrylonitrile (St-g-PAN) through graft copolymerizing acrylonitrile from soluble starch and using ammonium cerium nitrate (CAN) as initiator. As dimethyl sulfoxide (DMSO) was used as the solvent, St/St-g-PAN/PAN/DMSO spinning solution was prepared and St/St-g-PAN/PAN composite fibers were obtained by dry-wet spinning technique. The effects of air gap, coagulation bath, hot drawing and stretching, and thermal-setting process were studied in detail. Fourier transform infrared spectroscopy (FT-IR), solid state nuclear magnetic resonance (13C NMR), thermogravimetric analysis (TGA), X-ray diffraction analysis (XRD), and scanning electron microscopy (SEM) were used to characterize the structure and morphology of the copolymer and the fibers. Single fiber strength tester and sonic orientation instrument were performed to measure the fiber mechanical properties and orientation degrees. The results showed that as the grafting ratio ~150.0% and the reacting mixture containing St ~9.8%, St-g-PAN ~81.6%, and homo-PAN ~8.6% in DMSO solution with 6.0 wt% in concentration were used, the spinning parameters such as air gap ~35 mm, coagulation bath concentration ~70%, temperature ~25 °C, and positive stretching ~48%, hot drawing and stretching 6 times at 80 °C, thermal-setting at 90 °C for 3 h under constant length mode were met, composite fibers with breaking strength 3.41 cN·dtex-1, breaking elongation 14.41%, sonic orientation factor 0.625, moisture recovery ratio 10.53% under standard condition (1 atm, 22 °C, and relative humidity 65%), and boiling water shrinkage ratio 9.60% were obtained. The as prepared composite fiber was better than common viscose fiber 2.11 cN·dtex-1 and cotton fiber ~3.24 cN·dtex-1 and expected to be used in the fields of medical gauze, bandage, protective clothing, et al. besides of common textiles. The in-situ compatibilization method can be applied in preparation of other composite polymer materials.
Collapse
Affiliation(s)
- Fangjun Wang
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, PR China
| | - Linlin Chang
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, PR China
| | - Lijuan Wang
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, PR China
| | - Yumei Gong
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, PR China.
| | - Yanzhu Guo
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, PR China
| | - Qiang Shi
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Fengyu Quan
- State Key Laboratory of Bio-Fibers and Eco-textiles (Qingdao University), Qingdao 266071, PR China.
| |
Collapse
|
26
|
Muralidhar S, Gangaraju V, Shastri M, Marilingaiah NR, dey A, Singh SK, Rangappa D. Silk Fiber Multiwalled Carbon Nanotube-Based Micro-/Nanofiber Composite as a Conductive Fiber and a Force Sensor. ACS OMEGA 2022; 7:20809-20818. [PMID: 35755328 PMCID: PMC9219082 DOI: 10.1021/acsomega.2c01392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
Silk cocoon fibers (SFs) are natural polymers that are made up of fibroin protein. These natural fibers have higher mechanical stability and good elasticity properties. In this work, we coated multiwalled carbon nanotubes (MWCNTs) on the surface of SFs using a simple stirring technique with vinegar as the medium. This SF-MWCNT micro-/nanofiber composite was prepared without any adhesives. The characterization results revealed that the SF-MWCNT micro-/nanofiber composite exhibited excellent electrical conductivity (995 Ω cm-1), tensile strength (up to 200% greater elongation), and durability characteristics. In addition, this micro-/nanofiber composite shows a change in resistance from 1450 to 960 Ω cm-1 for an applied mechanical force of 0.3-1 N kg-1. Based on our findings, SF-MWCNT micro-/nanofiber composite-based conductive fibers (CFs) and force sensors (FSs) were developed.
Collapse
Affiliation(s)
- Sindhu
Sree Muralidhar
- Department
of Applied Sciences, Visvesvaraya Technological
University, Center for Postgraduate Studies, Muddenahalli, Chikkaballapur District, Bengaluru 562 101, India
| | - Vinay Gangaraju
- Department
of Applied Sciences, Visvesvaraya Technological
University, Center for Postgraduate Studies, Muddenahalli, Chikkaballapur District, Bengaluru 562 101, India
| | - Mahesh Shastri
- Department
of Electronics and communications, Nagarjuna
College of Engineering and Technology, Devanahalli 562110, India
| | - Navya Rani Marilingaiah
- Department
of Applied Sciences, Dayanand Sagar University, Kumaraswamy Layout, Bengaluru 560111, India
| | - Arjun dey
- Thermal
Systems Group, ISRO Satellite Centre, Bangalore 560017, India
| | - Sushil Kumar Singh
- Acoustic
Sensor Division, Solid State Physics Laboratory, Defence Research Development Organization (DRDO), New Delhi 110054, India
| | - Dinesh Rangappa
- Department
of Applied Sciences, Visvesvaraya Technological
University, Center for Postgraduate Studies, Muddenahalli, Chikkaballapur District, Bengaluru 562 101, India
| |
Collapse
|
27
|
Gao ZF, Zheng LL, Fu WL, Zhang L, Li JZ, Chen P. Feeding Alginate-Coated Liquid Metal Nanodroplets to Silkworms for Highly Stretchable Silk Fibers. NANOMATERIALS 2022; 12:nano12071177. [PMID: 35407295 PMCID: PMC9000898 DOI: 10.3390/nano12071177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 03/26/2022] [Accepted: 03/28/2022] [Indexed: 02/04/2023]
Abstract
In this study, we fed the larval of Bombyx mori silkworms with nanodroplets of liquid metal (LM) coated with microgels of marine polysaccharides to obtain stretchable silk. Alginate-coated liquid metal nanodroplets (LM@NaAlg) were prepared with significant chemical stability and biocompatibility. This study demonstrates how the fed LM@NaAlg acts on the as-spun silk fiber. We also conducted a series of characterizations and steered molecular dynamics simulations, which showed that the LM@NaAlg additions impede the conformation transition of silk fibroins from the random coil and α-helix to the β-sheet by the formation of hydrogen bonds between LM@NaAlg and the silk fibroins, thus enhancing the elongation at the breakpoints in addition to the tensile properties. The intrinsically highly stretchable silk showed outstanding mechanical properties compared with regular silk due to its 814 MPa breaking strength and a breaking elongation of up to 70%—the highest reported performance so far. We expect that the proposed method can expand the fabrication of multi-functional silks.
Collapse
Affiliation(s)
- Zhong-Feng Gao
- Advanced Materials Institute, Shandong Academy of Sciences, Qilu University of Technology, Jinan 250014, China;
- College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China; (L.-L.Z.); (J.-Z.L.)
- Correspondence: (Z.-F.G.); (P.C.)
| | - Lin-Lin Zheng
- College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China; (L.-L.Z.); (J.-Z.L.)
| | - Wen-Long Fu
- Advanced Materials Institute, Shandong Academy of Sciences, Qilu University of Technology, Jinan 250014, China;
| | - Lei Zhang
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada;
| | - Jin-Ze Li
- College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China; (L.-L.Z.); (J.-Z.L.)
| | - Pu Chen
- Advanced Materials Institute, Shandong Academy of Sciences, Qilu University of Technology, Jinan 250014, China;
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada;
- Correspondence: (Z.-F.G.); (P.C.)
| |
Collapse
|
28
|
Liu J, Kong T, Xiong HM. Mulberry-Leaves-Derived Red-Emissive Carbon Dots for Feeding Silkworms to Produce Brightly Fluorescent Silk. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2200152. [PMID: 35229375 DOI: 10.1002/adma.202200152] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/19/2022] [Indexed: 06/14/2023]
Abstract
Fluorescent silk has promising applications in dazzling textiles, biological engineering, and medical products, but the natural Bombyx mori silk has almost no fluorescence. Here carbon dots (CDs) made from mulberry leaves are reported, which have a strong near-infrared fluorescence with absolute quantum yield of 73% and a full width at half maximum of 20 nm. After feeding with such CDs, silkworms exhibit bright red fluorescence, grow healthily, cocoon normally, and turn to moths finally. The cocoons are pink in daylight and show bright red fluorescence under ultraviolet light. After breaking out of such cocoons, the red-emissive moths can mate and lay fluorescent eggs which would hatch normally. The growth cycle of the second generation of the test silkworm is the same as that of the control group, which means such CDs have excellent biocompatiblility. Dissection and analyses on both the test silkworms and cocoons disclose the metabolic route of the CDs, that is, the fluorescent CDs are absorbed by silkworms from alimentary canals, then transferred to silk glands, and finally to cocoons, while those unabsorbed CDs are excreted with the feces. All experimental results confirm the excellent biocompatibility and fluorescence stability of such CDs.
Collapse
Affiliation(s)
- Jun Liu
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Taoyi Kong
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Huan-Ming Xiong
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, P. R. China
| |
Collapse
|
29
|
Calvo V, González‐Domínguez JM, Benito AM, Maser WK. Synthesis and Processing of Nanomaterials Mediated by Living Organisms. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Víctor Calvo
- Group of Carbon Nanostructures and Nanotechnology (G-CNN) Instituto de Carboquímica ICB-CSIC C/ Miguel Luesma Castán 4 50018 Zaragoza Spain
| | - José M. González‐Domínguez
- Group of Carbon Nanostructures and Nanotechnology (G-CNN) Instituto de Carboquímica ICB-CSIC C/ Miguel Luesma Castán 4 50018 Zaragoza Spain
| | - Ana M. Benito
- Group of Carbon Nanostructures and Nanotechnology (G-CNN) Instituto de Carboquímica ICB-CSIC C/ Miguel Luesma Castán 4 50018 Zaragoza Spain
| | - Wolfgang K. Maser
- Group of Carbon Nanostructures and Nanotechnology (G-CNN) Instituto de Carboquímica ICB-CSIC C/ Miguel Luesma Castán 4 50018 Zaragoza Spain
| |
Collapse
|
30
|
Ji Y, Zhang X, Chen Z, Xiao Y, Li S, Gu J, Hu H, Cheng G. Silk Sericin Enrichment through Electrodeposition and Carbonous Materials for the Removal of Methylene Blue from Aqueous Solution. Int J Mol Sci 2022; 23:1668. [PMID: 35163591 PMCID: PMC8836085 DOI: 10.3390/ijms23031668] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/28/2022] [Accepted: 01/28/2022] [Indexed: 12/31/2022] Open
Abstract
The recycling and reuse of biomass waste for the preparation of carbon-based adsorbents is a sustainable development strategy that has a positive environmental impact. It is well known that a large amount of silk sericin (SS) is dissolved in the wastewater from the silk industry. Utilizing the SS instead of discharging it into the environment without further treatment would reduce environmental and ecological problems. However, effective enrichment of the SS from the aqueous solution is a challenge. Here, with the help of carboxymethyl chitosan (CMCS), which can form a gel structure under low voltage, an SS/CMCS hydrogel with SS as the major component was prepared via electrodeposition at a 3 V direct-current (DC) voltage for five minutes. Following a carbonization process, an SS-based adsorbent with good performance for the removal of methylene blue (MB) from an aqueous solution was prepared. Our results reveal that the SS/CMCS hydrogel maintains a porous architecture before and after carbonization. Such structure provides abundant adsorption sites facilitating the adsorption of MB molecules, with a maximum adsorptive capacity of 231.79 mg/g. In addition, it suggests that the adsorption is an exothermic process, has a good fit with the Langmuir model, and follows the intra-particle diffusion model. The presented work provides an economical and feasible path for the treatment of wastewater from dyeing and printing.
Collapse
Affiliation(s)
- Yansong Ji
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; (Y.J.); (Z.C.); (Y.X.); (S.L.); (G.C.)
| | - Xiaoning Zhang
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; (Y.J.); (Z.C.); (Y.X.); (S.L.); (G.C.)
| | - Zhenyu Chen
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; (Y.J.); (Z.C.); (Y.X.); (S.L.); (G.C.)
| | - Yuting Xiao
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; (Y.J.); (Z.C.); (Y.X.); (S.L.); (G.C.)
| | - Shiwei Li
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; (Y.J.); (Z.C.); (Y.X.); (S.L.); (G.C.)
| | - Jie Gu
- Key Laboratory of Sustainable Utilization of Technology Research for Fisheries Resources of Zhejiang Province, Zhejiang Marine Fisheries Research Institute, Zhoushan 316021, China; (J.G.); (H.H.)
| | - Hongmei Hu
- Key Laboratory of Sustainable Utilization of Technology Research for Fisheries Resources of Zhejiang Province, Zhejiang Marine Fisheries Research Institute, Zhoushan 316021, China; (J.G.); (H.H.)
| | - Guotao Cheng
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; (Y.J.); (Z.C.); (Y.X.); (S.L.); (G.C.)
| |
Collapse
|
31
|
Cerro D, Maldonado A, Matiacevich S. Comparative study of the physicochemical properties of a vegan dressing-type mayonnaise and traditional commercial mayonnaise. GRASAS Y ACEITES 2022. [DOI: 10.3989/gya.0885201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The food industry has developed a vegan dressing-type mayonnaise due to new consumer demands. The aim of this study was to compare three commercial mayonnaise types with a vegan dressing, measuring their physicochemical properties. Four dressing samples were analyzed: vegan, homemade recipe, creamy, and light. The following properties were measured: water activity, color, droplet size, rheological properties, structural analysis, and oxidative stability. A high color difference was observed between vegan and the other samples due to the presence of chickpea protein. The size and distribution of droplets of the vegan sample were greater than the others. The rheological properties indicated that all samples are non-Newtonian pseudoplastic fluids. The FT-IR results indicated that the highest peak for vegan corresponded to its content in mono-unsaturated fat. Therefore, it showed the lowest oxidative stability. In conclusion, the mayonaise formulations were affected by physicochemical properties such as the content and composition of the oil, thickener and protein contents, along with processing technology.
Collapse
|
32
|
Abstract
Every facet of human culture is in some way affected by our abundant, diverse insect neighbors. Our relationship with insects has been on display throughout the history of art, sometimes explicitly but frequently in inconspicuous ways. This is because artists can depict insects overtly, but they can also allude to insects conceptually or use insect products in a purely utilitarian manner. Insects themselves can serve as art media, and artists have explored or exploited insects for their products (silk, wax, honey, propolis, carmine, shellac, nest material), body parts (e.g., wings), and whole bodies (dead, alive, individually, or as collectives). This review surveys insects and their products used as media in the visual arts and considers the untapped potential for artistic exploration of media derived from insects. The history, value, and ethics of insect media art are relevant topics at a time when the natural world is at unprecedented risk.
Collapse
Affiliation(s)
- Barrett Anthony Klein
- Biology Department, University of Wisconsin-La Crosse, La Crosse, Wisconsin 54601, USA;
| |
Collapse
|
33
|
Chen J, Tsuchiya K, Masunaga H, Malay AD, Numata K. A silk composite fiber reinforced by telechelic-type polyalanine and its strengthening mechanism. Polym Chem 2022. [DOI: 10.1039/d2py00030j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A telechelic-type polyalanine was doped in silkworm silk fibroins to prepare reinforced composite fibers, which exhibited 42% and 51% higher mechanical properties than silk-only fibers in terms of tensile strength and toughness, respectively.
Collapse
Affiliation(s)
- Jianming Chen
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Kousuke Tsuchiya
- Department of Material Chemistry, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Hiroyasu Masunaga
- Japan Synchrotron Radiation Research Institute, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Ali D. Malay
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Keiji Numata
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Department of Material Chemistry, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
34
|
Qu J, Feng P, Zhu Q, Ren Y, Li B. Study on the Effect of Stretching on the Strength of Natural Silk Based on Different Feeding Methods. ACS Biomater Sci Eng 2021; 8:100-108. [PMID: 34918508 DOI: 10.1021/acsbiomaterials.1c01256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Silk is an important biological protein fiber, which has been widely developed and used in textile and biomedical fields due to its excellent mechanical properties and good biocompatibility. Strength is an important indicator that determines the value and use of silk. Although investigations have been made on the mechanical properties of silkworm silks and their dependence relationship with the microstructures, the variation of silk strength formed in the process of silkworm spinning has not been reported. By feeding the same strain of silkworms with mulberry leaves, mulberry leaves + artificial feed, and artificial feed, silks with three filament sizes were obtained, respectively. The tensile test results showed that the strength and filament size of silk are inversely proportional. The structure and fibrosis process of different-strength silks were analyzed. The results showed that, compared with ordinary silk, the β-sheet and crystallinity content of high-strength silk is higher, indicating that its fibrosis process is more sufficient. We proposed that the stretched degree of silk protein determines its structure and properties. During the spinning process of individual silkworms, the secretion of silk protein is not stable, which will cause changes in the stretched degree. The measurement results of the intraindividual stretched degree and strength verified that the degree of stretch determines the strength of the silk. This study not only provides a deeper understanding of the properties of silk protein but also is of interest for the design and development of advanced biomimetic silk materials.
Collapse
Affiliation(s)
- Jianwei Qu
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Piao Feng
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Qingyu Zhu
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Yuying Ren
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Bing Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, P. R. China.,Sericulture Institute of Soochow University, Suzhou, Jiangsu 215123, P. R. China
| |
Collapse
|
35
|
Xiong H, Cai J, Zhang W, Hu J, Deng Y, Miao J, Tan Z, Li H, Cao J, Wu X. Deep learning enhanced terahertz imaging of silkworm eggs development. iScience 2021; 24:103316. [PMID: 34778731 PMCID: PMC8577140 DOI: 10.1016/j.isci.2021.103316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 10/06/2021] [Accepted: 10/15/2021] [Indexed: 01/13/2023] Open
Abstract
Terahertz (THz) technology lays the foundation for next-generation high-speed wireless communication, nondestructive testing, food safety inspecting, and medical applications. When THz technology is integrated by artificial intelligence (AI), it is confidently expected that THz technology could be accelerated from the laboratory research stage to practical industrial applications. Employing THz video imaging, we can gain more insights into the internal morphology of silkworm egg. Deep learning algorithm combined with THz silkworm egg images, rapid recognition of the silkworm egg development stages is successfully demonstrated, with a recognition accuracy of ∼98.5%. Through the fusion of optical imaging and THz imaging, we further improve the AI recognition accuracy of silkworm egg development stages to ∼99.2%. The proposed THz imaging technology not only features the intrinsic THz imaging advantages, but also possesses AI merits of low time consuming and high recognition accuracy, which can be extended to other application scenarios.
Collapse
Affiliation(s)
- Hongting Xiong
- School of Electronic and Information Engineering, Beihang University, Beijing 100191, China
| | - Jiahua Cai
- School of Electronic and Information Engineering, Beihang University, Beijing 100191, China
| | - Weihao Zhang
- School of Cyber Science and Technology, Beihang University, Beijing 100191, China
| | - Jingsheng Hu
- College of Engineering, Peking University, Beijing 100191, China
| | - Yuexi Deng
- College of Engineering, Peking University, Beijing 100191, China
| | - Jungang Miao
- School of Electronic and Information Engineering, Beihang University, Beijing 100191, China
| | - Zhiyong Tan
- Key Laboratory of Terahertz Solid State Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hua Li
- Key Laboratory of Terahertz Solid State Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 China
| | - Juncheng Cao
- Key Laboratory of Terahertz Solid State Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaojun Wu
- School of Electronic and Information Engineering, Beihang University, Beijing 100191, China
- School of Cyber Science and Technology, Beihang University, Beijing 100191, China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074 China
| |
Collapse
|
36
|
Calvo V, González-Domínguez JM, Benito AM, Maser WK. Synthesis and Processing of Nanomaterials Mediated by Living Organisms. Angew Chem Int Ed Engl 2021; 61:e202113286. [PMID: 34730273 PMCID: PMC9300077 DOI: 10.1002/anie.202113286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Indexed: 11/23/2022]
Abstract
Nanomaterials offer exciting properties and functionalities. However, their production and processing frequently involve complex methods, cumbersome equipment, harsh conditions, and hazardous media. The capability of organisms to accomplish this using mild conditions offers a sustainable, biocompatible, and environmentally friendly alternative. Different nanomaterials such as metal nanoparticles, quantum dots, silica nanostructures, and nanocellulose are being synthesized increasingly through living entities. In addition, the bionanofabrication potential enables also the in situ processing of nanomaterials inside biomatrices with unprecedented outcomes. In this Minireview we present a critical state‐of‐the‐art vision of current nanofabrication approaches mediated by living entities (ranging from unicellular to higher organisms), in order to expand this knowledge and scrutinize future prospects. An efficient interfacial interaction at the nanoscale by green means is within reach through this approach.
Collapse
Affiliation(s)
- Víctor Calvo
- Group of Carbon Nanostructures and Nanotechnology (G-CNN), Instituto de Carboquímica, ICB-CSIC, C/ Miguel Luesma Castán 4, 50018, Zaragoza, Spain
| | - José M González-Domínguez
- Group of Carbon Nanostructures and Nanotechnology (G-CNN), Instituto de Carboquímica, ICB-CSIC, C/ Miguel Luesma Castán 4, 50018, Zaragoza, Spain
| | - Ana M Benito
- Group of Carbon Nanostructures and Nanotechnology (G-CNN), Instituto de Carboquímica, ICB-CSIC, C/ Miguel Luesma Castán 4, 50018, Zaragoza, Spain
| | - Wolfgang K Maser
- Group of Carbon Nanostructures and Nanotechnology (G-CNN), Instituto de Carboquímica, ICB-CSIC, C/ Miguel Luesma Castán 4, 50018, Zaragoza, Spain
| |
Collapse
|
37
|
Tang X, Ye X, Wang X, Zhao S, Wu M, Ruan J, Zhong B. High mechanical property silk produced by transgenic silkworms expressing the spidroins PySp1 and ASG1. Sci Rep 2021; 11:20980. [PMID: 34697320 PMCID: PMC8546084 DOI: 10.1038/s41598-021-00029-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 09/30/2021] [Indexed: 11/08/2022] Open
Abstract
Spider silk is one of the best natural fibers with excellent mechanical properties; however, due to the visual awareness, biting behavior and territory consciousness of spiders, we cannot obtain spider silk by large-scale breeding. Silkworms have a spinning system similar to that of spiders, and the use of transgenic technology in Bombyx mori, which is an ideal reactor for producing spider silk, is routine. In this study, the piggyBac transposon technique was used to achieve specific expression of two putative spider silk genes in the posterior silk glands of silkworms: aggregate spider glue 1 (ASG1) of Trichonephila clavipes (approximately 1.2 kb) and two repetitive units of pyriform spidroin 1 (PySp1) of Argiope argentata (approximately 1.4 kb). Then, two reconstituted spider silk-producing strains, the AG and PA strains, were obtained. Finally, the toughness of the silk fiber was increased by up to 91.5% and the maximum stress was enhanced by 36.9% in PA, and the respective properties in AG were increased by 21.0% and 34.2%. In summary, these two spider genes significantly enhanced the mechanical properties of silk fiber, which can provide a basis for spidroin silk production.
Collapse
Affiliation(s)
- Xiaoli Tang
- College of Animal Science, Zhejiang University, Hangzhou, People's Republic of China
| | - Xiaogang Ye
- College of Animal Science, Zhejiang University, Hangzhou, People's Republic of China
| | - Xiaoxiao Wang
- College of Animal Science, Zhejiang University, Hangzhou, People's Republic of China
| | - Shuo Zhao
- College of Animal Science, Zhejiang University, Hangzhou, People's Republic of China
| | - Meiyu Wu
- College of Animal Science, Zhejiang University, Hangzhou, People's Republic of China
| | - Jinghua Ruan
- College of Animal Science, Zhejiang University, Hangzhou, People's Republic of China
| | - Boxiong Zhong
- College of Animal Science, Zhejiang University, Hangzhou, People's Republic of China.
| |
Collapse
|
38
|
Wang Y, Ren J, Ye C, Pei Y, Ling S. Thermochromic Silks for Temperature Management and Dynamic Textile Displays. NANO-MICRO LETTERS 2021; 13:72. [PMID: 34138303 PMCID: PMC8187528 DOI: 10.1007/s40820-021-00591-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/20/2020] [Indexed: 05/16/2023]
Abstract
HIGHLIGHTS Wearable and smart textiles are constructed by integrating embroidery technology and 5G cloud communication, showing promising applications in temperature management and real-time dynamic textile displays. Thermochromism is introduced into the natural silk to produce high-performance thermochromic silks (TCSs) through a low cost, sustainable, efficient, and scalable strategy. The interfacial bonding of the continuously produced TCSs is in situ analyzed and improved through pre-solvent treatment and is confirmed using synchrotron Fourier transform infrared microspectroscopy. ABSTRACT Silks have various advantages compared with synthetic polymer fibers, such as sustainability, mechanical properties, luster, as well as air and humidity permeability. However, the functionalization of silks has not yet been fully developed. Functionalization techniques that retain or even improve the sustainability of silk production are required. To this end, a low-cost, effective, and scalable strategy to produce TCSs by integrating yarn-spinning and continuous dip coating technique is developed herein. TCSs with extremely long length (> 10 km), high mechanical performance (strength of 443.1 MPa, toughness of 56.0 MJ m−3, comparable with natural cocoon silk), and good interfacial bonding were developed. TCSs can be automatically woven into arbitrary fabrics, which feature super-hydrophobicity as well as rapid and programmable thermochromic responses with good cyclic performance: the response speed reached to one second and remained stable after hundreds of tests. Finally, applications of TCS fabrics in temperature management and dynamic textile displays are demonstrated, confirming their application potential in smart textiles, wearable devices, flexible displays, and human–machine interfaces. Moreover, combination of the fabrication and the demonstrated applications is expected to bridge the gap between lab research and industry and accelerate the commercialization of TCSs. [Image: see text] SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s40820-021-00591-w.
Collapse
Affiliation(s)
- Yang Wang
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, People's Republic of China
| | - Jing Ren
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, People's Republic of China
| | - Chao Ye
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, People's Republic of China
| | - Ying Pei
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Shengjie Ling
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, People's Republic of China.
| |
Collapse
|
39
|
Fometu SS, Wu G, Ma L, Davids JS. A review on the biological effects of nanomaterials on silkworm ( Bombyx mori). BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2021; 12:190-202. [PMID: 33614385 PMCID: PMC7884877 DOI: 10.3762/bjnano.12.15] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
The production of high-quality silkworm silk is of importance in sericulture in addition to the production of biomass, silk proteins, and animal feed. The distinctive properties of nanomaterials have the potential to improve the development of various sectors including medicine, cosmetics, and agriculture. The application of nanotechnology in sericulture not only improves the survival rate of the silkworm, promotes the growth and development of silkworm, but also improves the quality of silk fiber. Despite the positive contributions of nanomaterials, there are a few concerns regarding the safety of their application to the environment, in humans, and in experimental models. Some studies have shown that some nanomaterials exhibit toxicity to tissues and organs of the silkworm, while other nanomaterials exhibit therapeutic properties. This review summarizes some reports on the biological effects of nanomaterials on silkworm and how the application of nanomaterials improves sericulture.
Collapse
Affiliation(s)
- Sandra Senyo Fometu
- School of Biotechnology and Sericulture Research Institute, Jiangsu University of Science and Technology, Zhenjiang 212018, PR China
| | - Guohua Wu
- School of Biotechnology and Sericulture Research Institute, Jiangsu University of Science and Technology, Zhenjiang 212018, PR China
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212018, PR China
| | - Lin Ma
- School of Biotechnology and Sericulture Research Institute, Jiangsu University of Science and Technology, Zhenjiang 212018, PR China
| | - Joan Shine Davids
- School of Biotechnology and Sericulture Research Institute, Jiangsu University of Science and Technology, Zhenjiang 212018, PR China
| |
Collapse
|
40
|
Patil AB, Zheng C, Ma L, Wu R, Mengane SK, Zhang Y, Liu X, Meng Z, Zhang W, Xu Z, Chen C, Huang J, Liu XY. Flexible and disposable gold nanoparticles-N-doped carbon-modified electrochemical sensor for simultaneous detection of dopamine and uric acid. NANOTECHNOLOGY 2021; 32:065502. [PMID: 33086215 DOI: 10.1088/1361-6528/abc388] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Catalytic and electrocatalytic applications of supported metal nanoparticles are hindered due to an aggregation of metal nanoparticles and catalytic leaching under harsh operations. Hence, stable and leaching free catalysts with high surface area are extremely desirable but also challenging. Here we report a gold nanoparticles-hosted mesoporous nitrogen doped carbon matrix, which is prepared using bovine serum albumin (BSA) through calcination. BSA plays three roles in this process as a reducing agent, capping agent and carbon precursor, hence the protocol exhibits economic and sustainable. Gold nanoparticles at N-doped BSA carbon (AuNPs@NBSAC)-modified three-electrode strip-based flexible sensor system has been developed, which displayed effective, sensitive and selective for simultaneous detection of uric acid (UA) and dopamine (DA). The AuNPs@NBSAC-modified sensor showed an excellent response toward DA with a linear response throughout the concentration range from 1 to 50 μM and a detection limit of 0.05 μM. It also exhibited an excellent response toward UA, with a wide detection range from 5 to 200 μM as well as a detection limit of 0.1 μM. The findings suggest that the AuNPs@NBSAC nanohybrid reveals promising applications and can be considered as potential electrode materials for development of electrochemical biosensors.
Collapse
Affiliation(s)
- Aniruddha B Patil
- Research Institute for Soft Matter and Biomimetics, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Department of Physics, College of Materials, Xiamen University, Xiamen, 361005, People's Republic of China
- Department of Chemistry, M. D. College, Parel, Mumbai, Maharashtra, 400012, India
| | - Chuanbao Zheng
- Research Institute for Soft Matter and Biomimetics, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Department of Physics, College of Materials, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Liyun Ma
- Research Institute for Soft Matter and Biomimetics, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Department of Physics, College of Materials, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Ronghui Wu
- Research Institute for Soft Matter and Biomimetics, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Department of Physics, College of Materials, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Sharwari K Mengane
- Department of Botany, M.H. Shinde Mahavidyalaya, Tisangi, Kolhapur 416226, India
| | - Yifan Zhang
- Research Institute for Soft Matter and Biomimetics, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Department of Physics, College of Materials, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Xiaotian Liu
- Research Institute for Soft Matter and Biomimetics, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Department of Physics, College of Materials, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Zhaohui Meng
- Research Institute for Soft Matter and Biomimetics, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Department of Physics, College of Materials, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Wenli Zhang
- Research Institute for Soft Matter and Biomimetics, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Department of Physics, College of Materials, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Zijie Xu
- Research Institute for Soft Matter and Biomimetics, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Department of Physics, College of Materials, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Caifeng Chen
- Research Institute for Soft Matter and Biomimetics, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Department of Physics, College of Materials, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Jiani Huang
- Research Institute for Soft Matter and Biomimetics, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Department of Physics, College of Materials, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Xiang Yang Liu
- Research Institute for Soft Matter and Biomimetics, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Department of Physics, College of Materials, Xiamen University, Xiamen, 361005, People's Republic of China
- Department of Physics, National University of Singapore, 2 Science Drive 3, 117542 Singapore, Singapore
| |
Collapse
|
41
|
Kelly SP, Huang KP, Liao CP, Khasanah RAN, Chien FSS, Hu JS, Wu CL, Tso IM. Mechanical and structural properties of major ampullate silk from spiders fed carbon nanomaterials. PLoS One 2020; 15:e0241829. [PMID: 33166360 PMCID: PMC7652353 DOI: 10.1371/journal.pone.0241829] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 10/22/2020] [Indexed: 11/18/2022] Open
Abstract
The dragline silk of spiders is of particular interest to science due to its unique properties that make it an exceptional biomaterial that has both high tensile strength and elasticity. To improve these natural fibers, researchers have begun to try infusing metals and carbon nanomaterials to improve mechanical properties of spider silk. The objective of this study was to incorporate carbon nanomaterials into the silk of an orb-weaving spider, Nephila pilipes, by feeding them solutions containing graphene and carbon nanotubes. Spiders were collected from the field and in the lab were fed solutions by pipette containing either graphene sheets or nanotubes. Major ampullate silk was collected and a tensile tester was used to determine mechanical properties for pre- and post-treatment samples. Raman spectroscopy was then used to test for the presence of nanomaterials in silk samples. There was no apparent incorporation of carbon nanomaterials in the silk fibers that could be detected with Raman spectroscopy and there were no significant improvements in mechanical properties. This study represents an example for the importance of attempting to replicate previously published research. Researchers should be encouraged to continue to do these types of investigations in order to build a strong consensus and solid foundation for how to go forward with these new methods for creating novel biomaterials.
Collapse
Affiliation(s)
- Sean P. Kelly
- Department of Life Science, Tunghai University, Taichung, Taiwan
| | - Kun-Ping Huang
- Mechanical and Mechatronics Systems Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| | | | | | | | - Jwu-Sheng Hu
- Mechanical and Mechatronics Systems Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Chung-Lin Wu
- Center for Measurement Standards, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - I-Min Tso
- Department of Life Science, Tunghai University, Taichung, Taiwan
| |
Collapse
|
42
|
Guo K, Zhang X, Dong Z, Ni Y, Chen Y, Zhang Y, Li H, Xia Q, Zhao P. Ultrafine and High-Strength Silk Fibers Secreted by Bimolter Silkworms. Polymers (Basel) 2020; 12:E2537. [PMID: 33143336 PMCID: PMC7693878 DOI: 10.3390/polym12112537] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/20/2020] [Accepted: 10/23/2020] [Indexed: 01/09/2023] Open
Abstract
Ultrafine fibers are widely employed because of their lightness, softness, and warmth retention. Although silkworm silk is one of the most applied natural silks, it is coarse and difficult to transform into ultrafine fibers. Thus, to obtain ultrafine high-performance silk fibers, we employed anti-juvenile hormones in this study to induce bimolter silkworms. We found that the bimolter cocoons were composed of densely packed thin fibers and small apertures, wherein the silk diameter was 54.9% less than that of trimolter silk. Further analysis revealed that the bimolter silk was cleaner and lighter than the control silk. In addition, it was stronger (739 MPa versus 497 MPa) and more stiffness (i.e., a higher Young's modulus) than the trimolter silk. FTIR and X-ray diffraction results revealed that the excellent mechanical properties of bimolter silk can be attributed to the higher β-sheet content and crystallinity. Chitin staining of the anterior silk gland suggested that the lumen is narrower in bimolters, which may lead to the formation of greater numbers of β-sheet structures in the silk. Therefore, this study reveals the relationship between the structures and mechanical properties of bimolter silk and provides a valuable reference for producing high-strength and ultrafine silk fibers.
Collapse
Affiliation(s)
- Kaiyu Guo
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; (K.G.); (X.Z.); (Y.N.); (Y.C.); (H.L.)
- Biological Science Research Center Southwest University, Chongqing 400716, China; (Z.D.); (Y.Z.); (Q.X.)
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Chongqing 400716, China
| | - Xiaolu Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; (K.G.); (X.Z.); (Y.N.); (Y.C.); (H.L.)
- Biological Science Research Center Southwest University, Chongqing 400716, China; (Z.D.); (Y.Z.); (Q.X.)
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Chongqing 400716, China
| | - Zhaoming Dong
- Biological Science Research Center Southwest University, Chongqing 400716, China; (Z.D.); (Y.Z.); (Q.X.)
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Chongqing 400716, China
| | - Yuhui Ni
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; (K.G.); (X.Z.); (Y.N.); (Y.C.); (H.L.)
| | - Yuqing Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; (K.G.); (X.Z.); (Y.N.); (Y.C.); (H.L.)
| | - Yan Zhang
- Biological Science Research Center Southwest University, Chongqing 400716, China; (Z.D.); (Y.Z.); (Q.X.)
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Chongqing 400716, China
| | - Haoyun Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; (K.G.); (X.Z.); (Y.N.); (Y.C.); (H.L.)
- Biological Science Research Center Southwest University, Chongqing 400716, China; (Z.D.); (Y.Z.); (Q.X.)
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Chongqing 400716, China
| | - Qingyou Xia
- Biological Science Research Center Southwest University, Chongqing 400716, China; (Z.D.); (Y.Z.); (Q.X.)
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Chongqing 400716, China
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; (K.G.); (X.Z.); (Y.N.); (Y.C.); (H.L.)
- Biological Science Research Center Southwest University, Chongqing 400716, China; (Z.D.); (Y.Z.); (Q.X.)
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Chongqing 400716, China
| |
Collapse
|
43
|
Natalio F. Tracking the Biological Incorporation of Exogenous Molecules into Cellulose Fibers with Non‐Radioactive Iodinated Glucose. Isr J Chem 2020. [DOI: 10.1002/ijch.202000060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Filipe Natalio
- Kimmel Center for Archaeological Science Weizmann Institute of Science Rehovot 76100 Israel
- Department of Plant and Environmental Sciences Weizmann Institute of Science Rehovot 76100 Israel
| |
Collapse
|
44
|
Qu J, Dai M, Ye W, Fang Y, Bian D, Su W, Li F, Sun H, Wei J, Li B. Study on the effect of graphene oxide (GO) feeding on silk properties based on segmented precise measurement. J Mech Behav Biomed Mater 2020; 113:104147. [PMID: 33096450 DOI: 10.1016/j.jmbbm.2020.104147] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/24/2020] [Accepted: 10/14/2020] [Indexed: 11/18/2022]
Abstract
Silk is widely used in the biomedical field (e.g., surgical sutures) for its excellent mechanical properties and biocompatibility. The properties of silk can be further enhanced by a multitude of methods, including nano particle feeding, which is convenient and green. Generally, the filament length of a silkworm cocoon ranges from 1300 to 1700 m. Despite the fact that the filament size, a key factor affecting the mechanical properties of silk, varies along the length, evaluation of strengthened silk by segment and the specific distribution along the length has not been reported. Therefore, in the present study, we fed silkworms with graphene oxide-sprayed mulberry leaves and evaluated the silk properties segment by segment. The silk's strength and elongation were significantly enhanced, with more α-helical/random coils and thicker mesophase regions. Specifically, the silk from 2‰ GO-treated group had higher strength in the first 60% of the length, whereas the silk from 1‰ GO-treated group was stronger in the last 40% of the length. Notably, the silk from 1‰ GO-treated group had the highest strength and Young's modulus in the last 20% of the length, indicating that this segment is more suitable for use as a surgical suture. Our findings demonstrate that different silk segments offer a great range of desirable assets, and the feasibility to select a specific segment with the desired properties for a specific application.
Collapse
Affiliation(s)
- Jianwei Qu
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Minli Dai
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Wentao Ye
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Yilong Fang
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Dandan Bian
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Wujie Su
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Fanchi Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Haina Sun
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Jing Wei
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Bing Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China; Sericulture Institute of Soochow University, Suzhou, Jiangsu 215123, PR China.
| |
Collapse
|
45
|
The State of the Art of Energy Harvesting and Storage in Silk Fibroin-Based Wearable and Implantable Devices. ELECTROCHEM 2020. [DOI: 10.3390/electrochem1040022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The energy autonomy of self-powered wearable electronics depends on the adequate development of new technologies for energy harvesting and energy storage devices based on textile fibers to facilitate the integration with truly flexible and wearable devices. Silk fiber-based systems are attractive for the design of biomedical devices, lithium-ion batteries and flexible supercapacitors, due to their nitrogen-rich structure (for preparation of hierarchical carbon-based structures), and available surface for chemical modification reinforcing electroactive properties for use in batteries and supercapacitors. Herein, this paper reviews recent advances on silk fiber-based systems for harvesting and the storage of energy and the corresponding strategies to reinforce the physical and chemical properties of the resulting composites applied as electrodes and battery separators.
Collapse
|
46
|
Leem JW, Llacsahuanga Allcca AE, Kim YJ, Park J, Kim SW, Kim SR, Ryu W, Chen YP, Kim YL. Photoelectric Silk via Genetic Encoding and Bioassisted Plasmonics. ADVANCED BIOSYSTEMS 2020; 4:e2000040. [PMID: 32462817 DOI: 10.1002/adbi.202000040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/22/2020] [Indexed: 01/11/2023]
Abstract
Genetically encoded photoelectric silk that can convert photons to electrons (light to electricity) over a wide visible range in a self-power mode is reported. As silk is a versatile host material with electrical conductivity, biocompatibility, and processability, a photoelectric protein is genetically fused with silk by silkworm transgenesis. Specifically, mKate2, which is conventionally known as a far-red fluorescent protein, is used as a photoelectric protein. Characterization of the electrochemical and optical properties of mKate2 silk allows designing a photoelectric measurement system. A series of in situ photocurrent experiments support the sensitive and stable performance of photoelectric conversion. In addition, as a plasmonic nanomaterial with a broad spectral resonance, titanium nitride (TiN) nanoparticles are biologically hybridized into the silk glands, taking full advantage of the silkworms' open circulatory system as well as the absorption band of mKate2 silk. This biological hybridization via direct feeding of TiN nanoparticles further enhances the overall photoelectric conversion ability of mKate2 silk. It is envisioned that the biologically derived photoelectric protein, its ecofriendly scalable production by transgenic silkworms, and the bioassisted plasmonic hybridization can potentially broaden the biomaterial choices for developing next-generation biosensing, retina prosthesis, and neurostimulation applications.
Collapse
Affiliation(s)
- Jung Woo Leem
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | | | - Yong Jae Kim
- Department of Mechanical Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jongwoo Park
- Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, Jeollabuk-do, 55365, Republic of Korea
| | - Seong-Wan Kim
- Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, Jeollabuk-do, 55365, Republic of Korea
| | - Seong-Ryul Kim
- Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, Jeollabuk-do, 55365, Republic of Korea
| | - WonHyoung Ryu
- Department of Mechanical Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Yong P Chen
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN, 47907, USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Quantum Science and Engineering Institute, Purdue University, West Lafayette, IN, 47907, USA
| | - Young L Kim
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Quantum Science and Engineering Institute, Purdue University, West Lafayette, IN, 47907, USA
- Purdue University Center for Cancer Research, West Lafayette, IN, 47907, USA
- Regenstrief Center for Healthcare Engineering, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
47
|
Leem JW, Fraser MJ, Kim YL. Transgenic and Diet-Enhanced Silk Production for Reinforced Biomaterials: A Metamaterial Perspective. Annu Rev Biomed Eng 2020; 22:79-102. [PMID: 32160010 DOI: 10.1146/annurev-bioeng-082719-032747] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Silk fibers, which are protein-based biopolymers produced by spiders and silkworms, are fascinating biomaterials that have been extensively studied for numerous biomedical applications. Silk fibers often have remarkable physical and biological properties that typical synthetic materials do not exhibit. These attributes have prompted a wide variety of silk research, including genetic engineering, biotechnological synthesis, and bioinspired fiber spinning, to produce silk proteins on a large scale and to further enhance their properties. In this review, we describe the basic properties of spider silk and silkworm silk and the important production methods for silk proteins. We discuss recent advances in reinforced silk using silkworm transgenesis and functional additive diets with a focus on biomedical applications. We also explain that reinforced silk has an analogy with metamaterials such that user-designed atypical responses can be engineered beyond what naturally occurring materials offer. These insights into reinforced silk can guide better engineering of superior synthetic biomaterials and lead to discoveries of unexplored biological and medical applications of silk.
Collapse
Affiliation(s)
- Jung Woo Leem
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| | - Malcolm J Fraser
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, USA.,Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Young L Kim
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, USA.,Purdue University Center for Cancer Research, Regenstrief Center for Healthcare Engineering, and Purdue Quantum Science and Engineering Institute, West Lafayette, Indiana 47907, USA;
| |
Collapse
|
48
|
|
49
|
Chen C, Li Z, Mi R, Dai J, Xie H, Pei Y, Li J, Qiao H, Tang H, Yang B, Hu L. Rapid Processing of Whole Bamboo with Exposed, Aligned Nanofibrils toward a High-Performance Structural Material. ACS NANO 2020; 14:5194-5202. [PMID: 32275131 DOI: 10.1021/acsnano.9b08747] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Lightweight structural materials are critical in construction and automobile applications. In past centuries, there has been great success in developing strong structural materials, such as steels, concrete, and petroleum-based composites, most of which, however, are either too heavy, high cost, or nonrenewable. Biosourced composites are attractive alternatives to conventional structural materials, especially when high mechanical strength is presented. Here we demonstrate a strong, lightweight bio-based structural material derived from bamboo via a two-step manufacturing process involving partial delignification followed by microwave heating. Partial delignification is a critical step prior to microwave heating as it makes the cell walls of bamboo softer and exposes more cellulose nanofibrils, which enables superior densification of the bamboo structure via heat-driven shrinkage. Additionally, microwave heating, as a fast and uniform heating method, can drive water out of the bamboo structure, yet without destroying the material's structural integrity, even after undergoing a large volume reduction of 28.9%. The resulting microwave-heated delignified bamboo structure demonstrates outstanding mechanical properties with a nearly 2-times improved tensile strength, 3.2-times enhanced toughness, and 2-times increased bending strength compared to natural bamboo. Additionally, the specific tensile strength of the modified bamboo structure reaches 560 MPa cm3 g-1, impressive given that its density is low (1.0 g cm-3), outperforming common structural materials, such as steels, metal alloys, and petroleum-based composites. These excellent mechanical properties combined with the resource abundance, renewable and sustainable features of bamboo, as well as the rapid, scalable manufacturing process, make this strong microwave-processed bamboo structure attractive for lightweight, energy-efficient engineering applications.
Collapse
Affiliation(s)
- Chaoji Chen
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Zhihan Li
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Ruiyu Mi
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Jiaqi Dai
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Hua Xie
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Yong Pei
- Department of Mechanical Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Jianguo Li
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Haiyu Qiao
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Hu Tang
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Bao Yang
- Department of Mechanical Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Liangbing Hu
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
50
|
Pan L, Wang F, Cheng Y, Leow WR, Zhang YW, Wang M, Cai P, Ji B, Li D, Chen X. A supertough electro-tendon based on spider silk composites. Nat Commun 2020; 11:1332. [PMID: 32165612 PMCID: PMC7067870 DOI: 10.1038/s41467-020-14988-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 02/11/2020] [Indexed: 11/10/2022] Open
Abstract
Compared to transmission systems based on shafts and gears, tendon-driven systems offer a simpler and more dexterous way to transmit actuation force in robotic hands. However, current tendon fibers have low toughness and suffer from large friction, limiting the further development of tendon-driven robotic hands. Here, we report a super tough electro-tendon based on spider silk which has a toughness of 420 MJ/m3 and conductivity of 1,077 S/cm. The electro-tendon, mechanically toughened by single-wall carbon nanotubes (SWCNTs) and electrically enhanced by PEDOT:PSS, can withstand more than 40,000 bending-stretching cycles without changes in conductivity. Because the electro-tendon can simultaneously transmit signals and force from the sensing and actuating systems, we use it to replace the single functional tendon in humanoid robotic hand to perform grasping functions without additional wiring and circuit components. This material is expected to pave the way for the development of robots and various applications in advanced manufacturing and engineering.
Collapse
Affiliation(s)
- Liang Pan
- Innovative Centre for Flexible Devices (iFLEX), School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Fan Wang
- Biomechanics and Biomaterials Laboratory, Department of Applied Mechanics, Beijing Institute of Technology, Beijing, 100081, China
| | - Yuan Cheng
- Institute of High Performance Computing, Agency for Science Technology and Research (A*STAR), 1 Fusionopolis Way, Singapore, 138632, Singapore
| | - Wan Ru Leow
- Innovative Centre for Flexible Devices (iFLEX), School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Yong-Wei Zhang
- Institute of High Performance Computing, Agency for Science Technology and Research (A*STAR), 1 Fusionopolis Way, Singapore, 138632, Singapore
| | - Ming Wang
- Innovative Centre for Flexible Devices (iFLEX), School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Pingqiang Cai
- Innovative Centre for Flexible Devices (iFLEX), School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Baohua Ji
- Institute of Applied Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
| | - Dechang Li
- Institute of Applied Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China.
| | - Xiaodong Chen
- Innovative Centre for Flexible Devices (iFLEX), School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore.
| |
Collapse
|